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Abstract 

This report specifies the Turing language. Turing is a general purpose programming language 
that is well suited for teaching programming. It is designed to support the development of 
reliable, efficient programs. It incorporates language features that decrease the cost of program 
maintenance and that support formal verification.


Turing is designed to be supported by a user-friendly compiler and run-time system of modest 
size; these should insulate the user from vagaries of the underlying hardware and operating 
system. Turing is a Pascal-like language and incorporates almost all of Pascal's features. Turing 
alleviates many difficulties with Pascal; for example, Turing provides convenient text string 
handling, information hiding using modules, type-safe variant records (unions), as well as 
dynamic parameters and arrays.


A tutorial introduction to Turing is given in the text book “Introduction to Computer Science 
using the Turing Programming Language” [Holt & Hume 1984].  Turing compilers for various 
systems, including VAX/Unix, IBM PC/XT and IBM CMS are available from CSRI, University of 
Toronto. The language's formal definition is contained in the book “The Turing Programming 
Language: Design and Definition” [Holt et al. 1987], and the language appears as the cover 
article in the December 1988 edition of the Communications of the ACM [Holt & Cordy 1988].




Acknowledgements 

The design of the Turing language has drawn heavily from previous program ming languages 
and from the advice and help of a number of people. The heaviest debt is to the Euclid family 
of programming languages, including Concurrent Euclid, which in turn draws extensively from 
Pascal.


The language design was greatly helped by concurrent development of its formal semantics, its 
first compilers and a text book. J.A. Rosselet formally specified the language's context 
checking using his ADL notation. P.A. Matthews and R.C. Holt developed the language’s 
axiomatic semantics. J.R. Cordy, A.F.X. Curley, R.C. Holt, M.P. Mendell, S.G. Perelgut, and 
S.W.J. Tjiang developed the portable Turing compiler. This compiler is written in Concurrent 
Euclid, using the S/SL compiler-writing system; as of July 1983, it has been implemented for 
the DEC VAX, IBM 370, Motorola MC68000 and IBM PC/XT.


T.E. Hull encouraged the creation of the language and guided the development of its numeric 
features. J.N.P. Hume co-authored the text book and helped simplify certain language 
constructs. E.C.R. Hehner helped clarify and simplify procedures and functions. I.S. Weber, P.A. 
Matthews and T.C.N. Graham managed the computer typesetting of the Turing Report.


The original development period of Turing, from its inception, to its specification and 
formalization, to using its text book with compilers in classrooms, was 12 months.


The development of Turing was made possible by the financial support of the Natural Sciences 
and Engineering Research Council of Canada, and Bell Northern Research Limited.




Table Of Contents 

 1 Introduction, Terminology, and Notation


	  1.1 Terminology and Basic Concepts 

	  1.2 Identifiers and Explicit Constants 

	  1.3 Comments and Separators 

	  1.4 Syntactic Notation 


 2 Programs and Declarations 


	  2.2 Declarations 

	  2.3 Constant Declarations 

	  2.4 Variable and Collection Declarations 

	  2.5 Bind Declarations 


 3 Types 


	  3.1 Types and Type Declarations 

	  3.2 Type Equivalence and Assignability 


 4 Subprograms and Modules 


	  4.1 Subprograms 

	  4.2 Modules 

	  4.3 Restrictions on Constants and Read Only Items 

         4.4 Restrictions to Prevent Aliasing


5 Statements and Input/Output 


         5.1 Input and Output 


6 References and Expressions 


         6.1 References

         6.2 Expressions

         6.3 Numeric Operators

         6.4 Comparison Operators

         6.5 Boolean Operators

         6.6 String Operators and Substrings

         6.7 Set Operators and Set Constructors

         6.8 Compile-Time Expressions

         6.9 Predefined Functions

         6.10 Attributes

         6.11 Predefined Procedures

         6.12 The Uninitialized Value

         6.13 Character Collating Sequence


7 Source Inclusion Facility 


8 Short Forms 


9 Collected Keywords and Predefined Identifiers 




10 Collected Operators and Special Symbols 


11 Recognizing Tokens 


12 Implementation Constraints on Integer, String, and Real Types 


13 External Subprograms 


14 Changes in the Turing Language 


Appendix: Context-Free Syntax 


         A.1 Programs and Declarations 

         A.2 Types

         A.3 Subprograms and Modules 

         A.4 Statements and Input/Output 

         A.5 References and Expressions 




1 Introduction, Terminology, and Notation 

Turing is intended to be a general purpose language, meaning that it is potentially the language 
of choice for a wide class of applications. Because of its combination of convenience and 
expressive power it is particularly attractive for learning and teaching. Because of its clean 
syntax, Turing programs are relatively easy to read and easy to write.


The language improves reliability by disallowing error-prone constructs. It provides numerous 
compile-time and run-time checks to catch bugs before they cause disaster. These checks 
guarantee that each Turing program behaves according to the Turing language definition, or 
else a warning message is printed.  


To support maximal efficiency, there is an option to remove run-time checking. This option 
allows well-tested, heavily used Turing programs to be extremely efficient. Each construct in 
Turing is designed to have an obvious, efficient implementation on existing computer hardware.


The design of Turing aims to address the verification and security difficulties with Pascal-like 
languages. For example, compile-time checks are used to prevent aliasing of variables and 
side effects in functions. Aliasing due to pointers has been eliminated using the concept of 
collections. Variant records (unions) have been made type safe by means of a tag statement 
that explicitly selects among the types of values to be represented.


Perhaps the most important programming construct developed in the last decade is the 
module or cluster, which enforces information hiding and supports data abstraction. Turing 
incorporates this feature, with the result that construction of large programs as a set of nearly 
independent parts is relatively straightforward.


Turing is well suited to interactive programming; it is intended for use on personal computers 
as well as on traditional main-frame computers.


The language is designed to be easily and efficiently implemented. Experience has shown that 
a production quality portable Turing compiler can be constructed in a few man-months.


1.1  Terminology and Basic Concepts 

This section informally introduces basic terms, such as "scope" and "constant", used in 
describing the Turing language.


Variables and constants.  

A variable is a named item whose value can be changed by an assignment statement. 


Example:


    var i: int       % This declaration creates variable i
   i := 10          % This assignment sets the value of i to 10

This example uses comments that begin with a percent sign (%) and are concluded by the end 
of the line. Various items such as variables are given names; these names are called identifiers.




A named constant is a named item whose value cannot change. In the following, c and x are 
named constants:


    const c := 25
    const x := sin (y)**2      % y Is a variable

In this example, c's value is known at compile time, so it is a compile-time (or manifest) 
constant. (See also "Compile-Time Expressions"). The value of x is computed at run-time; it is 
a run-time (or nonmanifest) constant. Since x's value depends on variable y, different 
executions of the construct containing x's declaration may produce different values of x. 
During the lifetime of each x, the value of that particular x remains constant, even though y may 
change.


An explicit (or literal) constant is a constant that denotes its own value; for example, the 
following are an explicit integer constant, an explicit boolean constant and an explicit string 
constant:


    219
    true
    "Have a nice day"

Scopes and visibility.  

The textual lifetime of a named item is called its scope. For example, the scope of x in the 
following is the body of the begin statement in which it is declared.


    begin
        var z: real
        ... body of begin statement ...
    end

A declared item's scope begins at its declaration and continues to the end of the construct in 
which the declaration occurs. An item's declaration textually precedes any use of the item 
(except in those cases in which the identifier is explicitly preceded by the forward keyword).


The visibility (scope) rules of Turing are basically the same as those of the Algol/Pascal family 
of languages. This means that a declared item is visible (can be named) throughout its scope, 
including in subconstructs of the scope.


Most constructs (variables, types, constants, subprograms and modules) cannot be named 
using an identifier that is already visible. That is, for most constructs, redeclaration of identifiers 
is disallowed. (The exceptions are names of parameters, values of enumerated types, and 
names of record and union fields.)


There is one construct (the module) in an item's scope that does not automatically inherit the 
ability to access the item. Modules must explicitly import items that are to be accessed in the 
module body.


A subprogram may optionally use an import list to specify items used in the subprogram's 
body. 




Example:


    1    var i: int
    2    procedure increase (increment: int) % Increase i by increment
    3        import (var i)
    4        i := i + increment
    5    end increase
    6    increase (4)      % Increase i by 4

In this example, variable i is imported on line 3; it is imported var (as in var-iable) indicating that 
it can be changed in the procedure (in line 4). If i were imported without the var keyword, then it 
could be inspected, but line 4, which changes i, would not be allowed. A variable that is 
imported non-var is called a read-only variable. If a subprogram does not use an import list, it 
is considered to implicitly import any items that it actually references. By contrast, a module is 
always required to explicitly import any global items that are accessed in the module's body.


Subprograms.  

Turing has two kinds of subprograms - procedures and functions. A procedure is called using a 
procedure call statement. Calls to a function occur in expressions and return a value to be 
used in the expression.


A subprogram header may optionally declare formal parameters. For example, line 2 of the 
above example declares "increment" as a formal parameter. Each call to the subprogram must 
supply actual parameters corresponding to the formal parameters; for example in line 6 above, 
"4" is an actual parameter.  


Modules.  

A module is a construct used for packaging items together, including subprograms and 
variables, with information hiding. Access to internal items is controlled by an "export" list.  


Example:


    module stack                  % Implement a stack of integers
        export (push, pop)        % Entries to stack are push and pop

        var contents: array 1.. 100 of int
        var top: 0..100 := 0

        procedure push (i: int)
            top := top + 1
            contents (top) := i
        end push

        procedure pop (var i: int)
            i := contents (top)
            top := top — 1
        end pop
    end stack

    stack.push (14)      % Push 14 onto the stack



Since the module exports only push and pop, these are the only items in the module that can 
be accessed outside of the module. To access an exported item, one prefixes its name by the 
module's name, as in stack.push.


Side effects.  

If executing a construct changes values of items outside of the construct, we say that it has 
side effects. For example, the increase procedure given as an example above has the side 
effect of changing the value of variable i. In order to preserve their mathematical meaning and 
assist in verification, Turing prevents functions from having side effects. The method of 
guaranteeing that functions have no side effects is by disallowing them from having var 
parameters (these are parameters that can be changed), by disallowing them from importing 
items var, and by disallowing them from directly or indirectly importing procedures that 

import items var.


Since expressions cannot have side effects, in Turing all calls to a function with the same 
values of parameters and of imported variables necessarily return the same value. 


Example:


    x := f (24)      % Call function f with 24 as parameter
    y := f (24)      % Function f does not import x

After the execution of these two Turing statements, it is necessarily true that x = y.


Aliasing.  

Given distinct visible identifiers x and y, aliasing is said to exist if a change to the value of x 
would also change the value of y. In the following, suppose i and j are aliases for the same 
variable.


    i := 1
    j := 2

After execution of these statements, i and j (which are actually the same variable) will both have 
the value 2. Aliasing greatly complicates formal program verification, and confuses the 
programmer. For these reasons, Turing bans aliasing. This ban is enforced by placing 
constraints on those language constructs that may allow variables to be renamed. In Turing, 
the only constructs that rename variables are reference parameters to subprograms, and the 
bind construct. Constraints on the use of these two constructs guarantee that once the new 
identifier is visible, either the old identifier is inaccessible, or both identifiers are read-only.


Execution with side effects and aliasing.  

As has just been explained, the Turing language nominally prohibits side effects and aliasing. 
However, an implementation may extend the language to allow execution of programs violating 
these restrictions, given that appropriate error messages are issued. Programs with these 
violations have a well-defined operational (execution) semantics that is described by this 
Report, but such programs are not defined by the formal semantics of the Turing language.




Dynamic arrays.  

An array is said to be dynamic if its size is not known at compile time, i.e., if its bounds are 
necessarily computed at run-time. Turing allows dynamic arrays. 


Example:


    get n                          % Read value into variable n
    var a: array 1 ..n of real

This creates an array (really a vector) called a of n real values.


Dynamic parameters of subprograms. 

Dynamic parameters allow arrays of varying sizes to be used as arguments to a subprogram. 
For example, the following function sums the first i elements of an array.


   1    function sum (b: array 1..* of real, i: int) : real
   2        var total: real := OD
   3        for j: 1..i
   4            total := total + b (j)
   5        end for
   6        result total
   7    end sum
   8    x := sum (a, 10)

Line 8 calls the sum function to add up the first 10 elements of array a. Line 1 uses "*" as the 
upper bound of parameter b to specify that b's upper bound is inherited from the upper bound 
of its corresponding argument (actual parameter). The final keyword real on line 1 specifies that 
the function returns a real value. Lines 3-5 are a for statement; it adds the first i elements of 
array b to total. Line 6 returns the value of total as the value of the function.


Checking and Faithful Implementations.  

An implementation of Turing is said to be "faithful" if it meets the following criterion: the results 
of executing any Turing program will be determined by the source program together with the 
Turing specification (this Report) or else execution will abort with a message indicating (1) the 
reason for the abort, and (2) the location in the program where it was executing at the time of 
the abort. A checking implementation guarantees that execution is faithful. An abort may occur 
only because of (1) violation of a language-defined run-time constraint, such as a subscript out 
of bounds, or (2) resource exhaustion. Resource exhaustion may occur for a number of 
reasons, including lack of memory for calling a procedure, excessive run time, or excessive 
output.


Turing run-time constraints are categorized as (1) language constraints or (2) implementation 
constraints. Language (or validity) constraints disallow those actions that are clearly 
meaningless, such as division by zero, subscript out of bounds, or a false value in an assert 
statement. Implementation constraints disallow actions which have a language defined 
meaning but which are infeasible due to hardware or efficiency reasons, such as: limited range 
of int or limited exponent range of real implementations. Note that there are compile-time as 
well as run-time implementation constraints; the limited range of case statement labels is an 
example of a compile-time implementation constraint.




