
THE TURING PLUS REPORT 
R.C. Holt and J.R. Cordy


10 March 1985

(Revised 2 September 1987)


(Revised June 2018)


Computer Systems Research Institute

University of Toronto


Toronto, Canada

M5S 1A1


The Computer Systems Research Institute (CSRI) is an interdisciplinary institute formed to 
conduct research and development relevant to computer systems and their application.  It is 
jointly administered by the Department of Electrical Engineering and the Department  of 
Computer Science at the University of Toronto, and is supported in part by the  Natural 
Sciences and Engineering Research Council of Canada. 



Abstract 


Turing Plus is a general purpose language that is particularly suited to systems programming. It 
is a compatible extension of the Turing programming language. 


Major extensions include: 


	 - separate compilation of program parts (modules, monitors and subprograms), 

	 - generalized input/output (random access and binary flies), 

	 - concurrency (processes and monitors), and 

	 - exception handling (the quit statement and handler blocks). 


There are a number of other extensions, including new numeric types (various sizes of integers 
and reals, and the natural number type), characters and fixed length character strings, bit 
manipulation, type cheats, an indirection operation, register variables, procedure variables and 
assembly language inserts.
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1 Introduction 

Turing Plus is a compatible extension of the Turing programming language. Before defining the 
features of Turing Plus, we begin with an overview of Turing.


Overview of Turing 

The Turing programming language, designed in 1982, can be characterized as "a super-Pascal 
with a no-frills syntax and an airtight formal definition."


It is a super-Pascal in that it includes essentially all the features of the Pascal language, as well 
as badly needed additional features such as modules, dynamic arrays, convenient strings, 
flexible input/output and exponentiation. Its no-frills syntax eliminates verbiage such as 
semicolons and program headers, yielding a language that is easier to use than BASIC. 


Its airtight formal definition provides a mathematically precise specification of all aspects of the 
language, guaranteeing a degree of portability unapproachable in most other compiled 
languages.


The Turing language is defined by the Turing Report [Holt & Cordy 1983], and more thoroughly 
introduced in the Turing Programming Language [Holt & Cordy 1988]. Turing is the subject of 
the textbook Introduction to Computer Programming Using the Turing Programming Language 
[Holt & Hume 1984], which contains a copy of the Turing Report. The book The Turing 
Programming Language: Design and Definition [Holt et al. 1987] contains extensive information 
about the language, including its design goals and formal definition.


Extensions to Turing 

Turing Plus adds to Turing a rich set of new features, including separate compilation, random 
access input/output, concurrency, exception handling, bit manipulation and assembly language 
inserts. The design of Turing Plus has drawn heavily from experience with Concurrent Euclid 
[Cordy & Holt 1980], and Turing Pius includes essentially all the of the features of Concurrent 
Euclid.


The unextended Turing language is an alternative to languages like Pascal and BASIC. Turing, 
as extended to become Turing Plus, is an alternative to languages like Modula 2, C and Ada.


Faithful execution and checking 

Turing includes a a novel feature called faithful execution that ensures that execution is 
completely determined by the language specification. This implies that all observable actions 
of a Turing program are determined by the language specification, or else a controlled abort 
occurs. Such an abort can occur because of (1) violation of a language constraint, such as 
division by zero, or (2) exhaustion of computer resources, such as stack overflow. 


Faithful execution guarantees portability from machine to machine (except for dependencies 
on resource exhaustion and nondeterminism due to floating point or random number 
generation). By setting a compiler flag, the user can choose to eliminate the checking code that 
enforces faithful execution. Turing without checking will execute the same as with checking 
(although a bit faster), unless there is resource exhaustion or a constraint violation. In that case, 
execution once again becomes dangerous and unpredictable, as is the case in machine-
oriented languages such as C.




Visibility of the Underlying Implementation 

Turing Plus recognizes the benefit of faithful execution and preserves as much of this feature as 
is consistent with the goal of allowing convenient access, as requested, to the underlying 
implementation. This access is called "visibility" and is divided into three increasingly 
dangerous levels.


The first level is data visibility, which allows access to the implementation (the bits) that 
representdata items. For example, in Turing Plus it is possible to consider the bits representing 
a real number to bean array of characters. Use of data visibility causes a program to be non-
portable (in the general case), and its meaning is not formally defined. However, this level of 
visibility (called "dirty") never causes remote corruption of code or data.


The second level is address visibility. This allows the user to explicitly inspect and modify 
machine addresses. For example, p := addr(x) sets p to the address of variable x, and 
int@(j+9OO) := 5 assigns 5 to the memory location at the addresss 900 beyond the value of x. 
The meaning of such an action can only be understood using intimate knowledge of the 
implementation, and will potentially change (corrupt) remote data and/or code. This 
"dangerous" use of addresses is impossible in Turing proper, but is always present in machine-
oriented languages such as C. It is useful for certain systems programming purposes. It 
provides the expert with an extra degree of performance and convenience for various special 
purposes in systems programming.


The third level is code visibility. Code visibility allows explicit emission of particular machine 
code. This is even more treacherous than address visibility. Carefully designed address 
manipulation can be portable across closely related machine architectures, but specific emitted 
code is only meaningful for a given computer architecture. This feature allows access to 
underlying machine capabilities that are sometimes needed in systems programming.


Turing Plus provides the expert with convenient access to essentially all aspects of the 
underlying implementation. However, this access must be explicitly requested, for example, by 
using the addr operator, rather than being the default, as it is in machine-oriented languages 
like C. Most of the time, the Turing Plus programmer enjoys the productivity and convenience 
provided by Turing’s basic features, and is exposed to the danger of C-like features only when 
those features are required and explicitly requested. The result is that the Turing Plus 
programmer can expect to be highly productive while still having controlled access to dirty and 
dangerous features.


Dirt and Danger 

We will now give explicit definitions of the terms "dirty" and "dangerous". These definitions 
provide a classification of the various features of Turing Plus (and other languages). Basically, a 
feature is clean (mathematically defined), dirty (implementation dependent), or dangerous (may 
cause remote corruption), as follows:


1. Clean. Clean features have a clear, machine-independent semantics, expressible in 
mathematics.


2. Dirty. Dirty features have semantics that is implementation dependent, for example, a type 
cheat that treats a real as an int is dirty (but not dangerous).




3. Dangerous. Dangerous features can cause remote corruption of program or data. For 
example, poking into explicit memory locations is dangerous. Converting (via a type cheat) to a 
type containing a pointer is dangerous. All dangerous features are also considered dirty.


2 Implementations of Turing and Turing Pius 

As of February 1987, Turing is implemented by an interpreter (written in Turing) and a compiler 
with versions called ttc and pttc (written in Concurrent Euclid). Turing Plus is implemented by a 
compiler called tpc (written in Turing Plus). The Turing interpreter supports none of the Turing 
Plus extensions. The ttc compiler supports two extensions, generalized input/output and 
conditional compilation (but not separate compilation, as ttc gains speed by skipping the link 
step). The pttc compiler ("p" stands for "production") is the same but supports separate 
compilation. The interpreter, ttc and pttc compilers run on Vax/Unix, SUNos, PC compatibles 
and IBM mainframes.


The portable Turing Plus compiler, tpc, supports the entire Turing language as well as Turing 
Plus extensions (except as noted in this report). This compiler was originally developed by 
Mark Mendell with help from Ron Wessels. As of February 1987, tpc runs on SUNs, emitting 
MC68000 code. It also emits C source code to allow it to be easily ported to systems with C 
compilers. A VAX version of Turing Plus is currently under construction.


Parameter ordering 

There has been a conscious effort to make tpc compatible with standard calling conventions, 
namely those defined by C. The calling and parameter passing conventions used by tpc are the 
same as those used by C.Beware that the order of parameter passing used by ttc, pttc and 
Concurrent Euclid is the reverse of this order. Consequently subprograms separately compiled 
by pttc (and ttc) and tpc can only be linked if care is taken to reverse five parameter lists in 
either the pttc or the tpc version. There is also an  incompatibility in that certain data items 
(booleans, strings, sets, and enums) are allocated more space by ttc (and pttc) than by tpc.


The versions of ttc and pttc on IBM PC compatibles differ from those on Unix in the naming of 
files. A source program named prag.t will have a linkable modules called prog.o under Unix but 
prog.obj on the PC, and an executable module called prog.x on Unix (but prog.exe on the PC).


3 Generalized Input/Output 

This section defines a set of extensions to the input/output facilities of Turing to provide 
internal form (binary) input/output and random access files. The extensions take the form of a 
set of new statements similar to Turing’s get and put statements.


The Open Statement 

The open statement is introduced; it extends and replaces the capabilities of Turing’s open 
predefined procedure. (For compatibility, the open procedure is retained.)


An openStatement is one of:


    a.  open : fileNumberVariable, fileName, ioCapability {, ioCapability}


    b.  open : fileNumberVariable, argNumber, ioCapability {, ioCapability}




The open statement attempts to open the named file for the specified input/output capabilities. 
If the file is opened successfully, the fileNumberVariable, whose type must be int, is set to the 
strictly positive file number to be used in accessing the file. Otherwise (if the open fails), 
fileNumberVariable is set to zero.  The fileName is a string expression giving the file path of the 
file to be opened.


Form (b) allows opening of a file whose name is given as a program argument on the command 
line. For example, under Unix, the command line:


    prog.x infile outfile

specifies execution of prog.x with program arguments infile and outfile. (Use prog.exe instead 
of prog.x in MS-DOS.)


The argNumber is the position of the argument on the command line. (The first argument is 
number 1.) The name of the file to be opened is the corresponding command line argument. If 
there is no such argument or if the file cannot be opened successfully, fileNumberVariable is set 
to zero. Otherwise, fileNumberVariable is set to the strictly positive file stream number to be 
used in accessing the file.


