CISC-102 FALL 2019

HOMEWORK 3 SOLUTIONS

(1) Mathematical induction can be used to prove that the sum of the first n natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as: We can prove that the proposition P(n),

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}$$

is true for all $n \in \mathbb{N}$, by using mathematical induction.

I wrote out the proof, but somehow it got all scrambled as shown below. Rearrange the lines to get the correct proof.

1. Induction step: The goal is to show that P(k+1) is true.

2. **Base:** for
$$n = 1, 1 = \frac{1(1+1)}{2}$$

3.
$$=\frac{(k+1)(k+2)}{2}$$

4.
$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

5.
$$=\frac{k^2+k+2k+2}{2}$$

6. Induction hypothesis: Assume that P(k), for Natural numbers $k \ge 1$ is true, that is:

7.
$$=\frac{k^2+3k+2}{2}$$

8. $\sum_{i=1}^k i = \frac{k(k+1)}{2}$

9. = $\frac{k(k+1)}{2} + (k+1)$ The correct order is:

2. 6. 8. 1. 4. 9. 5. 7. 3.

I will now spell it out for easier readability.

2. **Base:** for $n = 1, 1 = \frac{1(1+1)}{2}$

6. Induction hypothesis: Assume that P(k), for Natural numbers $k \ge 1$ is true, that is:

- 8. $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$
- 1. Induction step: The goal is to show that P(k+1) is true.

4.
$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

9.
$$= \frac{k(k+1)}{2} + (k+1)$$

5.
$$= \frac{k^2 + k + 2k + 2}{2}$$

7.
$$= \frac{k^2 + 3k + 2}{2}$$

3.
$$= \frac{(k+1)(k+2)}{2}$$

(2) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=2}^{n} i = \frac{(n-1)(n+2)}{2}$$

is true for all $n \in \mathbb{N}, n \ge 2$ Base: for $n = 2, 2 = \frac{1(2+2)}{2}$ **Induction hypothesis:** Assume that P(k) is true, that is:

$$\sum_{i=2}^{k} i = \frac{(k-1)(k+2)}{2}.$$

for $k \geq 2$.

Induction step: The goal is to show that P(k+1) is true, that is:

$$\sum_{i=2}^{k+1} i = \frac{(k)(k+3)}{2}.$$

Consider the sum

$$\sum_{i=2}^{k+1} i = \sum_{i=2}^{k} i + (k+1) \text{(arithmetic)}$$
$$= \frac{(k-1)(k+2)}{2} + (k+1) \text{(Use the induction hypothesis)}$$
$$= \frac{k^2 + k - 2 + 2k + 2}{2} \text{(get common denominator and add)}$$
$$= \frac{k^2 + 3k}{2} \text{(arithmetic)}$$
$$= \frac{k(k+3)}{2} \text{(factor to arrive at goal)}$$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \geq 2$.

(3) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=3}^{n} i = \frac{(n-2)(n+3)}{2}$$

is true for all $n \in \mathbb{N}, n \ge 3$ Base: for $n = 3, 3 = \frac{(3-2)(3+3)}{2}$ **Induction hypothesis:** Assume that P(k) is true, that is:

$$\sum_{i=3}^{k} i = \frac{(k-2)(k+3)}{2}.$$

for $k \geq 3$.

Induction step: The goal is to show that P(k+1) is true, that is:

$$\sum_{i=3}^{k+1} i = \frac{(k-1)(k+4)}{2}.$$

Consider the sum

$$\sum_{i=3}^{k+1} i = \sum_{i=3}^{k} i + (k+1) \text{(arithmetic)}$$
$$= \frac{(k-2)(k+3)}{2} + (k+1) \text{(Use the induction hypothesis)}$$
$$= \frac{k^2 + k - 6 + 2k + 2}{2} \text{(get common denominator and add)}$$
$$= \frac{k^2 + 3k - 4}{2} \text{(arithmetic)}$$
$$= \frac{(k-1)(k+4)}{2} \text{(factor to arrive at goal)}$$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \geq 3$.

(4) Prove using mathematical induction that the proposition P(n)

$$n! \leq n^n$$

is true for all $n \in \mathbb{N}$. Base: for $n = 1, 1! = 1 = 1^1$ Induction hypothesis: Assume that P(k) is true, that is: $k! \le k^k$

for $k \geq 1$.

Induction step: The goal is to show that P(k+1) is true, that is:

$$(k+1)! \le (k+1)^{k+1}.$$

We have:

$$(k+1)! = k!(k+1)$$
(Definition of factorial)

$$\leq k^{k}(k+1)$$
(Use the induction hypothesis)

$$\leq (k+1)^{k}(k+1)$$
(because $k \leq k+1$)

$$= (k+1)^{k+1}$$
(multiply)

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}$. \Box

HOMEWORK 3 SOLUTIONS

(5) Given a set of n points on a two dimensional plane, such that no three points are on the same line, it is always possible to connect every pair of points with a line segment. The figure illustrates this showing 5 points, that are pairwise connected with 10 line segments. Prove using mathematical induction that the total number of line segments is $\frac{n(n-1)}{2}$ for any number of points $n \in \mathbb{N}, n \geq 2$.

FIGURE 1. Five points, pairwise connected with 10 line segments.

Base: Given two points there is exactly one segment that connects them.

Induction Hypothesis: Assume that k points can be connected by $\frac{k(k-1)}{2}$ line segments for some fixed natural numer $k, k \geq 2$.

Induction Step: Consider k+1 points. We can partition the points into two subsets with k points in one and a single point in the other. The induction hypothesis implies that there are $\frac{k(k-1)}{2}$ line segments connecting the k points. The $k+1^{st}$ point can now be connected to these k points with k line segments. Therefore we have $\frac{k(k-1)}{2}+k=\frac{(k+1)k}{2}$ line segments connecting all k+1 points.

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \geq 2$.

(6) Consider the following proof that n + 1 = n, for all natural numbers n.

Induction Hypothesis: Assume that k + 1 = k for a fixed natural number k.

Induction step:

6

$$k + 2 = k + 1 + 1$$

= k + 1(apply induction hypothesis)
= k + 1

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}$. \Box

This can't possibly be right! What's wrong?

The Base case is missing.