
THE TURING LANGUAGE REPORT
R.C. Holt and J.R. Cordy

Technical Report CSRI-153

December 1983

(Revised July 1985)

(Updated August 1986)

Computer Systems Research Institute

University of Toronto

Toronto, Canada

M5S 1A1

The Computer Systems Research Institute (CSRI) is an interdisciplinary institute formed to
conduct research and development relevant to computer systems and their application. It is
jointly administered by the Department of Electrical Engineering and the Department of
Computer Science at the University of Toronto, and is supported in part by the Natural
Sciences and Engineering Research Council of Canada. 

Abstract

This report specifies the Turing language. Turing is a general purpose programming language
that is well suited for teaching programming. It is designed to support the development of
reliable, efficient programs. It incorporates language features that decrease the cost of program
maintenance and that support formal verification.

Turing is designed to be supported by a user-friendly compiler and run-time system of modest
size; these should insulate the user from vagaries of the underlying hardware and operating
system. Turing is a Pascal-like language and incorporates almost all of Pascal's features. Turing
alleviates many difficulties with Pascal; for example, Turing provides convenient text string
handling, information hiding using modules, type-safe variant records (unions), as well as
dynamic parameters and arrays.

A tutorial introduction to Turing is given in the text book “Introduction to Computer Science
using the Turing Programming Language” [Holt & Hume 1984]. Turing compilers for various
systems, including VAX/Unix, IBM PC/XT and IBM CMS are available from CSRI, University of
Toronto. The language's formal definition is contained in the book “The Turing Programming
Language: Design and Definition” [Holt et al. 1987], and the language appears as the cover
article in the December 1988 edition of the Communications of the ACM [Holt & Cordy 1988].

Acknowledgements

The design of the Turing language has drawn heavily from previous program ming languages
and from the advice and help of a number of people. The heaviest debt is to the Euclid family
of programming languages, including Concurrent Euclid, which in turn draws extensively from
Pascal.

The language design was greatly helped by concurrent development of its formal semantics, its
first compilers and a text book. J.A. Rosselet formally specified the language's context
checking using his ADL notation. P.A. Matthews and R.C. Holt developed the language’s
axiomatic semantics. J.R. Cordy, A.F.X. Curley, R.C. Holt, M.P. Mendell, S.G. Perelgut, and
S.W.J. Tjiang developed the portable Turing compiler. This compiler is written in Concurrent
Euclid, using the S/SL compiler-writing system; as of July 1983, it has been implemented for
the DEC VAX, IBM 370, Motorola MC68000 and IBM PC/XT.

T.E. Hull encouraged the creation of the language and guided the development of its numeric
features. J.N.P. Hume co-authored the text book and helped simplify certain language
constructs. E.C.R. Hehner helped clarify and simplify procedures and functions. I.S. Weber, P.A.
Matthews and T.C.N. Graham managed the computer typesetting of the Turing Report.

The original development period of Turing, from its inception, to its specification and
formalization, to using its text book with compilers in classrooms, was 12 months.

The development of Turing was made possible by the financial support of the Natural Sciences
and Engineering Research Council of Canada, and Bell Northern Research Limited.

Table Of Contents

 1 Introduction, Terminology, and Notation

	 1.1 Terminology and Basic Concepts

	 1.2 Identifiers and Explicit Constants

	 1.3 Comments and Separators

	 1.4 Syntactic Notation

 2 Programs and Declarations

	 2.2 Declarations

	 2.3 Constant Declarations

	 2.4 Variable and Collection Declarations

	 2.5 Bind Declarations

 3 Types

	 3.1 Types and Type Declarations

	 3.2 Type Equivalence and Assignability

 4 Subprograms and Modules

	 4.1 Subprograms

	 4.2 Modules

	 4.3 Restrictions on Constants and Read Only Items

 4.4 Restrictions to Prevent Aliasing

5 Statements and Input/Output

 5.1 Input and Output

6 References and Expressions

 6.1 References

 6.2 Expressions

 6.3 Numeric Operators

 6.4 Comparison Operators

 6.5 Boolean Operators

 6.6 String Operators and Substrings

 6.7 Set Operators and Set Constructors

 6.8 Compile-Time Expressions

 6.9 Predefined Functions

 6.10 Attributes

 6.11 Predefined Procedures

 6.12 The Uninitialized Value

 6.13 Character Collating Sequence

7 Source Inclusion Facility

8 Short Forms

9 Collected Keywords and Predefined Identifiers

10 Collected Operators and Special Symbols

11 Recognizing Tokens

12 Implementation Constraints on Integer, String, and Real Types

13 External Subprograms

14 Changes in the Turing Language

Appendix: Context-Free Syntax

 A.1 Programs and Declarations

 A.2 Types

 A.3 Subprograms and Modules

 A.4 Statements and Input/Output

 A.5 References and Expressions

1 Introduction, Terminology, and Notation

Turing is intended to be a general purpose language, meaning that it is potentially the language
of choice for a wide class of applications. Because of its combination of convenience and
expressive power it is particularly attractive for learning and teaching. Because of its clean
syntax, Turing programs are relatively easy to read and easy to write.

The language improves reliability by disallowing error-prone constructs. It provides numerous
compile-time and run-time checks to catch bugs before they cause disaster. These checks
guarantee that each Turing program behaves according to the Turing language definition, or
else a warning message is printed.

To support maximal efficiency, there is an option to remove run-time checking. This option
allows well-tested, heavily used Turing programs to be extremely efficient. Each construct in
Turing is designed to have an obvious, efficient implementation on existing computer hardware.

The design of Turing aims to address the verification and security difficulties with Pascal-like
languages. For example, compile-time checks are used to prevent aliasing of variables and
side effects in functions. Aliasing due to pointers has been eliminated using the concept of
collections. Variant records (unions) have been made type safe by means of a tag statement
that explicitly selects among the types of values to be represented.

Perhaps the most important programming construct developed in the last decade is the
module or cluster, which enforces information hiding and supports data abstraction. Turing
incorporates this feature, with the result that construction of large programs as a set of nearly
independent parts is relatively straightforward.

Turing is well suited to interactive programming; it is intended for use on personal computers
as well as on traditional main-frame computers.

The language is designed to be easily and efficiently implemented. Experience has shown that
a production quality portable Turing compiler can be constructed in a few man-months.

1.1 Terminology and Basic Concepts

This section informally introduces basic terms, such as "scope" and "constant", used in
describing the Turing language.

Variables and constants.

A variable is a named item whose value can be changed by an assignment statement.

Example:

 var i: int % This declaration creates variable i
 i := 10 % This assignment sets the value of i to 10

This example uses comments that begin with a percent sign (%) and are concluded by the end
of the line. Various items such as variables are given names; these names are called identifiers.

A named constant is a named item whose value cannot change. In the following, c and x are
named constants:

 const c := 25
 const x := sin (y)**2 % y Is a variable

In this example, c's value is known at compile time, so it is a compile-time (or manifest)
constant. (See also "Compile-Time Expressions"). The value of x is computed at run-time; it is
a run-time (or nonmanifest) constant. Since x's value depends on variable y, different
executions of the construct containing x's declaration may produce different values of x.
During the lifetime of each x, the value of that particular x remains constant, even though y may
change.

An explicit (or literal) constant is a constant that denotes its own value; for example, the
following are an explicit integer constant, an explicit boolean constant and an explicit string
constant:

 219
 true
 "Have a nice day"

Scopes and visibility.

The textual lifetime of a named item is called its scope. For example, the scope of x in the
following is the body of the begin statement in which it is declared.

 begin
 var z: real
 ... body of begin statement ...
 end

A declared item's scope begins at its declaration and continues to the end of the construct in
which the declaration occurs. An item's declaration textually precedes any use of the item
(except in those cases in which the identifier is explicitly preceded by the forward keyword).

The visibility (scope) rules of Turing are basically the same as those of the Algol/Pascal family
of languages. This means that a declared item is visible (can be named) throughout its scope,
including in subconstructs of the scope.

Most constructs (variables, types, constants, subprograms and modules) cannot be named
using an identifier that is already visible. That is, for most constructs, redeclaration of identifiers
is disallowed. (The exceptions are names of parameters, values of enumerated types, and
names of record and union fields.)

There is one construct (the module) in an item's scope that does not automatically inherit the
ability to access the item. Modules must explicitly import items that are to be accessed in the
module body.

A subprogram may optionally use an import list to specify items used in the subprogram's
body.

Example:

 1 var i: int
 2 procedure increase (increment: int) % Increase i by increment
 3 import (var i)
 4 i := i + increment
 5 end increase
 6 increase (4) % Increase i by 4

In this example, variable i is imported on line 3; it is imported var (as in var-iable) indicating that
it can be changed in the procedure (in line 4). If i were imported without the var keyword, then it
could be inspected, but line 4, which changes i, would not be allowed. A variable that is
imported non-var is called a read-only variable. If a subprogram does not use an import list, it
is considered to implicitly import any items that it actually references. By contrast, a module is
always required to explicitly import any global items that are accessed in the module's body.

Subprograms.

Turing has two kinds of subprograms - procedures and functions. A procedure is called using a
procedure call statement. Calls to a function occur in expressions and return a value to be
used in the expression.

A subprogram header may optionally declare formal parameters. For example, line 2 of the
above example declares "increment" as a formal parameter. Each call to the subprogram must
supply actual parameters corresponding to the formal parameters; for example in line 6 above,
"4" is an actual parameter.

Modules.

A module is a construct used for packaging items together, including subprograms and
variables, with information hiding. Access to internal items is controlled by an "export" list.

Example:

 module stack % Implement a stack of integers
 export (push, pop) % Entries to stack are push and pop

 var contents: array 1.. 100 of int
 var top: 0..100 := 0

 procedure push (i: int)
 top := top + 1
 contents (top) := i
 end push

 procedure pop (var i: int)
 i := contents (top)
 top := top — 1
 end pop
 end stack

 stack.push (14) % Push 14 onto the stack

Since the module exports only push and pop, these are the only items in the module that can
be accessed outside of the module. To access an exported item, one prefixes its name by the
module's name, as in stack.push.

Side effects.

If executing a construct changes values of items outside of the construct, we say that it has
side effects. For example, the increase procedure given as an example above has the side
effect of changing the value of variable i. In order to preserve their mathematical meaning and
assist in verification, Turing prevents functions from having side effects. The method of
guaranteeing that functions have no side effects is by disallowing them from having var
parameters (these are parameters that can be changed), by disallowing them from importing
items var, and by disallowing them from directly or indirectly importing procedures that

import items var.

Since expressions cannot have side effects, in Turing all calls to a function with the same
values of parameters and of imported variables necessarily return the same value.

Example:

 x := f (24) % Call function f with 24 as parameter
 y := f (24) % Function f does not import x

After the execution of these two Turing statements, it is necessarily true that x = y.

Aliasing.

Given distinct visible identifiers x and y, aliasing is said to exist if a change to the value of x
would also change the value of y. In the following, suppose i and j are aliases for the same
variable.

 i := 1
 j := 2

After execution of these statements, i and j (which are actually the same variable) will both have
the value 2. Aliasing greatly complicates formal program verification, and confuses the
programmer. For these reasons, Turing bans aliasing. This ban is enforced by placing
constraints on those language constructs that may allow variables to be renamed. In Turing,
the only constructs that rename variables are reference parameters to subprograms, and the
bind construct. Constraints on the use of these two constructs guarantee that once the new
identifier is visible, either the old identifier is inaccessible, or both identifiers are read-only.

Execution with side effects and aliasing.

As has just been explained, the Turing language nominally prohibits side effects and aliasing.
However, an implementation may extend the language to allow execution of programs violating
these restrictions, given that appropriate error messages are issued. Programs with these
violations have a well-defined operational (execution) semantics that is described by this
Report, but such programs are not defined by the formal semantics of the Turing language.

Dynamic arrays.

An array is said to be dynamic if its size is not known at compile time, i.e., if its bounds are
necessarily computed at run-time. Turing allows dynamic arrays.

Example:

 get n % Read value into variable n
 var a: array 1 ..n of real

This creates an array (really a vector) called a of n real values.

Dynamic parameters of subprograms.

Dynamic parameters allow arrays of varying sizes to be used as arguments to a subprogram.
For example, the following function sums the first i elements of an array.

 1 function sum (b: array 1..* of real, i: int) : real
 2 var total: real := OD
 3 for j: 1..i
 4 total := total + b (j)
 5 end for
 6 result total
 7 end sum
 8 x := sum (a, 10)

Line 8 calls the sum function to add up the first 10 elements of array a. Line 1 uses "*" as the
upper bound of parameter b to specify that b's upper bound is inherited from the upper bound
of its corresponding argument (actual parameter). The final keyword real on line 1 specifies that
the function returns a real value. Lines 3-5 are a for statement; it adds the first i elements of
array b to total. Line 6 returns the value of total as the value of the function.

Checking and Faithful Implementations.

An implementation of Turing is said to be "faithful" if it meets the following criterion: the results
of executing any Turing program will be determined by the source program together with the
Turing specification (this Report) or else execution will abort with a message indicating (1) the
reason for the abort, and (2) the location in the program where it was executing at the time of
the abort. A checking implementation guarantees that execution is faithful. An abort may occur
only because of (1) violation of a language-defined run-time constraint, such as a subscript out
of bounds, or (2) resource exhaustion. Resource exhaustion may occur for a number of
reasons, including lack of memory for calling a procedure, excessive run time, or excessive
output.

