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CISC-102 
Fall 2020 
Week 1 

David Rappaport  daver@cs.queensu.ca 
Goodwin G-532 
Office Hours:  Tuesday  12:30-2:30 

Homework 

• Homework every week. Keep up to date or 
you risk falling behind.  

• Homework will be solved in class on due 
date.  

• Homework is not handed in, and not graded. 
• All quizzes as well as the final exam are 

based on homework questions.  
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Assessment 
Grades will be made up of,  

Three in class midterm quizzes, each worth 
20%, total: 60%  
Final exam: 40% 

NOTE: A minimum of 50% must be obtained on 
the final exam to pass the course. 

The quizzes will be scheduled as follows: 
Quiz 1: Wednesday, January 29. 
Quiz 2: Wednesday, February 26. 
Quiz 3: Wednesday, March 25. 

Please make every effort to be present for the 
midterm quizzes. However, writing any of the 
quizzes is up to you, all quizzes are optional. At 
the end of the term I will tally four grades for 
everyone in the class as follows. 

1. 3 quizzes 20% each and 40% Final. 
2. Best 2 quiz grades 20% each and 60% Final. 
3. Best single quiz grade 20% and 80% Final 
4. 100% Final. 
You will then get the maximum of the grades 1, 

2, 3, or 4, with the exception that if you get 
49% or less on the final exam, then that will 
be your grade.  
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Attending class is not compulsory, and I will 
not take attendance.  

However… 
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Teaching Assistants and Office 
hours.  

There are 4 Teaching Assistants assigned to this 
course. Each teaching assistant will provide two 
hours a week where any student in the class can 
partake to ask questions about the course. I will 
also provide two office hours a week for out of 
class questions.  
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Motivation 
• Discrete math is used in cryptography 

allowing us the convenience of online 
shopping. 

• Learning discrete mathematics is the direct 
pre-requisite to mastering algorithm design 
and analysis skills.  

• You should view this course as a language 
course. You will be learning the language of 
mathematics and computing! 

• Math can be fun.  
• Math is beautiful! 
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Beauty  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• The picture on the previous page is a work 
of art titled “Beauty”.  
(Prints can be purchased on-line.) 

• The equation  
                       
                         
 
consists of the most important concepts in 
mathematics: 
• numbers 

0,1 (integers)  
π, e (irrational real numbers)  
i (a complex number) 

•  operations 
 + × and exponentiation (exp. function) 

• and the relation = 

eiπ + 1 = 0
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UGLY? 

 

This expression is known as the binomial identity. 

Does the binomial identity seems like a mess you 
would like to avoid?  

By the end of the term you will be able to read 
this and other similar “complicated” looking 
mathematical expressions.  

(x + y)n =
n

∑
k=0

(n
k)xn−kyk =

n

∑
k=0

(n
k)xkyn−k
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Motivation 

• Math is a human invention just like music, 
painting, sculpture, poetry, hockey, 
basketball, soccer, fishing … 

And how do you become proficient at music, 
painting, hockey … ? 

Practice, practice, practice. 

• 10,000 “rule” holds that 10,000 hours of 
"deliberate practice" are needed to become 
world-class in any field. ( Working 40 hours 
per week during for a 4 year university 
degree gets you about half way there.)  

• The homework that you do for this course 
can be viewed as “deliberate practice”.  
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The Perfect Introductory Problem:  
Counting hand shakes 

Alice is having a birthday party at her house, 
and has invited Bob, Carl, Diane, Eve, Frank, 
and George.  

They all shake hands with each other. 

Q: How many handshakes? 
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George says, “ I know the answer and I can 
prove it to you. There are 7 of us, so I shake 
hands with 6 other people. That’s also true for 
everyone else. So the total number of hand 
shakes is 6 × 7 = 42.”  

Frank says, “ I have another way of working 
this out. Suppose there’s only two of us, just 
George and I. That’s 1 handshake.  