An ioCapability is one of:


    get, put, read, write, seek, mod


A file can be accessed using only the statements corresponding to the input/output capabilities 
with which it was opened. The tell statement is additionally allowed if the file is opened for 
seek.


The open statement truncates the file to length zero if the ioCapabilities include put or write 
but not mod. In all other cases, open leaves the existing file intact. The mod ioCapability 
specifies that the file is to be left intact, i.e., that the file is to be modified. Each open positions 
to the beginning of a file. There is no mechanism to delete a file. To open for append, one has 
to open for seek (and for write or put) and then seek to the end.


Mixed mode files, which combine either get and read or put and write, are supported by some 
operating systems, such as Unix, by not by others, such as MS-DOS.


Program argument files referenced by command line argument number and used in put, get, 
read or write statements need not be explicitly opened, but are implicitly opened with the 
capability corresponding to the input/output statement with which they are first used. (The 
fileNumber specifies the number of the argument.) As in Turing, a fileNumber of zero specifies 
the special error output stream. Turing Plus also extends Turing with the convention that 
fileNumber -1 specifies the standard output stream, and -2 the standard input stream.


The Close Statement 

A closeStatement is:


    close : fileNumber




The fileNumber must be an integer value giving the file number of an open file. Normally the 
fileNumber is an integer variable whose value was set by an open statement. After a close, the 
specified file is no longer available to be used in a get, put, read, write, seek or tell statement.


Intemal Form (Binary) Input/Output 

Access to internal form (binary) files is based on the new statements read and write.


A readStatement is:


    read : fileNumber [ : status ], readItem {, readItem}


The read statement reads one or more items in internal form from the specified file. The 
fileNumber must specify a file that is open with read capability (or a program argument file that 
is implicitly opened).


The optional status is an int variable that is set to implementation dependent information about 
the read. If status is returned as zero, the read was successful. Otherwise status gives 
information about the incomplete or failed read (which is not documented here).


A readltem is:


    variableReference [ : requestedSize [ : actualSize ] ]


Each readltem specifies a variable to be read in internal form. The optional requestedSize is an 
integer value giving the number of storage units (usually bytes) of data to be read. The 
requestedSize should be less than or equal to the size of the item’s internal form in memory 
(otherwise, a warning message is issued). If no requestedSize is given, then the size of the item 
in memory is used. The optional actualSize is an int variable that is set to the number of 
storage units (bytes) that are actually read.


A writeStatement is:


    write : fileNumber [ : status ], writeItem {, writeItem}


The write statement writes one or more items in internal form to the specified file. The 
fileNumber must specify a file that is open with write capability. The status is the same as 
described for the read statement.


A writeItem is:


    reference [ : requestedSize [ : actualSize ] ]


Each writeItem is a variable, or a named non-compile-time constant, to be written in internal 
form. The optional requestedSize is an integer expression giving the number of storage units 
(usually bytes) of data to be written. The requestedSize should be less than or equal to the size 
of the item’s internal form in memory (otherwise a warning message is issued). If no 
requestedSize is given then the size of the item in memory is used. The optional actualSize is 
set to the number of storage units (bytes) actually written.


An array, record or union may be read and written as a whole. (Note: in Turing Plus, elements of

packed arrays, records and unions cannot be transferred by read and write.)




Random Access Input/Output 

Random access of both text (character) and internal form files is provided by the seek and tell 
statements.


A seekStatement is one of:


    a.  seek : fileNumber, filePosition


    b.  seek : fileNumber, *


The seek statement repositions the specified file such that the next input/output operation will 
begin at the specified point (filePosition) in the file. The fileNumber must specify a file that is 
open with seek capability. The filePosition is a non-negative integer offset in storage units from 
the beginning of the file, such as that returned from the tell statement. (The first position in the 
file is position zero.)


Form (b) specifies that the next operation is to begin at the position immediately following the 
current end of the file. A filePosition of zero specifies that the next operation is to start at the 
beginning of the file. Seeking to a position beyond the current end of the file and then writing 
automatically fills the intervening positions with the internal representation of zero.


A tellStatement is:


    tell : fileNumber, filePositionVariable


The tell statement sets filePositionVariable, whose type must be int, to the integer offset in 
storage units from the beginning of the specified file at which the next input/output operation 
will begin if no intervening seek is executed. The fileNumber must specify a file that is open 
with seek capability (or a program argument file that is implicitly opened). The tell statement is 
useful for recording the file position of a certain piece of data for later access using seek.


4 Conditional Compilation 

This section defines conditional compilation, which is the compile-time selection of sections of 
source text to make up a Turing program. The #if construct specifies the selection and has the 
form:


    #if expn1 then 

        src1

  { #elsif expnN then	 	 Any number of #elslf clauses 
        srcN }    

  [ #else Optional #else clause 
        srcE ]                

    #end if 

Each of src1, srcN, and srcE represent a part of a Turing source program. If expn1 is true then 
src1 is selected, otherwise if expn2 is true then src2 is selected, and so on. If none of the 
expressions is true then srcE (if present) is selected.


We will give an example and then will specify the form and meaning of expressions (expnN):




    #if stats and debug then
        var count, array 1.5 of real
        var message: string
    #elsif tracing then
        put *Debugging message"
    #end if

If both of stats and debug are true then the declarations of count and message will be 
selected, otherwise if tracing is true, then the put statement will be selected. Otherwise, 
nothing is selected.


Each of the expressions (expn1, expnN) consists of identifiers, the boolean operators and, or 
and not (but not ->), and parentheses. The short forms & and | are allowed in these 
expressions.


An identifier id is considered to be true if it is passed as a flag to the compiler in the form -Did, 
where id is the identifier. For example, under Unix or MS-DOS the following sets stats and 
debug to be true in the compilation of tests.


    tpc -Dstats -Ddebug tests

Note that the Turing Plus compiler is invoked by tpc, but that the standard Turing compiler is 
invoked by ttc or pttc. Flag identifiers such as stats and debug are independent of any Turing 
program identifiers. For example, the identifier stats could also be the name of a variable in the 
Turing program.


Comments and literals are respected; this means that #if, then, etc. appearing in comments 
and literals are ignored. All of a #if construct must appear in a single source file, and cannot be 
partially contained in an included file. A #if construct must not include a parent or child 
directive. (These directives are discussed below.)


The source text can contain any number of #if constructs (within reason) and these constructs 
can be nested. It is not necessary for #if to appear first on a line. For example, it can be 
preceded on the line by spaces, tabs, or a Turing statement.


5 Separate Compilation 

This section defines the Turing Plus separate compilation facility. This facility is designed to 
meet several criteria:


    1.  The syntax and semantics of separate compilation must be simple, convenient,  
         and consistent with the spirit of the Turing language.


    2.  There must be no new semantics for modules, subprograms or scopes.


    3.  There must be a simple method of splitting most Turing programs into separately  
         compiled pieces.


    4.  There must be an obvious way to place the separately compiled parts of a program into  
         source files.




    5.  The syntax and semantics of the separate compilation facility should respect and  
         emphasize the hierarchical structure of Turing programs.


    6.  It should be difficult to misuse the separate compilation facility.


    7.  It must provide for the sharing of global variables among separate compilations.


    8.  The facility must allow full compile-time type checking across separate compilations  
         without requiring stored symbol tables.


    9.  It should be possible to use simple, existing program linkers.


The methods for separately compiling modules and monitors are identical (except that the 
keyword monitor replaces module), so we will use the term "module/monitor" when referring 
to either of these two constructs.


The reader may be tempted to believe that separate compilation in Turing and Turing Plus is 
intended as a way to provide general visibility of external variables by separately compiled 
subprograms. This view, which applies to less structured languages like Fortran and C, violates 
information hiding and is contrary to the philosophy of Turing. The best way to think of any 
Turing or Turing Plus program (separately compiled or not) is as a set of statements and 
declarations that obey Turing’s scope rules and import/export lists.


An existing Turing or Turing Plus program and be divided into separately compiled parts in the 
following straightforward manner. Each module/monitor or subprogram that is to be separately 
compiled is moved into a separate source file and is replaced by a child directive designating 
that file. (As explained below, it is necessary to introduced certain clauses, including grant lists 
and parent clauses, before the separated parts are compiled.) It is helpful to remember that it is 
never necessary to use the include directive to accomplish this separate compilation.


If there already exist separately compiled modules or subprograms, they can effectively be 
made a part of a larger Turing program by designating them as children.


In general, a particular module/monitor or subprogram should be designated to be a child in 
only one place in a particular program. This is because a module/monitor or subprogram is 
considered to have only one declaration in a given program. Trouble can arise if a user thinks 
that each child designation of a module/monitor creates a distinct instance of the module/
monitor. This is not the case, and the seemingly distinct children share a single set of statically 
allocated data. Worse yet, the present implementations of Turing and Turing Plus give no 
warning about this problem. The corresponding situation with subprograms does not cause 
trouble, because subprograms have no statically allocated data.


The Turing Plus compiler is consciously designed to allow easy access to subprograms written 
in other languages such as C. To link to an existing C subprogram, one designates it as a child 
(or as an external subprogram). Care must be taken to ensure that the representation of 
parameters is consistent between Turing Plus and the particular C implementation. Beware that 
C compilers have as yet no recognized standard for either linkage conventions or allocation of 
space to integers.


Before describing the separate compilation features in detail, we will give two examples. The 
first is the separate compilation of a procedure and the second is the separate compilation of a 
module.




Example of a Separately Compiled Procedure 

This section shows how a procedure can be separately compiled. Consider this program, 
which is stored in a source file called "hello.t".


    put "Start"

    procedure greet (s: string)
        put s
    end greet

    greet ("Hello")

To separately compile the greet procedure we will divide the source file into two source files, 
called main.t and greet.ch. The main.t file contains:


    put "Start"
    child "greet.ch"
    greet ("Hello")

The child directive indicates that a part to the program is contained in the separately compiled

file called "greet.ch". The greet.ch file contains:


    stub procedure greet (s: string)

    body procedure greet
        put s
    end greet

This file contains the greet procedure, into which has been inserted the keyword "stub" and 
the line "body procedure greet". The stub keyword indicates that this file is not a main 
program, but is rather a separately compiled program part. 


