CISC235
Winter 2007
Homework for weeks 10 and 11
in preparation for quiz 5
Solutions

Note: I received help for preparing these solutions from Yurai Nunez and Henry Xiao.

Questions from section 7.5 of the text

2. As was discussed in class the number of keys stored in an m-way search tree of height
h is given by the sum

h—1

(m—l)Zmi:mh—l

=0

3. A function that prints out the contents of a B-tree in ascending order is shown below
BTreePrintAscend (BTreeNode *node) {
// keyTally keeps track of the number of keys in this node

for (int i = 0; i <= node->keyTally; i++) {
if (i > 0)print keyl[i-1];
if (node->pointers([i] != 0) BTreePrintAscend(node->pointers[i]);

}

5.

The B-trees that result from the two insertion sequences are shown below. The trees
are not identical. Ome can intuitively imagine that a “random” sequence of inserts
may result in fewer split operations, however, the overall complexity of building a tree
with n keys, or searching in the tree would only differ by a constant. Fewer nodes also
represents less memory used, as was mentioned in class when I presented the solutions.

3 24
/ v
112 45 I 3
Sequence 1, 5, 3, 2, 4 Sequence 1, 2, 3,4, 5

Figure 1: The tree on the left has one less node, and also incurred on less split than the tree
on the tree on the right.

e

ot

The asymptotic worst case of inserting into a 2-4 tree is characterized by an insertion at
a leaf node and this is A the height of the tree. However, this can differ by a constant
factor. If all of the nodes on the search path to the node where the insertion occurs
are “full”, then h split operations will also take place.

Solutions to week 11 problems.

The maximum number of keys that a B-Tree of order 6 (at most five keys per node)
and of height 4 can hold is 6* — 1. Four disk accesses are needed in the worst case. A
B-Tree of order m and of height h can hold as many as m" — 1 keys.

There are 2n([(logyn)]) = 2*32(5) = 320 external memory accesses (reads and writes)
are used to sort the data using a 2-way merge sort. Note that no pass 0 is used to
obtain initial sorted runs.

There are 2n([(log, n)]) = 2*32(3) = 192 external memory accesses (reads and writes)
are used to sort the data using a 4-way merge sort. Note that no pass 0 is used to
obtain initial sorted runs.

If we have enough internal memory to make initial runs of 8 sorted records then we end
up with 4 runs. A binary merge uses log, 4 passes after the intial sorts for 2*32(2+1)
= 192 external memory accesses. For the 4-way merge sort one pass is needed after
the initial sort, that is log, 4 so we use 2*32(141) = 128 memory accesses.

The original list of unsorted numbers is:
4140356 74887899924 28441993 236391457057 385934838346 185317
Using 2-way merge sort
After pass 0:
6 8 3540 41 74 87 89

2819 23 24 44 93 99

4538 5759 63 70 91

3417 18 46 53 83 83

passl yields:

2688192324 3540 41 44 74 87 89 93 99

344517183846 53 57 59 63 70 83 83 91

And pass 2 yields the sorted list.

234456881718 19 23 24 35 38 40 41 44 46 53 57 59 63 70 74 83 83 87 89 91 93 99

Using a 4-way merge sort

After pass 0:

6 8 3540 41 74 87 89

2819 23 24 44 93 99

4538 5759 63 70 91

3417 18 46 53 83 83

And pass 1 yields the sorted list.

234456881718 19 23 24 35 38 40 41 44 46 53 57 59 63 70 74 83 83 87 89 91 93 99
6. One possible insertion sequence leading to the given skip list is: (20,1), (42, 4), (12,2),

(17,5), (39, 1), (48,3), (24,4), (31,3), (50,1), (44,2), where the pair (k,h) denotes a key
with value k, and a tower of height h.

7. We average over all search paths. I will count the number of nodes in the search path
rather than actual comparisons. The paths taken in sequence are (6 + 3 +8 + 5 + 7
+104+6+9+8+11)/10="17.3.

o o
|-00 ks o0
120 (17| 20| {24, 31 39| 42| |44 48| |50