Turing run-time constraints are categorized as (1) language constraints or (2) implementation
constraints. Language (or validity) constraints disallow those actions that are clearly
meaningless, such as division by zero, subscript out of bounds, or a false value in an assert
statement. Implementation constraints disallow actions which have a language defined
meaning but which are infeasible due to hardware or efficiency reasons, such as: limited range
of int or limited exponent range of real implementations. Note that there are compile-time as
well as run-time implementation constraints; the limited range of case statement labels is an
example of a compile-time implementation constraint.

A non-checking implementation of Turing may omit any or all of the run-time checks required
for faithful implementation; this omission of checking allows Turing programs to have execution
efficiency comparable to programs written in machine-oriented languages like C. A non-
checking implementation may assume that the user has written his program in such a way that
there will be no violations of run-time constraints nor resource exhaustion; these assumptions
may be used for improving the quality of generated code. It is recommended that a non-
checking implementation should provide documentation of the run-time constraints that are
not enforced and resource exhaustions that may not be detected.

The formal definition of Turing assumes that the real type corresponds exactly to the real
numbers of mathematics. However, it is expected that implementations of Turing will actually
implement real using the floating point unit of the host computer. To enhance portability, the
section "Implementation Constraints on Integer, String and Real Types" in this Report gives
suggested minimum standards for floating point precision and exponent range, as well as
standards for implemented ranges of integers and maximum string lengths.

This section has introduced basic terminology and concepts. The remaining sections give the
detailed specification of the Turing language.

1.2 Identifiers and Explicit Constants

An identifier consists of a sequence of at most 50 letters, digits, and underscores beginning
with a letter; all of these characters are significant in distinguishing identifiers. Upper and lower
case letters are considered to be distinct in identifiers and keywords; hence j and J are different
identifiers. Keywords must be in lower case. Keywords and predefined identifiers must not be
redeclared, that is, they are reserved words.

An explicit string constant is a sequence of zero or more characters surrounded by double
quotes. Within explicit string constants, the back slash character (\) is an escape to represent
certain characters as follows: \" for double quote, \n or\N for end of line character, \t or\T for
tab, \f or\F for form feed (new page), \r or\R for carriage return, \b or\B for backspace, \e or\E
for escape, \d or \D for delete, and \\ for back slash. Explicit string constants must not cross
line boundaries. Within explicit string constants, the following two characters are disallowed:
eos and uninitchar.

The eos (end of string) character is an implementation-dependent character that an
implementation may use to mark the ends of strings. The uninitchar is an implementation
dependent character that an implementation may use to mark a string that has not yet been
assigned a value. (See "Implementation Constraints on Integer, String and Real Types" for
recommended values of eos and uninitchar.)

Character values are ordered by either the ASCII or EBCDIC collating sequence, depending on
the host computer (see "Character Collating Sequence").

An explicit integer constant is a sequence of one or more decimal digits, optionally preceded
by a plus or minus sign.

An explicit real constant consists of three parts: an optional plus or minus sign, a significant
figures part, and an exponent part. The significant figures part consists of a sequence of one or
more digits optionally containing a decimal point. The exponent part consists of the letter e (or
E) followed optionally by a plus or minus sign, followed by one or more digits. If the significant

figures part contains a decimal point then the exponent part is optional. The following are
examples of explicit real constants:

 2.0 0. .1 2e4 -56.1e+27

An explicit integer or real constant that begins with a sign is called a signed constant; without
the sign, it is called an unsigned constant.

The explicit boolean constants are true and false.

1.3 Comments and Separators

An end-of-line comment begins with the character % and ends at the end of the current line. A
bracketed comment is any sequence of characters not including comment brackets
surrounded by the comment brackets /* and */. Bracketed comments may cross line
boundaries. A separator is a comment, blank, tab, form feed or end of line.

The tokens of the Turing language are the identifiers, keywords, explicit unsigned integer and
real constants, explicit string and boolean constants, the operators and the special symbols.
(See "Collected Keywords and Predefined Identifiers" and "Collected Operators and Special
Symbols".) Each token in a Turing program can be preceded by any number of separators.
Separators must not appear within any tokens, except as characters in explicit string
constants. (See also "Recognizing Tokens".) Ends of lines must not appear within an explicit
string constant; note that long string constants can be broken at line boundaries and
connected by the concatenation operator (+).

In a Turing program, the sign that begins an explicit signed integer or real constant can have
separators between it and the following unsigned constant. The sign and the unsigned
constant are considered to form a signed constant only if the sign is a prefix operator, and not
an infix operator (according to the syntax of Turing). For example, in the following, -4 is an
unsigned constant, but -7 is not:

 if x -7 > -4 then ...

1.4 Syntactic Notation

In the remainder of this Report, the following syntactic notation is used:

 { item } means zero or more of the item

 [item] means that the item is optional

Be warned: although this Report uses braces { ... } and brackets [...] as syntactic notation,
another use of braces and brackets appears in the section "Short Forms". That section
explains the use of braces and brackets as short forms for the Turing loop and if statements
respectively.

Keywords and special characters are given in boldface. Nonterminals, e.g., typeSpecification,

are given in italics. The following abbreviations are used:

 id for identifier

 expn for expression

 typeSpec for typeSpecification

2 Programs and Declarations

2.1 Programs

A program consists of a sequence of declarations and statements.

A program is:

 { declarationOrStatementInMainProgram }

A program is executed by executing its declarations and statements. Here is a complete Turing
program that prints: Alan Turing.

 put "Alan Turing"

A declarationOrStatementInMainProgram is one of:

 a. declaration [;]

 b. statement [;]

 c. collectionDeclaration [;]

 d. subprogramDeciaration [;]

 e. moduleDeclaration [;]

 Each declaration or statement may optionally be followed by a semicolon.

 2.2 Declarations

 A declaration is one of the following:

 a. constantDeclaration

 b. variableDeclaration

 c. typeDeclaration

Each of these declarations creates a new identifier (or identifiers); each new identifier must be
distinct from other visible identifiers. That is, redeclaration of visible identifiers is not allowed.
The effect of the declaration (its scope) lasts to the end of the construct in which the
declaration occurs. This will be the end of the program, the end of a subprogram or module,
the end of a begin, loop or for statement, the end of a then, elsif or else clause of an if
statement, or the end of a case statement alternative. An identifier must be declared textually
preceding any references to it; the exception to this rule is the form "forward id", occurring in
import lists and collection declarations.

2.3 Constant Declarations

A constantDeclaration is one of:

 a. const [pervasive] id := expn

 b. const [pervasive] id : typeSpec := initializingValue

An initializingValue is one of:

 a. expn

 b. init { initializingValue {, initializingValue } }

Examples:

 const c := 3 % The type of c is int
 const s := "Hello" % The type of s is string
 const x := sin(y)**2 % The type of x is real
 const a: array 1..3 of int := init (l,2,3)
 const b: array 1..3 of int := a
 const c: array 1..2, 1..2 of int := init (l,2,3,4)
 % Assigns: c (1,1) := 1; c (1,2) := 2; c (2,1) := 3; c (2,2) := 4

A constantDeclaration introduces a name whose value is constant throughout the scope of the
declaration. If the typeSpec is omitted, the type of the constant is taken to be the (root) type of
the expression, which must not be a dynamic array. An initializing expression that does not
appear inside an init construct may be a compile-time or run-time expression (but not a
dynamic array), and must be assignable to the constant's type. Named non-scalar values are
always considered to be run-time values. (See also "Compile-Time Expressions" and "Type
Equivalence and Assignability").

The init construct is used only to initialize arrays, records and unions. All values in an init
construct must be compile-time expressions. Note that init may be nested inside another init
to initialize records, unions or arrays that contain other records, unions or arrays. The number
of elements inside an init construct must equal the number of elements in the type of the
constant being initialized. For a union, the init must contain first the tag value and then the field
values corresponding to this tag value (see the discussion of union types in "Types and Type
Declarations").

Constants declared using pervasive are visible in all subconstructs of the constant's scope.

Such constants need not be explicitly imported.

2.4 Variable and Collection Declarations

A variableDeclaration is one of:

 a. var id {, id } := expn

 b. var id {, id } : typeSpec [:= initializingValue]

Examples:

 var j, k: int := 1 % j and k are assigned initial value 1
 var t := "Sample output" % The type of t is string
 var v: array 1..3 of string (6) := init ("George",“Fred","Alice")

A variableDeclaration creates a new variable (or new variables). In form (a), the variable's type is
taken to be the (root) type of the expression; this type must not be a dynamic array.

Form (b) allows the declaration of dynamic arrays, whose upper bounds are run-time
expressions. However, the lower bounds are constrained to be compile-time expressions.
Given that n is a variable, here is an example of the declaration of a dynamic array:

 var w: array 1..n, 1..n of real

Run-time bounds are only allowed as illustrated in this example, i.e., as the upper bounds of an
array declared using form (b). Note that dynamic arrays can never appear in records, unions, or
collections. Each upper bound must be at least as large as its corresponding lower bound. A
dynamic array cannot be initialized in its declaration and cannot be a named type.

A collectionDeclaration is one of:

 a. var id {, id } : collection of typeSpec

 b. var id {, id } : collection of forward id

A collection can be thought of as an array whose elements are dynamically created and
deleted at run-time. Elements of a collection are referenced by subscripting the collection
name with a variable of the collection's pointer type. (See the discussion of pointers in "Types
and Type Declarations".) This subscripting selects the particular element of the collection
located by the pointer variable.

The keyword forward is used to specify that the type id of the collection elements will be given
by a later declaration in the collection's scope. The later declaration must appear at the same
level (in the same list of declarationsAndStatements) as the original declaration. This allows the
declaration of recursively cyclic collections, for example, when a collection contains pointers to
another collection which in turn contains pointers to the first collection. A collection whose
element type is forward can be used only to declare pointers to it until the type's declaration is
given. The forward type id is inaccessible until its declaration is given.

Elements of a collection are created and deleted dynamically using the statements new and
free; see "Types and Type Declarations" for an example. The statement "new C,p" creates a
new element in the collection C and sets p to point to it; however, if, due to resource
exhaustion, the new element cannot be created, p is set to the value nil(C). The statement "free
C,p" deletes the element of C pointed to by p and sets p to nil(C). In each case p is passed as
a var parameter and must be a variable of the pointer type of C.

Suppose pointer q is equal to pointer p and the element they locate is deleted via "free C,p”. In
that case we say that q is a "dangling pointer" because it seems to locate an element, but the
element no longer exists. A dangling pointer is considered to be an uninitialized value; it cannot
be assigned, compared, used as a collection subscript, or passed to free.

The value nil(C) is the null pointer for the collection.

Collections cannot be assigned, compared, passed as parameters, bound to, or named by a
const declaration. Collections must not be declared in subprograms.

2.5 Bind Declarations

A variableBinding is:

 bind [var] id to variableReference {, [var] id to variableReference }

A variableBinding is used to give a new name to a variable (or a part of a variable). This
declares an identifier that is itself considered to be a variable. The new variable is considered to
be "read-only"unless preceded by var (see "Restrictions on Constants and Read Only Items").

Example:

 bind var x to a(i), y to r.j

This declares x and y, which are considered to be variables; x is essentially an abbreviation for
a(i) and y is essentially an abbreviation for r.j; y is read-only. Changing the value of i during the
scope of the bind does not change the value denoted by x. In order to avoid aliasing, variable a
is inaccessible and r is read-only until the end of the scope of the bind.

A variableBinding cannot occur as a declaration in the (main) program, except nested inside
constructs, such as subprograms and the begin statement. A module must not contain as one
of its fields a variableBinding. (This restriction is made to prevent re-entry into the scope of an
existing bind.)

Turing does not allow aliasing. Hence, the "root" identifier of the variableReference (the first
identifier in the reference) of a var bind becomes inaccessible for the scope of the binding.
Even though the root identifier is inaccessible, it cannot be redeclared in its scope. See also
"Restrictions Preventing Aliasing". To allow binding to different parts of a variable, each root
identifier remains accessible until the end of the list of bindings in the variableBinding. The new
bound identifiers do not become visible until the end of this list. In order to avoid aliasing,
bindings that are var to different parts of the same variable must be non-overlapping.

Turing has been designed so that each bind can be implemented "by reference" (by using the
address of the target variable). An implementation that allows aliasing should warn when
aliasing is present and should implement binds by reference.

3 Types

3.1 Types and Type Declarations

A typeDeclaration is:

 type [pervasive] id: typeSpec

A typeDeclaration gives a name to a type. The type name can subsequently be used in place of
the full type definition.

Named types may optionally be declared pervasive. Type names declared using pervasive are
visible in all subconstructs of the scope in which they are declared. Such types need not be
explicitly imported.

A typeSpec is one of the following:

 a. standardType

 b. subrangeType

 c. enumeratedType

 d. arrayType

 e. setType

 f. recordType

 g. unionType

 h. pointerType

 i. namedType

A standardType is one of:

 a. int

 b. real

 c. boolean

 d. string [(compileTimeExpn)]

The standard types are always visible in all scopes, and can not be explicitly imported.

The optional compile-time expression in a string type is a strictly positive integer value giving
the string's maximum length. If the string's maximum length is omitted, the string is (ideally)
considered to have no limit on its length. However, it is expected that most implementations
will impose a standard default limit. This limit is recommended to be at least 255.