A non-checking implementation of Turing may omit any or all of the run-time checks required 
for faithful implementation; this omission of checking allows Turing programs to have execution 
efficiency comparable to programs written in machine-oriented languages like C. A non-
checking implementation may assume that the user has written his program in such a way that 
there will be no violations of run-time constraints nor resource exhaustion; these assumptions 
may be used for improving the quality of generated code. It is recommended that a non-
checking implementation should provide documentation of the run-time constraints that are 
not enforced and resource exhaustions that may not be detected.


The formal definition of Turing assumes that the real type corresponds exactly to the real 
numbers of mathematics. However, it is expected that implementations of Turing will actually 
implement real using the floating point unit of the host computer. To enhance portability, the 
section "Implementation Constraints on Integer, String and Real Types" in this Report gives 
suggested minimum standards for floating point precision and exponent range, as well as 
standards for implemented ranges of integers and maximum string lengths.


This section has introduced basic terminology and concepts. The remaining sections give the 
detailed specification of the Turing language.


1.2 Identifiers and Explicit Constants 

An identifier consists of a sequence of at most 50 letters, digits, and underscores beginning 
with a letter; all of these characters are significant in distinguishing identifiers. Upper and lower 
case letters are considered to be distinct in identifiers and keywords; hence j and J are different 
identifiers. Keywords must be in lower case. Keywords and predefined identifiers must not be 
redeclared, that is, they are reserved words.


An explicit string constant is a sequence of zero or more characters surrounded by double 
quotes. Within explicit string constants, the back slash character (\) is an escape to represent 
certain characters as follows: \" for double quote, \n or\N for end of line character, \t or\T for 
tab, \f or\F for form feed (new page), \r or\R for carriage return, \b or\B for backspace, \e or\E 
for escape, \d or \D for delete, and \\ for back slash. Explicit string constants must not cross 
line boundaries. Within explicit string constants, the following two characters are disallowed: 
eos and uninitchar. 


The eos (end of string) character is an implementation-dependent character that an 
implementation may use to mark the ends of strings. The uninitchar is an implementation 
dependent character that an implementation may use to mark a string that has not yet been 
assigned a value.  (See "Implementation Constraints on Integer, String and Real Types" for 
recommended values of eos and uninitchar.)


Character values are ordered by either the ASCII or EBCDIC collating sequence, depending on 
the host computer (see "Character Collating Sequence").


An explicit integer constant is a sequence of one or more decimal digits, optionally preceded 
by a plus or minus sign.


An explicit real constant consists of three parts: an optional plus or minus sign, a significant 
figures part, and an exponent part. The significant figures part consists of a sequence of one or 
more digits optionally containing a decimal point. The exponent part consists of the letter e (or 
E) followed optionally by a plus or minus sign, followed by one or more digits. If the significant 



figures part contains a decimal point then the exponent part is optional. The following are 
examples of explicit real constants:


    2.0     0.    .1    2e4   -56.1e+27

An explicit integer or real constant that begins with a sign is called a signed constant; without 
the sign, it is called an unsigned constant.


The explicit boolean constants are true and false.


1.3 Comments and Separators 

An end-of-line comment begins with the character % and ends at the end of the current line. A 
bracketed comment is any sequence of characters not including comment brackets 
surrounded by the comment brackets /* and */. Bracketed comments may cross line 
boundaries. A separator is a comment, blank, tab, form feed or end of line.


The tokens of the Turing language are the identifiers, keywords, explicit unsigned integer and 
real constants, explicit string and boolean constants, the operators and the special symbols. 
(See "Collected Keywords and Predefined Identifiers" and "Collected Operators and Special 
Symbols".) Each token in a Turing program can be preceded by any number of separators. 
Separators must not appear within any tokens, except as characters in explicit string 
constants. (See also "Recognizing Tokens".) Ends of lines must not appear within an explicit 
string constant; note that long string constants can be broken at line boundaries and 
connected by the concatenation operator (+).


In a Turing program, the sign that begins an explicit signed integer or real constant can have 
separators between it and the following unsigned constant. The sign and the unsigned 
constant are considered to form a signed constant only if the sign is a prefix operator, and not 
an infix operator (according to the syntax of Turing). For example, in the following, -4 is an 
unsigned constant, but -7 is not:


    if x -7 > -4 then ...

1.4 Syntactic Notation 

In the remainder of this Report, the following syntactic notation is used:


    { item }  means zero or more of the item

    [ item ]  means that the item is optional


Be warned: although this Report uses braces { ... } and brackets [ ... ] as syntactic notation, 
another use of braces and brackets appears in the section "Short Forms". That section 
explains the use of braces and brackets as short forms for the Turing loop and if statements 
respectively.


Keywords and special characters are given in boldface. Nonterminals, e.g., typeSpecification, 

are given in italics. The following abbreviations are used: 


    id               for  identifier

    expn          for  expression

    typeSpec  for  typeSpecification 



2 Programs and Declarations 

2.1 Programs 

A program consists of a sequence of declarations and statements.


A program is:


      { declarationOrStatementInMainProgram }


A program is executed by executing its declarations and statements. Here is a complete Turing 
program that prints: Alan Turing.


    put "Alan Turing"

A declarationOrStatementInMainProgram is one of:


    a.  declaration [ ; ]

    b.  statement [ ; ]

    c.  collectionDeclaration [ ; ]

    d.  subprogramDeciaration [ ; ]

    e.  moduleDeclaration [ ; ]


 Each declaration or statement may optionally be followed by a semicolon.


 2.2 Declarations 

 A declaration is one of the following:


    a.  constantDeclaration

    b.  variableDeclaration

    c.  typeDeclaration


Each of these declarations creates a new identifier (or identifiers); each new identifier must be 
distinct from other visible identifiers. That is, redeclaration of visible identifiers is not allowed. 
The effect of the declaration (its scope) lasts to the end of the construct in which the 
declaration occurs. This will be the end of the program, the end of a subprogram or module, 
the end of a begin, loop or for statement, the end of a then, elsif or else clause of an if 
statement, or the end of a case statement alternative. An identifier must be declared textually 
preceding any references to it; the exception to this rule is the form "forward id", occurring in 
import lists and collection declarations.


2.3 Constant Declarations 

A constantDeclaration is one of:


    a.  const [ pervasive ] id := expn

    b.  const [ pervasive ] id : typeSpec := initializingValue




An initializingValue is one of:


    a.  expn

    b.  init { initializingValue {, initializingValue } }


Examples:


    const c := 3                     % The type of c is int
    const s := "Hello"               % The type of s is string
    const x := sin(y)**2             % The type of x is real
    const a: array 1..3 of int := init (l,2,3)
    const b: array 1..3 of int := a
    const c: array 1..2, 1..2 of int := init (l,2,3,4) 
    % Assigns: c (1,1) := 1; c (1,2) := 2; c (2,1) := 3; c (2,2) := 4

A constantDeclaration introduces a name whose value is constant throughout the scope of the 
declaration. If the typeSpec is omitted, the type of the constant is taken to be the (root) type of 
the expression, which must not be a dynamic array. An initializing expression that does not 
appear inside an init construct may be a compile-time or run-time expression (but not a 
dynamic array), and must be assignable to the constant's type. Named non-scalar values are 
always considered to be run-time values. (See also "Compile-Time Expressions" and "Type 
Equivalence and Assignability").


The init construct is used only to initialize arrays, records and unions. All values in an init 
construct must be compile-time expressions. Note that init may be nested inside another init 
to initialize records, unions or arrays that contain other records, unions or arrays. The number 
of elements inside an init construct must equal the number of elements in the type of the 
constant being initialized. For a union, the init must contain first the tag value and then the field 
values corresponding to this tag value (see the discussion of union types in "Types and Type 
Declarations").


Constants declared using pervasive are visible in all subconstructs of the constant's scope. 

Such constants need not be explicitly imported.


2.4 Variable and Collection Declarations 

A variableDeclaration is one of:


    a.  var id {, id } := expn

    b.  var id {, id } : typeSpec [ := initializingValue ]


Examples:


    var j, k: int := 1          % j and k are assigned initial value 1
    var t := "Sample output"    % The type of t is string
    var v: array 1..3 of string (6) := init ("George",“Fred","Alice")

A variableDeclaration creates a new variable (or new variables). In form (a), the variable's type is 
taken to be the (root) type of the expression; this type must not be a dynamic array.




Form (b) allows the declaration of dynamic arrays, whose upper bounds are run-time 
expressions. However, the lower bounds are constrained to be compile-time expressions. 
Given that n is a variable, here is an example of the declaration of a dynamic array:


    var w: array 1..n, 1..n of real

Run-time bounds are only allowed as illustrated in this example, i.e., as the upper bounds of an 
array declared using form (b). Note that dynamic arrays can never appear in records, unions, or 
collections. Each upper bound must be at least as large as its corresponding lower bound. A 
dynamic array cannot be initialized in its declaration and cannot be a named type.


A collectionDeclaration is one of:


    a.  var id {, id } : collection of typeSpec

    b.  var id {, id } : collection of forward id


A collection can be thought of as an array whose elements are dynamically created and 
deleted at run-time. Elements of a collection are referenced by subscripting the collection 
name with a variable of the collection's pointer type. (See the discussion of pointers in "Types 
and Type Declarations".) This subscripting selects the particular element of the collection 
located by the pointer variable.


The keyword forward is used to specify that the type id of the collection elements will be given 
by a later declaration in the collection's scope. The later declaration must appear at the same 
level (in the same list of declarationsAndStatements) as the original declaration. This allows the 
declaration of recursively cyclic collections, for example, when a collection contains pointers to 
another collection which in turn contains pointers to the first collection. A collection whose 
element type is forward can be used only to declare pointers to it until the type's declaration is 
given. The forward type id is inaccessible until its declaration is given.


Elements of a collection are created and deleted dynamically using the statements new and 
free; see "Types and Type Declarations" for an example. The statement "new C,p" creates a 
new element in the collection C and sets p to point to it; however, if, due to resource 
exhaustion, the new element cannot be created, p is set to the value nil(C). The statement "free 
C,p" deletes the element of C pointed to by p and sets p to nil(C). In each case p is passed as 
a var parameter and must be a variable of the pointer type of C. 


Suppose pointer q is equal to pointer p and the element they locate is deleted via "free C,p”. In 
that case we say that q is a "dangling pointer" because it seems to locate an element, but the 
element no longer exists. A dangling pointer is considered to be an uninitialized value; it cannot 
be assigned, compared, used as a collection subscript, or passed to free.


The value nil(C) is the null pointer for the collection.


Collections cannot be assigned, compared, passed as parameters, bound to, or named by a 
const declaration. Collections must not be declared in subprograms.


2.5 Bind Declarations 

A variableBinding is:


    bind [ var ] id to variableReference {, [ var ] id to variableReference }




A variableBinding is used to give a new name to a variable (or a part of a variable). This 
declares an identifier that is itself considered to be a variable. The new variable is considered to 
be "read-only"unless preceded by var (see "Restrictions on Constants and Read Only Items"). 


Example:


    bind var x to a(i), y to r.j

This declares x and y, which are considered to be variables; x is essentially an abbreviation for 
a(i) and y is essentially an abbreviation for r.j; y is read-only. Changing the value of i during the 
scope of the bind does not change the value denoted by x. In order to avoid aliasing, variable a 
is inaccessible and r is read-only until the end of the scope of the bind.


A variableBinding cannot occur as a declaration in the (main) program, except nested inside 
constructs, such as subprograms and the begin statement. A module must not contain as one 
of its fields a variableBinding. (This restriction is made to prevent re-entry into the scope of an 
existing bind.)


Turing does not allow aliasing. Hence, the "root" identifier of the variableReference (the first 
identifier in the reference) of a var bind becomes inaccessible for the scope of the binding. 
Even though the root identifier is inaccessible, it cannot be redeclared in its scope. See also 
"Restrictions Preventing Aliasing". To allow binding to different parts of a variable, each root 
identifier remains accessible until the end of the list of bindings in the variableBinding. The new 
bound identifiers do not become visible until the end of this list. In order to avoid aliasing, 
bindings that are var to different parts of the same variable must be non-overlapping.


Turing has been designed so that each bind can be implemented "by reference" (by using the 
address of the target variable). An implementation that allows aliasing should warn when 
aliasing is present and should implement binds by reference.


3 Types 

3.1 Types and Type Declarations 

A typeDeclaration is:


    type [ pervasive ] id: typeSpec


A typeDeclaration gives a name to a type. The type name can subsequently be used in place of 
the full type definition.


Named types may optionally be declared pervasive. Type names declared using pervasive are 
visible in all subconstructs of the scope in which they are declared. Such types need not be 
explicitly imported.


A typeSpec is one of the following:  


    a.  standardType                    

    b.  subrangeType                     

    c.  enumeratedType                   

    d.  arrayType                        




    e.  setType                          

    f.   recordType                       

    g.  unionType                        

    h.  pointerType                      

    i.   namedType                        


A standardType is one of:            

    a.  int

    b.  real                             

    c.  boolean                          

    d.  string [ ( compileTimeExpn ) ]        


The standard types are always visible in all scopes, and can not be explicitly imported.


The optional compile-time expression in a string type is a strictly positive integer value giving 
the string's maximum length. If the string's maximum length is omitted, the string is (ideally) 
considered to have no limit on its length. However, it is expected that most implementations 
will impose a standard default limit. This limit is recommended to be at least 255. 


Example:


   var s: string := "Hello there"

Parameters can be declared to be dynamic strings, with maximum lengths declared as "*"; see 
"Subprograms".


A scalar type is an integer, real, boolean, enumerated type, subrange or pointer. The non-scalar 
types are: strings, sets, arrays, records, and union types.


An index type is a subrange, enumerated type or a named type which is an index type. Index 
types can be used as array subscripts, as selectors (tags) for case statements and union types, 
and as the base types of sets.