George: “No that’s two handshakes! I shake 
your hand and you shake my hand.  That 
makes 2 handshakes. 

Who’s right? 
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Sets 
The hand shake problem is stated imprecisely, 
and I slacking a clear definition of what one hand 
shake is. We could say that the act of two people 
touching hands constitutes one hand shake, but 
that too leaves open questions about what part of 
each hand touches.  

We convert the hand shake problem into an a 
math problem using proper mathematical 
notation. 

The basic building block will be the set, where 
a set is just a collection of distinct objects . 
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Examples 

A = {1,3,5,7,9},  
B = {x | x is an integer, 0 ≤ x < 10}  
C = {x : x is an odd integer, 0 < x < 10}  

Warning: the following notation is given 
informally without definitions. Definitions 
to follow sometime soon 

A ⊆ C  (A is a subset of C) 
C ⊆ A  (C is a subset of A) 
A = C (A and C are equal, that is the elements 
of A and C are the same.) 

NOTE:  

If A ⊆ C and C ⊆ A then A = C. 
If A = C then A ⊆ C and C ⊆ A. 

A ⊆ B ( A is a subset of B)  
B ⊈ A  (B is not a subset of A) 

A ⊂ B (A is a proper subset of B) 
B ⊄ A (B is not a proper subset of A) 
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1 ∈ A (1 is an element of A) 
{ 1 } ⊆ A 
{ 1 } ⊂ A 

   

Sets can have infinitely many elements 

ℕ = the set of natural numbers: 1, 2, 3, . . .  
ℤ = the set of all integers: …, −2, −1, 0, 1, 2, … 
ℚ = the set of rational numbers  
ℝ = the set of real numbers  
ℂ = the set of complex numbers  

Observe that ℕ ⊆ ℤ ⊆ ℚ ⊆ ℝ ⊆ ℂ.  

U : All sets under investigation in any 
application of set theory are assumed to 
belong to some fixed large set called the 
universal set.  

∅ : A set with no elements is called the empty 
set or null set . 

For any set A, we have: ∅ ⊆ A ⊆ U  
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What is the smallest natural number, 0 or 1? 

Schaum’s notes defines the Natural numbers 
starting with 1.  

The standard ISO 80000-2 defines the Natural 
numbers starting with 0.  

I use Schaum’s definition.  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The handshake problem 
Let S = {a,b,c,d,e,f,g} denote the set of party 
goers, and a handshake can be represented as 
a two element subset of S. (For example {a,b} 
denotes the handshake between Alice and 
Bob.) 

Q. How many two element subsets are there  
of the set S? 
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Generalizing the handshake problem 
Suppose that S is a set consisting of n 
elements.  

Q. How many two element subsets are there of 
the set S? 

The hand shake problem seems frivolous but 
it is actually a representation of an important 
mathematical concept. For example if we 
wanted to know which handshake was the 
“best” we would have to compare n(n-1)/2 of 
them. Let n = 35, 000, 000 (the population of 
Canada) we would have to compare 
612,499,982,500,000 or roughly 612 trillion 
hand shakes. (Too much!) 
 
If we test one handshake per second it would 
take roughly  31,688 Years, 269 Days, 1 Hour. 
(Too long!) 
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Some additional counting 
problems involving subsets.  

Suppose that S is a set consisting of n 
elements.  

Q1. How many one element subsets are there 
of the set S? ( Easy )  

Q2. How many zero element subsets are there 
of the set S? ( Easy )  

Q3. How many n element subsets are there of 
the set S? ( Easy )  

Q4. Suppose n ≥ 3. How many three element 
subsets are there of the set S? ( Harder, to be 
solved later. )  

Q5. Suppose  0 ≤ k ≤ n what is a formula for 
the number of k element subsets of the set S?  
( More general and harder to be solved later. )  
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Problems from Schaum’s Notes (SN) 

1.26  Which of the following sets are equal?  
A = {x | x2 − 4x + 3 = 0},  
B = {x | x2 − 3x + 2 = 0},   
C = {x | x ∈ ℕ, x < 3}, 
D = {x | x ∈ℕ, x is odd, x < 5},   
E = {1, 2}, 
F = {1,2,1}, 
G = {3, 1},  
H = {1,1,3}.  

