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CISC-102 FALL 2018

HOMEWORK 5 SOLUTIONS

Consider the following relations on the set A = {1,2,3}:

e R=1{(1,1),(1,2),(1,3),(3,3)},

e S={(1,1),(1,2),(2,1),(2,2),(3,3)},
o T'={(1,1),(1,2),(2,2),(2,3)},

o AXx A

For each of these relations determine whether it is symmetric, antisymmetric, re-
flexive, or transitive.

S and A x A are symmetric.
R and T are antisymmetric.

S and A x A are reflexive.

R, S and A x A are transitive.

Explain why each of the following binary relations on the set S = {1,2,3} is or is
not an equivalence relation on S.

(a) R ={(1,1),(1,2),(3,2),(3,3),(2,3),(2,1)}
(b) RQ_{( )7< 72),( ) ) 7(172)7
(3,2),(2,3),(3,1),(1 3)}

(¢) Rz ={(1,1),(2,2),(3,3),(3,1),(1,3)}

Ry, is neither reflexive nor transitive so it’s not an equivalence relation. R; is
symmetric.
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Ry is reflexive, symmetric, and transitive so it is an equivalence relation.

R3 is reflexive, symmetric and transitive, so it is an equivalence relation.

Let R be a relation on the set of Natural numbers such that (a,b) € R if a > b.
Show that the relation R on N is a partial order.

R is reflexive because for all a € (N) a > a. R is antisymmetric because for all
a,b € N a # b we have either a > b or b > a but not both. R is transitive because
for all a,b,c € N, if a > b and b > ¢, we have a > c.
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Evaluate

(a) 3—=7=]-4]=4

(b) =4[ =[2=-9[=[=3[-[-7=—4

(€ [-6—-2[—|2-6[=|-8[—|—-4[=4

Find the quotient ¢ and remainder r, as given by the Division Algorithm theorem

for the following examples.
Recall we want to find 7,0 < r < |b|, such that a = ¢b + r, where all values are
integers.
(a) a=>500,b=17.

500 =29 x 17+ 7sor ="1.
(b) a =—-500,b = 17.

—500=—-30 x 17+ 10 so r = 10.
(¢) a=>500,b=—17.

500 = —29x =174+ 7sor=7
(d) a =-500,b=—17

—500 =30 x =17+ 10 so r = 10
Show that ¢|0, for all ¢ € Z,c # 0.
Recall the definition of divisibility:

Ifc= g is an integer, or alternately if ¢ is an integer such that b = ca then we say
that a divides b or equivalently, b is divisible by a, and this is written a|b.

Since % = 0 for all ¢ € Z,c # 0, and 0 is an integer we have shown that every
integer ¢ divides 0. Note: % is undefined.

Let a, b, c € Z such that c|a and c|b. Let r be the remainder of the division of b by
a, that is there is a ¢ € Z such that b = ga 4+ r,0 < r < |b|. Show that under these
conditions we have c|r.

Since c|a and ¢|b we can write:

(1)a = ¢p, and b = cpy, such that p,,py € Z.

So we can rewrite b = ga + r as:

CPp = qCPa + T

and this simplifies to:
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c(po — qpa) =7
Since pp — qp, is an integer we can conclude that c|r.

(8) Let a,b € Z such that 2|a. (In other words a is even.) Show that 2|ab.

This is just a special case of the divisibility theorem that states if c|a then for any
integer b, clab

(9) Let a € Z show that 3|a(a + 1)(a + 2), that is the product of three consecutive
integers is divisible by 3.

Observe that we can write a = 3¢ + r where r € {0, 1, 2}.

Case 0: If » = 0 a is divisible by 3 and since (a + 1)(a 4 2) is an integer it follows
that 3la(a + 1)(a + 2).

Case 1: If r = 1, add 2 to both sides of the equation a = 3¢ + 1 to get a + 2 =
3¢+ 3 = 3(¢g+ 1) thus a + 2 is divisible by 3 and since a(a + 1) is an integer it
follows that 3|a(a + 1)(a + 2).

Case 2: If r = 2, add 1 to both sides of the equation a = 3¢+ 2 to get a + 1 =
3¢+ 3 =3(qg+ 1) thus a + 1 is divisible by 3 and since a(a + 2) is an integer it
follows that 3|a(a + 1)(a + 2).

(10) Use induction to prove the following propositions.

(a) Use induction to prove n® + 2n is divisible by 3, for all n € N,n > 1.
Base: 3|13 + 2
Induction Hypothesis: Assume that k3 4 2k is divisible by 3, for k > 1.
Induction Step: Goal: Show that 3|(k + 1) + 2(k + 1) using the induction
hypothesis.

We begin by manipulating the expression (k + 1)3 4+ 2(k + 1) as follows:

(k+1)®+2(k+1) = k> + 3% + 3k + 1 + 2k + 2
=K +2k+3(k2+k+1)

Observe that 3|k® + 2k by the induction hypothesis and 3|3(k? + k + 1). So
3|k3 + 2k + 3(kK* + k +1).

Therefore by the principle of mathematical induction we conclude that n3+2n
is divisible by 3, for all n € N,n > 1. O
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Show that any integer value greater than 2 can be written as 3a 4+ 4b + 5c¢,
where a, b, c are non-negative integers, that is a,b,c € Z,a,b,c > 0.

We use the 2nd form of induction to prove this result.

Base: We use three base cases: 3 = 3x1+4x0+5%x0,4 = 3x0+4x1+5x0,5 =
3x0+4x0+5x1.

Induction Hypothesis: Assume that all values j such that 2 < j < k can
be written as 3a 4 4b + 5c, where a, b, ¢ are non-negative integers.
Induction Step:

By the induction hypothesis we can write k = 3a + 4b 4 5¢. There are three
cases to consider:

a > 0 (Note: Using 3 as a base is an example of this case.)

Since k = 3a+4b+5¢c and a > 0. We can write k+1 = 3(a—1)+4(b+1)+5c.
a =0,b> 0 (Note: Using 4 as a base is an example of this case.)

Since k = 4b + 5¢ and b > 0. We can write k +1 =4(b—1) + 5(c+ 1).
a=0,b=0,c>0 (Note: Using 5 as a base is an example of this case.)

Since k = 5¢ and ¢ > 0 We can write k+1 =3 x 2+ 5(c —1).

Therefore, by the principle of mathematical induction we conclude that any
integer value greater than 2 can be written as 3a + 4b + 5¢, where a, b, c are
non-negative integers. U]

Show that every Natural number n can be represented as a sum of distinct
powers of 2. For example the number 42 = 32 4+ 8 + 2 = 25 + 23 4+ 21,

We use the second form of induction to prove this result.

Base: 1 =2V.

Induction Hypothesis: Assume that all values j can be represented as a
sum of distinct powers of 2, for 1 < j < k.

Induction Step: Consider the number k + 1. Let 2% be the largest power
of 2 less than or equal to £ + 1. Now let b = k+1—2% If b = 0 we are
done. Otherwise observe that b < k, and by the induction hypothesis b can
be represented as a sum of distinct powers of 2. This, leads to the conclusion
that k + 1 is also represented as a sum of distinct powers of 2.

Therefore, by the principle of mathematical induction we conclude that every
Natural number n can be represented as a sum of distinct powers of 2 ([l