A subrangeType is:


    compileTimeExpn .. expn


The two expressions give the lower and upper bounds of the range of values of the type. The 
two expressions must be both integers or both of the same enumerated type. The lower bound 
must be less than or equal to the upper bound. The second expression must be a compile-time 
expression in all cases except when it gives the upper bound of a dynamic array being defined 
in a variableDeclaration. (See "Variable and Collection Declarations".) 


Example:


    var i: 1..10 := 2      % i can be 1,2 ... up to 10

An enumeratedType is:


    enum ( id {, id } )




The enumeratedType declares an ordered sequence of identifiers whose associated values are 
distinct,  contiguous and increasing. See the definitions of the ord, succ, and pred functions in 
"Predefined Functions".


Example:


    type color: enum (red, green, blue)
    var c: color := color.green
    var d: color := succ (c)      % d becomes blue

The values are denoted by the name of the enumerated type followed by a dot followed by one 
of the enumerated identifiers; for example: color.green.  Enumerated types and their subranges 
are index types.


An arrayType is:


    array indexType {, indexType } of typeSpec


Each indexType must be a subrange type, an enumerated type or a named type which is an 
indexType. Note that variables and parameters can be declared to be dynamic arrays, with run-
time upper bounds; see "Subprograms". A dynamic array type must not be given a name, and 
must not occur in a record, union or collection. Each indexType gives the range of a subscript. 
The typeSpec gives the type of the elements of the array.


Elements of an array can be referenced using subscripts (see "Variables and Constants") and 
themselves used as variables or constants. Arrays can be assigned (but not compared) as a 
whole.  


A setType is:


    set of indexType


The indexType is called the base type of the set. An implementation may limit the number of 
items in the base type; this number will be at least 31. A variable of a set type can be assigned 
as value subsets of the entire set. See "Set Operators and Set Constructors". 


Example:


    type smallSet: set of 0..2
    var s: smallSet := smallSet (0,1)  % s contains elements 0 and 1

A recordType is:


    record

        id {, id } : typeSpec [ ; ]

      { id {, id } : typeSpec [ ; ] }

    end record


Variables declared using a record type have the fields given by the declarations in the 
recordType. Fields of a record may be referenced using the dot operator (see "Variables and 
Constants") and themselves  used as variables or constants. Record variables can be assigned 
(but not compared) as a whole.




A union type (or variant record) is like a record in which there is a run-time choice among sets 
(called alternatives) of accessible fields. This choice is made by the tag statement, which 
deletes the current set of fields and activates a new set.


A unionType is:


    union [ id ]: indexType of

         label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [ ; ] }

       { label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [ ; ] } }

       [ label : { id {, id } : typeSpec [ ; ] } ]

     end union


Example:


    type vehicle: enum (passenger, farm, recreational)

    type vehicleRecord:
        union kind: vehicle of
            label vehicle.passenger:
                cylinders: 1..16
            label vehicle.farm:
                farmClass: string (lO)
            label:    
                 % No fields for "otherwise" alternative
        end union

    var v: vehicleRecord := init (vehicle.farm, "dairy")

    % Set tag and farmClass
    tag v, vehicle.passenger      % Activate passenger alternative
    v.cylinders := 6

The optional identifier following the keyword union is the name of the tag of the union type.  If 
the identifier is omitted, the tag is still considered to exist, although a non-checking 
implementation would not need to represent it at run-time.


Each expression following label is called a label value. These must be distinct compile-time 
expressions in a given union type. Each label value must be assignable to the tag's type, which 
is an index type. Each labeled set of declarations is called an alternative. The final optional 
alternative with no label expressions is called the otherwise alternative.


An implementation may limit the range of the tag's type; the range limit, from the minimum 
label value to the maximum inclusive, will be at least 256.


The fields and tag of a union may be referenced using the dot operator (see "Variables and 
Constants"), and the fields can be used as variables or constants. Access or assignment to a 
field of an alternative is allowed only when the tag's value matches one of the alternative's 
label values (or matches none of the union's label values for the otherwise alternative). A 
checking implementation must guarantee this match at each access or assignment to a field. A 
tag cannot be assigned to and must not be the object of a var bind nor passed to a var 



parameter. A union's tag value can be changed using the tag statement (see "Statements"). In 
a checking implementation, the tag statement will actually change (uninitialize) any existing 
field values. A non-checking implementation will not necessarily change the fields. Note that 
union types under a checking implementation are "type safe"; so, changing the tag will not 
automatically change values of one alternative to be values of another alternative. A union’s tag 
can also be changed by assigning to the entire union.


The identifiers declared as fields of a record, tag and fields of a union type, or values of an 
enumerated type must be distinct from each other. However, they need not be distinct from 
other visible identifiers. Fields of records and unions must not be dynamic arrays.


A pointerType is:


    pointer to collectionld


Variables declared using a pointerType are pointers to dynamically created and deleted 
elements of the specified collection; see "Variable Declarations".  Pointers are used as 
subscripts of the specified collection to select the element to which they point. The selected 
element can be used as a variable or constant. Pointers may be assigned, compared for 
equality and passed as parameters. 


Example:


    var list: collection of forward node

    type node:
        record
            contents: string (lO)
            next: pointer to list
        end record

    var first: pointer to list := nil (list)
    var another: pointer to list

    new list, another      % Create new list element
    list (another).contents := "Belgium"
    list (another).next := first
    first := another

The forward directive can be avoided in self-referencing collections, as this example illustrates:


    var list: collection of
        record
            contents: string (lO)
            next: pointer to list
        end record

That is, the name of a collection is visible inside the collection.




A namedType is:


    [ moduleld . ] typeld


The typeld must be a previously declared type name. Type names exported from a module are 
referenced using the dot operator.


3.2 Type Equivalence and Assignability 

This section defines the terms type equivalence and type assignability. Roughly speaking, an 
actual parameter can be passed to a var formal parameter only if their types are equivalent, 
and a value can be assigned to a variable (or a value passed to a non-var parameter) only if the 
value's type is assignable to the variable's type. Type equivalence can be determined at 
compile time; assignability sometimes cannot be determined until run time (when the target 
type is a subrange or a string with a maximum length).


Two types are defined to be equivalent if they are 


    (a)  the same standard type,

    (b)  subranges with equal first and last values,

    (c)  arrays with equivalent index types and equivalent component types,

    (d)  strings with equal maximum lengths,

    (e)  sets with equivalent base types, or

    (f)  pointers to the same collection; 


in addition,


    (g) a declared type identifier is equivalent to the type it names 

        (and to the type named by that type, if that type is a named type, and so on.)


Outside of the exporting module M an opaque type with identifier T is not equivalent to any 
other type (but M.T is equivalent to type identifiers declared outside M that name M.T). By 
contrast, if type U is exported non-opaque from M, then type M.U is equivalent to the type that 
U names inside M. The parameter or result type of an exported subprogram or an exported 
constant is considered to have type M.T outside of M iff the item is declared using the type 
identifier T. The opaque type M.T is distinct from any other type that M exports or imports. A 
value of opaque type M.T can be assigned, but cannot be compared, subscripted, or field 
selected, and cannot be an operand of any operator. All that can be done with a value of an 
opaque type is to assign it or to pass it as a subprogram parameter. These rules for 
determining if opaque type M.T is equivalent to another type U imply that one never needs to 
look inside module M to see if M.T is equivalent to U; in other words, opaque type M.T is a 
new, distinct type created by module M. See "Modules" for an example using opaque types.


Each textual instance of a type definition for an enumerated, record or union type creates a 
new type that is not equivalent to any other type definition.


The int type is not considered to be equivalent to any integer subrange. The string type without 
explicit maximum length is not considered to be equivalent to any string type having an explicit 
maximum length.


The root type of any integer expression is int, that of any enumerated value is the defining 
enumerated type, that of any string expression is string (without specified maximum length), 
and that of any other value is the value's type. The root type of a named type is the root type of 



the type that is named. The root type of an integer subrange is int and that of an enumerated 
subrange is the original enum type. The root type of opaque type M.T is M.T.


Whenever a named value (variable, constant or function) is used where an expression is 
required, the type of the expression is considered to be the root type of the named value. For 
example,


    var x: 1..10 := 5
    y := x    % The type of expression x is int

A value is assignable to a type (called the target type) if 

    (a)  the value's root type is equivalent to the target's root type, or

    (b)  the value is an integer and the target is real.


These two requirements can be enforced at compile time. In case (a) there is also a run-time 
requirement that a value assigned to a target subrange is contained in the subrange, and a 
value assigned to a target string does not exceed the target's maximum length. In case (b) the 
integer is implicitly converted to real. Throughout the language, wherever a real expression is 
required, an integer expression is allowed and is converted to real by an implicit call to the 
predefined function intreal.


The type of a reference passed to a var parameter must be equivalent to the formal's type. The 
type of an expression passed to a non-var (constant) parameter must be assignable to the 
formal's type. A dynamic actual array parameter (a parameter with run-time computed upper 
bounds) can be passed only to a formal array parameter with * declared for upper bounds. 
Similarly a dynamic actual string parameter can be passed only to string (*). See also the 
discussion of parameterType in "Subprograms". Dynamic strings can be assigned, but 
dynamic arrays cannot. In an assignment v := e, a variable initialization, a const declaration, or 
an initialization init v := e, e must be assignable to v and neither v nor e can be dynamic arrays. 

Examples:


    type smallint: 1..10
    var t: smallint

    var j: 1..100  % Variable j is assignable to i when in range 1..10

    type smallarray: array 1..10 of real

    var a: array smallint of real  % Equivalent to smallarray

    type rec:
        record
            f: string
            g: real
        end record

    var rl: rec
    var r2: rec

    var r3:      % Not equivalent to rl and r2
        record

      f: string
      g: real

        end record



Variables i and j have the same root type (int), so one can be assigned to the other, given that 
the assigned value is in the target's declared range. Array a's type is equivalent to the type 
smallarray; so a could be assigned to a variable or passed to a formal parameter of type 
smallarray. The types of rl and r2 are equivalent and one can be assigned to the other. 
However, r3's type is not equivalent to the type of rl and r2.


Here is an example illustrating the equivalence rules for opaque types:


      type T1: int

      module m
   import (T1)
   export (T2, opaque T3, opaque T4, T5)

           type T2: T1
           type T3: T1
           type T4: T3
           type T5: T4
      end m

Inside module M, types T1 through T5 are equivalent, but outside of M, types T1, M.T2 and 
M.T5 are equivalent but types M.T3 and M.T4 are distinct (opaque) types.


4 Subprograms and Modules 

4.1 Subprograms 

A subprogram is a procedure or a function.


A subprogramDeclaration is one of:


    a.  subprogramHeader

             [ importList ]

             subprogramBody


    b.  forward subprogramHeader

	     forwardlmportList


    c.  body procedure id

	     subprogramBody


    d.  body function id

	     subprogramBody


A subprogramHeader is one of:


    a.  procedure id [ ( parameterDeclaration {, parameterDeclaration } ) ]


    b.  function id [ ( parameterDeclaration {, parameterDeclaration } ) ]  [ id ] : typeSpec




A procedure is invoked by a procedure call statement, with actual parameters if required. A 
function is invoked by using its name, with actual parameters if required, in an expression. If a 
subprogram p has no parameters, a call to it does not have any parentheses, i.e., the call is of 
the form "p" and not "p ()".


A procedure may return explicitly by executing a return statement or implicitly by reaching the 
end of the procedure body. A function must return via a result statement (see "Statements").


Subprograms may optionally take parameters, the types of which are defined in the header. 
The names of the parameters, as well as the name of the subprogram, are visible inside the 
subprogram, but not visible in the type specifications of the parameters and function result.


Parameters to a procedure may be declared using var, which means the parameter is 
considered to be a variable inside the procedure. An assignment to a var formal parameter 
changes the actual parameter, as well as the formal parameter. The element of an array passed 
to a parameter is not affected by changes to the subscript, for example, given the call: 


    p (a (i))

an assignment to i in the body of p does not affect p's actual parameter.  Parameters declared 
without using var are considered to be constants. Functions are not allowed to have any side 
effects and cannot have var parameters.


The identifiers declared in a parameter list must be distinct from each other, from pervasive 
identifiers, from the subprogram name, and from the result identifier (if present). However, they 
need not be distinct from other identifiers visible outside of the subprogram.


A parameterDeclaration is one of:


    a.  [ var ] id {, id } : parameterType


    b.  subprogramHeader


Form (a) is used to declare formal parameters that are var (variable) or non-var (constant). An 
actual parameter that is passed to a var formal must be a variable (a reference) whose type is 
equivalent to the formal's type. An actual parameter that is passed to a non-var formal 
parameter must be a value that is "assignable" to the format's type. (See "Type Equivalence 
and Assignability".)


A reference parameter is any non-scalar or var parameter. Parameters that are not reference 
parameters are called value parameters; a value parameter is any scalar non-var parameter. 
See "Restrictions Preventing Aliasing" for constraints on the use of var and reference 
parameters. 


Example:


    function odd (i: int) : boolean     % i is a value parameter
        result (i mod 2) not= 0
    end odd



Example:


     var messageCount: int := 0

     procedure putMessage (msg: string) % msg is a reference parameter
         messageCount := messageCount + 1
         put "Message number ", messageCount, ":", msg
     end putMessage

The second kind of parameterDeclaration, form (b), specifies a parametric subprogram.  The 
corresponding actual parameter must name a subprogram.  The actual parameter subprogram 
must have parameters and result type equivalent to those of the formal parameter. Parametric 
subprograms are called like other subprograms. Example:


     % Find zero of parametric function f
     function findZero (function f (r: real) : real, 
                         left, right, accuracy: real) : real
         pre sign (f (left)) not= sign (f (right)) and accuracy > 0
         var L: real := left
         var R: real := right
         var M: real

 const signLeft := sign (f (left))
 loop
      M := (R+L)/2
      exit when abs (R-L) <= accuracy
      if signLeft = sign (f (M)) then
          L := M
      else

  R := M
     end if
 end loop

 result M
     end findZero

A parameterType is one of:


    a.  typeSpec                                                            

    b.  string (*)                                                         

    c.  array compileTimeExpn .. * {, compileTimeExpn .. * } of typeSpec     

    d.  array compileTimeExpn .. * {, compileTimeExpn .. * } of string (*)


In forms (c) and (d), the upper bounds of the index types of a dynamic array parameter are 
declared as “*”, in which case any array whose element type and index types' lower bounds 
are equivalent to the parameter's can be passed to the parameter. In forms (b) and (d) the 
maximum length of a dynamic string is declared as “*”. For var parameters or arrays of strings, 
the maximum length is taken to be that of the actual parameter. For non-array, non-var formal 
parameters, the type string (*) is taken to mean simply string. Note that multiple parameters 
declared using one dynamic parameter type do not necessarily have the same upper bounds 
and string maximum lengths; instead each parameter inherits the sizes of its actual parameter. 