NOTE: To determine the elements of sets A 
and B, you need to be able to factor quadratic 
equations. This is a topic that you may or may 
not be familiar with. For this course it is 
assumed that you are able to do this factoring 
or pick up this skill on your own. All examples 
that you will see in this course will have 
integer solutions. Here’s a link to a web page 
with some good tips for factoring quadratic 
equations: https://www.mathsisfun.com/
algebra/factoring-quadratics.html  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Graph of  x2 − 4x + 3.  
The function crosses the x-axis at two points x 
= 1, and x = 3. 
Note: x2 − 4x + 3 = (x - 1) (x - 3). 

-3 -2 -1 0 1 2 3 4 5 6

-2

-1

1

2

3



Week 1  of 21 45

Graph of  x2 − 3x + 2.  
The function crosses the x-axis at two points x 
= 1, and x = 2. 
Note: x2 − 4x + 3 = (x - 1) (x - 2). 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Sets 

The following definitions are from Schaum’s 
Notes. Sometimes I will also give an alternate 
definition to avoid unnecessary confusion.  

Definition: 
A set may be viewed as any well-defined collection 
of objects, called the elements or members of the 
set.  

This sentence defines in a mathematical sense the 
term set and the term element. 

Key things to remember about sets. 
• Always use curly braces { }.  
• The elements are well-defined, that is, each 

element can be distinguished from another. 
• A set is an un-ordered collection of elements. 

Notation 
A = {1, 2, 3} is a set of 3 elements. 

1 ∈ A (1 is an element of the set A.) 

B = {1, 3, 2}  



Week 1  of 23 45

So A = {1, 2, 3} = B = {1, 3, 2}.  

Subset 
Let A and B be two sets, where every element of A 
is also an element of B.  

For example:  
A = {red, black}, B = {red, black, green}. 

Let a denote an arbitrary object.  
Observe that:  if a ∈ A then a ∈ B.  
We can say that A is contained in B, or A is a 
subset of B. 

Definition: Let X and Y be two sets such that a ∈ 
X implies a ∈ Y. We then can say that X is a 
subset of Y, and notate it as X ⊆ Y.  

Alternate Definition: If every element in the set 
X is also an element of the set Y then X is a subset 
of Y, notated as X ⊆ Y. 
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Suppose X and Y are two sets such that: 
  X ⊆ Y and Y ⊆ X.  

Therefore, every element of X is an element of Y 
and every element of Y is an element of X.  So in 
fact the sets are equal.  

Definition: Let X and Y be two sets.  
If X = Y then X ⊆ Y and Y ⊆ X. 
And if X ⊆ Y and Y ⊆ X then X=Y. 

These two sentences can be expressed in a single 
sentence as: 

X = Y if and only if X ⊆ Y and Y ⊆ X. 

Definition: Let X and Y be two sets. 
If  X ⊆ Y  and X ≠ Y then we say that  
X is a proper subset of Y, and notate it as: 
X ⊂ Y.  

Alternate Definition: X is a proper subset of  Y if  
every element of X is also an element of Y and 
there exists at least one element of Y that is not  
an element of X.  
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Subsets and Proper subsets  

x ≤ y (x less than y  or equal to y) 
x < y ( x less than y )  

X ⊆ Y ( X proper subset of Y or equal to Y) 
X ⊂ Y ( X proper subset of Y) 

Find the definitions and examples in Schaum’s 
Notes for the symbols.  