Example:

 var s: string := "Hello there"

Parameters can be declared to be dynamic strings, with maximum lengths declared as "*"; see
"Subprograms".

A scalar type is an integer, real, boolean, enumerated type, subrange or pointer. The non-scalar
types are: strings, sets, arrays, records, and union types.

An index type is a subrange, enumerated type or a named type which is an index type. Index
types can be used as array subscripts, as selectors (tags) for case statements and union types,
and as the base types of sets.

A subrangeType is:

 compileTimeExpn .. expn

The two expressions give the lower and upper bounds of the range of values of the type. The
two expressions must be both integers or both of the same enumerated type. The lower bound
must be less than or equal to the upper bound. The second expression must be a compile-time
expression in all cases except when it gives the upper bound of a dynamic array being defined
in a variableDeclaration. (See "Variable and Collection Declarations".)

Example:

 var i: 1..10 := 2 % i can be 1,2 ... up to 10

An enumeratedType is:

 enum (id {, id })

The enumeratedType declares an ordered sequence of identifiers whose associated values are
distinct, contiguous and increasing. See the definitions of the ord, succ, and pred functions in
"Predefined Functions".

Example:

 type color: enum (red, green, blue)
 var c: color := color.green
 var d: color := succ (c) % d becomes blue

The values are denoted by the name of the enumerated type followed by a dot followed by one
of the enumerated identifiers; for example: color.green. Enumerated types and their subranges
are index types.

An arrayType is:

 array indexType {, indexType } of typeSpec

Each indexType must be a subrange type, an enumerated type or a named type which is an
indexType. Note that variables and parameters can be declared to be dynamic arrays, with run-
time upper bounds; see "Subprograms". A dynamic array type must not be given a name, and
must not occur in a record, union or collection. Each indexType gives the range of a subscript.
The typeSpec gives the type of the elements of the array.

Elements of an array can be referenced using subscripts (see "Variables and Constants") and
themselves used as variables or constants. Arrays can be assigned (but not compared) as a
whole.

A setType is:

 set of indexType

The indexType is called the base type of the set. An implementation may limit the number of
items in the base type; this number will be at least 31. A variable of a set type can be assigned
as value subsets of the entire set. See "Set Operators and Set Constructors".

Example:

 type smallSet: set of 0..2
 var s: smallSet := smallSet (0,1) % s contains elements 0 and 1

A recordType is:

 record

 id {, id } : typeSpec [;]

 { id {, id } : typeSpec [;] }

 end record

Variables declared using a record type have the fields given by the declarations in the
recordType. Fields of a record may be referenced using the dot operator (see "Variables and
Constants") and themselves used as variables or constants. Record variables can be assigned
(but not compared) as a whole.

A union type (or variant record) is like a record in which there is a run-time choice among sets
(called alternatives) of accessible fields. This choice is made by the tag statement, which
deletes the current set of fields and activates a new set.

A unionType is:

 union [id]: indexType of

 label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [;] }

 { label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [;] } }

 [label : { id {, id } : typeSpec [;] }]

 end union

Example:

 type vehicle: enum (passenger, farm, recreational)

 type vehicleRecord:
 union kind: vehicle of
 label vehicle.passenger:
 cylinders: 1..16
 label vehicle.farm:
 farmClass: string (lO)
 label:
 % No fields for "otherwise" alternative
 end union

 var v: vehicleRecord := init (vehicle.farm, "dairy")

 % Set tag and farmClass
 tag v, vehicle.passenger % Activate passenger alternative
 v.cylinders := 6

The optional identifier following the keyword union is the name of the tag of the union type. If
the identifier is omitted, the tag is still considered to exist, although a non-checking
implementation would not need to represent it at run-time.

Each expression following label is called a label value. These must be distinct compile-time
expressions in a given union type. Each label value must be assignable to the tag's type, which
is an index type. Each labeled set of declarations is called an alternative. The final optional
alternative with no label expressions is called the otherwise alternative.

An implementation may limit the range of the tag's type; the range limit, from the minimum
label value to the maximum inclusive, will be at least 256.

The fields and tag of a union may be referenced using the dot operator (see "Variables and
Constants"), and the fields can be used as variables or constants. Access or assignment to a
field of an alternative is allowed only when the tag's value matches one of the alternative's
label values (or matches none of the union's label values for the otherwise alternative). A
checking implementation must guarantee this match at each access or assignment to a field. A
tag cannot be assigned to and must not be the object of a var bind nor passed to a var

parameter. A union's tag value can be changed using the tag statement (see "Statements"). In
a checking implementation, the tag statement will actually change (uninitialize) any existing
field values. A non-checking implementation will not necessarily change the fields. Note that
union types under a checking implementation are "type safe"; so, changing the tag will not
automatically change values of one alternative to be values of another alternative. A union’s tag
can also be changed by assigning to the entire union.

The identifiers declared as fields of a record, tag and fields of a union type, or values of an
enumerated type must be distinct from each other. However, they need not be distinct from
other visible identifiers. Fields of records and unions must not be dynamic arrays.

A pointerType is:

 pointer to collectionld

Variables declared using a pointerType are pointers to dynamically created and deleted
elements of the specified collection; see "Variable Declarations". Pointers are used as
subscripts of the specified collection to select the element to which they point. The selected
element can be used as a variable or constant. Pointers may be assigned, compared for
equality and passed as parameters.

Example:

 var list: collection of forward node

 type node:
 record
 contents: string (lO)
 next: pointer to list
 end record

 var first: pointer to list := nil (list)
 var another: pointer to list

 new list, another % Create new list element
 list (another).contents := "Belgium"
 list (another).next := first
 first := another

The forward directive can be avoided in self-referencing collections, as this example illustrates:

 var list: collection of
 record
 contents: string (lO)
 next: pointer to list
 end record

That is, the name of a collection is visible inside the collection.

A namedType is:

 [moduleld .] typeld

The typeld must be a previously declared type name. Type names exported from a module are
referenced using the dot operator.

3.2 Type Equivalence and Assignability

This section defines the terms type equivalence and type assignability. Roughly speaking, an
actual parameter can be passed to a var formal parameter only if their types are equivalent,
and a value can be assigned to a variable (or a value passed to a non-var parameter) only if the
value's type is assignable to the variable's type. Type equivalence can be determined at
compile time; assignability sometimes cannot be determined until run time (when the target
type is a subrange or a string with a maximum length).

Two types are defined to be equivalent if they are

 (a) the same standard type,

 (b) subranges with equal first and last values,

 (c) arrays with equivalent index types and equivalent component types,

 (d) strings with equal maximum lengths,

 (e) sets with equivalent base types, or

 (f) pointers to the same collection;

in addition,

 (g) a declared type identifier is equivalent to the type it names

 (and to the type named by that type, if that type is a named type, and so on.)

Outside of the exporting module M an opaque type with identifier T is not equivalent to any
other type (but M.T is equivalent to type identifiers declared outside M that name M.T). By
contrast, if type U is exported non-opaque from M, then type M.U is equivalent to the type that
U names inside M. The parameter or result type of an exported subprogram or an exported
constant is considered to have type M.T outside of M iff the item is declared using the type
identifier T. The opaque type M.T is distinct from any other type that M exports or imports. A
value of opaque type M.T can be assigned, but cannot be compared, subscripted, or field
selected, and cannot be an operand of any operator. All that can be done with a value of an
opaque type is to assign it or to pass it as a subprogram parameter. These rules for
determining if opaque type M.T is equivalent to another type U imply that one never needs to
look inside module M to see if M.T is equivalent to U; in other words, opaque type M.T is a
new, distinct type created by module M. See "Modules" for an example using opaque types.

Each textual instance of a type definition for an enumerated, record or union type creates a
new type that is not equivalent to any other type definition.

The int type is not considered to be equivalent to any integer subrange. The string type without
explicit maximum length is not considered to be equivalent to any string type having an explicit
maximum length.

The root type of any integer expression is int, that of any enumerated value is the defining
enumerated type, that of any string expression is string (without specified maximum length),
and that of any other value is the value's type. The root type of a named type is the root type of

the type that is named. The root type of an integer subrange is int and that of an enumerated
subrange is the original enum type. The root type of opaque type M.T is M.T.

Whenever a named value (variable, constant or function) is used where an expression is
required, the type of the expression is considered to be the root type of the named value. For
example,

 var x: 1..10 := 5
 y := x % The type of expression x is int

A value is assignable to a type (called the target type) if

 (a) the value's root type is equivalent to the target's root type, or

 (b) the value is an integer and the target is real.

These two requirements can be enforced at compile time. In case (a) there is also a run-time
requirement that a value assigned to a target subrange is contained in the subrange, and a
value assigned to a target string does not exceed the target's maximum length. In case (b) the
integer is implicitly converted to real. Throughout the language, wherever a real expression is
required, an integer expression is allowed and is converted to real by an implicit call to the
predefined function intreal.

The type of a reference passed to a var parameter must be equivalent to the formal's type. The
type of an expression passed to a non-var (constant) parameter must be assignable to the
formal's type. A dynamic actual array parameter (a parameter with run-time computed upper
bounds) can be passed only to a formal array parameter with * declared for upper bounds.
Similarly a dynamic actual string parameter can be passed only to string (*). See also the
discussion of parameterType in "Subprograms". Dynamic strings can be assigned, but
dynamic arrays cannot. In an assignment v := e, a variable initialization, a const declaration, or
an initialization init v := e, e must be assignable to v and neither v nor e can be dynamic arrays.

Examples:

 type smallint: 1..10
 var t: smallint

 var j: 1..100 % Variable j is assignable to i when in range 1..10

 type smallarray: array 1..10 of real

 var a: array smallint of real % Equivalent to smallarray

 type rec:
 record
 f: string
 g: real
 end record

 var rl: rec
 var r2: rec

 var r3: % Not equivalent to rl and r2
 record

 f: string
 g: real

 end record

Variables i and j have the same root type (int), so one can be assigned to the other, given that
the assigned value is in the target's declared range. Array a's type is equivalent to the type
smallarray; so a could be assigned to a variable or passed to a formal parameter of type
smallarray. The types of rl and r2 are equivalent and one can be assigned to the other.
However, r3's type is not equivalent to the type of rl and r2.

Here is an example illustrating the equivalence rules for opaque types:

 type T1: int

 module m
 import (T1)
 export (T2, opaque T3, opaque T4, T5)

 type T2: T1
 type T3: T1
 type T4: T3
 type T5: T4
 end m

Inside module M, types T1 through T5 are equivalent, but outside of M, types T1, M.T2 and
M.T5 are equivalent but types M.T3 and M.T4 are distinct (opaque) types.

4 Subprograms and Modules

4.1 Subprograms

A subprogram is a procedure or a function.

A subprogramDeclaration is one of:

 a. subprogramHeader

 [importList]

 subprogramBody

 b. forward subprogramHeader

	 forwardlmportList

 c. body procedure id

	 subprogramBody

 d. body function id

	 subprogramBody

A subprogramHeader is one of:

 a. procedure id [(parameterDeclaration {, parameterDeclaration })]

 b. function id [(parameterDeclaration {, parameterDeclaration })] [id] : typeSpec

A procedure is invoked by a procedure call statement, with actual parameters if required. A
function is invoked by using its name, with actual parameters if required, in an expression. If a
subprogram p has no parameters, a call to it does not have any parentheses, i.e., the call is of
the form "p" and not "p ()".

A procedure may return explicitly by executing a return statement or implicitly by reaching the
end of the procedure body. A function must return via a result statement (see "Statements").

Subprograms may optionally take parameters, the types of which are defined in the header.
The names of the parameters, as well as the name of the subprogram, are visible inside the
subprogram, but not visible in the type specifications of the parameters and function result.

Parameters to a procedure may be declared using var, which means the parameter is
considered to be a variable inside the procedure. An assignment to a var formal parameter
changes the actual parameter, as well as the formal parameter. The element of an array passed
to a parameter is not affected by changes to the subscript, for example, given the call:

 p (a (i))

an assignment to i in the body of p does not affect p's actual parameter. Parameters declared
without using var are considered to be constants. Functions are not allowed to have any side
effects and cannot have var parameters.

The identifiers declared in a parameter list must be distinct from each other, from pervasive
identifiers, from the subprogram name, and from the result identifier (if present). However, they
need not be distinct from other identifiers visible outside of the subprogram.

A parameterDeclaration is one of:

 a. [var] id {, id } : parameterType

 b. subprogramHeader

Form (a) is used to declare formal parameters that are var (variable) or non-var (constant). An
actual parameter that is passed to a var formal must be a variable (a reference) whose type is
equivalent to the formal's type. An actual parameter that is passed to a non-var formal
parameter must be a value that is "assignable" to the format's type. (See "Type Equivalence
and Assignability".)

A reference parameter is any non-scalar or var parameter. Parameters that are not reference
parameters are called value parameters; a value parameter is any scalar non-var parameter.
See "Restrictions Preventing Aliasing" for constraints on the use of var and reference
parameters.