The stub of the greet procedure is its header, "procedure greet (s: string)". This stub (or 
interface) contains all of the information needed for checking legitimate usage of the greet 
procedure. In the present example, this means checking that the main program calls the greet 
procedure with a parameter of type "string". When main.t is compiled, the stub of greet (down 
to the keyword "body") in the separate file greet.ch is inspected, but the body of the procedure 
is ignored. 


The body of the procedure, which begins with the keyword "body", is sometimes called the 
“implementation”. When greet.ch is compiled, the compiler reads both the stub and the body 
and produces the object module (the machine language translation) of the greet procedure.


The Turing Plus compiler can be invoked to translate the main program main.t to an object 
module main.o using this command:


    tpc —c main.t

(Use pttc instead of tpc for the production Turing compiler.) The -c flag specifies that a linkable 
object module rather than an executable load module is to be produced. This object module is 



called main.o. The greet procedure can be separately compiled into an object module using the 
command:


    tpc -c greet.ch

Under Unix, this produces the object module "greet.o". The two object modules can then be 
linked together using the command:


    tpc main.o greet.o

The resulting executable load module is called main.x under Unix. The only difference under 
MS-DOS is that the object modules are called main.obj and greet.obj and the load module is 
called main.exe.  There are other ways to use tpc to compile and link, but these will not be 
discussed here.


Example of a Separately Compiled Module 

This section illustrates the separate compilation of a simple module. Consider this main 
program, which is in a source file called "demo.t".


    put "Demo"

    module stack
        export (push, pop)
        var top := 0

        var c: array 1..100 of int

        procedure push (i: int)
            top := top + 1
            c(top) := i
        end push

        procedure pop (var i: int)
            i := c(top)
            top — top -1
        end pop
    end stock

    stack.push (27)
    var j: int
    stack.pop (j)
    put j           % Output 27

To separately compile the module "stack", we use two separately compiled files, called 
"demomain.t" and "stack.ch". 




The main program, contained in demomain.t, is as follows:


    put "Demo"

    child "stack.ch"

    stack.push (27)
    var j: int
    stack.pop (j)
    put j           % Output 27

The stack.ch file contains:


    stub module stack
        export (push, pop)
        procedure push (i: int)
        procedure pop (var i: int)
    end stack

    body module stack
        var top := 0

        var c: array 1..100 of int

        body procedure push 
            top := top + 1
            c(top) := i
        end push

        body procedure pop 
            i := c(top)
            top — top -1
        end pop
    end stock

As was the case for the greet.ch file, in the stack.ch file we distinguish between the stub 
(interface) of the stack module and its body (implementation). The stub contains all information 
needed to check for legitimate use of the module. The module's body, which follows the 
keyword "body", gives the implementation.


The main program can be compiled using:


    tpc —c demomain.t

This compilation uses stack module’s stub in stack.ch, but ignores stack's body. The stack 
module can be separately compiled using the command:


    tpc -c stack.ch



This compilation produces the object module stack.o for the stack module, using both the stub 
and the body. The two object modules can then be combined under Unix using the command:


    tpc demomain.o stack.o

Under MS-DOS, the object modules are demomain.obj and stack.obj. We have introduced 
separate compilation by example using a procedure and a module. We will now describe 
Turing’s separate compilation facility in detail.


The Parent-Child Hierarchy 

Each Turing program consists of a hierarchy of nested modules/monitors and subprograms. 
For example, the program:


    module m
        export (q)
        var v: int

        module n
            import (var v)
            export (p)
            procedure p (i: int)
                v := v + i
            end p
        end n

        procedure q (j: int)
            v := j
        end q

        q (0)
        n.p (10)
    end m

    m.q (5)

has a structure which can be pictured as:


                                  module n — procedure p
    main program —- module m -—<
                                  procedure q

We call each module/monitor or subprogram which is directly nested within another module/
monitor a "child". The module/monitor in which the child is nested is called the "parent" 
module/monitor.  In the example, the module n is a child of module m, which is n’s parent 
module.  The procedure p is in turn a child of module n, and hence n is p's parent. Because 
subprograms cannot be nested in Turing, a subprogram cannot be a parent (although a main 
program can be). Each child module/monitor should have exactly one parent in each program 
that it is a part of. This means that in an entire program composed of separately compiled 
parts, exactly one child directive should specify a particular child file.




Separate Compilation of Modules/Monitors 

A module/monitor can be separately compiled. The module/monitor is replaced by a child 
directive. The following shows this replacement to separately compile module n.


    module m
        export (q)
        grant (var v)

        var v: int

        child "n.ch"

        procedure q (j: int)
            v := j
        end q

        q (0)
        n.p (10)
    end m

    m.q (5)

The child clause tells the compiler that "n" is separately compiled and its stub can be found in 
the file "n.ch". This file must begin with the stub specification for n, optionally followed by a 
body (implementation) of n. When compiling module m, the compiler will read only the stub of 
n, and not its body. This allows m access to the export list of n and allows the compiler to 
check that m's use of n is consistent with its interface. References to the exported identifiers of 
n are implemented as external references to be resolved at link time.


In order for a separately compiled unit to access identifiers declared in its parent module, the 
parent must list the identifiers in its grant clause (see the third line of the above example). The 
grant clause lists the symbols declared in the parent module which it is willing to share with its 
separately compiled children. The syntax of grant clauses is similar to that of import lists. 
Separately compiled children are allowed to import from the parent only those identifiers which 
the parent has explicitly granted.


The grant clause is optional. If a parent module does not contain a grant clause, then none of 
the identifiers declared in the parent module or imported by it may be used in its separately 
compiled children.


Child Files 

The child file referenced in a child clause must contain the interface (stub) of the sub-module/
monitor. If there is only one implementation of the module/monitor, it is convenient to include 
the body in the stub file. For example, the child file for module n, ”n.ch", could contain:


    parent “main.t"   % Specify file containing the main program and m

    stub module n
        import (var v)



        export (p)
        procedure p (i: int)
    end n

    body module n
        body procedure p
            v := v + i
        end p
    end n

Note that this file begins with a "parent" clause. The parent clause gives the name of the 
source file that contains the parent module of the separate compilation. This tells the compiler 
where to find the global symbols which are imported by the module interface; this allows the 
compiler to check that n’s use of these symbols is consistent with their declaration in m.


The parent clause is optional; if omitted, the separate compilation is called an orphan, and it 
cannot import any global identifiers.


The interface file is a compilation unit and can be separately compiled. If the file does not 
contain a body, then the compiler will simply check that the interface is consistent internally 
and with its parent. If a body is included in the file, then the compiler will compile the body and 
produce object code which can be linked with the parent.


Alternate Implementations 

At times it is necessary to have several alternate implementations of the same interface. This is 
done using a "body" file, which necessarily begins with the body keyword. For example, if the 
child file for module n was "n.ch " as above, an alternate body file "n.bd" might consist of:


    body "n.ch“ module n
        var x: int

        body procedure p
            x := v
            v := x + i
        end p
    end n

The file name "n.ch" gives the name of the file containing the module interface for which this 
file contains an alternate implementation. When an alternate body file is compiled, the compiler 
will compile only the interface part of the file "n.ch " and will ignore any implementation which 
may be present in the interface file. It will insure that the implementation is consistent with the 
interface and will produce object code for the alternate implementation which can be linked 
with the parent.


Separate Compilation of Subprograms 

The separate compilation of subprograms (procedures and functions) is done in a way 
analogous to modules. For example, we can separately compile procedure q of our original 
example as follows:




    module m
        grant (var v)
        var v: int

        child "n.ch"

        child "q.ch"

        q (0)
        n.p (10)
    end m

The interface file "q.ch" for procedure q would be:


    parent "main.t"

    stub procedure q (j: int)
    import (var v)

    body procedure q
        v:= 2 * j
    end q

The first three lines of this file give q’s interface (up to the keyword body) and the last three 
lines give q's implementation.


The parent clause provides the compiler with the environment for q and allows it to check 
consistency between the child procedure and its parent module. The parameters are declared 
in the subprogram stub and not in the body. If no import clause appears it is assumed that the 
subprogram imports all identifiers granted by the parent. The import list in a subprogram 
interface must be a subset of the grant list of the parent. The optional pre, init and post 
clauses of the subprogram appear in the implementation.


Alternate implementations for q can be made using alternate body files, for example:


    body “q.ch" procedure q""
        v := j + j
    end q

Naming Conventions for Files 

By convention, the suffix of a Turing main program file is ".t", the suffix for a child file containing 
both the stub and body is ".ch", the suffix for a file containing only a stub is ".st", and the suffix 
for a file containing only a body is ".bd". The existing Turing and Turing Plus compilers insist 
upon these suffixes.


Syntax of Separate Compilation Facility 

This section gives the syntax for separate compilation. Although it is not explicitly shown here, 
monitors are separately compiled in a manner similar to modules.




A compilation is one of:


    a.  [ grantList ]

         program


    b.  [ parent fileName ]

         stub moduleStub

         [ body modulelmplementation ]


    c.  [ parent fileName ]

         stub extendedSubprogramHeader

         [ body subprogramlmplementation ]


    d.  body fileName modulelmplementation


    e.  body fileName subprogramlmplementation


A moduleDeclaration is augmented to have an optional grantList immediately following the 
optional exportList.


    A grantList is:


        grant ( [var] id {, [var] id } )


There are two new forms of declaration:


    a.  external subprogramHeader

    b.  child fileName


Form (b) declares a module or subprogram.