The upper bounds and maximum lengths of dynamic parameters can be accessed using the 
upper attribute; see "Attributes".  


The Turing language has been designed so that value parameters can be passed "by value" (by 
passing expression values to the subprograms) and reference parameters can be implemented 
"by reference" (by passing addresses instead of values). Given that aliasing and side effects 
are prohibited (as nominally required by this Report), passing parameters by reference or by 
value-result will be logically equivalent. If an implementation allows aliasing or side effects it 
should warn that these are present and should use "pass by reference" exactly for those 
parameters designated as reference parameters in this Report.


An importList is:


    import ( [ [ var ] id {, [ var ] id } ] )


A forwardlmportUst is:


    import ( [ [ varOrForward ] id {, [ varOrForward ] id } ] )


A varOrForward is one of:


    a.  var

    b.  forward


If a subprogram has an import list, it uses this to specify identifiers visible outside the 
subprogram that are to be visible in the subprogram's body. Identifiers not in the list will not be 
visible in the body. Pervasive identifiers need not be imported (they are implicitly imported). If a 
subprogram does not have an import list, it is considered to implicitly import all identifiers that 
textually appear as uses inside its body. An implicitly imported identifier is considered to be 
imported var if it is assigned to, bound using var, passed to a var parameter, or acted on by a 
tag, new or free statement inside the subprogram. The identifier is also considered to be 
imported var if it is a module's name and a procedure of this module is called in the 
subprogram.


Note that the subprogram name and the parameter names are always visible inside the 
subprogram, and must not appear in the import list. By contrast, a module name is not visible 
inside the module, and must not be imported.


Modules have import lists, with the same meaning as in subprograms, with the following 
difference: a module with no explicit import list is considered to have the empty import list: 
import ( )


Only identifiers that name variables or modules can be imported var. (See "Restrictions on 
Constants and Read Only Items.")


Functions are not allowed to have side effects and cannot import anything var. This restriction 
is transitive; hence a function cannot import a procedure that directly or indirectly imports 
anything var. Input/output is considered to be a side effect; hence functions cannot use get or 
put statements; they must not directly or indirectly call procedures that use these statements 
or that call the predefined input/output procedures. A parametric procedure that is passed as 
an actual parameter to a function must not directly or indirectly import anything var or directly 
or indirectly use the get and put statements or predefined input/output procedures. (Note that 



although Turing nominally prohibits function side effects, an implementation may extend the 
language to allow them given that appropriate warning messages are issued.)


An identifier must not be repeated in an import list. It is permissible to import pervasive 
identifiers and predefined identifiers, although it is redundant to do so.


When a subprogram p is passed as a parametric subprogram to subprogram q, any variables 
imported var directly or indirectly by p are considered to be var parameters passed to q. Any 
variables imported directly or indirectly non-var by p are considered to be read-only reference 
parameters passed to q. This is done to prevent potential aliasing as a result of the call.


The result type of a function is given by the typeSpec that follows the function's (optional) 
parameter declarations. The expression in a function's result statement must be assignable to 
the function's result type. Note that the result type can be a non-scalar, but must not be a 
dynamic array or dynamic string. The optional identifier preceding this typeSpec is the name of 
the function's result. This identifier can only be referenced in the function's post assertion.


A subprogramBody is:


        [ pre booleanExpn ]

        [ init id := expn {, id := expn } ]

        [ post booleanExpn ]

        declarationsAndStatements

    end id


The identifier following end must be the name of the subprogram. The pre expression must be 
true when the subprogram is called; the post expression must be true when it returns.


The init clause defines constants (the identifiers to the left of each assignment operator :=). 
These can only be accessed in the post, assert and invariant assertions.


A forward subprogram is a subprogram whose body declaration will be given later in its scope. 
(This is the only situation in which the keyword body is used as a prefix for a subprogram 
declaration.) The body declaration must appear at the same level (in the same list of 
declarationsAndStatements) as the forward declaration. The prefix forward in an import list 
can be applied only to subprograms. The use of forward in an import list refers to a 
subprogram declared later at the same level (in the same list of declarationsAndStatements).


Before a subprogram can be called and before its body appears, and before it can be passed 
as a parametric subprogram, its header as well as headers of subprograms directly or indirectly 
imported by it must have appeared. A function must not import a forward procedure. (This 
restriction is imposed to simplify checks for side effects in functions). Forward subprograms 
allow subprograms to be mutually recursive. 


Example of mutual recursion:


    % Evaluate an input expression e of the form t { + t } where
    % t is of form p { * p } and p is of form ( e ) or is an 
    % explicit real constant.

    % For example, the value of 1.5 + 3.0 * ( 0.5 + 13 ) halt is 15
    var token: string



    forward procedure expn (var eValue: real)
 import (forward term, var token)

    forward procedure term (var tValue: real)
 import (forward primary, var token)

    forward procedure primary (var pValue: real)
 import (expn, var token)

    body procedure expn
 var nextValue: real
 term (eValue)     % Evaluate "t"
 loop              % Evaluate "{ + t }"
     exit when token not= "+"

             get token
             term (nextValue)
             eValue := eValue + nextValue
         end loop
    end expn

    body procedure term
        var nextValue: real
        primary (tValue)   % Evaluate "p"
        loop               % Evaluate "{ * p }"
            exit when token not= "*"
            get token
            primary (nextValue)
            tValue := tValue * nextValue
        end loop
    end term

    body procedure primary
        if token = "(" then
            get token
            expn (pValue)  % Evaluate "( c )"
            assert token = ")"
        else
            pValue := strreal (token)     % Evaluate "explicit real"
        end if
        get token
    end primary

    get token         % Start by reading first token
    var answer: real
    expn (answer)     % Scan and evaluate input expression
    put "Answer is: ", answer

The declaration of a subprogram or module must not appear inside a subprogram or 
statement. The declaration of a collection must not appear inside a subprogram.




4.2  Modules 

A module defines a package of variables, constants, types, subprograms, and sub-modules. 
The interface of the module to the rest of the program is defined by its import and export 
clauses.


A moduleDeclaration is:


    module id

        [ importList ]

        [ export ( [ opaque ] id {, [ opaque ] id } ) ]

        [ pre booleanExpn ]

        { declarationOrStatementlnModule }

        [ invariant booleanExpn 

          { declarationOrStatementlnModule } ]

        [ post booleanExpn ]

    end id


A declarationOrStatementlnModule is one of:


    a.  declaration [ ; ]

    b.  statement [ ; ]

    c.  collectionDeclaration [ ; ]

    d.  subprogramDeclaration [ ; ]

    e.  moduleDeclaration [ ; ]


A module declaration is executed (and the module is initialized) by executing its declarations 
and statements. See "Terminology and Basic Concepts" for an example of a module. The 
identifier following the end of a module must be the module's name.


The importList gives identifiers visible outside the module that are to be visible inside the 
module. See the description of import clauses in "Subprograms".


Exported identifiers are identifiers declared inside the module which may be accessed outside 
the module using the dot operator. Unexported identifiers cannot be referenced outside the 
module. Only subprograms, constants and types can be exported. Variables and modules must 
not be exported. The opaque keyword can be used only to prefix names of types. Outside the 
module an opaque type is distinct from all other types; see "Type Equivalence and 
Assignability". An identifier must not be repeated in an export list. 


Example: 

    module Complex     % Implements complex arithmetic

        export (opaque value, constant, add, ... other operations )

        % The "value" type is opaque, so information about the 
        % representation of complex values is private to this module

        type pervasive value:  % "value" is visible throughout module
            record
                realPt, imagPt: real
            end record



        function constant (realPt, ImagPt: real) : value
            var answer: value
            answer.realPt := realPt
            answer.imagPt := imagPt
            result answer
        end constant

        function add (L,R: value) : value
            var answer: value
            answer.realPt := L.realPt + R.realPt
            answer.imagPt := L.imagPt + R.imagPt
            result answer
        end add

        ... other operations for complex arithmetic go here ...

    end Complex

    var u,v: Complex.value := Complex.constant (1.0, 2.0)
    var w: Complex.value := Complex add (u ,v)

See "Restrictions Preventing Aliasing" for constraints on reference parameters in calls to enter 

a module.


The module's pre expression must be true when execution of the module declaration begins. 
The post expression must be true when the initialization of the module (execution of its 
declaration) is finished. The initialization of the module must make the invariant expression 
true, and it must be true whenever an exported subprogram is called or returns. The invariant 
clause must appear before the headers of exported subprograms. It is good style to limit each 
invariant expression so it does not refer, directly or indirectly, to imported variables or modules; 
this style implies that the value of the expression cannot change except when the module is 
active.


Module declarations may be nested inside other modules but must not be nested inside 
subprograms. A module must not contain as one of its declarations a variableBinding.


4.3  Restrictions on Constants and Read Only Items 

A variable or module is read-only in a subprogram or module into which it is imported non-var. 
An identifier declared non-var in a bind construct is also read-only. Exported procedures of a 
read-only module cannot be referenced (called or passed as parametric procedures).


All components of a constant are considered constant, and all components of read-only 
variables are considered read-only.


Constants and read-only variables are restricted as follows. They cannot be assigned to, 
bound to var, further imported var, or passed to var parameters. A constant or read-only union 
cannot be the object of a tag statement. A read-only collection cannot be the object of a new 
or free statement.




4.4  Restrictions to Prevent Aliasing 

Given distinct visible identifiers x and y, aliasing is said to exist if a change to the value of 

variable x would change the value of y. Aliasing is possible only when variables are renamed. 

In Turing, renaming of variables occurs in only two constructs: reference parameters and bind. 

Aliasing is prevented by placing restrictions on these two constructs.


(Note that variables imported by a parametric subprogram p are considered to be reference 
parameters to the subprogram to which p is passed; see "Subprograms".)


To explain these restrictions, we first define the terms "direct importing" and "indirect 
importing”. A subprogram or module directly imports the items in its import clause. (A 
subprogram that does not have an explicit import clause is considered to have an implicit 
import clause giving the identifiers it actually accesses; see "Subprograms".) Each item is 
imported non-var (which means read-only for imported variables and modules) or var.


A subprogram or module p indirectly imports all items that are directly or indirectly imported by 
items directly imported by p. The direct and indirect imports of a read-only module are all 
considered to be non-var.


Note: when procedure p exported from module m is called from outside the module, we 
consider that p has the same import list as m. The same is true for exported functions except 
that all items are considered to be imported non-var.


Aliasing due to the first construct (reference parameters) is prevented by restrictions (a) and (b),

as follows:


    Restriction (a): 

        A (part of) a variable is not allowed to be passed to a var parameter if the called 

        subprogram or module has another means of accessing (the same part of) the variable. 

        This access can occur in two ways. The first is by a direct or indirect import of the  
        variable by the called subprogram or module. The second is by passing (an overlapping 

        part of) the same variable to another reference parameter in the same call. 


    Restriction (b): 

        A (part of) a variable is not allowed to be passed to a reference parameter if the called 

        subprogram or module has another means of changing (the same part of) the variable. 

        The possibility of changing the variable can occur in two ways. The first is by a direct or 

        indirect var import of the variable by the called subprogram or module. The second is  
        by passing (an overlapping part of) the same variable to another var parameter of the  
        same call.


Aliasing due to the second construct (bind) is prevented by restrictions (c) and (d). 


    Restriction (c): 

        A var bind of y to x makes x inaccessible for the scope of y, and a non-var bind of y to x 

        makes x read-only for the scope of y. 


    Restriction (d): 

        A var bind to x disallows calls to subprograms or modules that directly or indirectly  
        import x, and a non-var bind to x disallows calls to subprograms or modules that  
        directly or indirectly import x var.




Function calls never cause aliasing because functions cannot import variables var (either 
directly or indirectly) and cannot have var parameters.


These restrictions to prevent aliasing are necessary for proving the correctness of a Turing 
program using the formal definition of Turing. However, an implementation may extend the 
language by allowing violations of these restrictions, given that appropriate messages are 
issued.


5 Statements and Input/Output 

DeclarationsAndStatements are:


    { declarationOrStatement }


A declarationOrStatement is one of:


    a.  declaration [ ; ]

    b.  statement [ ; ]

    c.  variableBinding [ ; ]


A statement is one of:


    a.  variableReference := expn

    b.  procedureCall

    c.  assert booleanExpn

    d.  return

    e.  result expn

    f.   ifStatement

    g.  loopStatement

    h.  exit [ when booleanExpn ]

    i.   caseStatement

    j.   begin

	     declarationsAndStatements

         end

    k.  new collectionld, variableReference

    l.   free collectionld, variableReference

    m.  forStatement

    n.   tag variableReference, expn

    o.   putStatement

    p.   getStatement


A declaration inside an if, loop, case, for or begin statement must not be a module or 
subprogram; all other kinds of declarations, including bind, are allowed.


Form (a) is an assignment statement. The expression is evaluated and the value assigned to 
the variable. The variableReference is a reference that refers to (part of) a variable; see 
"References". The expression must be assignable to the variable type; see "Type Equivalence 
and Assignability".