⊈ (not a subset) ⊄ (not a proper subset) 
⊇ (superset) ⊉ (not a superset) 
⊃ (proper superset) ⊅ (not a proper superset)  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Disjoint sets 
Let A and B be two sets. If A and B have no 
elements in common then we say that they are 
disjoint.   

Using subset notation we can say that if A and B 
are disjoint then A ⊈ B and B ⊈ A.  

However, if A ⊈ B and B ⊈ A then A and B may 
not be disjoint. (Can you think of an example 
where A ⊈ B and B ⊈ A but still A and B have 
elements in common, that is, the sets are not 
disjoint.) 
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U : All sets under investigation in any application 
of set theory are assumed to belong to some fixed 
large set called the universal set.  

∅ : A set with no elements is called the empty set 
or null set . 

The empty set is a subset of every set, and the 
universal set is a superset of every set. 

Using symbols the blue sentence can be expressed 
as follows: 

For any set A, we have: ∅ ⊆ A ⊆ U  
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Examples 

Consider the set A = { 1, 2, 3}. 

A is a set consisting of 3 elements.  

{1} ⊆ A, ({1} is a subset of A) 

{1} ⊂ A, ({1} is a proper subset of A) 

1 ∈ A ( 1 is an element of A) 

{1,2,3} ⊆ A  

{1,2,3} ⊄ A 

{1,2} ⊂  A 

∅ ⊆ A and ∅ ⊂ A 
A ⊆ ℕ and A ⊂ ℕ 
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Examples: 

People in a room. 
Coins in your pocket. 

     
Note: If you have two (or more) quarters in your 
pocket then you  need to be able to distinguish one 
from the other if you want to consider the coins as 
a set. If you have no coins in your pocket then the 
set of coins in your pocket is the empty set. 
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Seating Arrangements 

There is a large table at the party and Alice wants 
to experience every possible seating arrangement. 
How many ways can 7 people sit at a table? 

 

  

1	 2	
3

5	

4	

6	
7	
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This “seating arrangement question” is equivalent 
to asking for the number of different ways to order 
7 people.  

Number of ways to order 1 person? 1.  

Number of ways to order 2 people?  
(1,2) (2,1).  2 × 1  

Number of ways to order 3 people?  
(3,1,2)(3,2,1)(1,3,2)(2,3,1)(1,2,3)(2,13). 3 × 2 × 1 

Number of ways to order 4 people?  
Guess: 4 × 3 × 2 × 1 = 4! 
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Permutations 

There are n! ways to order n distinct objects 

Recall n! (n factorial) is given by the expression:  

n! = n × (n-1) × (n-2) × … × 1 

A notational shorthand that makes this product 
explicit without the need for ellipses (…)  is: 

 

  

n

∏
i=1

i
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Selection with ordering 

How many ways are there to pick  7 people out of 
a class of 70 and seat them into 7 numbered 
chairs? (Selection with ordering.) 

1st pick has 70 choices. 
2nd pick has 69 choices. 
3rd pick has 68 choices. 
4th pick has 67 choices. 
5th pick has 66 choices. 
6th pick has 65 choices. 
7th pick has 64 choices. 

So the number of ways to pick 7 people out of a 
class of 70 is:  

70 × 69 × 68 × 67 × 66 × 65 × 64 = 70!/63! 
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Lottery Tickets 
Lotto 6-49,  choose 6 numbers from 1 to 49. 

How many ways are there to choose to these 
numbers? 
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A very simplified version of this game is Lotto 1- 
49, where players choose 1 number from 49. There 
are 49 choices. 

Note that the probability (the odds) of winning 
Lotto 1- 49 is 1/49. (one choice divided by the total 
number of choices) 

  

Consider Lotto 2 - 49, where you have to pick 2 
numbers from 49.  
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A tempting but wrong guess would be 49 × 48 

choices.  

Suppose choice 1 is 42, and choice 2 is 18. That is 
equivalent to choice 1 is 18 and choice 2 is 42, so 
49 × 48 double counts all possibilities.  

