

CISC-102 FALL 2018

HOMEWORK 9

Please work on these problems and be prepared to share your solutions with classmates in class next week. Assignments will not be collected for grading.

READINGS

Read sections 5.3 and chapter 4 of *Schaum's Outline of Discrete Mathematics*.
Read section 3.1, 3.5 and 3.6 of *Discrete Mathematics Elementary and Beyond*.

PROBLEMS

- (1) In the notes for Week 11 you will find Pascal's triangle worked out for rows 0 to 8. The numbers in row 8 are 1 8 28 56 70 56 28 8 1. Work out the values of rows 9 and 10 of Pascal's triangle with the help of the equation:

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}.$$

- (2) Show that $\binom{n}{0} = \binom{n-1}{0}$, and that $\binom{n-1}{n-1} = \binom{n}{n}$ by an algebraic argument as well as a counting argument.
- (3) Prove (using mathematical induction on n) that:

$$\sum_{m=0}^n \binom{m+1}{m} = \binom{n+2}{n}$$

is true for all $n \in \mathbb{N}$.

- (4) Use a truth table to verify that the proposition $p \vee \neg(p \wedge q)$ is a tautology, that is, the expression is true for all values of p and q .
- (5) Use a truth table to verify that the proposition $(p \wedge q) \wedge \neg(p \vee q)$ is a contradiction, that is, the expression is false for all values of p and q .
- (6) Use a truth table to show that $p \vee q \equiv \neg(\neg p \wedge \neg q)$
- (7) Show that the following argument is valid.

$$p \rightarrow q, \neg q \vdash \neg p$$