Form (b) is a procedureCall, which is a reference of the form:




    [ moduleld . ]  procedureId  [  ( expn {, expn } )  ]


An exported procedure is called outside the module in which it was declared using the dot 
operator. See "Subprograms" and "Modules".


Form (c) is an assert statement. The boolean expression must be true whenever the assert 
statement is executed. A checking implementation evaluates the assertion at runtime and 
aborts the program if it is false.


Form (d) is a return statement, which causes immediate return from a program or a procedure. 
A program or procedure returns either via a return statement or implicitly by reaching the end 
of the program or procedure. Functions and module bodies may not contain return 
statements.


Form (e) is a result statement, which can only appear in a function and causes immediate 
return from the function giving the function's value. The result expression must be assignable 
to the result type of the function given in the function's header. Execution of a function must 
conclude by executing a result statement and not by reaching the end of the function.


Form (f), an ifStatement is:


    if booleanExpn then

        declarationsAndStatements

  { elsif booleanExpn then

        declarationsAndStatements }

  [ else

        declarationsAndStatements ]

    end if 

The boolean expressions following the keyword if and each elsif are successively evaluated 
until one of them is found to be true, in which case the corresponding statements following 
then are executed. If none of the expressions evaluates to true, then the statements following 
else are executed; if no else is present then execution continues following the end if.


Form (g), a loopStatement is:


    loop 

        [ invariant booleanExpn ]

        declarationsAndStatements

    end loop


The statements within the loop are repeated until terminated by one of its exit statements or an 
enclosed return or result statement. The boolean expression in the invariant must be true 
whenever execution reaches it; a checking implementation will abort if it is false.


Form (h) is a loop exit. When executed, it causes an immediate exit from the nearest enclosing 
loop or for statement. The optional boolean expression makes the exit conditional. If the 
expression evaluates to true then the exit is executed, otherwise execution of the loop 
continues. An exit statement can appear only inside loop and for statements.




Form (i), a caseStatement is:


    case expn of

        label compileTimeExpn {, compileTimeExpn } : 

            declarationsAndStatements

      { label compileTimeExpn {, compileTimeExpn } : 

            declarationsAndStatements }

      [ label : 

            declarationsAndStatements ]

    end case


The optional final clause with no expression between label and : is called the otherwise 
alternative. The case expression is evaluated and used to select one of the alternatives for 
execution. The selected alternative is the one having a label whose value equals the case 
expression. If the case expression value does not equal any of the label values then the 
otherwise clause is executed. If no otherwise alternative is present, the case expression must 
equal one of the label values. When execution of the selected alternative is completed, 
execution continues following the end case, not to the next alternative.


The root type of each label must be int or an index type and must be equivalent to the root 
type of the case selector expression. Label expressions must be compile-time expressions. 
Label values in a case statement must be distinct. An implementation may limit the range of 
case label values to insure efficient code; this range, from the minimum label value to the 
maximum, will be at least 256.


Form (j) is a begin statement. Begin statements can be used to limit the scope of declarations.


Forms (k) and (l) are new and free statements, for creating and deleting elements of a 
collection respectively (see "Variable and Collection Declarations").


Form (m), a forStatement is one of:


    a.  for [ id ] : forRange

            [ invariant booleanExpn ]

            declarationsAndStatements

        end for


    b.  for decreasing [ id ] : expn .. expn

            [ invariant booleanExpn ]

            declarationsAndStatements

        end for


The statements enclosed in the for statement are repeated for the specified range, or until the 
loop is terminated by one of its exit statements or an enclosed return or result statement.


A forRange is one of:


    a.   expn .. expn

    b.   namedType




Where the namedType must be a (non-opaque) subrange or enumerated type, and is not 
permitted if "decreasing" is present. Form (b) of forRange is equivalent to form (a) using the 
type's lower and upper values. The range is given by the value of the two expressions when 
the for statement is executed. The types of the two values must be of the same index type, or 
both of type int. For the first iteration, id has the left expression's value; for successive 
iterations, id is increased by one (or decreased by one if decreasing is present), until in the last 
iteration id equals the right value. If the left value exceeds the right (or is less than the right 
when decreasing), there are no iterations.


For each repetition, id is set to a new value in the range; these are contiguous values that are 
increasing, unless decreasing is specified in which case they are decreasing. The for statement 
is a declaration for id, which must be distinct from other visible identifiers. The scope of id is 
from the beginning to the end of the for statement. If the id is not present, the for statement 
behaves the same way, except that the value corresponding to the id cannot be accessed. 


For each repetition, id is a constant and its value cannot be changed. The boolean expression 
in the invariant must be true whenever execution reaches it; a checking implementation will 
abort if it is false.


Statement form (n) is a tag statement. The variable of the statement must be a union. The 
union's tag is changed to be the value of the expression, which must be assignable to the tag's 
type. See "Types and Type Declarations" for further description and an example of usage.


5.1 Input and Output


Put and get statements are used to read/write items to/from streams (sequential files of 
characters).


A putStatement is:


    put  [ : streamNumber , ] putltem {, putltem } [ .. ]


A streamNumber is a non-negative integer expression. Omitting the stream number from put or 
get statements results in the default input stream (stdin) for get and the default output stream 
(stdout) for put. (See also "Predefined Procedures" for open and close, which are used to 
associate streams with stream numbers.) The written or read items must be strings or numbers 
(integer or real). The default input and output streams cannot be selected using a 
streamNumber. There is a run-time constraint that a particular stream can be read from or 
written to, but not both.


By convention stream 0 is considered to be a special error output stream (stderr).  By 
convention the streams numbered 1 to n are attached to files specified externally by the user 
as command line arguments when the program is run.


Since functions cannot have side effects, they are not allowed to contain get and put 
statements or to directly or indirectly call procedures that contain get or put statements.


A putltem is one of:


    a.   expn [ : widthExpn [ : fractionWidth [ : exponentWidth ] ] ]

    b.   skip




From left to right in a put statement, either the expn's value of the putltem is appended as text 
to the output stream, or skip starts a new line. A new line is also started at the end of the list of 
putltems, unless the list is followed by "..", in which case this new line is not started. This 
allows the next put statement to continue the current output line.


If the widthExpn is omitted, then the value is printed in a field just large enough to hold the 
value. The fractionWidth and exponentWidth are allowed only for integer and real values.


For string value s, integer value i and real value r, the text output for the putltem given on the 
left is defined by the string expression on the right:


    s : w              s + repeat (" ", w -length (s)) 
    i                  intstr (i, 0)                     
    i : w              intstr (i, w)                     
    r                  realstr (r, 0)                    
    r : w              realstr (r, w)                   
    r : w : fw         fealstr (r, w ,fw)               
    r : w : fw : ew    erealstr (r, w ,fw, ew)          

See "Predefined Functions" for definitions of the functions used on the right.


Example put statements and their output:


    Statement           Output        Notes                      

    put 24              24                                    
    put 1/10            0.1          Trailing zeros omitted     
    put 100/10          10           Decimal point omitted      
    put 5/3             1.666667     Assumes fwdefault = 6      
    put sqrt(2)         1.414214                              
    put 4.86,10**9      4.86e9       Exponent printed for >= 1e6 
    put 121:5           bbl21        Width of 5; "b" is a blank 
    put 1.37:6:3        b1.370       Fraction width of 3        
    put 1.37:11:3:2     bbl370e+00   Exponent width of 2        
    put "O'Brian"       O'Brian                               
    put "X=", 5.4       X=5.4                                 
    put "XX": 4, "Y"    XXbbY        Blank shown here as "b"    

A getStatement is:


    get [ : streamSumber , ] getltem {, getltem }


A getltem is one of:


    a.  variableReference

    b.  skip

    c.  variableReference : *

    d.  variableReference : widthExpn




Forms (a) and (b) support token-oriented input, in which white space is ignored; (c) supports 
whole line-oriented input, and form (d) supports individual character-oriented input. In form (a) 
the variableReference's root type must be integer, real or string, while forms (c) and (d) allow 
only strings. The value read into a string must not contain an eos or uninitchar character (see 
"Identifiers and Explicit Constants").


Form (a) first skips white space (defined as the characters blank, tab, form feed, new line, and 

carriage return); then it reads the sequence of non-white space characters as a token. A token 
consists of either (1) one or more non white space characters, up to but not including either a 
white space character or end of file, or else (2) if the token's first character is a quote ("), then 
an explicit string constant. (See also "Identifiers and Explicit Constants".) Explicit string 
constants can only be input for string variableReferences. When the variableReference is a 
string, the value of the explicit string constant or the characters of the token are assigned to 
the variable. If it is an integer, the predefined function strint converts the token to an integer 
before assigning to the variable. Analogously for reals, strreal converts the token to real before 
assigning it to the variable. It is an error to use form (a) if no token remains in the stream.  


In form (b), the skip option skips white space, stopping when encountering any non-white 
space character or end of file. This option is used to detect whether further tokens exist in the 
input; if no more tokens exist in the input, all characters of the file are skipped and the eof 
predefined function becomes true.


The following input stream:


    Alice 216 "World champion"

is used in this example:


    var name, fame: string
    var time: int
    get name, time, fame 
    % name = "Alice", time = 216, and fame = "World champion"

Example:


    % Read and sum a sequence of numbers
    var sum: real := 0.0
    var x: real
    loop
        get skip         % Skip to eof or next token
        exit when eof    % eof is explained in "Predefined Functions"
        get x
        sum := sum + x
    end loop
    put "Sum is: ", sum

Form (c) reads the rest of the characters of the current input line (not including the trailing new 
line character) and assigns them to the variableReference, which must be a string. The trailing 
new line character is read and discarded. (Note: it may be that the final line of a stream is not 
terminated by a new line character; in this case form (c) reads the remaining characters to end 
of file.) It is an error to use form (c) if no characters remain in the stream (i.e., if eof is true for 
the stream).




Form (d) is similar to form (c) except (1) at most widthExpn (a non-negative integer) characters 
are read, (2) the new line character at the end of a line is part of the string assigned to the 
variableReference, and (3) attempting to read past the end of stream is allowed and returns the 
remaining characters (if any, possibly returning the null string).


Example:


    var s, t, u: string
    get s : *      % Reads entire first input line, 
                   %   discarding trailing new line character
    get t : 20     % Reads at most 20 characters; t may end with "\n"
    get u : 1      % Reads next single char (or null string for eof)

Example:


    % Read and print entire input stream a line at a time
    var line: string
    loop
        exit when eof
        get line : *     % Read entire line
        put line
    end loop

Example:


    % Read and print entire input stream a character at a time
    var c: string (1)
    loop
        exit when eof
        get c : 1     % "\n" is read into c as a character
        put c ..      % Output lines are ended when c="\n"
    end loop

6 References and Expressions 

6.1 References 

The syntax for a reference includes variable references and constant references, as well as 
procedure call statements, function calls, values of enumerated types, attributes, and 
parametric subprograms. A variableReference is a reference that denotes a variable or part of a 
variable.


A variableReference is a:


    reference


A reference is:


    [ moduleId . ]  id  { componentSelector }




Where a componentSelector is one of:


    a.  ( expn {, expn } )

    b.  . id


Form (a) of componentSelector allows subscripting of arrays and collections.  The value of 
each array subscript expression must be in the declared range of the corresponding index type 
of the array. The number of array subscripts must be the same as the number of index ranges 
declared for the array. A collection must have exactly one subscript and this must be a pointer 
to the collection.


Form (a) also allows calls to functions. The number of expressions must be the same as the 
number of declared parameters of the function. Each expression must be assignable to the 
corresponding formal parameter of the function.


Form (b) of componentSelector allows field and tag selection for records and unions. (Fields of 
a record or variable and a union's tag are referenced using the dot operator). It also allows 
access to items exported from a module.


A value of an enumerated type is a special case of form (b), namely, id.id, where the first id is 
the name of the type and the second id must be one of the identifiers given in the enum type 
definition.


6.2  Expressions 

An expn (expression) represents a calculation that returns a value. A booleanExpn is an expn 
whose value is true or false.


Turing is a strongly typed language, meaning that there are a number of constraints on the 
ways values can be used. The following sections explain how values are mapped by operators 
to produce new values.


An expn is one of the following:


    a.  reference

    b.  explicitConstant

    c.  substring

    d.  setConstructor

    e.  expn infixOperator expn 
    f.   prefixOperator expn

    g.  ( expn )


Form (a) includes (1) references to constants and variables including subscripting and field and 
tag selection, (2) function calls and (3) values of enumerated types. See “References". Form (b) 
includes explicit boolean, integer, real and string constants; see "Identifiers and Explicit 
Constants". Form (c) is a substring operation; see "String Operators and Substrings". Form (d) 
is a set constructor; see "Set Operators and Constructors".


In form (e), an infixOperator is one of:


    a.  +		 (integer and real addition; set union; string concatenation) 

    b.  -		 (integer and real subtraction; set difference)               




    c.  *	 	 (integer and real multiplication; set intersection)          

    d.  /	 	 (real division)                                              

    e.  div	 (truncating integer division)                                

    f.  mod	 (remainder)                                                  

    g.  **		 (integer and real exponentiation)                            

    h.  <		 (less than)                                                  

    i.   >		 (greater than)                                               

    j.   =		 (equal)                                                      

    k.  <=	 (less than or equal; subset)                                 

    l.   >=	 (greater than or equal; superset)                            

    m. not=	 (not equal)                                                  

    n.  and	 (boolean conjunction)                                        

    o.  or	 (boolean inclusive or)                                       

    p.  ->	 (boolean implication)                                        

    q.  in	 (member of set)                                              

    r.  not in	 (set non-membership)                                         


In form (f), a prefixOperator  is one of:                                                   


    a.  +		 (integer and real identity)                                  

    b.  -		 (integer and real negation)                                  

    c.  not	 (boolean negation)                                           


The order of precedence is among the following classes of the operators, in decreasing order 
of precedence:


    1.  **

    2.  prefix +, -

    3.  *, /, dlv, mod

    4.  infix +, -

    5.  <, >, =, <=, >=, not=, in, not in

    6.  not

    7.  and

    8.  or

    9.  ->


Expressions are evaluated according to precedence, left to right within precedence. Note that 
exponentiation is grouped from left to right.