The actual answer is 49 × 48 / 2! . 

( Note: this is the same as asking for the number 
of two element subsets of a set of 49 elements.) 
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Combinations (Selection without 
ordering) 
For lotto 6-49, players choose 6 numbers from 1 to 
49. 

How many ways are there to choose to these 
numbers? 

Solution:  
49×48×47×46×45×44/6! =13,983,816. 

This can also be 
written as:  

and pronounced 49 choose 6. 

  

✓
49

6

◆
=

49!

43!6!
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What is the probability that any single choice is 
the winning number? 

1/13,983,816 

The current price of a Lotto 6-49 card is $3.  

If the only prize awarded is the jackpot then the 
“fair” prize for choosing the winning numbers 
should be $41,951,448. 

The minimum jackpot is $5,000,000.  
There have been occurrences when the Lotto 6-49 
jackpot exceeded the fair prize.  

The largest jackpot (as of Aug. 2017) was 
$64,000,000 on  October 17, 2015. 

And here is an article about the U.S. lottery 
“Powerball”. (Pick 5 from 69, and then a sixth 
from a different pool of  26. ) 

http://money.cnn.com/2017/08/19/news/powerball-
drawing/index.html  

Can you determine the odds of winning the 
jackpot? 



Week 1  of 39 45

Set Operators 

Operators on sets are 

 union  ∪  and  intersection ∩. 

Definitions: 

4 SET THEORY [CHAP. 1

However, if A and B are two arbitrary sets, it is possible that some objects are in A but not in B, some are
in B but not in A, some are in both A and B, and some are in neither A nor B; hence in general we represent A

and B as in Fig. 1-1(c).

Arguments and Venn Diagrams

Many verbal statements are essentially statements about sets and can therefore be described by Venn diagrams.
Hence Venn diagrams can sometimes be used to determine whether or not an argument is valid.

EXAMPLE 1.3 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author
of Alice in Wonderland) is valid:

S1: All my tin objects are saucepans.
S2: I find all your presents very useful.
S3: None of my saucepans is of the slightest use.

S : Your presents to me are not made of tin.

The statements S1, S2, and S3 above the horizontal line denote the assumptions, and the statement S below
the line denotes the conclusion. The argument is valid if the conclusion S follows logically from the assumptions
S1, S2, and S3.

By S1 the tin objects are contained in the set of saucepans, and by S3 the set of saucepans and the set of
useful things are disjoint. Furthermore, by S2 the set of “your presents” is a subset of the set of useful things.
Accordingly, we can draw the Venn diagram in Fig. 1-2.

The conclusion is clearly valid by the Venn diagram because the set of “your presents” is disjoint from the
set of tin objects.

Fig. 1-2

1.4 SET OPERATIONS

This section introduces a number of set operations, including the basic operations of union, intersection, and
complement.

Union and Intersection

The union of two sets A and B, denoted by A ∪ B, is the set of all elements which belong to A or to B;
that is,

A ∪ B = {x | x ∈ A or x ∈ B}
Here “or” is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A ∪ B is shaded.

The intersection of two sets A and B, denoted by A ∩ B, is the set of elements which belong to both A and
B; that is,

A ∩ B = {x | x ∈ A and x ∈ B}
Figure 1-3(b) is a Venn diagram in which A ∩ B is shaded.
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1.4 SET OPERATIONS

This section introduces a number of set operations, including the basic operations of union, intersection, and
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Union and Intersection

The union of two sets A and B, denoted by A ∪ B, is the set of all elements which belong to A or to B;
that is,

A ∪ B = {x | x ∈ A or x ∈ B}
Here “or” is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A ∪ B is shaded.

The intersection of two sets A and B, denoted by A ∩ B, is the set of elements which belong to both A and
B; that is,

A ∩ B = {x | x ∈ A and x ∈ B}
Figure 1-3(b) is a Venn diagram in which A ∩ B is shaded.
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Logical Operators 

pronounced  p and q  

Both p and q have to be true for the 
compound proposition p and q to be true.  
 

pronounced  p or q  

At least one of p or q must be true for 
the compound proposition p or q to be true.  

