
Week 4 ! of !1 20

CISC-102
Fall 2019
Week 4

Functions

We have already seen functions in this course. For example:
x2 − 4x + 3

We could also write this function as an equation:
y = x2 − 4x + 3

In this example you can think of plugging in a (Real) value for x
and you will get a distinct value for y. So functions can be
viewed as a mapping or a transformation or even some kind of
machine or algorithm that takes an input an produces a distinct
output.
Underlying every function are two sets (the two sets can be the
same).
Let A and B these two sets. We define a function f from A into B
as a mapping from every element of A to one element of B. This
can be written as:

f : A → B

Week 4 ! of !2 20

Vocabulary

Suppose f is a function from the set A to the set B. Then we say

that A is the domain of f and B is the codomain of f. (Synonyms

for codomain are: target set and range)

Notation

Let f denote a function from A to B, then we write:

f : A → B

which is pronounced “ f is a function from A to B”,

or “f maps A into B”.

If a ∈ A, and b ∈ B we can write:

f(a) = b

to denote that the function f maps the element a to b.

Week 4 ! of !3 20

More Vocabulary

We can say that b is the image of a under f.

More notation.

A function can be expressed by a formula (written as an

equation, as illustrated by the following example:

f(x) = x2 for x ∈ ℝ

In this example f is the function and x is the variable.

Sometimes we can express the image of a variable (the

independent variable) by a dependent variable as follows:

y = x2 

Week 4 ! of !4 20

Some Common Functions

Section 3.4 of Schaum’s notes describes some common
functions that you may already be familiar with. Please
read through this section. We will discuss modular
arithmetic in more details when we look at the properties
of the integers and integer arithmetic.

Week 4 ! of !5 20

Sequences and indexed classes of sets
We discussed indexed sets and the generalized union and
intersection operators. For example:

Let Ai denote the set {x : x ∈ , x ≥ i}, for all .

!

 !

These indexed sets are defined by using an indexing
function.

Let I be any nonempty set, and let S be a collection of
sets. (Or a set of sets.) An indexing function from I to S :

f : I → S
 
maps indexes to sets in the collection. That is, for any
i ∈ I we denote an image f(i) by Ai.

Z i 2 N

S
i2N Ai = N

T
i2N Ai = ;

Week 4 ! of !6 20

A sequence can be defined as a function from the natural
numbers ℕ into some set A. The notation an is used to
denote the image of the number n.

As a concrete example consider a function f on the natural
numbers defined as

f(n) = 2n

an equivalent sequence definition would be

an = 2n.

Suppose we want to denote the sum of the first k values
of this function or sequence.

We could use “Sigma” notation as follows:

or alternately

�  
k

∑
i=1

ai = a1 + a2 + ⋯ + ak = 2 + 4 + 6 + ⋯ + 2k

k

∑
i=1

f (i) = f (1) + f (2) + ⋯ + f (k) = 2 + 4 + 6 + ⋯ + 2k

Week 4 ! of !7 20

Recursively Defined Functions

Recall the factorial function, n!. We can define n! and (n+1)!
using these explicit iterative formulae:

n! = 1 × 2 × 3 ×… × n
(n+1)! = 1 × 2 × 3 ×… × n × (n+1)

Notice how (n+1)! = n! × (n+1). This is a recursive definition
of the factorial function. More formally we have the following
definition.

The Factorial function is defined for non-negative integers, that
is {0, 1, 2, 3, …} as follows:

(i) If n = 0 then n! = 1 (Base)
(ii) If n > 0 then n! = n × (n-1)! (Recursive definition)

Definition: (from SN) A function is said to be recursively
defined if it has the following two properties:

i) There must be base values that are given and where the
function does not refer to itself.

ii) Each time the function does refer to itself the referred
function argument must be closer to the base than the
referring function argument.

In the factorial definition (n-1) is closer to 0, than n is.

Week 4 ! of !8 20

We can use a recursive definition for the handshake problem.

Suppose that S is a set consisting of n elements, n ≥ 2.
Q. How many two element subsets are there of the set S?

We need to come up with a base statement and a recursive
definition.

The recursive definition is based on the observation, a set
of n elements has n-1 more two element subsets than a set
of n-1 elements.

Let f be a function with domain {2,3,4, …} and range ℕ,
such that:

i) f(2) = 1 (1 two element subset}
ii) f(n) = f(n-1) + n-1.

We can now use mathematical induction to prove that
f(n) = n(n-1)/2.  

Week 4 ! of !9 20

The function recursively defined as  
f(2) = 1, f(n) = f(n-1) + n-1 has the closed form expression
f(n) = n(n-1)/2, for all natural numbers n, n ≥ 2.

We prove this using mathematical induction.

Base: f(2) = 1 = 2(2-1)/2.
Induction Hypothesis: f(k) = k(k-1)/2 for a fixed natural
number k, k ≥ 2.
Induction Step: f(k+1) = f(k) + k
 = k(k-1)/2 + k
 = (k2 - k + 2k)/2
 = (k2 + k)/2
 = (k+1)(k)/2
Therefore by the principle of mathematical induction we
conclude that f(n) = n(n-1)/2 for all natural numbers n, n
≥ 2. ◻  

Week 4 ! of !10 20

We can use a recursive definition for the number of values
that can be stored in a binary string. The recursive
definition is based on the observation that an n bit binary
number stores twice as many values as an (n-1) bit binary
number.

Let f be a function on the the Natural numbers such that:

i) f(1) = 2 (2 values can be stored in one bit)
ii) f(n) = f(n-1) × 2

We can show using mathematical induction that the closed
form for the recursive function is 2n.