Example:

 function odd (i: int) : boolean % i is a value parameter
 result (i mod 2) not= 0
 end odd

Example:

 var messageCount: int := 0

 procedure putMessage (msg: string) % msg is a reference parameter
 messageCount := messageCount + 1
 put "Message number ", messageCount, ":", msg
 end putMessage

The second kind of parameterDeclaration, form (b), specifies a parametric subprogram. The
corresponding actual parameter must name a subprogram. The actual parameter subprogram
must have parameters and result type equivalent to those of the formal parameter. Parametric
subprograms are called like other subprograms. Example:

 % Find zero of parametric function f
 function findZero (function f (r: real) : real,
 left, right, accuracy: real) : real
 pre sign (f (left)) not= sign (f (right)) and accuracy > 0
 var L: real := left
 var R: real := right
 var M: real

 const signLeft := sign (f (left))
 loop
 M := (R+L)/2
 exit when abs (R-L) <= accuracy
 if signLeft = sign (f (M)) then
 L := M
 else

 R := M
 end if
 end loop

 result M
 end findZero

A parameterType is one of:

 a. typeSpec

 b. string (*)

 c. array compileTimeExpn .. * {, compileTimeExpn .. * } of typeSpec

 d. array compileTimeExpn .. * {, compileTimeExpn .. * } of string (*)

In forms (c) and (d), the upper bounds of the index types of a dynamic array parameter are
declared as “*”, in which case any array whose element type and index types' lower bounds
are equivalent to the parameter's can be passed to the parameter. In forms (b) and (d) the
maximum length of a dynamic string is declared as “*”. For var parameters or arrays of strings,
the maximum length is taken to be that of the actual parameter. For non-array, non-var formal
parameters, the type string (*) is taken to mean simply string. Note that multiple parameters
declared using one dynamic parameter type do not necessarily have the same upper bounds
and string maximum lengths; instead each parameter inherits the sizes of its actual parameter.

The upper bounds and maximum lengths of dynamic parameters can be accessed using the
upper attribute; see "Attributes".

The Turing language has been designed so that value parameters can be passed "by value" (by
passing expression values to the subprograms) and reference parameters can be implemented
"by reference" (by passing addresses instead of values). Given that aliasing and side effects
are prohibited (as nominally required by this Report), passing parameters by reference or by
value-result will be logically equivalent. If an implementation allows aliasing or side effects it
should warn that these are present and should use "pass by reference" exactly for those
parameters designated as reference parameters in this Report.

An importList is:

 import ([[var] id {, [var] id }])

A forwardlmportUst is:

 import ([[varOrForward] id {, [varOrForward] id }])

A varOrForward is one of:

 a. var

 b. forward

If a subprogram has an import list, it uses this to specify identifiers visible outside the
subprogram that are to be visible in the subprogram's body. Identifiers not in the list will not be
visible in the body. Pervasive identifiers need not be imported (they are implicitly imported). If a
subprogram does not have an import list, it is considered to implicitly import all identifiers that
textually appear as uses inside its body. An implicitly imported identifier is considered to be
imported var if it is assigned to, bound using var, passed to a var parameter, or acted on by a
tag, new or free statement inside the subprogram. The identifier is also considered to be
imported var if it is a module's name and a procedure of this module is called in the
subprogram.

Note that the subprogram name and the parameter names are always visible inside the
subprogram, and must not appear in the import list. By contrast, a module name is not visible
inside the module, and must not be imported.

Modules have import lists, with the same meaning as in subprograms, with the following
difference: a module with no explicit import list is considered to have the empty import list:
import ()

Only identifiers that name variables or modules can be imported var. (See "Restrictions on
Constants and Read Only Items.")

Functions are not allowed to have side effects and cannot import anything var. This restriction
is transitive; hence a function cannot import a procedure that directly or indirectly imports
anything var. Input/output is considered to be a side effect; hence functions cannot use get or
put statements; they must not directly or indirectly call procedures that use these statements
or that call the predefined input/output procedures. A parametric procedure that is passed as
an actual parameter to a function must not directly or indirectly import anything var or directly
or indirectly use the get and put statements or predefined input/output procedures. (Note that

although Turing nominally prohibits function side effects, an implementation may extend the
language to allow them given that appropriate warning messages are issued.)

An identifier must not be repeated in an import list. It is permissible to import pervasive
identifiers and predefined identifiers, although it is redundant to do so.

When a subprogram p is passed as a parametric subprogram to subprogram q, any variables
imported var directly or indirectly by p are considered to be var parameters passed to q. Any
variables imported directly or indirectly non-var by p are considered to be read-only reference
parameters passed to q. This is done to prevent potential aliasing as a result of the call.

The result type of a function is given by the typeSpec that follows the function's (optional)
parameter declarations. The expression in a function's result statement must be assignable to
the function's result type. Note that the result type can be a non-scalar, but must not be a
dynamic array or dynamic string. The optional identifier preceding this typeSpec is the name of
the function's result. This identifier can only be referenced in the function's post assertion.

A subprogramBody is:

 [pre booleanExpn]

 [init id := expn {, id := expn }]

 [post booleanExpn]

 declarationsAndStatements

 end id

The identifier following end must be the name of the subprogram. The pre expression must be
true when the subprogram is called; the post expression must be true when it returns.

The init clause defines constants (the identifiers to the left of each assignment operator :=).
These can only be accessed in the post, assert and invariant assertions.

A forward subprogram is a subprogram whose body declaration will be given later in its scope.
(This is the only situation in which the keyword body is used as a prefix for a subprogram
declaration.) The body declaration must appear at the same level (in the same list of
declarationsAndStatements) as the forward declaration. The prefix forward in an import list
can be applied only to subprograms. The use of forward in an import list refers to a
subprogram declared later at the same level (in the same list of declarationsAndStatements).

Before a subprogram can be called and before its body appears, and before it can be passed
as a parametric subprogram, its header as well as headers of subprograms directly or indirectly
imported by it must have appeared. A function must not import a forward procedure. (This
restriction is imposed to simplify checks for side effects in functions). Forward subprograms
allow subprograms to be mutually recursive.

Example of mutual recursion:

 % Evaluate an input expression e of the form t { + t } where
 % t is of form p { * p } and p is of form (e) or is an
 % explicit real constant.

 % For example, the value of 1.5 + 3.0 * (0.5 + 13) halt is 15
 var token: string

 forward procedure expn (var eValue: real)
 import (forward term, var token)

 forward procedure term (var tValue: real)
 import (forward primary, var token)

 forward procedure primary (var pValue: real)
 import (expn, var token)

 body procedure expn
 var nextValue: real
 term (eValue) % Evaluate "t"
 loop % Evaluate "{ + t }"
 exit when token not= "+"

 get token
 term (nextValue)
 eValue := eValue + nextValue
 end loop
 end expn

 body procedure term
 var nextValue: real
 primary (tValue) % Evaluate "p"
 loop % Evaluate "{ * p }"
 exit when token not= "*"
 get token
 primary (nextValue)
 tValue := tValue * nextValue
 end loop
 end term

 body procedure primary
 if token = "(" then
 get token
 expn (pValue) % Evaluate "(c)"
 assert token = ")"
 else
 pValue := strreal (token) % Evaluate "explicit real"
 end if
 get token
 end primary

 get token % Start by reading first token
 var answer: real
 expn (answer) % Scan and evaluate input expression
 put "Answer is: ", answer

The declaration of a subprogram or module must not appear inside a subprogram or
statement. The declaration of a collection must not appear inside a subprogram.

4.2 Modules

A module defines a package of variables, constants, types, subprograms, and sub-modules.
The interface of the module to the rest of the program is defined by its import and export
clauses.

A moduleDeclaration is:

 module id

 [importList]

 [export ([opaque] id {, [opaque] id })]

 [pre booleanExpn]

 { declarationOrStatementlnModule }

 [invariant booleanExpn

 { declarationOrStatementlnModule }]

 [post booleanExpn]

 end id

A declarationOrStatementlnModule is one of:

 a. declaration [;]

 b. statement [;]

 c. collectionDeclaration [;]

 d. subprogramDeclaration [;]

 e. moduleDeclaration [;]

A module declaration is executed (and the module is initialized) by executing its declarations
and statements. See "Terminology and Basic Concepts" for an example of a module. The
identifier following the end of a module must be the module's name.

The importList gives identifiers visible outside the module that are to be visible inside the
module. See the description of import clauses in "Subprograms".

Exported identifiers are identifiers declared inside the module which may be accessed outside
the module using the dot operator. Unexported identifiers cannot be referenced outside the
module. Only subprograms, constants and types can be exported. Variables and modules must
not be exported. The opaque keyword can be used only to prefix names of types. Outside the
module an opaque type is distinct from all other types; see "Type Equivalence and
Assignability". An identifier must not be repeated in an export list.

Example:

 module Complex % Implements complex arithmetic

 export (opaque value, constant, add, ... other operations)

 % The "value" type is opaque, so information about the
 % representation of complex values is private to this module

 type pervasive value: % "value" is visible throughout module
 record
 realPt, imagPt: real
 end record

 function constant (realPt, ImagPt: real) : value
 var answer: value
 answer.realPt := realPt
 answer.imagPt := imagPt
 result answer
 end constant

 function add (L,R: value) : value
 var answer: value
 answer.realPt := L.realPt + R.realPt
 answer.imagPt := L.imagPt + R.imagPt
 result answer
 end add

 ... other operations for complex arithmetic go here ...

 end Complex

 var u,v: Complex.value := Complex.constant (1.0, 2.0)
 var w: Complex.value := Complex add (u ,v)

See "Restrictions Preventing Aliasing" for constraints on reference parameters in calls to enter

a module.

The module's pre expression must be true when execution of the module declaration begins.
The post expression must be true when the initialization of the module (execution of its
declaration) is finished. The initialization of the module must make the invariant expression
true, and it must be true whenever an exported subprogram is called or returns. The invariant
clause must appear before the headers of exported subprograms. It is good style to limit each
invariant expression so it does not refer, directly or indirectly, to imported variables or modules;
this style implies that the value of the expression cannot change except when the module is
active.

Module declarations may be nested inside other modules but must not be nested inside
subprograms. A module must not contain as one of its declarations a variableBinding.

4.3 Restrictions on Constants and Read Only Items

A variable or module is read-only in a subprogram or module into which it is imported non-var.
An identifier declared non-var in a bind construct is also read-only. Exported procedures of a
read-only module cannot be referenced (called or passed as parametric procedures).

All components of a constant are considered constant, and all components of read-only
variables are considered read-only.

Constants and read-only variables are restricted as follows. They cannot be assigned to,
bound to var, further imported var, or passed to var parameters. A constant or read-only union
cannot be the object of a tag statement. A read-only collection cannot be the object of a new
or free statement.

4.4 Restrictions to Prevent Aliasing

Given distinct visible identifiers x and y, aliasing is said to exist if a change to the value of

variable x would change the value of y. Aliasing is possible only when variables are renamed.

In Turing, renaming of variables occurs in only two constructs: reference parameters and bind.

Aliasing is prevented by placing restrictions on these two constructs.

(Note that variables imported by a parametric subprogram p are considered to be reference
parameters to the subprogram to which p is passed; see "Subprograms".)

To explain these restrictions, we first define the terms "direct importing" and "indirect
importing”. A subprogram or module directly imports the items in its import clause. (A
subprogram that does not have an explicit import clause is considered to have an implicit
import clause giving the identifiers it actually accesses; see "Subprograms".) Each item is
imported non-var (which means read-only for imported variables and modules) or var.

A subprogram or module p indirectly imports all items that are directly or indirectly imported by
items directly imported by p. The direct and indirect imports of a read-only module are all
considered to be non-var.

Note: when procedure p exported from module m is called from outside the module, we
consider that p has the same import list as m. The same is true for exported functions except
that all items are considered to be imported non-var.

Aliasing due to the first construct (reference parameters) is prevented by restrictions (a) and (b),

as follows:

 Restriction (a):

 A (part of) a variable is not allowed to be passed to a var parameter if the called

 subprogram or module has another means of accessing (the same part of) the variable.

 This access can occur in two ways. The first is by a direct or indirect import of the  
 variable by the called subprogram or module. The second is by passing (an overlapping

 part of) the same variable to another reference parameter in the same call.

 Restriction (b):

 A (part of) a variable is not allowed to be passed to a reference parameter if the called

 subprogram or module has another means of changing (the same part of) the variable.

 The possibility of changing the variable can occur in two ways. The first is by a direct or

 indirect var import of the variable by the called subprogram or module. The second is  
 by passing (an overlapping part of) the same variable to another var parameter of the  
 same call.

Aliasing due to the second construct (bind) is prevented by restrictions (c) and (d).

 Restriction (c):

 A var bind of y to x makes x inaccessible for the scope of y, and a non-var bind of y to x

 makes x read-only for the scope of y.

 Restriction (d):

 A var bind to x disallows calls to subprograms or modules that directly or indirectly  
 import x, and a non-var bind to x disallows calls to subprograms or modules that  
 directly or indirectly import x var.

Function calls never cause aliasing because functions cannot import variables var (either
directly or indirectly) and cannot have var parameters.

These restrictions to prevent aliasing are necessary for proving the correctness of a Turing
program using the formal definition of Turing. However, an implementation may extend the
language by allowing violations of these restrictions, given that appropriate messages are
issued.

5 Statements and Input/Output

DeclarationsAndStatements are:

 { declarationOrStatement }

A declarationOrStatement is one of:

 a. declaration [;]

 b. statement [;]

 c. variableBinding [;]

A statement is one of:

 a. variableReference := expn

 b. procedureCall

 c. assert booleanExpn

 d. return

 e. result expn

 f. ifStatement

 g. loopStatement

 h. exit [when booleanExpn]

 i. caseStatement

 j. begin

	 declarationsAndStatements

 end

 k. new collectionld, variableReference

 l. free collectionld, variableReference

 m. forStatement

 n. tag variableReference, expn

 o. putStatement

 p. getStatement

A declaration inside an if, loop, case, for or begin statement must not be a module or
subprogram; all other kinds of declarations, including bind, are allowed.