    A moduleStub is:

        module id

            [ importList ]

            [ exportList ]

            { declarationlnStub }

        end id


A declarationlnStub is one of:


    a.  compileTimeConstantDeclaration

    b.  typeDeclaration

    c.  collectionDeclaration

    d.  [ external [ explicitStringConstant ] ] subprogramHeader

    e.  child fileName


Note: a subprogram declared in the module stub must have a body in the module body file, 
unless it is declared as external or child in the stub.


A modulelmplementation is the same as a moduleDeclaration except that it cannot have an 
import or export list.




An extendedSubprogramHeader is:


    subprogramHeader

    [ importList ]


A subprogramImplementation is one of:


    a.  procedure id

            [ pre booleanExpn ]

            [ init idexpn {, idexpn } ]

            [ post booleanExpn ]

            statementsAndDeclarations

        end id


    b.  function id

            [ pre booleanExpn ]

            [ init idexpn {, idexpn } ]

            [ post booleanExpn ]

            statementsAndDeclarations

        end id


Example of Separately Compiling a Stack Module 

This section contains an example of a separately compiled module. Note that the stack module 
shown here is identical to a previous example module.


The file "stackuse.t":


    put "Enter 10 integers"

    child "stack.ch"     % Specify interface to stack module

    for i: 1..10
        var j: int
        get j
        stack.push (j)
    end for

    put "Here is list backwards"
    for i: 1..10
        var j: int
        stack.pop (j)
        put j
    end for



The file "stack.ch":


    stub module stack     % Interface for stack
        export (push, pop)
            procedure push (i: int)
            procedure pop (var i: int)
    end stack

    body module stack     % Implementation of stack
        var top:- 0
        var c: array 1.100 of int

        body procedure push
            top := top + 1
            c(top) := i
        end push

        body procedure pop
            i := c(top)
            top := top - 1
        end pop
    end stack

The file "stack.bd":


    body "stack.ch" module stack   % Alternate implementation of stack
        var c: collection of
            record
                value: int
                prev: pointer to c
            end record
        var top := nil(c)

        body procedure push
            var oldtop := top
            new c, top
            c(top).value := i
            c(top).prev := oldtop
        end push

        body procedure pop
            var oldtop := top
            i := c(top).value
            top := c(top).prev
            free c, oldtop
        end pop
    end stack

The alternate implementation stack.bd can be compiled into a linkable object module using the 
command:




    tpc —c stack.bd

This produces "stack.o". If the object module for stackuse.t is already in the file stackuse.o, an 
executable load module can be created under Unix using the command:


    tpc stackuse.o stack.o

Use pttc instead of tpc for the production Turing compiler. The corresponding MS-DOS 
command uses ".obj" instead of ".o".


6 Various Features of Turing Plus 

This section defines the following new features of Turing Plus:


    1.  New numeric types (the nat type and various sizes of int and real)


    2.  Character types


    3.  Packed Types


    4.  Exclusive Or Set Operator


    5.  Type Cheats


    6.  Bit Manipulation


    7.  External Variables


    8.  The Indirection Operator


    9.  Addresses as Integers


    10. Size and Addr Attributes


    11. Use of Registers


    12. Subprogram Variables


    13. Assembly Language Inserts


New Numeric Types 

The new "nat" type represents non-negative integers (the natural numbers), for example:


    var c: nat := 4     % Cannot hold negative values

The new predefined functions natstr and strnat that are analogous to intstr and strint.


The new types int1, int2 and int4 are implementation-dependent subranges of the integers that 
are intended to occupy 1, 2, and 4 bytes respectively. These types represent (almost) 
symmetric subranges about zero, for example, int1 represents values in the subrange 
-128..127. Analogously, natl, nat2 and nat4 are subranges of the natural numbers intended to 



occupy 1, 2 and 4 bytes respectively. These types represent subranges starting at zero, for 
example nat1 represents values in the range 0~255. Analogously, real4 and reaI8 represent real 
numbers using 4 and 8 bytes. The unsuffixed real type generally has the same representation 
as real8.


In most implementations, real arithmetic will be carried out with a rreb (relative roundoff error 
bound) of at most 1e-14 and and exponent range of at least -38..38, regardless of the size or 
significant digits of the operations. (In most byte-oriented implementations, this means 8-byte 
real arithmetic is used.)


Whenever an int value is required, a nat value is allowed (with implicit conversion) and vice 
versa. A nat or int value can also appear wherever a real value is required, with implicit 
conversion to real. Similarly, a real4 or real8 value is allowed wherever a real value is allowed. 
These conversions round to the nearest target precision value.


When int values are combined with nat values, the nat is converted to int. For byte-oriented 
machines, arithmetic for nat values of any size guarantees accuracy for values lying in nat4. 
Similarly int operations guarantee accuracy in int4.


For byte-oriented machines, intN (where N is 1, 2 or 4) is expected to provide the full set of 
possible values: -(2**(M-1)) .. (2**(M-1))-1, where M=8*N. Similarly, natN ranges over 0..(2**M)-1. 
For int and nat (without the N), a checking implementation may reserve a pattern, -(2**31) for 
int, 2**32 for nat, to represent uninitialized variables.


Subrange types, set types and enumerated types can have an explicit byte size specified, for 
example:


    var cents: 0..99 : 1
    var r: set of 0..99 : 2
    type color enum (red, yellow, green) : 2

The specified size must be a compile time value of 1, 2 or 4. Note that a size cannot be 
specified for a type name (e.g., t:2 is illegal), array, record or union.


There are new explicit integer constants that can be written using any base from 2 to 36; these 
are written as B#V where B (the base) is 2,3, ... 36 (in base 10) and V gives the value in that 
base. If B is 2, V is a non-empty sequence of 0 and 1 digits; in general, each digit of V must be 
less than B. The digits corresponding to 10,11, ... are a,b, ... (or equivalently: A,B, ...). For 
example:


    assert 2#10 = 2
    assert 16#a = 10

A negative value is created by prefixing a minus sign, for example:


    assert -16#a = -10

These constants cannot be read by get and these forms can not be created by put.


New predefined functions are introduced to convert between nat and string values:


    natstr (n [, width ] )	 	 Convert nat to string 



    strnat (s)	 	 	 Convert string to nat


In these, n is a natural value (including any non-negative integer), s is a string value, and width 
is a natural value giving the string length. The result of natstr is n represented as a string, with 
width increased if needed to represent the value. An omitted width specifies that the result is to 
be just long enough to represent the value. The result of strnat is the characters in s interpreted 
as the text representation of a natural number.


Character Types 

We introduce types that correspond to (1) single characters and (2) fixed length strings of 
characters. For example,


    var c: char := 'W'            % A single character
    var f: char(5) := 'Hello'     % Fixed length of 5

Fixed length character strings such as f are called char(n), pronounced "character n".


Note that the type char and the type string(1) are distinct; char always represents exactly one 
character, whereas string(1) can represent either the null string or a string containing one 
character. The char type is an index type and can be used, for example, as subscripts, for 
ranges and case labels. In the following discussion we will use italic string to refer to Turing's 
varying length strings (with or without explicit maximum lengths).


The new types char and char(n) are designed so that they can be freely intermixed with each 
other and with the string type. This means that concatenation (+), comparisons, substring and 
length can be applied to any of these types. The get and put statements can also be used with 
these types.


The char Type 

The char type is a scalar type; it and its subranges can be used as array subscripts, as 
selectors (tags) for case statements and for union types, and as the base type of a set. The 
char type can be used as for statement indexes, as arguments to succ and pred, and can be 
compared (=, not=, >, >=, <=).  Characters can be read and written by put and get. 


Example: 


    var c: char := 'H'
    put c ..                 % Write one character
    get c                    % Read one character

    if c = 'i' or c = 'o' then
        put c                % Hi or Ho
    else
        put 'Huh?'           % Huh?
    end if



Example:


    % Read characters, counting each capital letter
    var frequency: array 'A'..'Z' of nat
    for d: 'A'..'Z'
        frequency(d) := 0
    end for

    loop          % Tabulate use of capital letters
        exit when eof
        var c: char
        get c     % Reads 1 character
        if c >= ’A' and c <= 'Z' then     % Ok for ASCII
            frequency(c) := frequency(c) + 1
        end if
    end loop

    for d: 'A'..'Z'    % Print frequency of 'A' to'Z'
        put d, frequency(d) : 10
    end for

The Turing Report’s definitions of ord and chr are modified to take advantage of the char type. 
This modification changes chr to return a value of type char (instead of string(1)), so chr can 
now return the values that correspond to eos and uninitchar. It changes ord so its formal 
parameter’s type is char, so it can accept the characters eos and uninitchar. Thus, for byte-
oriented machines, chr and ord now accept and return the full range of 256 ASCII values. Note 
that these modifications do not affect programs using the Turing Report’s definitions of ord and 
chr.


The char(n) type. The char(n) type is considered to be a non-scalar. In a parameter list, a 
parameterType can be char(*), which accepts char(n) for any value of n. The types char(*) and 
char(n) when n is not a compile-time expression are called dynamic char(n). Dynamic char(n) 
has the same class of restrictions as are applied to dynamic arrays. Dynamic char(n) can be 
passed only to the parameter type char(*). It is not allowed to assign or compare dynamic 
char(n). It cannot be a named type and cannot appear in a record, union or collection.