For example, each expression on the left below is equal to the expression on the right.


    a - b — c        a - (b - c)
    -2**2            - (2**2)
    a + b * c        a + (b * c)
    x < y and b      (x < y) and b
    b or c and d     b or (c and d)

6.3 Numeric Operators 

The numeric (integer and real) operators are +, -, *, /, dlv (truncating division), mod (remainder) 
and ** (exponentiation).




The dlv operator is defined by:


    x div y = trunc (a / b)


where "/" means exact mathematical division and trunc truncates to the nearest integer in the 
direction of zero. The result is of type int. The operands can be integer or real. Note that with 
real operands, div may produce an integer overflow.


The mod operator is defined by:


    x mod y = x — (y * (x div y))


If x and y are both of root type int, the result type is int, otherwise the result is real. Note that 
mod applied to real operands is useful for range reduction; for example, for x > 0, sin (x) can be 

computed as sin (x mod (2*pi)). Note that mod with int operands never produces an overflow, 
but with real operands, it may produce a real underflow. 


The / operator requires real or integer operands and produces a result of type real.


Whenever a real value is required, an integer value is allowed and is converted to real by an 
implicit call to the intreal predefined function; see "Predefined Functions". Note that this rule 
implies that the / operator can accept two integer operands, but both will be converted real. 
The operators +, -(infix and prefix), * and ** require integer or real operands; if one or both 
operands are real, the result is real, otherwise the result is int. The right operands of dlv and / 
must not be zero. If both operands of ** are of root type int, the right operand must not be 
negative. If the left operand is real and the right is of root type int, the right operand must be 
non-zero when the left is negative. If both operands are real, the right operand must be strictly 
positive when the left is negative and otherwise must be zero or positive. 


Examples:


    7 / 2 = 3.5        -7 / 2 = -3.5
    7 dlv 2 = 3        -7 div 2 = -3
    7 mod 2 = 1        -7 mode 2 = -1
    7**2 = 49          -7**2 = -49

A checking implementation is expected to detect division and mod by zero, zero to the zero 
power, integer overflow, and real overflow and underflow.


6.4 Comparison Operators 

The comparison operators are <, >, =, <=, >=, and not=. These operators yield a boolean 
result. Both operands of a comparison operator must have the same root type; see "Type 
Equivalence and Assignability". Only strings, sets, and scalars (values whose root type is int, 
real, boolean, enumerated or pointer) can be compared. Arrays, records and unions cannot be 
compared.


Booleans and pointers can be compared only for equality (= and not=). See "String Operators 
and Substrings" for a description of string comparison.  




6.5 Boolean Operators 

The boolean operators are and (conjunction), or (inclusive or), -> (implication) and not. These 
require boolean operands and return a boolean result.  Note that a -> b has the same meaning 
as (not a) or b. The boolean operators are conditional; that is, if the result of the operation is 
determined by the value of the left operand then the right operand is not evaluated.  In the 
following, division by zero is avoided, because the right operand of and is executed only if the 
left operand is true:


    if count not= 0 and sum / count > 60 then ...

6.6 String Operators and Substrings 

The only string operator is + (concatenation); it requires string operands and returns a string 
result. An implementation may limit the allowed length of string values; this limit will be at least 
25S.


The ordering of strings is determined by left to right comparison of pairs of corresponding 
characters until an end of string or a mismatch is found. See "Character Collating Sequence". 
The string with the greater of the mismatched characters is considered greater. If no mismatch 
is found and onestring is longer than the other, the longer string is considered greater. Note 
that strings of differing lengths are never considered to be equal, and there is no implicit "blank 
padding" of the ends of strings. The following function recursively defines the "greater than" 
string relation in terms of comparison of strings of length one.


    function greaterthan (s ,t: string) : boolean
        if length (s) = 0 or length(t) = 0 then 
            result length (s) > length (t)
        elslf s (1) = t (1) then 
            result greaterthan (s (2.. *), t (2.. *))
        else 
            result j (1) > t (1)
        end if
    end greaterthan

The length predefined function returns the number of characters in a string value; see 
"Predefined Functions".


A substring selects a contiguous sequence of the characters in a string. For example, if L = 3, 
R = 5 and s = "string", then the substring of s from position L to position R, written s (L .. R), is 
“rin". A single character can also be selected, for example, s (L)="r", and in general, for any 
integer expression e, s (e) = s (e .. e).


String positions L and R can also be written as * [ - expn ], where the asterisk represents the 
length of the string. That is, position selector * [ - expn ] is an abbreviation for length (s) [ - expn 
]. For example, if s = "string", then s (*) = "g", s (4 ..*) = "ing", and s (*-2 .. *—1) = "in". 


The general form of a substring is:


    stringReference ( substringPosition [ .. substringPosition ] )


where stringReference is a reference of type string, and each substringPosition is one of:




    a.  expn

    b.  * [ - expn ]


Each substringPosition expression must be of root type int. 


The following restrictions apply to L and R:


    L >= 1 and R <= length (reference) and R - L + 1 >= 0


Note that length (s (L .. R)) = R - L + l. Note that for L >= 1 and L <= length (s) + 1, s (L, L - 1) is 
the null string, i.e., the string of length zero. A substring is an expression (not a variable), and it 
so cannot be assigned to.


6.7 Set Operators and Set Constructors 

The set operators are + (set union), - (set difference), * (set intersection), <= and >= (set 
inclusion), and in and not in (set membership). Sets can also be compared for equality using = 
and not=. The set operators +, - and * take operands of equivalent set types and yield a result 
of the same type. The set operators <= and >= take operands of equivalent set types and yield 
a Boolean result. The operators in and not in take a set as right operand and an expression of 
the set's base type as left operand. They yield a Boolean result.


A setConstructor is one of:


    a.  setTypeReference ( )

    b.  setTypeReference ( all )

    c.  setTypeReference ( expn {, expn } )


Where each setTypeReference is a reference of the form [ moduleId . ] setTypeId.


Form (a) represents the empty set of the set type. Form (b) represents the complete set. Form 
(c) is a set containing the elements specified by the expressions, each of which must be of the 
base type of the set.


6.8 Compile-Tlme Expressions 

A compile-time expression is an expression whose value can, in principle, be computed at 
compile time. The following are compile-time expressions:


    1.  Explicit integer, real, boolean and string constants, as well as enumerated values 

            of the form id1.id2 where id1 is the name of an enumerated type

    2.  Set constructors containing only compile-time element values (or all)

    3.  Named constants that name scalar compile-time expressions

    4.  The result of the integer operators prefix + and -, infix + and -, *, dlv and mod  
             when the operands are compile-time integer expressions

    5.  The built-in functions chr and ord when the actual parameter is a compile-time  
            expression

    6.  The result of the string concatenate operator (+) when both operands are compile-time 

            string expressions




Note that a compile-time expression can be invalid, for example, 1/0, and is still considered to 
be a compile-time expression. Expressions that do not satisfy this definition are called run-time 
expressions.


6.9 Predefined Functions 

The following are pervasive, predefined functions.


eof (i: int): boolean


    Accepts a non-negative stream number (see description of get and put statements) and 

    returns true if and only if there are no more characters in the stream. This function 

    must not be applied to streams that are written to (using put). The parameter and 

    parentheses can be omitted (i.e., as "eof"), in which case the stream is taken to be 

    the default input stream.


pred (expn)


    Accepts an integer or an enumerated value and returns the integer minus one, or the 

    previous value in the enumeration. Pred must not be applied to the first value of an

    enumeration.


succ (expn)


    Accepts an integer or an enumerated value and returns the integer plus one, or the 

    next value in the enumeration. Succ must not be applied to the last value of an enumeration.


String Functions 

length (s: string): int


    Returns the number of characters in the string. The string must be initialized.


index (s, patt: string) : int


    If there exists an i such that s (i .. i + length (patt) - 1) = patt, then the smallest 

    such i is returned, otherwise zero is returned. Note that 1 is returned if patt is the null string.


repeat (s: string, i: int) : string


    If i > 0, returns i copies of s concatenated together, otherwise returns the null string. 

    Note that for all j >= 0, length (repeat (t, j)) = j * length (t).


Mathematical Functions 

abs (expn)


    Accepts an integer or real value and returns its absolute value. The type of the result 

    is int if the expn is an of root type int; otherwise it is real.




max (expn, expn)


    Accepts two numeric (real or integer) values and returns their maximum value. If both are 

    of root type int, the result is an int; otherwise it is real.


min (expn, expn)


    Accepts two numeric (real or integer) values and returns their minimum value. If both are 

    of root type int, the result is an int; otherwise is is real.


sign (r: real) : -1 .. 1


    Returns -1 if r < 0, 0 if r = 0, and 1 if r > 0.


sqrt (r: real) : real


    Returns the positive square root of r, where r is a non-negative value.


sin (r: real) : real


    Returns the sine of r, where r is an angle value expressed in radians.


cos (r: real) : real


    Returns the cosine of r, where r is an angle value expressed in radians.


arctan (r: real) : real


    Returns the arctangent (in radians) of r.


sind (r: real) : real


    Returns the sine of r, where r is an angle expressed in degrees.


cosd (r: real) : real


    Returns the cosine of r, where r is an angle expressed in degrees.


arctand (r: real) : real


    Returns the arctangent (in degrees) of r.


ln (r: real) : real


    Returns the natural logarithm (base e) of r.


exp (r: real): real


Returns the natural base e raised to the power r.




Type Transfer Functions 

floor (r: real) : int


    Returns the largest integer less than or equal to r.


ceil (r: real) : int


    Returns the smallest integer greater than or equal to r.


round (r: real) : int


    Returns the nearest integer approximation to r. Rounds to larger value in case of tie.


intreal (i: int) : real


    Returns the real value equivalent of i. No precision is lost in the conversion, 

    so floor (intreal (j)) = ceil (intreal (j)) = j. To guarantee that these equalities hold, 

    an implementation may limit the range of i.


chr (i: int): string (1)


    Returns the i-th character of the system's character collating sequence as a string of

    length one, where the first character corresponds to 0, the second to 1, and so on. 

    See "Character Collating Sequence". The selected character must not be uninitchar 

    (a reserved character used to mark uninitialized strings) or eos (a reserved character 

    used to mark the end of a string). See "Identifiers and Explicit Constants".


ord (expn )


    Accepts an enumerated value or a string of length 1 and returns the position of the value 

    in the enumeration or of the character in the system's character collating sequence. 

    Values of an enumerated type are numbered left to right starting at zero. 

    See "Character Collating Sequence".


intstr (i, width: int): string


    Returns a string equivalent to i, padded on the left with blanks as necessary to a length 

    of width; for example, intstr (14, 4) = "bb14" where b represents a blank. 

    The optional width parameter must be non-negative; if omitted, it is assumed to be 1. 

    If width is not large enough to represent the value of i, the length is automatically 

    increased to the minimum needed. The string returned by intstr is of the form:


        { blank } [ - ] digit { digit }


    The leftmost digit is always non-zero unless the value of i is zero, in which case

    there is a single zero digit.


strint (s: string) : int


    Returns the integer equivalent of the string s. String s must consist of a possibly null 

    sequence of blanks, followed by an optional plus or minus sign, and a sequence of one or 

    more digits. Note that for integer i and non-negative w, strint (intstr (i, w)) = i.




erealstr (r: real, width, fractionWidth, exponentWidth: int) : string


    Returns a string (including exponent) approximating r, padded on the left with blanks as 

    necessary to a length of width; for example, erealstr (2.5e1, 9, 2, 2) = "b2.50e+01" 

    where b represents a blank. The width must be a non-negative int value. If the width 

    is not large enough to represent the value of r, it is implicitly increased to the minimum

    needed. The fractionWidth parameter is a non-negative number of fractional digits to be    
    displayed. The displayed value is rounded to the nearest decimal equivalent with this  
    accuracy, with ties rounded to the next larger value. The exponentWidth parameter must be  
    non-negative and gives the number of exponent digits to be displayed. If exponentWidth is  
    not large enough to represent the exponent, it is increased to the minimum needed.  
    The string returned by erealstr is of the form:


        { blank } [ - ] digit . { digit } e sign digit { digit }


    where "sign" is a plus or minus sign. The leftmost digit is non-zero unless all of the 

    digits are zeroes.


frealstr (r: real, width, fractionWidth: int) : string


    Returns a string approximating r, padded on the left with blanks if necessary to a length  
    of width. The number of digits of fraction to be displayed is given by fractionWidth; 

    for example, frealstr (2.5e1, 5, 1) = "b25.0" where b represents a blank. The width must be  
    non-negative. If the width parameter is not large enough to represent the value of r, it is

    implicitly increased to the minimum needed. The fractionWidth must be non-negative.  
    The displayed value is rounded to the nearest decimal equivalent with this accuracy,  
    with ties rounded to the next larger value. The result string is of the form:


	  { blank } [ - ] digit { digit } . { digit }


    If the leftmost digit is zero, then it is the only digit to the left of the decimal point.


realstr (r: real, width: int) : string


    Returns a string approximating r, padded on the left with blanks if necessary to a length 

    of width, for example, realstr (2.5e1, 4) = "bb25" where b represents a blank. The width 

    parameter must be non-negative. If the width parameter is not large enough to represent  
    the value of r, it is implicitly increased to the minimum needed. The displayed value is 

    rounded to the nearest decimal equivalent with this accuracy, with ties rounded to the next 

    larger value. The string realstr (r, width) is the same as the string frealstr (r, width, defaultfw) 

    when r = 0 or when 1e-3  <= abs (r) < 1e6, otherwise it is the same as erealstr (r, width,  
    defaultfw, defaultew), with the following exceptions. With realstr, trailing fraction zeroes are 

    omitted and if the entire fraction is zero, the decimal point is omitted. (These omissions take 

    place even if the exponent part is printed.) If an exponent is printed, any plus sign and 

    leading zeroes are omitted. Thus, whole number values are in general displayed as integers. 

