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CISC-102

When we expand the expression:
(x +y)’

we get:
(xty)(xty)(xty) = x3 + 3x2y + 3xy2 + y?3

this can also be written as follows:
. 3 3 3 2 3 2 3 3
(z+y)(z+y)(z+y) = (O)x + (1):13 y+ (2)xy + <3>y

We can reason that when we expand (x + y)3, there is one
way to choose a triple that is exclusively x’s (with 0 y’s),
3 ways to choose a triple that has 2 x’s (and 1 y) , and 3
ways to choose a triple that has 1 x (and 2 y’s). Finally
there 1s 1 way to choose a triple with no x (and 3 y’s).



Binomial Theorem:

(x4+y)" = (g) :I:nyo + (’rlL) "y + <Z) "2 4 <

_ kz:;) (Z) xn—kzyk

For all natural numbers 7.

Proof: In the expansion of the product:

(x+y) x+y) - (xty),
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there (n) ways to choose an n-tuple with n-k x’s and (k

k
Y’s). o
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A special case of the binomial theorem should look

familiar.
n n n n
1n10 1n—11 171—212 . 10177,
(o) () (et

-3 (1

This is just the sum the sizes of
all subsets of a set of size n.

(1+1)"
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Using counting to prove theorems.

Counting arguments can be useful tool for proving
theorems. In each case there 1s also an algebraic way of
proving the result. However, there is an inherent beauty in
the elegant simplicity of some of these counting
arguments so it’s well worth looking at some examples.
These proofs lack the formality of algebraic proofs. The
lack of formality may make these arguments harder to
grasp for some, and easier to understand for others.

The proofs we see will be to prove the validity of
equations. We will count the left and right hand side of
each equation and show that they count the same thing,.
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Binomial Coefficients

We prove 1dentities involving binomial coefficients using
counting arguments.

Theorem:

Proof: On the left we have the quantity (Z) which
represents the number of ways to select a £ element subset
from an n element set, S. Using the analogy of selecting
balls from a bag, we see that we also implicitly select the
complementary subset that stays in the bag, and the
number of ways to do this 1s as given on the right hand

n
side of the equation is (" 5) . O
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Theorem A:
n+1 n n
= +
() =0+ (5)

n+1
Proof: On the left the quantity ( ‘ > represents the

number of ways to select a k element subset from an n+1
element set. To see what the right hand side counts we
suppose that there is a “favourite” or “distinguished”
element of the set, call it x.

The number of ways to select a k element subset from
n+1 distinct objects that 1s guaranteed to include x 1s to
pull x out and then choose the remaining k-7 elements in

n
< >ways. On the other hand the number of ways to

select a k element subset from n+/ distinct objects that is
guaranteed to exclude x is to pull x out and then choose all

n
k elements in < k) ways.

Therefore the left and right hand side both count the same
thing thus justifying the equation. [
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And here’s an alternate algebraic proof.

() () - ()

Proof:

(kﬁl) i (Z) == k+77i!)!(k —1n <n_7;!>!<k>!
nlk+nl(n—k + 1)

(n+1—k)k!
nl(k+n—k+1)
(n+1—k)k!
nl(n+1)
(n+1—k)k!
(n+1)!
(n+1—k)k!

1)
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Theorem:
()= () ()= () -

Proof: On the left the sum counts all the subsets of a set
of size n. We already know that the number of subsets of a

set of size n, 1s 2.

Therefore the left and right hand side both count the same
thing thus justifying the equation. OJ
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Pascal’s Triangle

An easy way to calculate a table of binomial coefficients
was recognized centuries ago by mathematicians in India,
China, Iran and Europe.

In the west the technique is named after the French
mathematician Blaise Pascal (1623-1662). In the example
below each row represents the binomial coefficients as
used in the binomial theorem.
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To obtain the entries by hand in a simple way we can use
the 1dentity:

(i) = G2 + (")

NG
NGBRGD
NGNS
OO 06
GG R IO IO
R G R R
DO OO 0 0 e
1
1 1
1 2 1

10
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Consider the sum of elements in a row of Pascal’s
triangle. If we label the top row 0, then 1t appears that row
1 sums to the value 2i. Can you explain why this 1s the
case?

NG
NGBRG
NEBRGNC
RO N
NG ORI
B G G R R
DO OO O 0 e
1
1 1
1 2 1

11
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Now let’s compute the sum of squares of the entries of
each row in Pascal’s triangle.

12=1

12+ 12=2
12+22+12=6
12+32+324+12=20
12+424+62+42+12=70

These sums all appear in the middle row of Pascal’s
triangle.

Which leads us to conjecture that:

(1) - (%)

12
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Before proving the theorem there are two preliminary
lemmas.

Lemma 1:

(M) = ()

For all non-negative integers n,k, n > k.

Proof: Since we already showed that () = ( " ) this

should be obvious. O

13
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()= (7

1

Lemma 2:
For all non-negative integers m,n,k such that n >m > k.

Proof: We use a counting argument. The right hand side
can be viewed as the number of subsets of size £ chosen
from the union of two disjoint sets, S of size m, and T of
size n. On the left we sum the choices where all & are
from S, then £~/ from S and 1 from 7 and so on up to all £
chosen from set 7. O

For example: Suppose

S'={a,b} with |S|=m =2, and
T'={c,d,e} with|T|=rn=3 and

k= 2. So the sum on the right would be:

(L2 )O-00 000

14



page 15 of 48

Theorem:

i (n>2 B <2n)
Z ) \n
12=0
for all natural numbers n > 1.

Proof: Using lemma 1 we can write (7)2 =(")(," )

7 n—1

Now we observe that the sum 1s just a special case of
lemma 2, where m = n, and k£ = n, as follows:

() ()= (10)

(2

15