Explicit constants 

New explicit char constants are introduced having the form: a single quote, zero or more 
characters, and a final single quote, for example, ‘Hello’. If there is exactly one character inside 
the quotes, the constant’s type is char, otherwise it is char(n) where n is the number of 
enclosed characters. Since there is implicit conversion between the types char and string, the 
type of these constants is rarely significant, but does make a difference in declarations without 
an explicit type, for example,


    const c := 'H'        % c is of type char
    var d: char(2)        % d is of type char(2)
    var e := 'Hi'         % e is of type char(2)
    var f := "h"          % f is of type string (no fixed max length)



The back slash character (\) can be used in these constants, as in string explicit constants, to 
specify certain characters, such as \t or \T for tab (see Turing Report "Identifiers and Explicit 
Constants”). Backslash can now also be used to escape a single quote, as in,


    const singleQuote := '\''    % A single quote

It is not necessary to precede a single quote by back slash in a double quoted (string) 
constant, nor vice versa, for example:


    const name := "O'Reilly"
    var sentence := 'He said, "Hi"' 

Note that numeric values of characters can be given explicitly using the chr function, for 
example:


    const greeting := 'Hi' + chr(0)     % Type is char(3)

The caret (“^”) is used in explicit constants (string, char and char(n)) to specify control 
characters. The character immediately following the caret is defined as follows. If the character 
following the caret is a question mark, the result is an ASCII DEL (delete) character:


    '^?' = '\d'    (the ASCII DEL (delete) character, i.e., chr (16#7f))


Otherwise, the top three bits of the character are set to zero,


    '^c' = chr(ord('c') & 2#11111)     (where c is not a question mark)


For example:


    const BS := '^H'

If the caret character itself is required in an explicit constant, it must be preceded by a back 
slash.


Automatic conversions 

There are automatic conversions among the types char, char(n), and string. If these types are 
combined in a concatenation, the result type is:


    a.  char(n) when the operands are char or non-dynamic char(n)


    b.  string when either operand is string or dynamic char(n)


A char value is converted in an expression, as required, to be of type char(1) or string (with 
length of 1). A value of type char(n) is converted, as required, to be a string with length n. Note 
that the converted value is an expression and not a variable reference.


A value converted to type string must (1) not contain the eos (end of string) and uninitchar 
characters and (2) must not exceed the length limit (at least 255) of strings.


The result of the concatenate operator is considered a compile-time expression when both 
operands are compile-tune expressions.




Type equivalence and assignability 

Type equivalence determines what variable types can be passed to var parameters. The rules 
for the new types are:


    1.  The type char is only equivalent to itself


    2.  The type char(n) is equivalent to char(m) iff n = m. Note that dynamic char(n) can only be  
         passed to char(*).  This means, for example, that char(n) cannot be passed to a var string  
         parameter.


Assignability determines which values can be assigned to a variable of a given type or passed 
to a value (non-var) parameter. The rules for the new types are:


    1.  Values of type string, dynamic or non-dynamic char(n) and char that contain exactly one  
         character are assignable to char.


    2.  Values of type string, char(n) and char that contain exactly n characters are assignable to  
         char(n). However, it is never possible to assign to a dynamic char(n).


    3.  Values of type string, char(n) and char can be assigned to type string (and string(m)), but  
         the length must not exceed the maximum length of the target string.


Two values of types char(n) and char(m), both non-dynamic, can be compared without 
conversion to string if n = m; if n not= m or at least one is a dynamic type, both are converted 
to type string before doing the comparison.


Limits on lengths 

An implementation may limit the length of the type char(n) along with dynamic char(n), and the 
length of concatenation of the char types. This limit is expected to be large (recommended at 
least 32767). Note that the length of a non-dynamic char(n) can always be determined at 
compile time.


There is a separate limit for lengths of values of type string, which is to be at least 255. A value 
of type dynamic char(n) that is compared or concatenated automatically is converted to type 
string and cannot exceed this limit.


Substrings 

Substrings with a single parameter, such as s(i), s(*) and s(*-1) are special cases as applied to 
char(n) including dynamic char(n). These substrings behave like subscripting of an array of 
characters; they return a reference of type char. This reference can be assigned to or passed to 
a var parameter of type char. Of course, the value being operated on must itself be a variable 
for this to be allowed.


Substrings applied to type string, or with two parameters, remain as they were in the Turing 
Report and cannot be assigned to or passed var. In other words, they are expressions (not 
variable references) of type string. They are subject to the maximum length of the string type.




The get statement is extended so it can be used to read char variables and fixed length 
strings. This statement does not allow a width specification for char variables. 


Example:


    var c: char
    get c:1         % This is NOT allowed

Rather, one would use:


    get c           % Read one character

Example:


    var f: char(3)
    get f           % Reads 3 characters
    get f:2         % Reads 2 characters, into f(1) and f(2)

If end-of-file is encountered when reading c or f, the null character is used to complete the 
input. The value of null is implementation dependent, but is recommended to be chr(0).


The put statement applies to char and fixed length strings, for example:


    var g: char(3) := 'Yes'
    put g:4         % Prints YesB where B means blank
    put g           % Prints Yes

Examples:


    var c: char := 'F'
    var s: string(10) := "Mellow "
    var f: char(6) := 'Yellow'
    var g := 'Hi'

    put c           % Outputs: F
    put s           % Outputs: Mellow
    put f           % Outputs: Yellow
    f(1) := c
    put f           % Outputs: Fellow
    s := g
    put s           % Outputs: Hi

There are three new predefined procedures. In these descriptions the type strchar represents 
any of string, string(n) or char(n) type.


strmove (var target: strChar, source: strChar, loc: int)


        The characters of source moved to target, starting at position loc. 

        If target is of type string, this procedure is equivalent to this statement:


            target := target (1..loc-1) + source + target (loc + length(source) .. *)




        It is required that loc >= 1 and loc + length(source)-1 <= length (target). 

        This operation does not change the length of target.


strdelete (var target: string (*), len, loc: int)


        This removes len positions from target starting at position loc. This is equivalent to 

        the statement


            target := target (1..loc~1) + target (loc + len .. *)


        It is required that loc >= 1 and loc + len - 1 <= length (target).


strreplace (var target: string (*), source: strchar, loc, len: int)


        Replaces len characters starting at loc in target by source:


            target := target (1..loc-1) + source + target (loc + len .. *)


        It is required that loc >= 1, len >= 0 and the resulting length loc+len-1 <= upper (target).


Packed Data Types 

Turing Plus allows the keywords array, record and union to be preceded by the keyword 
“packed". In a word-addressing architecture, packing may result in several small scalars 

(e.g. characters) to be stored within a single word. Turing Plus also allows packed to precede 
enum or explicit subranges (expression..expression). Dynamic arrays cannot be packed. 

Packed types are equivalent only to equivalent packed types. The elements of a packed array 
and the tags and fields of packed unions and records cannot be passed by reference and 
cannot be bound to. In a byte-addressing architecture, packing does not necessarily affect 
storage allocation. 


The Exclusive Or Operator 

The set operator xor (exclusive or, also called symmetric difference) is introduced. The other 
set operators are * (intersection), + (union) and - (set difference). Given sets a and b of type s,

xor is defined by the equation


    a xor b = (a + b) - (a * b)


In other words m is a member of a xor b iff m is a member of exactly one of sets a and b. The 
xor operator is a new infixOperator with the same precedence as +.


Type Cheats 

Turing Plus provides a way to interpret the internal representation (bits) of one type as another. 

This means Turing type checking rules can be overridden. For example:


    var i: int1
    type (char, i) := 'B'      % Type cheat: treat i as char 



The character 'B' is assigned to variable i, whose type is considered to be char (although it is 
really int1).  This assignment is equivalent to either of the following:


    i := type (int1, 'B')
    i := ord ('B’)

The use of type cheats is implementation dependent, and should be used only by persons 
acquainted with the particular implementation of Turing Plus. Programs using this construct are 
not necessarily portable to other implementations.


Example:


    type byte: int1
    type word: array 1 ..2 of byte
    var j: int2 := 6
    type (word, j) (2) := 9

This example considers the int2 variable j to be an array of two bytes and assigns 9 to the 
second of these. The resulting value of j depends on the implementation, because the order of 
byte addressing within words varies from computer to computer. In general, a type cheat has 
the form:


    type (targetType, expn [ : sizeSpec ])


If the expn is a variable reference and the sizeSpec is omitted, then the type cheat construct is 
considered to be a variable whose type is targetType. If the expn is a value that is not a variable 
or if sizeSpec is present, the type cheat construct is considered to be an expression value 
whose type is targetType.


The sizeSpec is a compile-time integer expression giving the size of the expn's value. It can be 
specified only for integer or natural values (where it must be 1, 2 or 4) or real values (where it 
must be 4 or 8).


The targetType must be one of:


    a.  [ moduleId . ] typeld

    b.  int, int1, int2, int4

    c.  nat, nat1, nat2, nat4

    d.  boolean

    e.  char [ ( compileTimeExpn ) ]

    f.   string [ ( compileTimeExpn ) ]

    g.  addressint


A type cheat is carried out in two steps. The first step converts the value if necessary to the 
size given by sizeSpec. The second step, when involves no generated code, interprets the 
value as the target type.


An implementation may prohibit certain type cheats. Memory alignment requirements of certain 
types may render some type cheats to be infeasible. It is dangerous to consider a value to have 
a target type larger than the value’s type; it is recommended that the compiler issue a warning 
when this occurs. An implementation may prohibit certain type cheats on register scalar items.




Type Cheats in Parameters 

A reference parameter can be automatically subject to a type cheat by inserting the keyword 
“type" before the parameter's type. The new form of parameterType is:


    [ type ] typeSpec


Note that stars cannot be given as array bounds or string maximums when "type" is present.


For example:


    procedure dump (a: type array 0.. 10000 of nat1, n: int)
        for i: 0 ..n-1
            put a (i) : 4
        end for
    end dump

This procedure prints the values of n bytes starting at the address of formal parameter a. All 
parameters that use type cheats must be passed by reference. The actual parameter for a 
parameter type cheat must be a variable or non-scalar (so that it can be passed by reference).