    Defaultfw is an implementation-defined number of fractional digits to be displayed by  
    default; for most implementations, defaultfw will be 6. Defaultew is an implementation-

    defined number of exponent digits to be displayed; for most implementations, defaultew 

    will be 2.

 




strreal (s: string) : real


    Returns a real approximation to string s. String s must consist of a possibly null sequence 

    of blanks, followed by an optional plus or minus sign and an explicit unsigned real or integer 

    constant.


6.10 Attributes 

There are pervasive attributes that are properties of variables rather than properties of values. 
For example, the "upper" attribute of a string variable gives its maximum length. Note that 
assigning a value to a variable does not change the variable's attributes. Example:


    var s: string (1O) := "Eggs"
    var t: string (6) := "Bacon"
    s := t

At all times, upper (s) = 10 and upper (t) = 6. The available attributes are:


lower (reference [, dimension ] )


    Accepts an array and returns the lower bound of the array.


upper (reference [, dimension ] )


    Accepts an array and returns the upper bound of the array; also accepts a string and returns 

    its maximum length.


    In lower and upper, dimension is a compile-time integer expression, which is present iff the 

    reference is a multi-dimensioned array. It specifies which dimension, where the first is 1, 

    the second is 2 and so on. The reference does not need to have been assigned a value.


nil (collectionId)


    Accepts a collection and returns the collection's null pointer.


6.11 Predefined Procedures 

The following procedures are pervasive and predefined.


Randomization Procedures 

rand (var r: real)


    Sets r to the next value of a sequence of pseudo random real numbers that approximates a 

    uniform distribution in the range 0 < r < 1.


Example:


    var r: real
    loop     % Randomly print a sequence of phrases
        rand (r)



        if r > 0.5 then
            put "Hi ho, hi ho"
        else
            put "It's off to work we go"
        end if
    end loop

randint (var i: int, low, high: int)


    Sets i to the next value of a sequence of pseudo random integers that approximates a  
    uniform distribution over the range low <= i <= high. It is required that low <= high.


randomize


    A parameterless procedure that resets the sequences of pseudo random numbers produced 

    by rand and randint, so different executions of the same program may produce different 

    results.


randnext (var v: real, seq: 1 .. 10)


    This procedure is the same as rand, except that seq specifies one of 10 independent and 

    repeatable sequences of pseudo random real numbers. This can be useful when trying to 

    reproduce a randomly occurring bug.


randseed (seed: int, seq: 1 .. 10)


    This procedure restarts one of the sequences generated by randnext. Each restart with the 

    same seed causes randnext to produce the same sequence for the given sequence number.


Input / Output Procedures 

(Note: these predefined procedures have been replaced by equivalent corresponding 
statements in Turing+.)


open (var streamNumber : int, fileName: string, mode: string)


    The filename gives the name of a file that is to be read from or written to. The streamNumber 

    parameter is set to the stream number to be used for the file in get or put statements. 

    The mode must be "r" (for read) or "w" (for write) indicating whether the stream is to be 

    read from or written to. If the open fails, streamNumber is set to zero.


close (streamNumber: int)


    This procedure disassociates the stream number from the stream it is presently designating.


All of the predefined procedures (rand, randint, randomize, randnext, randseed, open and close) 
have side effects. As a result, functions are not allowed to call them directly or indirectly by 
calling procedures that call them.




6.12 The Uninitialized Value 

The value of a scalar, string or set that is not initialized must not be used (fetched) in 

evaluating an expression. For example, before any of the following are executed, variable x 

must have been assigned a value.


    const c := x
    y := x + y
    p (x + y)

A scalar, string or set need not be initialized before being passed to a var (reference) 
parameter, but must be initialized before being passed to a non-var (value) parameter. These 
rules imply that once a particular scalar, string or set variable is initialized, it will stay initialized.


A variable that has been declared and not assigned to (and is not initialized in its declaration) is 
considered to be uninitialized. When an element of a collection is created by the new 
statement, it is uninitialized. All fields of a union become uninitialized when the tag statement is 
applied to the union. Part or all of an array, record or union variable may become uninitialized 
when the variable is assigned to, according to the initialization of the value being assigned.


When conditional evaluation of an expression does not require the value of a particular 
variable, the variable need not be initialized. For example, in the following, if i = 10 then x need 
not be initialized:


    exit when i = 10 or x = 5

A non-scalar that is not a string or set can be assigned, used as the value of a const, passed 
to a parameter (var or non-var) or returned as a function result without being initialized. Note: 
the non-scalars in question (i.e. non-scalars that are not strings or sets) are arrays, records and 
unions. Scalar, string or set components of non-scalar types must be initialized before being 
used (fetched).


An initialized component of a non-scalar can become uninitialized due to assigning to the 
entire containing non-scalar variable or changing the tag of the containing union.


A checking implementation of Turing is expected to enforce these restrictions on the use of 
uninitialized variables.


6.13 Character Collating Sequence 

Certain Turing language features, notably string comparison and the chr predefined function, 
depend on the system's character collating sequence. This is the sequence that determines 
the ordering among character values. There are two widely used collating sequences: ASCII 
and EBCDIC. A Turing implementation is expected to use one of these, with preference given 
to ASCII. Note that a Turing program that is correct assuming one of these sequences is not 
necessarily correct assuming the other.


The ord function maps a character value to its corresponding ASCII or EBCDIC value, which 
will be in the range 0 .. 255. For standard ASCII characters, the range is limited to 0 .. 127. 
Therefore, subject to limits on the domain of succ, the following equations hold:




For all characters c:

   chr (ord (c)) = c, and succ (c) = chr (ord (c) + 1) 

The ASCII and EBCDIC sequences share the important property that digits are contiguous.


For all c in the range "0" .. "8"

   succ (c) = chr (ord (c) + 1) 

Therefore, if s is the string of length 1 corresponding to integer i then ord (s) = ord ("0") + i, for 
example, ord  ("3") = ord ("0") + 3. 


In ASCII, letter characters are also contiguous:


    ord ("A") = ord ("B") - 1

    ord ("B") = ord ("C") - 1

        ...

    ord ("a") = ord ("b") - 1

    ord ("b") = ord ("c") - 1

        ...


For example, the following function converts a string of digits to an integer.


    function digitsint (s: string) : int
        const L := length (j)
        const digit := ord (s (L)) - ord ("0")
        if L = 1 then
            result digit
        else
            result 10 * digitsint (s (1 .. L-1)) + digit
        end if
     end digitsint

Unfortunately, in EBCDIC the letters are not contiguous; there are gaps between letters I and J 
and between R and S. The test to see if ASCII character c is a capital letter is:


     "A" <= c and c <= "Z"

But for EBCDIC character c, we must use:


    ("A" <= c and c <= "I") or
        ("J" <= c and c <= "R") or
            ("S" <= c and c <= "Z")

Consult standard definitions of ASCII and EBCDIC collating sequences for more details.




7 Source Inclusion Facility 

Other source files may be included as part of a program using the "include" construct.


An includeConstruct is:


    include explicitString


The explicitString gives the name of a source file whose text is to be to be included in the 
compilation. The include construct is replaced in the program source by the contents (source 
text) of the specified file. Include constructs can appear anywhere in a program and can 
contain any valid source code fragment. Included source files can themselves contain include 
constructs.


8 Short Forms 

The following forms can be used as alternatives for the syntax given in the language 
specification. These alternatives shorten frequently used constructs. Note: Not all Turing 
implementations support all short forms.


Long form Short form             

    v := v + (expn)                v += expn             
    v := v - (expn)                v -= expn             
    v := v * (expn )               v * = expn            

    if expn then statements        [ expn : statements   
    elsif expn then statements       | expn : statements   
    else statements                  | : statements        
    end if                         ]                     

    case expn of                   case expn of          
    label labels : statements        | labels : statements 
    label : statements               | : statements        
    end case                       end case              

    union id: typeSpec of          union id: typeSpec of 
    label labels : statements        | labels : statements 
    label : statements               | : statements        
    end onion                      end union             

    loop                           {                     
        statements                     statements       
    end loop                       }                     

    exit                           >>
    exit when expn                 >>: expn               

    return                         >>>
    result expn                    >>>: expn              



    for optionalId: expn .. expn   {+ optionalId: expn .. expn
        statements                     statements
    end for                        }

    for decreasing optionalId:     {- optionalId : expn .. expn 
            expn .. expn           
        statements                     statements                   
    end for                        }                            

    and                            &                           
    not                            ~                                     
    put                            !                            
    get                            ?                            
    array indexTypes of            { indexTypes }               
    procedure                      proc                         
    function                       fcn                          
    pervasive                      *                            

Example using short forms:


Long form Short form             

    function gcd (i, j: int): int      fcn gcd (i, j: int): int
        var x: int := i                    var x := i
        var y: int := j                    var y := j
        loop                               { >>: x = y
            exit when x = y                    [ x > y: x -= y
            if x > y then                        | :    y -= x 
                x := x - y                     ]
            else                           }
                y := y - x                 >>>: x
            end if                     end gcd
        end loop
        result x                                                             
    end gcd 

9 Collected Keywords and Predefined Identifiers 

Keywords of Turing:


    all           and           array         assert        begin    
    bind          body          boolean       case          collection 
    const         decreasing    div           else          elsif
    end           enum          exit          export        false    
    fen           for           forward       free          function 
    get           if            import        in            init    
    int           invariant     label         loop          mod     
    module        new           not           of            opaque   
    or            pervasive     pointer       post          pre     
    proc          procedure     put           real          record   



    result        return        set           skip          string   
    tag           then          to            true          type    
    union         var           when                      

Predefined Identifiers of Turing:                      


    abs           arctan        arctand        ceil         chr      
    close         cos           cosd           eof          erealstr 
    exp           floor         frealstr       index        intreal 
    intstr        length        ln             lower        max      
    min           nil           open           ord          pred     
    rand          randint       randnext       randomize    randseed 
    realstr       repeat        round          sign         sin      
    sind          sqrt          strint         strreal      succ     
    upper                                                  


10 Collected Operators and Special Symbols             

The operators and special characters of Turing are:   


    ,    ..   .    :    ;    *    **
    /    +    -    <    >    >>   >>>
    =    <=   >=   ->   ~    !    ?
    &    (    )    {    }    [    ]    |

Six of these are introduced by the short forms:


    >>   >>>  ~    !    ?    &

Note that ~= is considered to be two tokens, ~ and =.


11 Recognizing Tokens 

The tokens of the Turing program are recognized by scanning characters from left to right, 
skipping white space, until the beginning of a token is found. The token is recognized by 
maximal scanning meaning the token is extended on the right as long as the additional 
characters (potentially) form more of the token. White space, if any, is then skipped up until the 
beginning of the next token.


In the following fragment, "10" and "then" are distinct tokens even though they are not 
separated by white space:


    if a > 10then     % Acceptable

In the next example, by maximal scanning "4e" is the (ill-formed) initial part of a real constant, 
so this fragment is not acceptable:


    if a > 10then x := 4else     % Not acceptable

Turing has one exception to the maximal scanning rule, and this is: two adjacent dots are 
always considered to be the token "..". For example, in: 




    var a: array 1..10 of real

the fragment "1..10" is considered to be the three tokens "1", ".." and "10" and not the two 
tokens  "1." and ".10".


12  Implementation Constraints on Integer, String, and Real Types 

Ideally, there should be no implementation constraints on Turing programs (see description of 
the language and implementation constraints in "Terminology and Basic Concepts"). If there 
are no implementation constraints, then we call the language Ideal Turing. In Ideal Turing, the 
int type has an unbounded range of values, and the real type has infinite precision and infinite 
exponent range; that is, int and real correspond exactly to the mathematical concepts of the 
integers and the real numbers. Similarly, in Ideal Turing the type string (without an explicit 
length), comprises all sequences of characters, with no limit on length.  


Programs written in Ideal Turing can be thought of as mathematical formulae, rather than as 
instructions for a computer. For example:


    function factorial (i: int) : int
        pre i >= 0
        if i = 0 then
            result 1
        else

    result i * factorial (i-1)
        end if
    end factorial

In Ideal Turing, this function gives a definition of "factorial" for all non-negative integers;  
but note that in a particular implementation of Turing, integer overflow will occur for large 
values of i.


In most practical implementations of Turing, int will be limited to a range of integers: minint .. 
maxint, and string lengths will be limited to maxstr. To support program portability, it is 
recommended that in all implementations, minint <= —(2**31—1), maxint >= 2**31-1, and 
maxstr >= 255. It is recommented that eos and uninitchar correspond, respectively, to the 
characters with ordinals 0 and 128 respectively.


In an implementation, each non-zero real r may be represented by a floating point number of 
the form:


    r =  f * radix**e


where:


    f is the significant digits part,

    e is the exponent, and

    radix is the number base of the representation.


It is assumed that f is normalized, i.e., if f is not zero then


    1/radix <= abs (f) and abs (f) <= 1.0




If f is zero then e is also zero. The number of digits of precision of f (in the given radix) may be 
limited to numdigits.


In most practical implementations, the exponent e will be limited to the range minexp .. 
maxexp. To support program portability, it is recommended that the equivalent base 10 range 
of exponents be at least -38 .. -38, i.e., that minexp * ln (radix)/ln (10) <= -38 and maxexp * ln 
(radix)/ln (10) >= +38.


Floating point operators provide an approximate but repeatable result corresponding to the 
exact mathematical result. For operators +, -, * and / with operands x and y, let f be the floating 
point result and let m be the exact mathematical result. For non-zero m the relative round off 
error is defined as: 

 

    abs ((m-f) / m)


(If m is exactly zero, f should also be zero.) Each implementation of Turing is to specify the 
value of rreb (relative round off error bound) such that the round-off error for +, —, * and / never 
exceeds rreb. To support program portability, it is recommended that rreb be at most 1e-14.