Let P(n) be the proposition that f(n) = 2n, where f(n) is
recursively defined as:
i) f(1) = 2
ii) f(n) = 2f(n-1)

Theorem: f(n) = 2n for all natural numbers n.
Proof:
Base: f(1) = 21

Induction Hypothesis: f(k) = 2k
Induction Step: f(k+1) = 2 f(k)
 = 2 × 2k

 = 2k+1.

Therefore by the principle of mathematical induction we
conclude that P(n) is true for all natural numbers n. ◻

Week 4 ! of !11 20

Consider a function recursively defined as:

g(1) = 1, g(n) = g(n-1) + 2n-1.

What is the value of g(2), g(3), g(4) ?  
Using the values of g(2), g(3), g(4), can you guess the value of
g(n)? 

Week 4 ! of !12 20

The function recursively defined as  
g(1) = 1, g(n) = g(n-1) + 2n-1, then g(n) = n2, for all natural
numbers n.

Base: g(1) = 1 = 12

Induction Hypothesis: g(k) = k2 for some k ∈ ℕ, k ≥ 1.
Induction Step: g(k+1) = g(k) + 2(k+1) - 1
 = k2 + 2k + 1
 = (k+1)2

Therefore by the principle of mathematical induction we have
shown that g(n) = n2 for all natural numbers n. ◻  

Week 4 ! of !13 20

Injective(one-to-one), Surjective(onto), Bijective(one-to-one
and onto) functions.

A function f: A → B is a one-to-one function if for every  

a ∈ A there is a distinct image in B. A one-to-one function is also called an injective function or

an injection. Another way to say this is f(a1) ≠ f(a2) if a1 ≠ a2

Let f : ℝ→ ℝ and f(x) = 2x.

f(x) = 2x is one-to-one because

there is a distinct image for every  

x ∈ ℝ, that is if 2x = 2y then x = y.

-5

-2
.5 0

2.
5

0

1

2

3

4

5

Week 4 ! of !14 20

A function f: A → B is an onto function if  

every b ∈ B is an image. An onto function is also called a surjective function or a surjection.

Let f : ℝ→ ℝ and f(x) = x3 - x.

f(x) = x3 - x is onto because the pre-image

of any real number y is the solution set of
the cubic polynomial equation  
x3 − x − y = 0 and every cubic
polynomial with real coefficients has at
least one real root.

Note: f(x) = x3 - x = x(x2 - 1) is not one-
to-one because f(x) = 0 for x = - 1, x =

+1, x = 0

Note: f(x) = 2x is not onto because 2x > 0 for all x ∈ ℝ.

-2
.5 0

2.
5 5-3

-2

-1

0

1

2

3

Week 4 ! of !15 20

A function that is both one-to-one and onto is called a bijective function or a bijection.

Let f : ℝ→ ℝ and f(x) = 2x

f(x) = 2x is one-to-one because we get a

distinct image for every pre-image.  

f(x) = 2x is onto because every y ∈ ℝ is

an image. So f(x) = 2x is a bijection.

-2
.5 0

2.
5 5-3

-2

-1

0

1

2

3

Both one-to-one, and onto.

Week 4 ! of !16 20

Bijective functions are also called invertible functions. That is suppose that f is a bijective

function on the set A. Then f -1 denotes the inverse of the function f , meaning that whenever

f(x) = y we have f -1(y) = x.

In our previous example we saw that function f(x) = 2x is a bijective function. In this case we can

define  

f -1(x) = x/2, so we get f -1(2x) = x.

Let f : ℝ→ ℝ and f(x) = x2

 

Observe that f(x) = x2 is a function because every x ∈ ℝ has a distinct image. However, f(x) = x2

is neither one-to-one (because f(x) = f (-x)) or onto (f(x) ≥ 0).  

-2

-1
.6

-1
.2

-0
.8

-0
.4 0

0.
4

0.
8

1.
2

1.
6 2

2.
4

2.
8

3.
2

3.
6 4

4.
4

4.
8

5.
2

5.
6 6

6.
4

6.
8

7.
2

7.
6

0

0.8

1.6

2.4

3.2

4

4.8

5.6

Week 4 ! of !17 20

Pictorial examples:

Illustrates a function that is one-to-one, but not onto.

Illustrates a function that is onto, but not one-to-one.  

p

r

s

t

u

v

w

p

r

s

t

u

v

w

Week 4 ! of !18 20

p

r

s

t

u

v

Week 4 ! of !19 20

Determine whether the following functions are one-to-one, onto, both, or neither.

f : ℤ → ℤ , f(x) = x + 5

f : ℕ → ℕ , f(x) = x + 5

f : ℤ → ℤ , f(x) = x2 + 5

f : ℕ → ℕ , f(x) = x2 + 5

f : ℕ → ℕ , f(1) = 1, f(x) = f(x-1) × x for x > 1

Let S denote the set of binary strings of length n, and let

f: S → T, f(s) = numeric value of binary string s.

Let S denote the set of binary strings of length n, and let

f: S → T, f(s) = numeric value of binary string s.

T = {x : x ∈ (ℕ ∪ {0}), 0 ≤ x ≤ 2n}

T = {x : x ∈ ℤ, 0 ≤ x ≤ 2n − 1}

Week 4 ! of !20 20

-16 -12 -8 -4 0 4 8 12 16 204

8

12

16

20

24

28

-10 -7.5 -5 -2.5 0 2.5 5 7.5

2.5

5

7.5

10

