

CISC-102 FALL 2018

HOMEWORK 6

Assignments will **not** be collected for grading.

READINGS

Read sections 11.6 and 11.8 of *Schaum's Outline of Discrete Mathematics*.

Read section 6.6 (Don't worry if the theorems of this section seem daunting. The first 3 pages of the section do give a good explanation of gcd, and lcm.) of *Discrete Mathematics Elementary and Beyond*.

PROBLEMS

- (1) Let $a, b \in \mathbb{R}$. Prove $(ab)^n = a^n b^n$, for all $n \in \mathbb{N}$. Hint: Use induction on the exponent n .
- (2) Let $a = 1763$, and $b = 42$
 - (a) Find $\gcd(a, b)$. Show the steps used by Euclid's algorithm to find $\gcd(a, b)$.
 - (b) Find integers x, y such that $\gcd(a, b) = ax + by$
 - (c) Find $\text{lcm}(a, b)$
- (3) Prove $\gcd(a, a + k)$ divides k .
- (4) If a and b are relatively prime, that is $\gcd(a, b) = 1$ then we can always find integers x, y such that $1 = ax + by$. This fact will be useful to prove the following proposition.
Suppose p is a prime such that $p|ab$, that is p divides the product ab , then $p|a$ or $p|b$.
- (5) Find all Natural numbers between 1 and 50 that are congruent to $4 \pmod{11}$.
- (6) Find two Natural numbers a and b such that $2a \equiv 2b \pmod{6}$,
but $a \not\equiv b \pmod{6}$.