Form (a) is an assignment statement. The expression is evaluated and the value assigned to
the variable. The variableReference is a reference that refers to (part of) a variable; see
"References". The expression must be assignable to the variable type; see "Type Equivalence
and Assignability".

Form (b) is a procedureCall, which is a reference of the form:

 [moduleld .] procedureId [(expn {, expn })]

An exported procedure is called outside the module in which it was declared using the dot
operator. See "Subprograms" and "Modules".

Form (c) is an assert statement. The boolean expression must be true whenever the assert
statement is executed. A checking implementation evaluates the assertion at runtime and
aborts the program if it is false.

Form (d) is a return statement, which causes immediate return from a program or a procedure.
A program or procedure returns either via a return statement or implicitly by reaching the end
of the program or procedure. Functions and module bodies may not contain return
statements.

Form (e) is a result statement, which can only appear in a function and causes immediate
return from the function giving the function's value. The result expression must be assignable
to the result type of the function given in the function's header. Execution of a function must
conclude by executing a result statement and not by reaching the end of the function.

Form (f), an ifStatement is:

 if booleanExpn then

 declarationsAndStatements

 { elsif booleanExpn then

 declarationsAndStatements }

 [else

 declarationsAndStatements]

 end if

The boolean expressions following the keyword if and each elsif are successively evaluated
until one of them is found to be true, in which case the corresponding statements following
then are executed. If none of the expressions evaluates to true, then the statements following
else are executed; if no else is present then execution continues following the end if.

Form (g), a loopStatement is:

 loop

 [invariant booleanExpn]

 declarationsAndStatements

 end loop

The statements within the loop are repeated until terminated by one of its exit statements or an
enclosed return or result statement. The boolean expression in the invariant must be true
whenever execution reaches it; a checking implementation will abort if it is false.

Form (h) is a loop exit. When executed, it causes an immediate exit from the nearest enclosing
loop or for statement. The optional boolean expression makes the exit conditional. If the
expression evaluates to true then the exit is executed, otherwise execution of the loop
continues. An exit statement can appear only inside loop and for statements.

Form (i), a caseStatement is:

 case expn of

 label compileTimeExpn {, compileTimeExpn } :

 declarationsAndStatements

 { label compileTimeExpn {, compileTimeExpn } :

 declarationsAndStatements }

 [label :

 declarationsAndStatements]

 end case

The optional final clause with no expression between label and : is called the otherwise
alternative. The case expression is evaluated and used to select one of the alternatives for
execution. The selected alternative is the one having a label whose value equals the case
expression. If the case expression value does not equal any of the label values then the
otherwise clause is executed. If no otherwise alternative is present, the case expression must
equal one of the label values. When execution of the selected alternative is completed,
execution continues following the end case, not to the next alternative.

The root type of each label must be int or an index type and must be equivalent to the root
type of the case selector expression. Label expressions must be compile-time expressions.
Label values in a case statement must be distinct. An implementation may limit the range of
case label values to insure efficient code; this range, from the minimum label value to the
maximum, will be at least 256.

Form (j) is a begin statement. Begin statements can be used to limit the scope of declarations.

Forms (k) and (l) are new and free statements, for creating and deleting elements of a
collection respectively (see "Variable and Collection Declarations").

Form (m), a forStatement is one of:

 a. for [id] : forRange

 [invariant booleanExpn]

 declarationsAndStatements

 end for

 b. for decreasing [id] : expn .. expn

 [invariant booleanExpn]

 declarationsAndStatements

 end for

The statements enclosed in the for statement are repeated for the specified range, or until the
loop is terminated by one of its exit statements or an enclosed return or result statement.

A forRange is one of:

 a. expn .. expn

 b. namedType

Where the namedType must be a (non-opaque) subrange or enumerated type, and is not
permitted if "decreasing" is present. Form (b) of forRange is equivalent to form (a) using the
type's lower and upper values. The range is given by the value of the two expressions when
the for statement is executed. The types of the two values must be of the same index type, or
both of type int. For the first iteration, id has the left expression's value; for successive
iterations, id is increased by one (or decreased by one if decreasing is present), until in the last
iteration id equals the right value. If the left value exceeds the right (or is less than the right
when decreasing), there are no iterations.

For each repetition, id is set to a new value in the range; these are contiguous values that are
increasing, unless decreasing is specified in which case they are decreasing. The for statement
is a declaration for id, which must be distinct from other visible identifiers. The scope of id is
from the beginning to the end of the for statement. If the id is not present, the for statement
behaves the same way, except that the value corresponding to the id cannot be accessed.

For each repetition, id is a constant and its value cannot be changed. The boolean expression
in the invariant must be true whenever execution reaches it; a checking implementation will
abort if it is false.

Statement form (n) is a tag statement. The variable of the statement must be a union. The
union's tag is changed to be the value of the expression, which must be assignable to the tag's
type. See "Types and Type Declarations" for further description and an example of usage.

5.1 Input and Output

Put and get statements are used to read/write items to/from streams (sequential files of
characters).

A putStatement is:

 put [: streamNumber ,] putltem {, putltem } [..]

A streamNumber is a non-negative integer expression. Omitting the stream number from put or
get statements results in the default input stream (stdin) for get and the default output stream
(stdout) for put. (See also "Predefined Procedures" for open and close, which are used to
associate streams with stream numbers.) The written or read items must be strings or numbers
(integer or real). The default input and output streams cannot be selected using a
streamNumber. There is a run-time constraint that a particular stream can be read from or
written to, but not both.

By convention stream 0 is considered to be a special error output stream (stderr). By
convention the streams numbered 1 to n are attached to files specified externally by the user
as command line arguments when the program is run.

Since functions cannot have side effects, they are not allowed to contain get and put
statements or to directly or indirectly call procedures that contain get or put statements.

A putltem is one of:

 a. expn [: widthExpn [: fractionWidth [: exponentWidth]]]

 b. skip

From left to right in a put statement, either the expn's value of the putltem is appended as text
to the output stream, or skip starts a new line. A new line is also started at the end of the list of
putltems, unless the list is followed by "..", in which case this new line is not started. This
allows the next put statement to continue the current output line.

If the widthExpn is omitted, then the value is printed in a field just large enough to hold the
value. The fractionWidth and exponentWidth are allowed only for integer and real values.

For string value s, integer value i and real value r, the text output for the putltem given on the
left is defined by the string expression on the right:

 s : w s + repeat (" ", w -length (s))
 i intstr (i, 0)
 i : w intstr (i, w)
 r realstr (r, 0)
 r : w realstr (r, w)
 r : w : fw fealstr (r, w ,fw)
 r : w : fw : ew erealstr (r, w ,fw, ew)

See "Predefined Functions" for definitions of the functions used on the right.

Example put statements and their output:

 Statement Output Notes

 put 24 24
 put 1/10 0.1 Trailing zeros omitted
 put 100/10 10 Decimal point omitted
 put 5/3 1.666667 Assumes fwdefault = 6
 put sqrt(2) 1.414214
 put 4.86,10**9 4.86e9 Exponent printed for >= 1e6
 put 121:5 bbl21 Width of 5; "b" is a blank
 put 1.37:6:3 b1.370 Fraction width of 3
 put 1.37:11:3:2 bbl370e+00 Exponent width of 2
 put "O'Brian" O'Brian
 put "X=", 5.4 X=5.4
 put "XX": 4, "Y" XXbbY Blank shown here as "b"

A getStatement is:

 get [: streamSumber ,] getltem {, getltem }

A getltem is one of:

 a. variableReference

 b. skip

 c. variableReference : *

 d. variableReference : widthExpn

Forms (a) and (b) support token-oriented input, in which white space is ignored; (c) supports
whole line-oriented input, and form (d) supports individual character-oriented input. In form (a)
the variableReference's root type must be integer, real or string, while forms (c) and (d) allow
only strings. The value read into a string must not contain an eos or uninitchar character (see
"Identifiers and Explicit Constants").

Form (a) first skips white space (defined as the characters blank, tab, form feed, new line, and

carriage return); then it reads the sequence of non-white space characters as a token. A token
consists of either (1) one or more non white space characters, up to but not including either a
white space character or end of file, or else (2) if the token's first character is a quote ("), then
an explicit string constant. (See also "Identifiers and Explicit Constants".) Explicit string
constants can only be input for string variableReferences. When the variableReference is a
string, the value of the explicit string constant or the characters of the token are assigned to
the variable. If it is an integer, the predefined function strint converts the token to an integer
before assigning to the variable. Analogously for reals, strreal converts the token to real before
assigning it to the variable. It is an error to use form (a) if no token remains in the stream.

In form (b), the skip option skips white space, stopping when encountering any non-white
space character or end of file. This option is used to detect whether further tokens exist in the
input; if no more tokens exist in the input, all characters of the file are skipped and the eof
predefined function becomes true.

The following input stream:

 Alice 216 "World champion"

is used in this example:

 var name, fame: string
 var time: int
 get name, time, fame
 % name = "Alice", time = 216, and fame = "World champion"

Example:

 % Read and sum a sequence of numbers
 var sum: real := 0.0
 var x: real
 loop
 get skip % Skip to eof or next token
 exit when eof % eof is explained in "Predefined Functions"
 get x
 sum := sum + x
 end loop
 put "Sum is: ", sum

Form (c) reads the rest of the characters of the current input line (not including the trailing new
line character) and assigns them to the variableReference, which must be a string. The trailing
new line character is read and discarded. (Note: it may be that the final line of a stream is not
terminated by a new line character; in this case form (c) reads the remaining characters to end
of file.) It is an error to use form (c) if no characters remain in the stream (i.e., if eof is true for
the stream).

Form (d) is similar to form (c) except (1) at most widthExpn (a non-negative integer) characters
are read, (2) the new line character at the end of a line is part of the string assigned to the
variableReference, and (3) attempting to read past the end of stream is allowed and returns the
remaining characters (if any, possibly returning the null string).

Example:

 var s, t, u: string
 get s : * % Reads entire first input line,
 % discarding trailing new line character
 get t : 20 % Reads at most 20 characters; t may end with "\n"
 get u : 1 % Reads next single char (or null string for eof)

Example:

 % Read and print entire input stream a line at a time
 var line: string
 loop
 exit when eof
 get line : * % Read entire line
 put line
 end loop

Example:

 % Read and print entire input stream a character at a time
 var c: string (1)
 loop
 exit when eof
 get c : 1 % "\n" is read into c as a character
 put c .. % Output lines are ended when c="\n"
 end loop

6 References and Expressions

6.1 References

The syntax for a reference includes variable references and constant references, as well as
procedure call statements, function calls, values of enumerated types, attributes, and
parametric subprograms. A variableReference is a reference that denotes a variable or part of a
variable.

A variableReference is a:

 reference

A reference is:

 [moduleId .] id { componentSelector }

Where a componentSelector is one of:

 a. (expn {, expn })

 b. . id

Form (a) of componentSelector allows subscripting of arrays and collections. The value of
each array subscript expression must be in the declared range of the corresponding index type
of the array. The number of array subscripts must be the same as the number of index ranges
declared for the array. A collection must have exactly one subscript and this must be a pointer
to the collection.

Form (a) also allows calls to functions. The number of expressions must be the same as the
number of declared parameters of the function. Each expression must be assignable to the
corresponding formal parameter of the function.

Form (b) of componentSelector allows field and tag selection for records and unions. (Fields of
a record or variable and a union's tag are referenced using the dot operator). It also allows
access to items exported from a module.

A value of an enumerated type is a special case of form (b), namely, id.id, where the first id is
the name of the type and the second id must be one of the identifiers given in the enum type
definition.

6.2 Expressions

An expn (expression) represents a calculation that returns a value. A booleanExpn is an expn
whose value is true or false.

Turing is a strongly typed language, meaning that there are a number of constraints on the
ways values can be used. The following sections explain how values are mapped by operators
to produce new values.

An expn is one of the following:

 a. reference

 b. explicitConstant

 c. substring

 d. setConstructor

 e. expn infixOperator expn
 f. prefixOperator expn

 g. (expn)

Form (a) includes (1) references to constants and variables including subscripting and field and
tag selection, (2) function calls and (3) values of enumerated types. See “References". Form (b)
includes explicit boolean, integer, real and string constants; see "Identifiers and Explicit
Constants". Form (c) is a substring operation; see "String Operators and Substrings". Form (d)
is a set constructor; see "Set Operators and Constructors".

In form (e), an infixOperator is one of:

 a. +		 (integer and real addition; set union; string concatenation)

 b. -		 (integer and real subtraction; set difference)

 c. *	 	 (integer and real multiplication; set intersection)

 d. /	 	 (real division)

 e. div	 (truncating integer division)

 f. mod	 (remainder)

 g. **		 (integer and real exponentiation)

 h. <		 (less than)

 i. >		 (greater than)

 j. =		 (equal)

 k. <=	 (less than or equal; subset)

 l. >=	 (greater than or equal; superset)

 m. not=	 (not equal)

 n. and	 (boolean conjunction)

 o. or	 (boolean inclusive or)

 p. ->	 (boolean implication)

 q. in	 (member of set)

 r. not in	 (set non-membership)

In form (f), a prefixOperator is one of:

 a. +		 (integer and real identity)

 b. -		 (integer and real negation)

 c. not	 (boolean negation)

The order of precedence is among the following classes of the operators, in decreasing order
of precedence:

 1. **

 2. prefix +, -

 3. *, /, dlv, mod

 4. infix +, -

 5. <, >, =, <=, >=, not=, in, not in

 6. not

 7. and

 8. or

 9. ->

Expressions are evaluated according to precedence, left to right within precedence. Note that
exponentiation is grouped from left to right.