CHAP. 4] LOGIC AND PROPOSITIONAL CALCULUS 71

The fundamental property of a compound proposition is that its truth value is completely determined by the
truth values of its subpropositions together with the way in which they are connected to form the compound
propositions. The next section studies some of these connectives.

4.3 BASIC LOGICAL OPERATIONS

This section discusses the three basic logical operations of conjunction, disjunction, and negation which
correspond, respectively, to the English words “and,” “or,” and “not.”

Conjunction, p ∧ q

Any two propositions can be combined by the word “and” to form a compound proposition called the
conjunction of the original propositions. Symbolically,

p ∧ q

read “p and q,” denotes the conjunction of p and q. Since p ∧ q is a proposition it has a truth value, and this truth
value depends only on the truth values of p and q. Specifically:

Definition 4.1: If p and q are true, then p ∧ q is true; otherwise p ∧ q is false.

The truth value of p ∧ q may be defined equivalently by the table in Fig. 4-1(a). Here, the first line is a short
way of saying that if p is true and q is true, then p ∧ q is true. The second line says that if p is true and q is false,
then p ∧ q is false. And so on. Observe that there are four lines corresponding to the four possible combinations
of T and F for the two subpropositions p and q. Note that p ∧ q is true only when both p and q are true.

Fig. 4-1

EXAMPLE 4.1 Consider the following four statements:

(i) Ice floats in water and 2 + 2 = 4. (iii) China is in Europe and 2 + 2 = 4.

(ii) Ice floats in water and 2 + 2 = 5. (iv) China is in Europe and 2 + 2 = 5.

Only the first statement is true. Each of the others is false since at least one of its substatements is false.

Disjunction, p ∨ q

Any two propositions can be combined by the word “or” to form a compound proposition called the disjunction
of the original propositions. Symbolically,

p ∨ q

read “p or q,” denotes the disjunction of p and q. The truth value of p ∨ q depends only on the truth values of p
and q as follows.
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(i) Ice floats in water and 2 + 2 = 4. (iii) China is in Europe and 2 + 2 = 4.

(ii) Ice floats in water and 2 + 2 = 5. (iv) China is in Europe and 2 + 2 = 5.

Only the first statement is true. Each of the others is false since at least one of its substatements is false.

Disjunction, p ∨ q

Any two propositions can be combined by the word “or” to form a compound proposition called the disjunction
of the original propositions. Symbolically,

p ∨ q

read “p or q,” denotes the disjunction of p and q. The truth value of p ∨ q depends only on the truth values of p
and q as follows.
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We can rewrite our definition for set union and set 
intersection using logical operators as follows: 
 

For example: 

Suppose A is the set of guitars and B is the set of 
red musical instruments.  

• An element x is in the set of A union B if it is a 
guitar or if it is a red musical instrument.  

• An element of x is in the set of A intersection B 
if x is red and x is a guitar. 

A [B = {x : x 2 A _ x 2 B}

A \B = {x : x 2 A ^ x 2 B}
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Venn Diagrams 

Useful for providing intuitive insight. 

Note the rectangle surrounding the circles denotes 
the Universe U. 
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Universal Set, Empty Set

All sets under investigation in any application of set theory are assumed to belong to some fixed large set
called the universal set which we denote by

U

unless otherwise stated or implied.
Given a universal set U and a property P, there may not be any elements of U which have property P. For

example, the following set has no elements:

S = {x | x is a positive integer, x2 = 3}

Such a set with no elements is called the empty set or null set and is denoted by

∅

There is only one empty set. That is, if S and T are both empty, then S = T , since they have exactly the same
elements, namely, none.

The empty set ∅ is also regarded as a subset of every other set. Thus we have the following simple result
which we state formally.