The Type Cheat for Naturals (#) 

There is a prefix operator, #, which is a short form for a class of common type cheats. It 
converts its argument to a natural number. The precedence of # is the same as unary minus. In 
general, “# expn” is the same as type (natN, expn) where N is determined as follows. If the 
expn is a variable or expression of size 1, 2 or 4 then N is the size of the variable, otherwise N 
is 4.


For example:


    var c: char (3)
    #c(2) := 24

The form #c(2) is short for type (nat1, c(2)).


For example, if c is a character, then #c = ord(c). Note that #c can be assigned to (its type is 
nat1), but ord(c) cannot be assigned to.


Example:


    var i: int2 := -1
    assert #i = 16#ffff      % Assumes 2's complement
    #1 := 16#fffe
    assert i = -2

Note that 16#fffe is a positive number, but when assigned to i, the effect is that i takes the 
value -2. Due to machine alignment requirements, some uses of # may not be feasible or may 
have unexpected results.




Bit Manipulation 

Operators are introduced to manipulate the bits of natural values. These operators are 
mathematically defined in a machine-independent, portable manner, which does not depend 
on the internal representation of numbers. When combined with the # operator, these 
operators/functions provide convenient manipulation of bits in the bytes/words representing 
arbitrary types.


The convention is that bits are numbered from least significant to most significant bits (right to 
left) with the least significant bit being bit number zero. Overflow occurs for results exceeding 
the maximum value of the nat type.


Each of the following five bit manipulation operators requires operands of type nat and returns 
a result of type nat.


Shifting left:  i shl j


    Returns the value of i shifted left j bits. For example, 2#11 shl 2 = 2#1100. 

    We define i shl j = i*(2**j). Overflow occurs for results exceeding the maximum value of the  
    nat type.


Shifting right:  i shr j


    Returns the value of i shifted right j bits. For example, 2#1001 shr 2 = 2#10. 

    We define i shr j = i div (2**j).


Bitwise and:  i and j


    Returns the bitwise conjunction of i and j. Note that and is also a boolean operator.


Bitwise or:   i or j


    Returns the bitwise disjunction (inclusive or) of i and j. Note that or is also a boolean 

    operator.


Bitwise exclusive or:  i xor j


    Returns the bitwise (exclusive or) symmetric difference of i and j. The result has 1 in position 

    p iff exactly one of i and j has 1 in position p.


The precedence of these operators is:


    shl, shr   	 	 same as    *

    and       	 	 same as    boolean and

    or         	 	 same as    boolean or

    xor        	 	 same as    infix +


The notation:


    bits (c, subrange)


represents a subsequence of the bits in natural number c interpreted as a natural number. 




This sequence is specified by the subrange, e.g., 2..4. The subrange is one of:


    a.  typeSpec

    b.  compileTimelntegerExpression


The typeSpec must specify a subrange type; let L and M (for least and most significant) stand 
for the bounds of this subrange. It is required that L and M are compile-time integer values and 
that 0 <= L <= M. In form (b), L and M are both given by the compiieTimelntegerExpression. 
Bits L through M of natural number c constitute the selected bit sequence. The form bits (c, 
subrange) can be used (1) wherever a nat value is allowed and (2) as the target of an 
assignment statement that is assigning a value in the range 0 .. 2**(M-L+1))-1. In case (1), we 
define the value of bits (c, L..M) as (c mod (2**(L+1))) div 2**M. In case (2), c must be a variable 
that is nat (or nat1, nat2 or nat4). Note that L and M are not limited to small values, for example, 
bits (c, 400..407) := 0 is legal. 


Examples:


    type T12: 1..2
    var d: nat2 := 2#1100
    assert bits (d, T12) = 2#10
    bits (d, T12) := 2#01
    assert d = 2#1010

Combined Assignment Operations 

Turing Plus allows all binary operators, such as +, shr and or to combine with := to make new 
assignment statements, for example:


    i += 1       % i := i + 1
    j -= k + 1   % j := j - (k + 1)
    x shr= 2     % x := x shr 2

Extemal Variables and External Subprograms 

Variables can be declared to be at absolute locations, for example:


    external 16#9001 ttyData: char
    ttyData := 'A'

This declares char variable ttyData to be located a hexadecimal address 9001 and assigns 'A' 
to it. Declaring variables to be at absolute addresses is particularly useful for device 
management in computer architectures with memory mapped device registers. The syntax for 
variableDeclaration is extended to include the form:


    external [ addressSpec ] var id [ : typeSpec ] [ := expn ]


where addressSpec is a compile-time expression in the type addressint or a compile-time 
string. As is the case for all Turing variableDeclarations, least one of the typeSpec and 
initializing expression must be present.




If the addressSpec is omitted, the identifier names an external variable; this name represents 
an implementation dependent method of locating a variable. For example:


    external var ERRFLAG: int
    if ERRFLAG = 0 then...

If the addressSpec is a string, this string is used as the variable’s external name, for example:


    external "x" var y: int

The external name to link to is x while the name used in the program is y.


Turing Plus extends the allowed use of external subprograms (described in the Turing Report) 
to allow their declaration within subprograms.


Variable Number of Parameters 

Turing Plus adds a construct that allows a subprogram to have a variable number of 
parameters. This is specified by replacing the type of the last parameter in the subprogram 
header by dot-dot (..).  For example:


    procedure printf (fmt: string, a: ..)

Only the last (right-most) parameter can be so specified, and it must not be specified using 
var. Within the body of the subprogram, the parameter (a in the example) is visible as an  
addressint. Any number of parameters, of any type, can be passed to a and to positions 
following a, for example:


    printf ("Weight of %6.1f%20s", x, t)

where x is a real value and t is a string value. Each of these parameters is considered to have 
the type addressint. It is intended that the parameters be passed and accessed in the same 
way that variable numbers of parameters are handled in the C language. This allows a Turing 
Plus program to call any C subprogram. It also allows any existing C program to be replaced 
by a Turing Plus subprogram. A common expected use of this feature is access to external C 
library functions such as printf, for example:


    external procedure printf (format: string, values: ..)

The Indirection Operation 

The indirection (or dereferencing) operation @ is used to access values of specified types in 
memory. For example, a value whose type is nat1, located at absolute address 246, is written 
as:


    natl @ (246)     % Peek or poke location 246

The target type has the same possibilities as in type cheats. The location should be an 
expression returning a value of type addressint, described below.




Addresses as Integers 

The addressint type is a predefined integer or natural type which corresponds to the machine 
data type used for addresses. On a 16-bit architecture, such as the PDP-11, addressint is 
equivalent to nat2. On the 32-bit Vax architecture, addressint is equivalent to nat4. Note that 
the addressint type is not equivalent to any pointer type.


Example:


    type r:
        record
            a: int
            b: char(28)
            c: char(11)
        end record
    var p: addressint
      ...
    r@(p).b{7) := 'B'

This example shows an indirection operation, r@(p). This means that a variable of type r is 
considered to be at address p in memory, and a character in this variable is being modified.


Size and Addr Attributes 

The implementation-dependent attribute size returns the size (in bytes for a byte-oriented 
computer) of a variable or of a namedType. For example:


    var i: nat2
    assert size(i) = 2

The implementation-dependent attribute addr returns the memory address, as type addressint, 
of a variable or non-scalar named constant. For example:


    var x: real
    var a: addressint := addr(x)

For example, nat1@(addr(v)) represents the first byte of variable or non-scalar constant v.


Use of Registers 

The form of variabieDeciaration is extended to allow the forms:

     var register id {, id } : typeSpec [ := expn ]


    var register id {, id } := expn


A variable declaration can use the keyword register only if it is in a subprogram. Register 
variables cannot be bound to or passed to reference parameters.


The form of variableBinding becomes:


    bind [ var ] [ register ] id to variableReference

         {, [ var ] [ register ] id to variableReference }




The register keyword can also be used immediately preceding the declared identifiers in const 
and parameter declarations. The keyword register is a hint to the implementation to attempt to 
use a machine register to represent the item. The address (addr) of register variables cannot be 
used, and certain type cheats cannot be applied to them.


Subprogram Variables 

Variables and constants can contain references to (the names of) subprograms. In the 
following, t is a procedure type, and u is a variable of type t initialized to be a reference to 
procedure p:


    procedure p (var i: int, x: real) i := round(x) end p
    type t: procedure q (var j: int, y: real)

    var u: t := p     % Procedure variable u is initialized to p
    u (i, 24.6)       % Call procedure u

    var v := u        % Procedure variable v is initialized to u
    v (j, 3.14159)    % Call procedure u

The implementation assigns the address of procedure p's code to u. Hence addr(u) yields the 
address of the pointer u, and not the address of the subprogram’s code. The address of the 
code itself is given by #u.


Values of subprogram types can be called, assigned, compared for equality, and passed as 
parameters, but cannot be operands of numeric, boolean or string operators. To support 
subprogram types, there is a new type, which has exactly the same syntax as a subprogram 
header.


The new typeSpec is:


    subprogramHeader


The name of the subprogram, its parameters, and its return value which appear in this 
typeSpec can not be referenced; they are present only to keep the form of the 
subprogramHeader consistent with headers of subprograms appearing elsewhere in the Turing 
Plus language syntax.


There is the restriction that a function’s header used as a typeSpec must have at least one 
parameter. This restriction allows us the simple rule: a function or procedure name without 
parameter list, appearing as an expression, is considered to be the name of the subprogram 
(rather than a call to the subprogram).


Example:


    function f (i: real): function g (j: real): real     
        % f produces a function as result value
        if i > 0 then result sqrt
        else result sin
        end if
    end f



    var h: function x (y: real): real := f (4.7)   % h is sqrt
    var x: real := h (16.0)                        % x = sqrt (16.0)
    var i: real := f (4.7) (16.0)                  % i = sqrt (16.0)
    assert x = z and x = sqrt (16.0)

Extension of Upper and Lower 

The upper and lower attributes are extended to accept parameters of the form 


    [ moduleId . ] typeld


Assuming the type is non-opaque, these return, respectively, the upper and lower bounds of 
the specified type, which must be a subrange.


