CISC-102 WINTER 2020

HOMEWORK 7

Assignments will **<u>not</u>** be collected for grading.

READINGS

Read sections 11.8, 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 of Schaum's Outline of Discrete Mathematics.

Read section 6.7, 3.1 and 3.2 of Discrete Mathematics Elementary and Beyond.

Problems

- (1) Find all Natural numbers between 1 and 50 that are congruent to 4 (mod 11).
- (2) Find two Natural numbers a and b such that $2a \equiv 2b \pmod{6}$, but $a \not\equiv b \pmod{6}$.
- (3) Prove that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a c \equiv b d \pmod{m}$.
- (4) Write out each of the 5 residue classes (mod 5) for integers in the range -10 to 10.
- (5) Let S be a finite subset of the positive integers. What is the smallest value for |S| that guarantees that at least two elements of $x, y \in S$ that have the same remainder when divided by 100. HINT: Use the pigeon hole principle.
- (6) Prove that any set of 5 natural numbers will always have two numbers n_1 and n_2 such that $4|(n_1 n_2)$. Hint: Use the Pigeon Hole Principle.
- (7) Let T be a set of n integers. Prove that there is a subset of T whose elements sum to a value that is divisible by n.
- (8) New parents wish to give their new baby one, two, or three different names. They have a book containing 500 names that they will choose from. How many different ways can this baby be named?
- (9) You have chosen a password that consists of 4 upper case letters from a 26 letter alphabet. How many passwords does a hacker have to try to be sure that they can break in? What if you may use both upper and lower case for your four symbol password? (Note: You may use upper and lower case letters, but that does not preclude the possibility that all of the letters are upper case or lower case.) Finally consider a password 7 symbols long and you may use both upper and lower case letters, and at least one digit (0...9).
- (10) How many different strings can you make using the letters TIMBITS?