For example, each expression on the left below is equal to the expression on the right.

 a - b — c a - (b - c)
 -2**2 - (2**2)
 a + b * c a + (b * c)
 x < y and b (x < y) and b
 b or c and d b or (c and d)

6.3 Numeric Operators

The numeric (integer and real) operators are +, -, *, /, dlv (truncating division), mod (remainder)
and ** (exponentiation).

The dlv operator is defined by:

 x div y = trunc (a / b)

where "/" means exact mathematical division and trunc truncates to the nearest integer in the
direction of zero. The result is of type int. The operands can be integer or real. Note that with
real operands, div may produce an integer overflow.

The mod operator is defined by:

 x mod y = x — (y * (x div y))

If x and y are both of root type int, the result type is int, otherwise the result is real. Note that
mod applied to real operands is useful for range reduction; for example, for x > 0, sin (x) can be

computed as sin (x mod (2*pi)). Note that mod with int operands never produces an overflow,
but with real operands, it may produce a real underflow.

The / operator requires real or integer operands and produces a result of type real.

Whenever a real value is required, an integer value is allowed and is converted to real by an
implicit call to the intreal predefined function; see "Predefined Functions". Note that this rule
implies that the / operator can accept two integer operands, but both will be converted real.
The operators +, -(infix and prefix), * and ** require integer or real operands; if one or both
operands are real, the result is real, otherwise the result is int. The right operands of dlv and /
must not be zero. If both operands of ** are of root type int, the right operand must not be
negative. If the left operand is real and the right is of root type int, the right operand must be
non-zero when the left is negative. If both operands are real, the right operand must be strictly
positive when the left is negative and otherwise must be zero or positive.

Examples:

 7 / 2 = 3.5 -7 / 2 = -3.5
 7 dlv 2 = 3 -7 div 2 = -3
 7 mod 2 = 1 -7 mode 2 = -1
 7**2 = 49 -7**2 = -49

A checking implementation is expected to detect division and mod by zero, zero to the zero
power, integer overflow, and real overflow and underflow.

6.4 Comparison Operators

The comparison operators are <, >, =, <=, >=, and not=. These operators yield a boolean
result. Both operands of a comparison operator must have the same root type; see "Type
Equivalence and Assignability". Only strings, sets, and scalars (values whose root type is int,
real, boolean, enumerated or pointer) can be compared. Arrays, records and unions cannot be
compared.

Booleans and pointers can be compared only for equality (= and not=). See "String Operators
and Substrings" for a description of string comparison.

6.5 Boolean Operators

The boolean operators are and (conjunction), or (inclusive or), -> (implication) and not. These
require boolean operands and return a boolean result. Note that a -> b has the same meaning
as (not a) or b. The boolean operators are conditional; that is, if the result of the operation is
determined by the value of the left operand then the right operand is not evaluated. In the
following, division by zero is avoided, because the right operand of and is executed only if the
left operand is true:

 if count not= 0 and sum / count > 60 then ...

6.6 String Operators and Substrings

The only string operator is + (concatenation); it requires string operands and returns a string
result. An implementation may limit the allowed length of string values; this limit will be at least
25S.

The ordering of strings is determined by left to right comparison of pairs of corresponding
characters until an end of string or a mismatch is found. See "Character Collating Sequence".
The string with the greater of the mismatched characters is considered greater. If no mismatch
is found and onestring is longer than the other, the longer string is considered greater. Note
that strings of differing lengths are never considered to be equal, and there is no implicit "blank
padding" of the ends of strings. The following function recursively defines the "greater than"
string relation in terms of comparison of strings of length one.

 function greaterthan (s ,t: string) : boolean
 if length (s) = 0 or length(t) = 0 then
 result length (s) > length (t)
 elslf s (1) = t (1) then
 result greaterthan (s (2.. *), t (2.. *))
 else
 result j (1) > t (1)
 end if
 end greaterthan

The length predefined function returns the number of characters in a string value; see
"Predefined Functions".

A substring selects a contiguous sequence of the characters in a string. For example, if L = 3,
R = 5 and s = "string", then the substring of s from position L to position R, written s (L .. R), is
“rin". A single character can also be selected, for example, s (L)="r", and in general, for any
integer expression e, s (e) = s (e .. e).

String positions L and R can also be written as * [- expn], where the asterisk represents the
length of the string. That is, position selector * [- expn] is an abbreviation for length (s) [- expn
]. For example, if s = "string", then s (*) = "g", s (4 ..*) = "ing", and s (*-2 .. *—1) = "in".

The general form of a substring is:

 stringReference (substringPosition [.. substringPosition])

where stringReference is a reference of type string, and each substringPosition is one of:

 a. expn

 b. * [- expn]

Each substringPosition expression must be of root type int.

The following restrictions apply to L and R:

 L >= 1 and R <= length (reference) and R - L + 1 >= 0

Note that length (s (L .. R)) = R - L + l. Note that for L >= 1 and L <= length (s) + 1, s (L, L - 1) is
the null string, i.e., the string of length zero. A substring is an expression (not a variable), and it
so cannot be assigned to.

6.7 Set Operators and Set Constructors

The set operators are + (set union), - (set difference), * (set intersection), <= and >= (set
inclusion), and in and not in (set membership). Sets can also be compared for equality using =
and not=. The set operators +, - and * take operands of equivalent set types and yield a result
of the same type. The set operators <= and >= take operands of equivalent set types and yield
a Boolean result. The operators in and not in take a set as right operand and an expression of
the set's base type as left operand. They yield a Boolean result.

A setConstructor is one of:

 a. setTypeReference ()

 b. setTypeReference (all)

 c. setTypeReference (expn {, expn })

Where each setTypeReference is a reference of the form [moduleId .] setTypeId.

Form (a) represents the empty set of the set type. Form (b) represents the complete set. Form
(c) is a set containing the elements specified by the expressions, each of which must be of the
base type of the set.

6.8 Compile-Tlme Expressions

A compile-time expression is an expression whose value can, in principle, be computed at
compile time. The following are compile-time expressions:

 1. Explicit integer, real, boolean and string constants, as well as enumerated values

 of the form id1.id2 where id1 is the name of an enumerated type

 2. Set constructors containing only compile-time element values (or all)

 3. Named constants that name scalar compile-time expressions

 4. The result of the integer operators prefix + and -, infix + and -, *, dlv and mod  
 when the operands are compile-time integer expressions

 5. The built-in functions chr and ord when the actual parameter is a compile-time  
 expression

 6. The result of the string concatenate operator (+) when both operands are compile-time

 string expressions

Note that a compile-time expression can be invalid, for example, 1/0, and is still considered to
be a compile-time expression. Expressions that do not satisfy this definition are called run-time
expressions.

6.9 Predefined Functions

The following are pervasive, predefined functions.

eof (i: int): boolean

 Accepts a non-negative stream number (see description of get and put statements) and

 returns true if and only if there are no more characters in the stream. This function

 must not be applied to streams that are written to (using put). The parameter and

 parentheses can be omitted (i.e., as "eof"), in which case the stream is taken to be

 the default input stream.

pred (expn)

 Accepts an integer or an enumerated value and returns the integer minus one, or the

 previous value in the enumeration. Pred must not be applied to the first value of an

 enumeration.

succ (expn)

 Accepts an integer or an enumerated value and returns the integer plus one, or the

 next value in the enumeration. Succ must not be applied to the last value of an enumeration.

String Functions

length (s: string): int

 Returns the number of characters in the string. The string must be initialized.

index (s, patt: string) : int

 If there exists an i such that s (i .. i + length (patt) - 1) = patt, then the smallest

 such i is returned, otherwise zero is returned. Note that 1 is returned if patt is the null string.

repeat (s: string, i: int) : string

 If i > 0, returns i copies of s concatenated together, otherwise returns the null string.

 Note that for all j >= 0, length (repeat (t, j)) = j * length (t).

Mathematical Functions

abs (expn)

 Accepts an integer or real value and returns its absolute value. The type of the result

 is int if the expn is an of root type int; otherwise it is real.

max (expn, expn)

 Accepts two numeric (real or integer) values and returns their maximum value. If both are

 of root type int, the result is an int; otherwise it is real.

min (expn, expn)

 Accepts two numeric (real or integer) values and returns their minimum value. If both are

 of root type int, the result is an int; otherwise is is real.

sign (r: real) : -1 .. 1

 Returns -1 if r < 0, 0 if r = 0, and 1 if r > 0.

sqrt (r: real) : real

 Returns the positive square root of r, where r is a non-negative value.

sin (r: real) : real

 Returns the sine of r, where r is an angle value expressed in radians.

cos (r: real) : real

 Returns the cosine of r, where r is an angle value expressed in radians.

arctan (r: real) : real

 Returns the arctangent (in radians) of r.

sind (r: real) : real

 Returns the sine of r, where r is an angle expressed in degrees.

cosd (r: real) : real

 Returns the cosine of r, where r is an angle expressed in degrees.

arctand (r: real) : real

 Returns the arctangent (in degrees) of r.

ln (r: real) : real

 Returns the natural logarithm (base e) of r.

exp (r: real): real

Returns the natural base e raised to the power r.

Type Transfer Functions

floor (r: real) : int

 Returns the largest integer less than or equal to r.

ceil (r: real) : int

 Returns the smallest integer greater than or equal to r.

round (r: real) : int

 Returns the nearest integer approximation to r. Rounds to larger value in case of tie.

intreal (i: int) : real

 Returns the real value equivalent of i. No precision is lost in the conversion,

 so floor (intreal (j)) = ceil (intreal (j)) = j. To guarantee that these equalities hold,

 an implementation may limit the range of i.

chr (i: int): string (1)

 Returns the i-th character of the system's character collating sequence as a string of

 length one, where the first character corresponds to 0, the second to 1, and so on.

 See "Character Collating Sequence". The selected character must not be uninitchar

 (a reserved character used to mark uninitialized strings) or eos (a reserved character

 used to mark the end of a string). See "Identifiers and Explicit Constants".

ord (expn)

 Accepts an enumerated value or a string of length 1 and returns the position of the value

 in the enumeration or of the character in the system's character collating sequence.

 Values of an enumerated type are numbered left to right starting at zero.

 See "Character Collating Sequence".

intstr (i, width: int): string

 Returns a string equivalent to i, padded on the left with blanks as necessary to a length

 of width; for example, intstr (14, 4) = "bb14" where b represents a blank.

 The optional width parameter must be non-negative; if omitted, it is assumed to be 1.

 If width is not large enough to represent the value of i, the length is automatically

 increased to the minimum needed. The string returned by intstr is of the form:

 { blank } [-] digit { digit }

 The leftmost digit is always non-zero unless the value of i is zero, in which case

 there is a single zero digit.

strint (s: string) : int

 Returns the integer equivalent of the string s. String s must consist of a possibly null

 sequence of blanks, followed by an optional plus or minus sign, and a sequence of one or

 more digits. Note that for integer i and non-negative w, strint (intstr (i, w)) = i.

erealstr (r: real, width, fractionWidth, exponentWidth: int) : string

 Returns a string (including exponent) approximating r, padded on the left with blanks as

 necessary to a length of width; for example, erealstr (2.5e1, 9, 2, 2) = "b2.50e+01"

 where b represents a blank. The width must be a non-negative int value. If the width

 is not large enough to represent the value of r, it is implicitly increased to the minimum

 needed. The fractionWidth parameter is a non-negative number of fractional digits to be  
 displayed. The displayed value is rounded to the nearest decimal equivalent with this  
 accuracy, with ties rounded to the next larger value. The exponentWidth parameter must be  
 non-negative and gives the number of exponent digits to be displayed. If exponentWidth is  
 not large enough to represent the exponent, it is increased to the minimum needed.  
 The string returned by erealstr is of the form:

 { blank } [-] digit . { digit } e sign digit { digit }

 where "sign" is a plus or minus sign. The leftmost digit is non-zero unless all of the

 digits are zeroes.

frealstr (r: real, width, fractionWidth: int) : string

 Returns a string approximating r, padded on the left with blanks if necessary to a length  
 of width. The number of digits of fraction to be displayed is given by fractionWidth;

 for example, frealstr (2.5e1, 5, 1) = "b25.0" where b represents a blank. The width must be  
 non-negative. If the width parameter is not large enough to represent the value of r, it is

 implicitly increased to the minimum needed. The fractionWidth must be non-negative.  
 The displayed value is rounded to the nearest decimal equivalent with this accuracy,  
 with ties rounded to the next larger value. The result string is of the form:

	 { blank } [-] digit { digit } . { digit }

 If the leftmost digit is zero, then it is the only digit to the left of the decimal point.

realstr (r: real, width: int) : string

 Returns a string approximating r, padded on the left with blanks if necessary to a length

 of width, for example, realstr (2.5e1, 4) = "bb25" where b represents a blank. The width

 parameter must be non-negative. If the width parameter is not large enough to represent  
 the value of r, it is implicitly increased to the minimum needed. The displayed value is

 rounded to the nearest decimal equivalent with this accuracy, with ties rounded to the next

 larger value. The string realstr (r, width) is the same as the string frealstr (r, width, defaultfw)

 when r = 0 or when 1e-3 <= abs (r) < 1e6, otherwise it is the same as erealstr (r, width,  
 defaultfw, defaultew), with the following exceptions. With realstr, trailing fraction zeroes are

 omitted and if the entire fraction is zero, the decimal point is omitted. (These omissions take

 place even if the exponent part is printed.) If an exponent is printed, any plus sign and

 leading zeroes are omitted. Thus, whole number values are in general displayed as integers.