Control of Checking 

In the Turing language (as opposed to Turing Plus), there is by default complete checking, 
meaning that all constructs execute according to their mathematical specification, or else a 
controlled abort occurs. This is called faithful execution. The user may choose to gain a degree 
of efficiency by using an option that eliminates checking. This option is specified by passing 
the -k flag to the ttc compiler, as in:


    ttc -k prog.t

(Details on such flags can be obtained by the command ttc -A.)


Turing Plus does checking in a similar manner except that it supports new features that are not 
checkable. As a systems language, a Turing Plus compiler may also choose to omit certain 
checks in the name of expediency.


In Turing Plus, there are two keywords, checked and unchecked, that are used to request that 
certain portions of a program should or should not include checking code. This code checks 
such things as array subscripts, validity of pointers, initialization of variables, stack overflow 
and arithmetic overflow.


For example, in the following, the unchecked keyword requests the elimination of the checking 
code for the last two statements in the loop.


    loop
        a (i) := 0
        unchecked
        b (i + j) := 0
        i := i + 1
    end loop

The checked and unchecked keywords can occur wherever a statement can occur. They have 
effect up to the end of the current block (in the above example, up to "end loop").


Turing Plus implementations may check certain constructs even when unchecked is 
requested. For example, if integer overflow causes a hardware interrupt, then this overflow 



checking may always remain in effect. The -O (optimize) compiler flag overrides the checked 
keyword and turns off all checking.


Unchecked Collections 

In the Turing language (as opposed to Turing Plus) pointers are checked by default for validity 
when they subscript collections. The existing Turing compilers pttc and ttc do this checking by 
extending each pointer with a "time stamp" field. When the new statement creates an object in 
a collection, it generates a new time stamp. This stamp value is stored with the object and with 
the pointer that locates the object. Pointer assignment copies the time stamp as well as the 
actual pointer. The compiler generates extra code to make sure that a pointer’s time stamp 
matches the stamp in the corresponding object.


The Turing Plus compiler provides the same checking by default, but it also provides a way to 
eliminate the time stamp field, so that pointers become compatible with pointers in languages 
such as C. This is specified by declaring the collection to be unchecked, as in


    var c: unchecked collection of node

(Without the unchecked keyword, collections are considered to be checked.) Pointers of 
unchecked collections are represented as machine addresses, of the same size as addressint. 
This allows explicit pointer arithmetic. For example, the following increases pointer p by 200:


    var p: pointer to c             % c is unchecked
    type (addressint, p) += 200

Assembly Language Inserts 

In Turing Plus the user can specify assembly language to be emitted (generated) using the asm 
statement, which has the form:


    asm [ labelstr : ] str {, expn }


Both labelstr and str are compile-time string expressions. This construct emits one or more 
lines of assembly language inline into the generated code for the program.  The emitted 
assembly code consists of: 


    1.  Optionally, an assembly language label, given by labelstr, followed a machine dependent 

         character (usually a colon) if appropriate for the target assembler.


    2.  The str,  preceded and followed by a machine dependent separator (usually a tab or  
         blank).


    3.  Representations of each expn, separated by a machine dependent separator (usually a  
         comma).


If an expn is a compile-time string, its value is emitted. Any other expn is evaluated (if 
necessary), and assembly language notation representing its value is emitted. This evaluation 
may cause the emission of assembly code; all such emission for the expn will precede the line 
of assembly code specified by the asm construct.




Note that the expn can use addr, size and indirection (@) as required to specify an appropriate 
value to emit. An implementation may not be able to handle certain expns, for example, those 
consuming too many temporary registers. It is the programmer’s responsibility to ensure that 
the types and sizes of expressions are appropriate for the given line of assembly language.


Examples:


    var vlong, v2: int4
    asm "movl", 5, vlong                  % vlong := 5
    asm "movl", addr (vlong), v2          % v2 := addr (vlong)
    asm "movl", int4@(v2), vlong          % vlong := vlong
    asm "movl", size(vlong)+4, int4@(v2)  % vlong := 8

7 Exception Handling 

Turing Plus adds exception handling, supported by (1) the quit statement, and (2) the handler, 
which is a block of declarations and statements occurring optionally at the beginning of a 
subprogram. The quit statement as well as any system detected failures cause a program or 
process to either abort or to give control to the most recently encountered (activated) 
exception handler.


Quit Statements and Exception Handlers 

A new statement, called "quit", is introduced to explicitly cause a program (or process) to fail. 
The failure (or exception) either aborts the program (or process) or causes control to return to 
an exception handler (described below).


The quitStatement has the form:


    quit [ guiltyParty ] [ : quitReason ]


The quitReason is an int expression. If the quitReason is omitted, a default value is chosen in 
the following way. If guiltyParty is omitted or is <, the default is 1. If guiltyParty is > and an 
exception handler is active, the default is the quitReason of the exception being handled;  if no 
exception is being handled, the default is 1. In the case of program abort, an implementation  
may pass the quitReason (integer value) to the operating system.


The guiltyParty option is used to designate the point of failure, for example, to tell the debugger 

(if any) which line of the program is considered to be the cause of failure.


A guiltyParty is one of:

    a.  <

    b.  >


If guiltyParty is omitted, it is assumed that the exception results because of a failure occurring 
at the quit statement. If guiltyParty is <, then the failure is considered to have occurred at the 
point of call to the current subprogram. For example, if the current subprogram is implementing 
square root (sqrt) and is passed a negative argument, it can use < to specify that the caller 
provided a faulty argument.




GuiltyParty can also be >, which means that the failure already occurred and is being passed 
on (re-raised). To summarize, the three possibilities for designating the point of failure 
correspond to:


    a.   <       	 The caller is cause of failure

    b.   >       	 The exception being handled is the cause of failure

    c.  (none)  	 The present quit is the cause of the failure.


Case (b) defaults to case (c) if it occurs when a handler is not active.


An exceptionHandler has the form:


    handler (id)

        statementsAndDeclarations

    end handler


The id is an int constant whose value is the quitReason of the exception that is being handled.


A handler can appear only in the body of a subprogram or process, preceding the declarations 
and statements. 


The new form of a subprogramBody is modified to be:


        [ pre booleanExpn ]

        [ init id := expn {, id := expn } ]

        [ post booleanExpn ]

        [ exceptionHandler ]

        declarationsAndStatements

    end id


Exactly the same declarations and statements can appear in a handler as can appear in the 
subprogram body following the handler.


In the absence of exceptions, exception handlers have no observable effect. A particular 
handler is activated (meaning it becomes ready to handle an exception) when the subprogram 
or process containing it is entered. It remains active until (1) the subprogram (or process) in 
which it is located has completed, or (2) the handler is given control. Activation of a handler 
when a previous handler is already active will cause exceptions to be passed to the newly 
activated handler. In other words, handlers have a dynamic scope that begins when the 
exception handler is encountered (but skipped) and ends when (1) the subprogram (or process)  
containing the handler has completed execution or (2) the handler is given control.


When a handler is given control it becomes, in effect, a replacement for the declarations and 
statements following it. If the handler is in a function, it must terminate with a result statement 
giving the function’s value or with a quit. If the handler is in a procedure, the handler must 
terminate with a return, a quit, or by encountering the end of the handler (which is equivalent 
to a return).


When a handler terminates with a result or return statement (or by reaching the handler’s end 
in a procedure), the subprogram’s post condition (if any) must be true. If termination of a 
handler is caused by quit, the post need not be true. Similarly, a quit outside of a handler does 
not need to establish the post condition of the associated subprogram.




Example of exception handling:


    const stackOverflow := 500
    const maxTop := 100
    var top: O..maxTop := 0 
    var stack: array 1..maxTop of int

    procedure push (r: int)
        if top = maxTop then
            quit: stackOverflow
        end if
        top := top + 1
        stack(top) := i
    end push

      ...

    procedure parse

        handler (exceptionNumber)
            put "Failure number ", exceptionNumber
            case exceptionNumber of
                label stackOverflow:
                    put "*** Stack has overflowed"

                ... other exceptions handled here ...

                label:        % Unexpected failures
                    quit >    % Pass exception further
            end case
        end handler

        parseExpn    % Eventually push is called

    end parse

The parse procedure contains a handler that is activated when parse is called. The parse 
procedure calls parseExpn, which indirectly calls push. When push executes its quit statement, 
control is returned to the most recently activated exception handler. Assuming no handlers 
were activated after the handler in the parse procedure, control is passed to parse's handler. 
The interrupted procedures, including parseExpn and push, are terminated and their local 
variables are deleted before the handler gains control. (In other words, the implementation 
stack is trimmed of their stack frames.)


System Generated Exceptions 

In a "faithful" implementation of Turing, either the program will execute according to the 
language definition, or else the system will detect a failure. In the absence of exception 
handlers, these failures generally cause the program to abort. If one of these failures occurs 



while an exception handler is active, then control is passed to the handler. The quitReason 
number passed is implementation dependent. These numbers are documented in the 
"%exception" standard include file. Note that the user may simulate a system exception by 
doing a quit with the corresponding system exception number.


When Turing programs are not "checked" by the implementation, the system may not detect 
failures. In some cases (dirty cases), failure to detect the failure may yield incorrect data, but 
with most implementations it should not cause remote corruption. In other cases (dangerous 
cases), failures may result in arbitrarily chaotic behaviour and remote corruption. For example, 
an undetected out-of-range subscript may corrupt arbitrary data or code.


The presence of a handler does not automatically cause checking for system exceptions. 
Rather, it is the "checked" option that specifies what exceptions the system is required to 
detect. When checking is not in effect, the implementation may assume that the programmer 
has proven that the exception cannot occur.


