

CISC-102 FALL 2018

HOMEWORK 2

Please work on these problems and have your solutions ready by next Thursday. Assignments will not be collected for grading.

READINGS

Read sections 1.5, 1.6, 1.7, 1.8 of *Schaum's Outline of Discrete Mathematics*.

Read sections 1.1, 1.2 and 1.3 again (if you did not understand things last week) of *Discrete Mathematics Elementary and Beyond*.

PROBLEMS

- (1) Illustrate DeMorgan's Law $(A \cap B)^c = A^c \cup B^c$ using Venn diagrams.
- (2) Let $A_i = \{1, 2, 3, \dots, i\}$ for all $i \in \mathbb{N}$. For example $A_4 = \{1, 2, 3, 4\}$.
 - (a) What are the elements of the set $\bigcup_{i=1}^n A_i$?

(b) What are the elements of the set $\bigcap_{i=1}^n A_i$?

$$\bigcap_{i=1}^n A_i?$$

- (3) Observe that $A \subseteq B$ has the same meaning as $A \cap B = A$. Draw a Venn diagram to illustrate this fact.
- (4) Use a Venn diagram to show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- (5) Use the Principle of Exclusion and Inclusion to show that $|A \cup B| + |A \cap B| = |A| + |B|$. (It may help your understanding if you first explore an example such as $A = \{1, 2, 3\}$ and $B = \{3, 4\}$)
- (6) What are the cardinalities of the following sets?
 - (a) $A = \{\text{winter, spring, summer, fall}\}$.
 - (b) $B = \{x : x \in \mathbb{Z}, 0 < x < 7\}$.
 - (c) $\mathcal{P}(B)$, that is, the power set of B .
 - (d) $C = \{x : x \in \mathbb{N}, x \text{ is even}\}$
- (7) Suppose that we have a sample of 100 students at Queen's who take at least one of the following language courses, French-101, Spanish-101, German-101. Also suppose that 65 take French-101, 45 take German-101, 42 take Spanish 101, 20 take French-101 and German-101, 25 take French-101 and Spanish-101, and 15 take German-101 and Spanish-101.

- (a) How many students take all three language courses? (HINT: Use the Principle of Inclusion and Exclusion to write an expression representing these students and the classes they take.)
- (b) Draw a Venn diagram representing these 100 students and fill in the regions with the correct number.
- (c) How many students take exactly 1 of these courses?
- (d) How many students take exactly 2 of these courses?
- (8) Recall that the union operation is associative, that is $A \cup (B \cup C) = (A \cup B) \cup C$. Show that the relative complement set operation is not associative, that is, $A \setminus (B \setminus C) = (A \setminus B) \setminus C$, is incorrect for some sets A, B, C. (Note if relative complement is associative then the equation must be true for all sets A, B, C.)
- (9) Consider a set S of n elements, such that $\{a, b\} \subseteq S$.
 - (a) What is the cardinality of the power set of $S \setminus \{a\}$?
 - (b) What is the cardinality of the power set of $S \setminus \{a, b\}$?
 - (c) How many subsets of S are there that contain the element a ?
 - (d) How many subsets of S are there that contain the element a and exclude the element b ?