 Defaultfw is an implementation-defined number of fractional digits to be displayed by  
 default; for most implementations, defaultfw will be 6. Defaultew is an implementation-

 defined number of exponent digits to be displayed; for most implementations, defaultew

 will be 2.

strreal (s: string) : real

 Returns a real approximation to string s. String s must consist of a possibly null sequence

 of blanks, followed by an optional plus or minus sign and an explicit unsigned real or integer

 constant.

6.10 Attributes

There are pervasive attributes that are properties of variables rather than properties of values.
For example, the "upper" attribute of a string variable gives its maximum length. Note that
assigning a value to a variable does not change the variable's attributes. Example:

 var s: string (1O) := "Eggs"
 var t: string (6) := "Bacon"
 s := t

At all times, upper (s) = 10 and upper (t) = 6. The available attributes are:

lower (reference [, dimension])

 Accepts an array and returns the lower bound of the array.

upper (reference [, dimension])

 Accepts an array and returns the upper bound of the array; also accepts a string and returns

 its maximum length.

 In lower and upper, dimension is a compile-time integer expression, which is present iff the

 reference is a multi-dimensioned array. It specifies which dimension, where the first is 1,

 the second is 2 and so on. The reference does not need to have been assigned a value.

nil (collectionId)

 Accepts a collection and returns the collection's null pointer.

6.11 Predefined Procedures

The following procedures are pervasive and predefined.

Randomization Procedures

rand (var r: real)

 Sets r to the next value of a sequence of pseudo random real numbers that approximates a

 uniform distribution in the range 0 < r < 1.

Example:

 var r: real
 loop % Randomly print a sequence of phrases
 rand (r)

 if r > 0.5 then
 put "Hi ho, hi ho"
 else
 put "It's off to work we go"
 end if
 end loop

randint (var i: int, low, high: int)

 Sets i to the next value of a sequence of pseudo random integers that approximates a  
 uniform distribution over the range low <= i <= high. It is required that low <= high.

randomize

 A parameterless procedure that resets the sequences of pseudo random numbers produced

 by rand and randint, so different executions of the same program may produce different

 results.

randnext (var v: real, seq: 1 .. 10)

 This procedure is the same as rand, except that seq specifies one of 10 independent and

 repeatable sequences of pseudo random real numbers. This can be useful when trying to

 reproduce a randomly occurring bug.

randseed (seed: int, seq: 1 .. 10)

 This procedure restarts one of the sequences generated by randnext. Each restart with the

 same seed causes randnext to produce the same sequence for the given sequence number.

Input / Output Procedures

(Note: these predefined procedures have been replaced by equivalent corresponding
statements in Turing+.)

open (var streamNumber : int, fileName: string, mode: string)

 The filename gives the name of a file that is to be read from or written to. The streamNumber

 parameter is set to the stream number to be used for the file in get or put statements.

 The mode must be "r" (for read) or "w" (for write) indicating whether the stream is to be

 read from or written to. If the open fails, streamNumber is set to zero.

close (streamNumber: int)

 This procedure disassociates the stream number from the stream it is presently designating.

All of the predefined procedures (rand, randint, randomize, randnext, randseed, open and close)
have side effects. As a result, functions are not allowed to call them directly or indirectly by
calling procedures that call them.

6.12 The Uninitialized Value

The value of a scalar, string or set that is not initialized must not be used (fetched) in

evaluating an expression. For example, before any of the following are executed, variable x

must have been assigned a value.

 const c := x
 y := x + y
 p (x + y)

A scalar, string or set need not be initialized before being passed to a var (reference)
parameter, but must be initialized before being passed to a non-var (value) parameter. These
rules imply that once a particular scalar, string or set variable is initialized, it will stay initialized.

A variable that has been declared and not assigned to (and is not initialized in its declaration) is
considered to be uninitialized. When an element of a collection is created by the new
statement, it is uninitialized. All fields of a union become uninitialized when the tag statement is
applied to the union. Part or all of an array, record or union variable may become uninitialized
when the variable is assigned to, according to the initialization of the value being assigned.

When conditional evaluation of an expression does not require the value of a particular
variable, the variable need not be initialized. For example, in the following, if i = 10 then x need
not be initialized:

 exit when i = 10 or x = 5

A non-scalar that is not a string or set can be assigned, used as the value of a const, passed
to a parameter (var or non-var) or returned as a function result without being initialized. Note:
the non-scalars in question (i.e. non-scalars that are not strings or sets) are arrays, records and
unions. Scalar, string or set components of non-scalar types must be initialized before being
used (fetched).

An initialized component of a non-scalar can become uninitialized due to assigning to the
entire containing non-scalar variable or changing the tag of the containing union.

A checking implementation of Turing is expected to enforce these restrictions on the use of
uninitialized variables.

6.13 Character Collating Sequence

Certain Turing language features, notably string comparison and the chr predefined function,
depend on the system's character collating sequence. This is the sequence that determines
the ordering among character values. There are two widely used collating sequences: ASCII
and EBCDIC. A Turing implementation is expected to use one of these, with preference given
to ASCII. Note that a Turing program that is correct assuming one of these sequences is not
necessarily correct assuming the other.

The ord function maps a character value to its corresponding ASCII or EBCDIC value, which
will be in the range 0 .. 255. For standard ASCII characters, the range is limited to 0 .. 127.
Therefore, subject to limits on the domain of succ, the following equations hold:

For all characters c:

 chr (ord (c)) = c, and succ (c) = chr (ord (c) + 1)

The ASCII and EBCDIC sequences share the important property that digits are contiguous.

For all c in the range "0" .. "8"

 succ (c) = chr (ord (c) + 1)

Therefore, if s is the string of length 1 corresponding to integer i then ord (s) = ord ("0") + i, for
example, ord ("3") = ord ("0") + 3.

In ASCII, letter characters are also contiguous:

 ord ("A") = ord ("B") - 1

 ord ("B") = ord ("C") - 1

 ...

 ord ("a") = ord ("b") - 1

 ord ("b") = ord ("c") - 1

 ...

For example, the following function converts a string of digits to an integer.

 function digitsint (s: string) : int
 const L := length (j)
 const digit := ord (s (L)) - ord ("0")
 if L = 1 then
 result digit
 else
 result 10 * digitsint (s (1 .. L-1)) + digit
 end if
 end digitsint

Unfortunately, in EBCDIC the letters are not contiguous; there are gaps between letters I and J
and between R and S. The test to see if ASCII character c is a capital letter is:

 "A" <= c and c <= "Z"

But for EBCDIC character c, we must use:

 ("A" <= c and c <= "I") or
 ("J" <= c and c <= "R") or
 ("S" <= c and c <= "Z")

Consult standard definitions of ASCII and EBCDIC collating sequences for more details.

7 Source Inclusion Facility

Other source files may be included as part of a program using the "include" construct.

An includeConstruct is:

 include explicitString

The explicitString gives the name of a source file whose text is to be to be included in the
compilation. The include construct is replaced in the program source by the contents (source
text) of the specified file. Include constructs can appear anywhere in a program and can
contain any valid source code fragment. Included source files can themselves contain include
constructs.

8 Short Forms

The following forms can be used as alternatives for the syntax given in the language
specification. These alternatives shorten frequently used constructs. Note: Not all Turing
implementations support all short forms.

Long form Short form

 v := v + (expn) v += expn
 v := v - (expn) v -= expn
 v := v * (expn) v * = expn

 if expn then statements [expn : statements
 elsif expn then statements | expn : statements
 else statements | : statements
 end if]

 case expn of case expn of
 label labels : statements | labels : statements
 label : statements | : statements
 end case end case

 union id: typeSpec of union id: typeSpec of
 label labels : statements | labels : statements
 label : statements | : statements
 end onion end union

 loop {
 statements statements
 end loop }

 exit >>
 exit when expn >>: expn

 return >>>
 result expn >>>: expn

 for optionalId: expn .. expn {+ optionalId: expn .. expn
 statements statements
 end for }

 for decreasing optionalId: {- optionalId : expn .. expn
 expn .. expn
 statements statements
 end for }

 and &
 not ~
 put !
 get ?
 array indexTypes of { indexTypes }
 procedure proc
 function fcn
 pervasive *

Example using short forms:

Long form Short form

 function gcd (i, j: int): int fcn gcd (i, j: int): int
 var x: int := i var x := i
 var y: int := j var y := j
 loop { >>: x = y
 exit when x = y [x > y: x -= y
 if x > y then | : y -= x
 x := x - y]
 else }
 y := y - x >>>: x
 end if end gcd
 end loop
 result x
 end gcd

9 Collected Keywords and Predefined Identifiers

Keywords of Turing:

 all and array assert begin
 bind body boolean case collection
 const decreasing div else elsif
 end enum exit export false
 fen for forward free function
 get if import in init
 int invariant label loop mod
 module new not of opaque
 or pervasive pointer post pre
 proc procedure put real record

 result return set skip string
 tag then to true type
 union var when

Predefined Identifiers of Turing:

 abs arctan arctand ceil chr
 close cos cosd eof erealstr
 exp floor frealstr index intreal
 intstr length ln lower max
 min nil open ord pred
 rand randint randnext randomize randseed
 realstr repeat round sign sin
 sind sqrt strint strreal succ
 upper

10 Collected Operators and Special Symbols

The operators and special characters of Turing are:

 , .. . : ; * **
 / + - < > >> >>>
 = <= >= -> ~ ! ?
 & () { } [] |

Six of these are introduced by the short forms:

 >> >>> ~ ! ? &

Note that ~= is considered to be two tokens, ~ and =.

11 Recognizing Tokens

The tokens of the Turing program are recognized by scanning characters from left to right,
skipping white space, until the beginning of a token is found. The token is recognized by
maximal scanning meaning the token is extended on the right as long as the additional
characters (potentially) form more of the token. White space, if any, is then skipped up until the
beginning of the next token.

In the following fragment, "10" and "then" are distinct tokens even though they are not
separated by white space:

 if a > 10then % Acceptable

In the next example, by maximal scanning "4e" is the (ill-formed) initial part of a real constant,
so this fragment is not acceptable:

 if a > 10then x := 4else % Not acceptable

Turing has one exception to the maximal scanning rule, and this is: two adjacent dots are
always considered to be the token "..". For example, in:

 var a: array 1..10 of real

the fragment "1..10" is considered to be the three tokens "1", ".." and "10" and not the two
tokens "1." and ".10".

12 Implementation Constraints on Integer, String, and Real Types

Ideally, there should be no implementation constraints on Turing programs (see description of
the language and implementation constraints in "Terminology and Basic Concepts"). If there
are no implementation constraints, then we call the language Ideal Turing. In Ideal Turing, the
int type has an unbounded range of values, and the real type has infinite precision and infinite
exponent range; that is, int and real correspond exactly to the mathematical concepts of the
integers and the real numbers. Similarly, in Ideal Turing the type string (without an explicit
length), comprises all sequences of characters, with no limit on length.

Programs written in Ideal Turing can be thought of as mathematical formulae, rather than as
instructions for a computer. For example:

 function factorial (i: int) : int
 pre i >= 0
 if i = 0 then
 result 1
 else

 result i * factorial (i-1)
 end if
 end factorial

In Ideal Turing, this function gives a definition of "factorial" for all non-negative integers;  
but note that in a particular implementation of Turing, integer overflow will occur for large
values of i.

In most practical implementations of Turing, int will be limited to a range of integers: minint ..
maxint, and string lengths will be limited to maxstr. To support program portability, it is
recommended that in all implementations, minint <= —(2**31—1), maxint >= 2**31-1, and
maxstr >= 255. It is recommented that eos and uninitchar correspond, respectively, to the
characters with ordinals 0 and 128 respectively.

In an implementation, each non-zero real r may be represented by a floating point number of
the form:

 r = f * radix**e

where:

 f is the significant digits part,

 e is the exponent, and

 radix is the number base of the representation.

It is assumed that f is normalized, i.e., if f is not zero then

 1/radix <= abs (f) and abs (f) <= 1.0

If f is zero then e is also zero. The number of digits of precision of f (in the given radix) may be
limited to numdigits.

In most practical implementations, the exponent e will be limited to the range minexp ..
maxexp. To support program portability, it is recommended that the equivalent base 10 range
of exponents be at least -38 .. -38, i.e., that minexp * ln (radix)/ln (10) <= -38 and maxexp * ln
(radix)/ln (10) >= +38.

Floating point operators provide an approximate but repeatable result corresponding to the
exact mathematical result. For operators +, -, * and / with operands x and y, let f be the floating
point result and let m be the exact mathematical result. For non-zero m the relative round off
error is defined as:

 abs ((m-f) / m)

(If m is exactly zero, f should also be zero.) Each implementation of Turing is to specify the
value of rreb (relative round off error bound) such that the round-off error for +, —, * and / never
exceeds rreb. To support program portability, it is recommended that rreb be at most 1e-14.