Theorem 1.2: For any set A, we have ∅ ⊆ A ⊆ U.

Disjoint Sets

Two sets A and B are said to be disjoint if they have no elements in common. For example, suppose

A = {1, 2}, B = {4, 5, 6}, and C = {5, 6, 7, 8}

Then A and B are disjoint, and A and C are disjoint. But B and C are not disjoint since B and C have elements
in common, e.g., 5 and 6. We note that if A and B are disjoint, then neither is a subset of the other (unless one is
the empty set).

1.3 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets in which sets are represented by enclosed areas in the
plane. The universal set U is represented by the interior of a rectangle, and the other sets are represented by disks
lying within the rectangle. If A ⊆ B, then the disk representing A will be entirely within the disk representing B

as in Fig. 1-1(a). If A and B are disjoint, then the disk representing A will be separated from the disk representing
B as in Fig. 1-1(b).

Fig. 1-1
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The complement of a set A written Ac  is defined 
as: 

 
Ac = {x|x /2 A}
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The relative complement of a set B with respect to 
A, sometimes 
called the 
difference

 

(The relative complement is sometimes written as  
A – B. ) 
 
 

6 SET THEORY [CHAP. 1

Fig. 1-4

Complements, Differences, Symmetric Differences

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The absolute
complement or, simply, complement of a set A, denoted by AC, is the set of elements which belong to U but which
do not belong to A. That is,

AC = {x | x ∈ U, x /∈ A}
Some texts denote the complement of A by A′ or Ā. Fig. 1-4(a) is a Venn diagram in which AC is shaded.

The relative complement of a set B with respect to a set A or, simply, the difference of A and B, denoted by
A\B, is the set of elements which belong to A but which do not belong to B; that is

A\B = {x | x ∈ A, x /∈ B}
The set A\B is read “A minus B.” Many texts denote A\B by A − B or A ∼ B. Fig. 1-4(b) is a Venn diagram in
which A\B is shaded.

The symmetric difference of sets A and B, denoted by A ⊕ B, consists of those elements which belong to A

or B but not to both. That is,

A ⊕ B = (A ∪ B)\(A ∩ B) or A ⊕ B = (A\B) ∪ (B\A)

Figure 1-4(c) is a Venn diagram in which A ⊕ B is shaded.

EXAMPLE 1.5 Suppose U = N = {1, 2, 3, . . .} is the universal set. Let

A = {1, 2, 3, 4}, B = {3, 4, 5, 6, 7}, C = {2, 3, 8, 9}, E = {2, 4, 6, . . .}
(Here E is the set of even integers.) Then:

AC = {5, 6, 7, . . .}, BC = {1, 2, 8, 9, 10, . . .}, EC = {1, 3, 5, 7, . . .}

That is, EC is the set of odd positive integers. Also:

A\B = {1, 2}, A\C = {1, 4}, B\C = {4, 5, 6, 7}, A\E = {1, 3},
B\A = {5, 6, 7}, C\A = {8, 9}, C\B = {2, 8, 9}, E\A = {6, 8, 10, 12, . . .}.

Furthermore:

A ⊕ B = (A\B) ∪ (B\A) = {1, 2, 5, 6, 7}, B ⊕ C = {2, 4, 5, 6, 7, 8, 9},
A ⊕ C = (A\C) ∪ (B\C) = {1, 4, 8, 9}, A ⊕ E = {1, 3, 6, 8, 10, . . .}.

Fundamental Products

Consider n distinct sets A1, A2, …, An. A fundamental product of the sets is a set of the form

A∗
1 ∩ A∗

2 ∩ . . . ∩ A∗
n where A∗

i = A or A∗
i = AC

A [B = {x : x 2 A _ x 2 B}

A \B = {x : x 2 A ^ x 2 B}
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The symmetric difference of sets A and B: 

The symmetric difference consists of elements 

that are in A or in B but not in both.  
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