For implementations using rounding floating point operators, such as the DEC VAX, rreb is:


    rreb = 0.5 * radix**(—numdigits + 1)


For implementations using chopping floating point operators, such as the IBM 370, rreb can be 
given as:


    rreb = radix**(—numdigits + 1)


Unfortunately, there are some implementations of floating point in which neither rounding or 
chopping is consistently carried out; in this case, rreb is larger than would be calculated by 
these formulas.


Each implementation of Turing will provide a standard include file called limits which will 
contain definitions of minint, maxint, maxstr, radix, minexp, maxexp, numdigits and rreb. This 
file can be included in a Turing program by writing include "%limits". This include file will also 
contain the definition of functions that access and modify exponents of floating point values:


getexp (r: real) : real


    Returns exponent e of r. If r = 0, then e = 0.


setexp (r: real, e: int) : real


    Returns value of r with the exponent changed to e.

    The value of e must be in the range minexp ..maxexp.


13 External Subprograms 

There is a language extension which allows Turing programs to call subprograms written in 
other languages. The syntax for this extension is: 


    external [ overrideName ] subprogramHeader




The optional overrideName must be an explicit string constant. When it is omitted, the name 
used for external linking is the subprogram's identifier. If the overrideName is present, it is used 
as the linking name. An implementation may limit the number of characters in the linking name. 
Conventions for order and method of parameter passing is implementation dependent.




14 Changes In the Taring Language 

The Turing language as defined in this Report is slightly modified from the version of the 
original Turing Report. These modifications have been made so that certain features are more 
convenient for the user. This version of the Report is somewhat modified and expanded from 
the original Report to clarify certain descriptions. The description of Turing constructs, in terms 
of context-free rules, has been made to satisfy LR(1). The modifications are:


    1.  Upper and lower case in identifiers and keywords are now distinct.

        For example, r and R are now considered to be distinct identifiers.

        Keywords must now be used strictly in lower case.


    2.  Sets are now considered to be non-scalars instead of scalars. This allows efficient 

        implementation of long sets, by allowing passing of sets by reference.


    3.  Collection names are now visible inside their declarations, so self-referencing 

        collections need not use the forward directive.


    4.  The definitions of realstr and frealstr were modified so that with realstr, 

        small values do not show their exponents. This means that the putltem i:w:f creates 

        nice columns of numbers even if i < 10**-3.


    5.  The range of an increasing for statement can now be given as a named type 

        (subrange or enumerated).


    6.  In a for loop, the (optional) invariant now must come before the loop body, 

        instead of after.


    7.  The substring feature now allows each position to be selected by the form * [- expn ]. 

        The asterisk represents the length of the string. For example, if s ="abc" then 

        s (*) = "c" and s (1 ..*—1 ) = "ab"


    8.  The round function now rounds ties to the next larger integer instead of to an even value.


    9.  The intstr function now allows omission of the width parameter, so if i = 25, 

        then intstr (i) = "25". Note that intstr (i) = intstr (i, 1).


    10. It is now clarified that the dimension parameter of upper and lower is to be present 

        iff the first parameter is a multi-dimensioned array.


    11. The rules restricting use of ** (exponentiation) are clarified to the following three cases.


	     a.  i**j	 	 requires j >= 0, allows i < 0

	     b.  x**i	 	 allows x < 0 and i < 0

	     c.  x**y, i**y	 	 requires x >= 0 and i >= 0, allows y < 0


	 where i and j are of root type int and x and y are real.


    12. Semicolons are now allowed following declarations in records and unions. 


    13. The restriction that a module's invariant must not reference imported variables or 

        modules has been removed.




    14. Modules and subprograms can no longer be pervasive.


    15. A bind can no longer be declared in the (main) program (except as nested in constructs 

        such as subprograms and begin.)


    16. Collections can no longer be declared in subprograms.


    17. It is clarified that the forward type id of a collection is inaccessible until declared.


    18. External subprograms are introduced as an extension to Turing.


    19. The short form for import (:) is no longer defined.


    20. Carriage return characters are now considered to be white space.




Appendix A 

The Context-Free Syntax of Turing 

In our notation, tokens (also called terminals) such as loop and procedure, are written in 
boldface, while non-terminals (called syntactic variables in the Algol 60 Report), such as 
declaration and setType, are written in italics. A set of production rules describes how to 
replace the non-terminal program by zero or more tokens to yield a token sequence which 
satisfies the context-free syntax of Turing.


A production rule consists of a single non-terminal (which names the production) and a list of 
sequences containing tokens and non-terminals, with the meaning that any occurrence of the 
non-terminal can be replaced by one of the sequences. A sequence in the production can 
contain the open and close brackets [ and ], and the open and close braces { and }, which 
enclose tokens and non-terminals that are optional (if enclosed in brackets) or can occur zero 
or more times (if enclosed in braces). That is, if item is a sequence of tokens, non-terminals, 
brackets, and braces, then:


    [ item ] means that item is optional, and

    { item } means that item can occur zero or more times.


As an example, consider the following production rule:


    An importList is one of:


        a.  import ( )

        b.  import ( [ var ] id {, [ var ] id } )


If id can be replaced by an identifier, then the following are some of the token sequences 
described by this rule.


    import ( )
    import ( push, pop, top )
    import ( var element, left, var right)

Note that this definition of the context-free syntax omits the short forms of Turing.


1 Programs and Declarations 

A program is:


    { declarationOrStatementlnMainProgram }


A declarationOrStatementlnMainProgram is one of:


    a.  declaration [ ; ]

    b.  statement [ ; ]

    c.  collectionDeclaration [ ; ]

    d.  subprogramDeclaration [ ; ]

    e.  moduleDeclaration [ ; ]




A declaration is one of the following:


    a.  constantDeclaration

    b.  variableDeclaration

    c.  typeDeclaration


A constantDeclaration is one of:


    a.  const [ pervasive ] id := expn

    b.  const [ pervasive ] id : typeSpec := initializingValue


An initializingValue is one of:


    a.  expn

    b.  init ( initializingValue {, initializingValue } )


A variableDeclaration is one of:


    a.  var id {, id } := expn

    b.  var id {, id } : typeSpec [ := initializingValue ]


A collectionDeclaration is one of:


    a. var id {, id } : collection of typeSpec

    b. var id {, id } : collection of forward id


A variableBinding is:


    bind [ var ] id to variableReference {, [ var ] id to variableReference }


2 Types 

A typeDeclaration is:


    type [ pervasive ] id : typeSpec


A typeSpec is one of the following:


    a.  standardType

    b.  subrangeType

    c.  enumeratedType

    d.  arrayType

    e.  setType

    f.   recordType

    g.  unionType

    h.  pointerType

    i.   namedType




A standardType is one of:


    a.  int

    b.  real

    c.  boolean

    d.  string [ ( compileTimeExpn ) ]


A subrangeType is:


    compileTimeExpn .. expn


An enumeratedType is:


    enum ( id {, id } )


An arrayType is:


    array indexType {, indexType } of typeSpec


A setType is:


    set of indexType


An indexType is one of:


    a.  subrangeType

    b.  enumeratedType

    c.  namedType


A recordType is:


    record

        id {, id } : typeSpec [ ; ]

      { id {, id } : typeSpec [ ; ] }

    end record


A unionType is:


    union [ id ] : indexType of

        label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [ ; ] }

      { label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [ ; ] } }

      [ label : { id {, id } : typeSpec [ ; ] } ]

    end union


A pointerType is:


    pointer to collectionId


A namedType is:


    [ moduleId . ] typeld




A collectionld, moduleld, or typeld is an:


    id


3 Subprograms and Modules 

A subprogramDeclaration is one of the following:


    a.   subprogramHeader

          [ importList ]

          subprogramBody


    b.  forward subprogramHeader

         forwardlmportList


    c.  body procedure id

         subprogramBody

 

    d.  body function id

         subprogramBody


A subprogramHeader is one of:


    a.  procedure id [ ( parameterDeclaration {, parameterDeclaration } ) ]


    b.  function id [ ( parameterDeclaration {, parameterDeclaration } ) ] [ id ] : typeSpec


A parameterDeclaration is one of:


    a.  [ var ] id {, id } : parameterType

    b.  subprogramHeader


A parameterType is one of:


    a.  typeSpec

    b.  string ( * )

    c.  array compileTimeExpn .. * {, compileTimeExpn .. * } of typeSpec

    d.  array compileTimeExpn .. * {, compileTimeExpn .. * } of string ( * )


An importList is:


    import ( [ [ var ] id {, [ var ] id } ] )


A forwardlmportList is:


    import ( [ [ varOrForward ] id {, [ varOrForward ] id } ] )




A varOrForward is one of:


    a.  var

    b.  forward


A subprogramBody is:


        [ pre booleanExpn ]

        [ init id := expn {, id := expn } ]

        [ post booleanExpn ]

        declarationsAndStatements

    end id


A moduleDeclaration is:


    module id

        [ importList ]

        [ export ( [ opaque ] id {, [ opaque ] id } ) ]

        [ pre booleanExpn ]

        { declarationOrStatementlnModule }

        [ invariant booleanExpn 

          { declarationOrStatementlnModule } ]

        [ post booleanExpn ]

    end id 

A declarationOrStatementlnModule is one of:


    a.  declaration [ ; ]

    b.  statement [ ; ]

    c.  collectionDeclaration [ ; ]

    d.  subprogramDeclaration [ ; ]

    e.  moduleDeclaration [ ; ]


4 Statements and Input/Output 

declarationsAndStatements are:


    { declarationOrStatement }


A declarationOrStatement is one of:


    a.  declaration [ ; ]

    b.  statement [ ; ]

    c.  variableBinding [ ; ]


A statement is one of the following:


    a.  variableReference := expn

    b.  procedureCall

    c.  assert booleanExpn




    d.  return

    e.  result expn

    f.   ifStatement

    g.  loopStatement

    h.  exit [ when booleanExpn ]

    i.   caseStatement

    j.   begin

            declarationsAndStatements

         end

    k.  new collection!d , variableReference 
    l.   free collectionld , variableReference 
    m.  forStatement

    n.   tag variableReference , expn

    o.   putStatement

    p.   getStatement


A procedureCall is a:

	 

    reference


An ifStatement is:


    if booleanExpn then

        declarationsAndStatements

  { elsif booleanExpn then

        declarationsAndStatements }

  [ else

        declarationsAndStatements ]

    end if 

A loopStatement is:


    loop 

        [ invariant booleanExpn ]

        declarationsAndStatements

    end loop


A caseStatement is:


    case expn of

        label compileTimeExpn {, compileTimeExpn } :

            declarationsAndStatements

      { label compileTimeExpn {, compileTimeExpn } :

            declarationsAndStatements }

      [ label : 

            declarationsAndStatements ]

    end case 



A forStatement is one of:


    a.  for [ id ] : forRange

             [ invariant booleanExpn ]

	  declarationsAndStenements

        end for 

    b.  for decreasing [ id ] : expn .. expn

             [ invariant booleanExpn ]

	  declarationsAndStenements

        end for 

A forRange is one of:


    a.  expn .. expn

    b.  namedType


A putStatement is:


    put [ : streamNumber , ] putltem {, putItem } [ .. ]


A putltem is one of:


    a.  expn [ : widthExpn [ : fractionWidth [ : exponentWidth ] ] ]

    b.  skip


A getStatement is:


    get [ : streamNumber , ] getltem {, getltem }


A getltem is one of:


    a.  variableReference

    b.  skip

    c.  variableReference : *

    d.  variableReference : widthExpn


A streamNumber, widthExpn, fractionWidth, or exponentWidth is an:


    expn


5 References and Expressions 

A variableReference is a:


    reference


A reference is:


    id { componentSelector }




A componentSelector is one of:


    a.  ( expn {, expn } )

    b.  . id


A booleanExpn or compileTimeExpn is an:


    expn


An expn is one of the following:


    a.  reference

    b.  explicitConstant

    c.  substring

    d.  setConstructor

    e.  expn infixOperator expn 
    f.   prefixOperator expn 
    g.  ( expn )


An explicitConstant is one of:


    a.  explicitUnsignedIntegerConstant

    b.  explicitUnsignedRealConstant

    c.  explicitStringConstant

    d.  true

    e.  false


An infixOperator is one of:


    a.    +	 	 (integer and real addition; set union; string concatenation) 

    b.    -	 	 (integer and real subtraction; set difference)               

    c.    *	 	 (integer and real multiplication; set intersection)          

    d.    /	 	 (real division)                                              

    e.    div	 	 (truncating integer division)                                

    f.    mod	 	 (remainder)                                                  

    g.    **	 	 (integer and real exponentiation)                            

    h.    <	 	 (less than)                                                  

    i.     >	 	 (greater than)                                               

    j.     =	 	 (equal)                                                      

    k.    <=	 	 (less than or equal; subset)                                 

    l.     >=	 	 (greater than or equal; superset)                            

    m.   not=	 	 (not equal)                                                  

    n.   and	 	 (boolean conjunction)                                        

    o.   or	 	 (boolean inclusive or)                                       

    p.   ->	 	 (boolean implication)                                        

    q.   in	 	 (member of set)                                              

    r.    not in	 	 (set non-membership)                                         




In form (f), a prefixOperator  is one of:                                                   


    a.   +	 	 (integer and real identity)                                  

    b.   -		 	 (integer and real negation)                                  

    c.  not	 	 (boolean negation)                                           


All infix operators (including **) associate left-to-right. The precedence of operators is as 
follows, in decreasing order of precedence (tightest binding to loosest binding):


    1.   **

    2.   prefix +, -

    3.   *, /, dlv, mod

    4.   infix +, -

    5.   <, >, =, <=, >=, not=, in, not in

    6.   not

    7.   and

    8.   or

    9.   ->
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