For implementations using rounding floating point operators, such as the DEC VAX, rreb is:

 rreb = 0.5 * radix**(—numdigits + 1)

For implementations using chopping floating point operators, such as the IBM 370, rreb can be
given as:

 rreb = radix**(—numdigits + 1)

Unfortunately, there are some implementations of floating point in which neither rounding or
chopping is consistently carried out; in this case, rreb is larger than would be calculated by
these formulas.

Each implementation of Turing will provide a standard include file called limits which will
contain definitions of minint, maxint, maxstr, radix, minexp, maxexp, numdigits and rreb. This
file can be included in a Turing program by writing include "%limits". This include file will also
contain the definition of functions that access and modify exponents of floating point values:

getexp (r: real) : real

 Returns exponent e of r. If r = 0, then e = 0.

setexp (r: real, e: int) : real

 Returns value of r with the exponent changed to e.

 The value of e must be in the range minexp ..maxexp.

13 External Subprograms

There is a language extension which allows Turing programs to call subprograms written in
other languages. The syntax for this extension is:

 external [overrideName] subprogramHeader

The optional overrideName must be an explicit string constant. When it is omitted, the name
used for external linking is the subprogram's identifier. If the overrideName is present, it is used
as the linking name. An implementation may limit the number of characters in the linking name.
Conventions for order and method of parameter passing is implementation dependent.

14 Changes In the Taring Language

The Turing language as defined in this Report is slightly modified from the version of the
original Turing Report. These modifications have been made so that certain features are more
convenient for the user. This version of the Report is somewhat modified and expanded from
the original Report to clarify certain descriptions. The description of Turing constructs, in terms
of context-free rules, has been made to satisfy LR(1). The modifications are:

 1. Upper and lower case in identifiers and keywords are now distinct.

 For example, r and R are now considered to be distinct identifiers.

 Keywords must now be used strictly in lower case.

 2. Sets are now considered to be non-scalars instead of scalars. This allows efficient

 implementation of long sets, by allowing passing of sets by reference.

 3. Collection names are now visible inside their declarations, so self-referencing

 collections need not use the forward directive.

 4. The definitions of realstr and frealstr were modified so that with realstr,

 small values do not show their exponents. This means that the putltem i:w:f creates

 nice columns of numbers even if i < 10**-3.

 5. The range of an increasing for statement can now be given as a named type

 (subrange or enumerated).

 6. In a for loop, the (optional) invariant now must come before the loop body,

 instead of after.

 7. The substring feature now allows each position to be selected by the form * [- expn].

 The asterisk represents the length of the string. For example, if s ="abc" then

 s (*) = "c" and s (1 ..*—1) = "ab"

 8. The round function now rounds ties to the next larger integer instead of to an even value.

 9. The intstr function now allows omission of the width parameter, so if i = 25,

 then intstr (i) = "25". Note that intstr (i) = intstr (i, 1).

 10. It is now clarified that the dimension parameter of upper and lower is to be present

 iff the first parameter is a multi-dimensioned array.

 11. The rules restricting use of ** (exponentiation) are clarified to the following three cases.

	 a. i**j	 	 requires j >= 0, allows i < 0

	 b. x**i	 	 allows x < 0 and i < 0

	 c. x**y, i**y	 	 requires x >= 0 and i >= 0, allows y < 0

	 where i and j are of root type int and x and y are real.

 12. Semicolons are now allowed following declarations in records and unions.

 13. The restriction that a module's invariant must not reference imported variables or

 modules has been removed.

 14. Modules and subprograms can no longer be pervasive.

 15. A bind can no longer be declared in the (main) program (except as nested in constructs

 such as subprograms and begin.)

 16. Collections can no longer be declared in subprograms.

 17. It is clarified that the forward type id of a collection is inaccessible until declared.

 18. External subprograms are introduced as an extension to Turing.

 19. The short form for import (:) is no longer defined.

 20. Carriage return characters are now considered to be white space.

Appendix A

The Context-Free Syntax of Turing

In our notation, tokens (also called terminals) such as loop and procedure, are written in
boldface, while non-terminals (called syntactic variables in the Algol 60 Report), such as
declaration and setType, are written in italics. A set of production rules describes how to
replace the non-terminal program by zero or more tokens to yield a token sequence which
satisfies the context-free syntax of Turing.

A production rule consists of a single non-terminal (which names the production) and a list of
sequences containing tokens and non-terminals, with the meaning that any occurrence of the
non-terminal can be replaced by one of the sequences. A sequence in the production can
contain the open and close brackets [and], and the open and close braces { and }, which
enclose tokens and non-terminals that are optional (if enclosed in brackets) or can occur zero
or more times (if enclosed in braces). That is, if item is a sequence of tokens, non-terminals,
brackets, and braces, then:

 [item] means that item is optional, and

 { item } means that item can occur zero or more times.

As an example, consider the following production rule:

 An importList is one of:

 a. import ()

 b. import ([var] id {, [var] id })

If id can be replaced by an identifier, then the following are some of the token sequences
described by this rule.

 import ()
 import (push, pop, top)
 import (var element, left, var right)

Note that this definition of the context-free syntax omits the short forms of Turing.

1 Programs and Declarations

A program is:

 { declarationOrStatementlnMainProgram }

A declarationOrStatementlnMainProgram is one of:

 a. declaration [;]

 b. statement [;]

 c. collectionDeclaration [;]

 d. subprogramDeclaration [;]

 e. moduleDeclaration [;]

A declaration is one of the following:

 a. constantDeclaration

 b. variableDeclaration

 c. typeDeclaration

A constantDeclaration is one of:

 a. const [pervasive] id := expn

 b. const [pervasive] id : typeSpec := initializingValue

An initializingValue is one of:

 a. expn

 b. init (initializingValue {, initializingValue })

A variableDeclaration is one of:

 a. var id {, id } := expn

 b. var id {, id } : typeSpec [:= initializingValue]

A collectionDeclaration is one of:

 a. var id {, id } : collection of typeSpec

 b. var id {, id } : collection of forward id

A variableBinding is:

 bind [var] id to variableReference {, [var] id to variableReference }

2 Types

A typeDeclaration is:

 type [pervasive] id : typeSpec

A typeSpec is one of the following:

 a. standardType

 b. subrangeType

 c. enumeratedType

 d. arrayType

 e. setType

 f. recordType

 g. unionType

 h. pointerType

 i. namedType

A standardType is one of:

 a. int

 b. real

 c. boolean

 d. string [(compileTimeExpn)]

A subrangeType is:

 compileTimeExpn .. expn

An enumeratedType is:

 enum (id {, id })

An arrayType is:

 array indexType {, indexType } of typeSpec

A setType is:

 set of indexType

An indexType is one of:

 a. subrangeType

 b. enumeratedType

 c. namedType

A recordType is:

 record

 id {, id } : typeSpec [;]

 { id {, id } : typeSpec [;] }

 end record

A unionType is:

 union [id] : indexType of

 label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [;] }

 { label compileTimeExpn {, compileTimeExpn } : { id {, id } : typeSpec [;] } }

 [label : { id {, id } : typeSpec [;] }]

 end union

A pointerType is:

 pointer to collectionId

A namedType is:

 [moduleId .] typeld

A collectionld, moduleld, or typeld is an:

 id

3 Subprograms and Modules

A subprogramDeclaration is one of the following:

 a. subprogramHeader

 [importList]

 subprogramBody

 b. forward subprogramHeader

 forwardlmportList

 c. body procedure id

 subprogramBody

 d. body function id

 subprogramBody

A subprogramHeader is one of:

 a. procedure id [(parameterDeclaration {, parameterDeclaration })]

 b. function id [(parameterDeclaration {, parameterDeclaration })] [id] : typeSpec

A parameterDeclaration is one of:

 a. [var] id {, id } : parameterType

 b. subprogramHeader

A parameterType is one of:

 a. typeSpec

 b. string (*)

 c. array compileTimeExpn .. * {, compileTimeExpn .. * } of typeSpec

 d. array compileTimeExpn .. * {, compileTimeExpn .. * } of string (*)

An importList is:

 import ([[var] id {, [var] id }])

A forwardlmportList is:

 import ([[varOrForward] id {, [varOrForward] id }])

A varOrForward is one of:

 a. var

 b. forward

A subprogramBody is:

 [pre booleanExpn]

 [init id := expn {, id := expn }]

 [post booleanExpn]

 declarationsAndStatements

 end id

A moduleDeclaration is:

 module id

 [importList]

 [export ([opaque] id {, [opaque] id })]

 [pre booleanExpn]

 { declarationOrStatementlnModule }

 [invariant booleanExpn

 { declarationOrStatementlnModule }]

 [post booleanExpn]

 end id

A declarationOrStatementlnModule is one of:

 a. declaration [;]

 b. statement [;]

 c. collectionDeclaration [;]

 d. subprogramDeclaration [;]

 e. moduleDeclaration [;]

4 Statements and Input/Output

declarationsAndStatements are:

 { declarationOrStatement }

A declarationOrStatement is one of:

 a. declaration [;]

 b. statement [;]

 c. variableBinding [;]

A statement is one of the following:

 a. variableReference := expn

 b. procedureCall

 c. assert booleanExpn

 d. return

 e. result expn

 f. ifStatement

 g. loopStatement

 h. exit [when booleanExpn]

 i. caseStatement

 j. begin

 declarationsAndStatements

 end

 k. new collection!d , variableReference
 l. free collectionld , variableReference
 m. forStatement

 n. tag variableReference , expn

 o. putStatement

 p. getStatement

A procedureCall is a:

	

 reference

An ifStatement is:

 if booleanExpn then

 declarationsAndStatements

 { elsif booleanExpn then

 declarationsAndStatements }

 [else

 declarationsAndStatements]

 end if

A loopStatement is:

 loop

 [invariant booleanExpn]

 declarationsAndStatements

 end loop

A caseStatement is:

 case expn of

 label compileTimeExpn {, compileTimeExpn } :

 declarationsAndStatements

 { label compileTimeExpn {, compileTimeExpn } :

 declarationsAndStatements }

 [label :

 declarationsAndStatements]

 end case

A forStatement is one of:

 a. for [id] : forRange

 [invariant booleanExpn]

	 declarationsAndStenements

 end for

 b. for decreasing [id] : expn .. expn

 [invariant booleanExpn]

	 declarationsAndStenements

 end for

A forRange is one of:

 a. expn .. expn

 b. namedType

A putStatement is:

 put [: streamNumber ,] putltem {, putItem } [..]

A putltem is one of:

 a. expn [: widthExpn [: fractionWidth [: exponentWidth]]]

 b. skip

A getStatement is:

 get [: streamNumber ,] getltem {, getltem }

A getltem is one of:

 a. variableReference

 b. skip

 c. variableReference : *

 d. variableReference : widthExpn

A streamNumber, widthExpn, fractionWidth, or exponentWidth is an:

 expn

5 References and Expressions

A variableReference is a:

 reference

A reference is:

 id { componentSelector }

A componentSelector is one of:

 a. (expn {, expn })

 b. . id

A booleanExpn or compileTimeExpn is an:

 expn

An expn is one of the following:

 a. reference

 b. explicitConstant

 c. substring

 d. setConstructor

 e. expn infixOperator expn
 f. prefixOperator expn
 g. (expn)

An explicitConstant is one of:

 a. explicitUnsignedIntegerConstant

 b. explicitUnsignedRealConstant

 c. explicitStringConstant

 d. true

 e. false

An infixOperator is one of:

 a. +	 	 (integer and real addition; set union; string concatenation)

 b. -	 	 (integer and real subtraction; set difference)

 c. *	 	 (integer and real multiplication; set intersection)

 d. /	 	 (real division)

 e. div	 	 (truncating integer division)

 f. mod	 	 (remainder)

 g. **	 	 (integer and real exponentiation)

 h. <	 	 (less than)

 i. >	 	 (greater than)

 j. =	 	 (equal)

 k. <=	 	 (less than or equal; subset)

 l. >=	 	 (greater than or equal; superset)

 m. not=	 	 (not equal)

 n. and	 	 (boolean conjunction)

 o. or	 	 (boolean inclusive or)

 p. ->	 	 (boolean implication)

 q. in	 	 (member of set)

 r. not in	 	 (set non-membership)

In form (f), a prefixOperator is one of:

 a. +	 	 (integer and real identity)

 b. -		 	 (integer and real negation)

 c. not	 	 (boolean negation)

All infix operators (including **) associate left-to-right. The precedence of operators is as
follows, in decreasing order of precedence (tightest binding to loosest binding):

 1. **

 2. prefix +, -

 3. *, /, dlv, mod

 4. infix +, -

 5. <, >, =, <=, >=, not=, in, not in

 6. not

 7. and

 8. or

 9. ->

References

[Holt & Cordy 1988]

 R.C. Holt and J.R. Cordy, The Turing Programming Language.

 Communications of the ACM 31(12), December 1988, pp. 1410-1423.

[Holt & Hume 1984]

 R.C. Holt and J.N.P. Hume, Introduction to Computer Science Using the Turing Programming  
 Language. Brady, 1984, 404 pp.

[Holt et al. 1987]

 R.C. Holt, P.A. Matthews, J.A. Rosselet, and J.R. Cordy, The Turing Programming Language:

 Design and Definition. Prentice Hall, 1987, 325 pp.