System Exceptions are Implementation-Dependent 

Since the Turing language does not impose an order of evaluation on subexpressions, 
exceptions are not necessarily repeatable from implementation to implementation. For 
example, in this code:


    i := 0
    x := 24 div i + 24/i

the exception may be either integer division by zero or real division by zero, depending on 
order of evaluation.


If checking is turned off or if dangerous language features are used in the program, the 
program’s behaviour becomes highly implementation dependent. Note that an implementation 
is allowed to do checking even if checking is turned off; of course a programmer may choose 
to take advantage of his or her knowledge of one particular implementation to produce an 
implementation dependent solution to a particular problem.


Trouble 

If an exception occurs in certain situations and is subsequently caught by a handler, it may be 
difficult to continue the computation. For example, if an exception occurring in a monitor is 
caught outside of the monitor, it may never again be possible to re-enter the monitor. If an 
exception occurring in a process is not caught, the entire program is aborted. If an 
implementation allocates dynamic arrays on the heap, an exception leaving the scope of these 
arrays may prevent de-allocation of their allocated space.


Implementation Considerations for Exception Handling 

Exception handling in Turing Plus is designed so that it has no effect on the performance of 
those parts of a program that do not use the feature. The only overhead in time or space 
occurs when a handler is activated or de-activated. Introduction of handlers should cause no 
overhead in subprograms not containing them.


Handlers can be supported by a LIFO linked list of nodes representing active handlers. For 
programs without concurrency the head of this list can be an implicit global variable. When 
there are processes, there is a list for each process, with the header in the process’s descriptor 



(which is used to hold other process status, such as registers, when the process is not 
executing).


The nodes of the list are essentially implicit local variables held in the runtime stack. Each time 
a handler is encountered, it is activated by pushing (a copy of) its node onto the stack, and 
linking it to be first in the list of nodes. The handler is deactivated by unlinking from the list. The 
allocation of a node on the stack can be done by assuming that its handler uses the implicit 
declaration:


    var state: 
        record
            ... fields to hold stack info ...
        end record

Note that before a handler is activated, its node is unlinked from the list, thereby guaranteeing 
that an exception in this handler does not re-activate (the same instance of) this handler.


Note that before a program or process begins execution, the header of its list of nodes must be 
initialized to locate a default (system) handler. For a non-concurrent main program, this default 
handler can abort the program, passing the quitReason to the operating system.


Some hardware, such as the Digital Equipment Vax, provides special subprogram calling 
instructions that support exception handling without explicit software intervention. Even 
without hardware support, it is possible to completely avoid time (CPU) overhead in activating 
and de-activating handlers by using tables that give intervals (windows) of program counter 
values that are covered by a particular handler. When an exception occurs, a window is 
searched for which brackets the current program counter (or brackets a return point from an 
active subprogram).


The exception that corresponds to running out of run-time stack can cause an unbounded 
exceptioning situation (repeated stack overflows) if care is not taken. However, this situation is 
avoided by using this strategy: activating a handler must not entail any further pushes onto the 
implementation stack. Effectively, all that needs to be done is to load registers from the latest 
node in the exception list, without doing any pushes onto the stack.


8 Concurrency 

This section defines the lightweight concurrency features of Turing Plus. These features are 
explicitly designed to support multiple CPU systems as well as single CPU systems. They are 
essentially the same as those in Concurrent Euclid, with the addition of:


    1.  The fork statement, to explicitly activate processes.


    2.  Device monitors, which run at hardware priorities and which can contain interrupt 

         handling subprograms.


    3.  Deferred conditions, such that the signaller continues before the awakened process.


Processes and the Fork Statement 

The fork statement activates a new process, for example:




    process speak (word: string)
        loop
            put word
        end loop
    end speak

    fork speak ("Hi")
    fork speak ("Ho")

The process declaration creates a process template, which is activated twice in parallel in this 
example. One activation repeatedly prints "Hi", and the other "Ho".


The syntax of a processDeclaration is:


    process id [ parameterList ] [ : compileTimeExpn ]

        [ importList ]

        [ pre booleanExpn ]

        [ init id := expn {, id := expn } ]

        [ post booleanExpn ]

        [ exceptionHandler ]

        declarationsAndStatements

    end id


The optional compileTimeExpn in the header is used to specify the maximum size of the 
process’s stack. A process declaration can appear wherever a module declaration is allowed. 
The declarations and statements in a process are the same as those in subprograms. A 
process cannot be declared in a monitor.


The syntax of the fork statement is:


    fork [ moduleld . ] id [ ( expn {, expn } ) ] [ : reference [, expn [, reference ] ] ]


The first optional reference at the end of the fork statement must be a boolean variable. The 
fork statement sets this reference to true if the fork succeeded. If it failed (presumably because 
stack space could not be allocated), this reference is set to false. If the fork fails, but this 
reference is omitted, an exception is raised. The optional expn specifies the size for the 
process’s stack; this overrides the (optional) stack size given in the process declaration. The 
second optional reference must be a variable with the predefined type addressint, which is set 
to identify the process activation. It has an implementation dependent meaning; it (usually) 
locates the process’s process descriptor.


Monitors 

The form of monitors is similar to that of modules:


    monitor id [ : compileTimelntegerExpn ]

        ...

    end id


The implementation will guarantee that only one activity at a time takes place in a monitor. This 
means that a process will be blocked if it calls a monitor that is already active. The blocked 



process will not be allowed to proceed until the monitor is inactive (that is, until another 
process leaves the monitor). If the optional compile time integer expression is present, this is a 
device monitor, having its exclusive access enforced by a machine-dependent trick such as 
executing it at the hardware priority level given by the expression.


The body of a monitor has the same form as that of a module, except that (1) modules, 
monitors and processes cannot be declared inside monitors and (2) certain additional 
statements (signal and wait) are allowed to appear (only) in monitors.


A device monitor is restricted from calling other monitors (directly or indirectly) and from calling 
separately compiled modules. This restriction is imposed to eliminate the possibility of blocking 
a process with a non-zero hardware priority (as this would inadvertently allow multiple entry 
into a device monitor).


Conditions 

Within a monitor, conditions can be declared using a new form of variable declaration.


    var id {, id } : [ array subrangeType {, subrangeType } of ] condition [ conditionOption ]


A conditionOption is one of:


    a.  priority

    b.  deferred

    c.  timeout


The priority option requires that corresponding wait statements (see below) must include 
priorities. Forms (b) and (c) declare deferred conditions. With a deferred condition, the 
signalled process becomes ready to re-enter the monitor when it becomes inactive. This is as 
opposed to an immediate (non-deferred) condition, in which a signal statement immediately 
wakes up a sleeping process (as is the case in Concurrent Euclid). All conditions in a device 
monitor must be deferred.


The timeout option means that signalling is deferred with a timeout, and that an extra 
parameter to the wait statement must give a timeout interval. If a process waits longer than its 
timeout interval, it is automatically signalled. Beware that the empty function can be non-
repeatable when applied to timeout conditions. For example, empty (c) may not equal empty (c) 
in a single expression.


Note that conditions cannot be named as types, and can only be declared in the main body of 
a monitor. They cannot be contained in records, unions, or collections, and cannot be declared 
inside statements (such as begin or loop) or subprograms. 


Signal and Wait Statements 

The syntax of the signal and wait statements is:


    signal conditionVariable

    wait conditionVariable [, expn ]


In both cases the variable must be a condition variable. The signal statement wakes up one 
process from the specified condition queue, if such a process exists. If the condition is 



deferred, the signaller continues in the monitor, and the awakened process is allowed to 
continue only when the monitor becomes inactive. If it is an immediate (non-deferred) 
condition, the awakened process immediately continues its execution in the monitor, and the 
signaller waits until the monitor is inactive to continue.


If it is a priority condition, the wait must include the optional non-negative priority expn, 

which will be used to order processes waiting for the condition, lower priorities first. An 
implementation may limit the range of priorities in a priority condition.


If it is a timeout condition, the wait must include the optional non-negative number timeout 
expn, which gives the timeout interval. 


There is no guaranteed order of continuing among deferred awakened processes, processes 
signalling immediate conditions, and processes attempting to enter the active monitor.


The Pause Statement 

The syntax of the pauseStatement is:


    pause expn


The expn must be a non-negative value. The process is held up by the number of time units 
given by the expression. These units may vary from implementation to implementation, but 1 
millisecond is recommended. In simulation versions of Turing Plus simulation time rather than 
real time may be used as the basis of the pause.


Predefined Subprograms 

The following new predefined subprograms are introduced:


setpriority (p: nat) 


        This procedure sets approximate relative speed of this process. This speed cannot  
        generally be counted on to guarantee critical access to shared variables. A smaller value  
        of p means a faster speed. The argument of setprioirty may be limited to the range  
        0 .. 2*15 - 1.


getpriority: nat 


        This function returns the relative speed of the executing process.


empty (conditionVariable): boolean


        The result of this function is true if no processes are waiting for the condition.


Interrupt Handling Procedures 

A parameterless procedure exported from a device monitor can be specified to be an interrupt 
handling procedure by suffixing a device specification to its header.


    procedure id [ : deviceSpecification ]




The deviceSpecification is a compile-time natural number that identifies, to the implementation, 
the class of interrupts that effectively call this procedure. Note that interrupt handling 
procedures may not be called from within a program.


The user is expected to follow two programming disciplines. The first is: an exception must 
never propagate out of an interrupt handling procedure. If such an exception should occur, it 
may be passed to the handler that was active at the time of the interrupt. The second is that an 
interrupt handling procedure must not execute a wait, either directly, or indirectly by calling 
another procedure. If this should happen, it may block the interrupted process.


Implementation Considerations 

The concurrency features of Turing Plus have been designed to be very efficient. For a single 
CPU implementation, entering or leaving a monitor should require about two machine 
instructions in the usual rase of no contention. Similarly, a signal on an empty queue should 
require only about two machine instructions.
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