
1

3/5/05CISC 235 1

External Memory and
B-Trees

3/5/05CISC 235 2

Memory Limits: Directory of Telephone Numbers
• Suppose we have to implement a Directory Assistance

System for Bell Canada

• Let's say that Canada has 100 million telephone numbers

• Even if we reserve only 100 bytes for each directory
entry, the directory would have 10GB

• 10GB of data don't fit into the main memory (RAM) of
even the largest servers.
 Our directory operations search, insert,
remove will have to access external memory (e.g.,
hard disk drive) while they execute

2

3/5/05CISC 235 3

Memory Limits: Other Scenarios
• For other examples of data that won't fit into the internal

memory of the CPU that manipulates it, consider:
• The index of a web search engine

• The data base of a credit card company

• The inventory of amazon.com

• A library information system

• An English-German dictionary on a palm pilot

• “Wearable maintenance computers” for air planes

3/5/05CISC 235 4

Memory Limits: Internal versus External
• Unfortunately, accesses to external memory (e.g., disk, CD-ROM,

tape) are much slower than accesses to internal memory (e.g.,
registers, cache, RAM)

• To optimize run-time performance, algorithms need to minimize
external memory accesses

• Up until now, only logical view of memory: uniform (doesn’t
matter if data is in memory, on disk etc)

• However, performance view of memory: not uniform (registers,
cache, RAM, hard disks, CDs, floppy disks all have different
performance characteristics)

• Whenever algorithms work on data that does not fit into internal
memory, performance difference between internal and external
memory has to be taken into account

3

3/5/05CISC 235 5

Memory Hierarchy
• Many problems that modern computers are given to

solve (analyzing scientific data, running Win95, etc.)
require large amounts of storage

• Ideally: all necessary information could be stored on
chip in processor’s registers, but that’s not feasible

• In reality: computers use a memory hierarchy wih
trade-off between speed and volume

• The hierarchy consists of four layers:
• Registers
• Cache
• Internal memory (RAM)
• External memory (Disk)

3/5/05CISC 235 6

Memory Hierarchy

CPU

Registers

Cache

Main memory (RAM)

External memory (disks etc)

Small,
fast

Large,
slow 2·106 CPU-cycles

50 CPU-cycles

5 CPU-cycles

1 CPU-cycle

4

3/5/05CISC 235 7

Memory Hierarchy (cont’d)

Disk

Main Memory

Control

ALU

Registers

Bus

CPU

3/5/05CISC 235 8

Caching and Blocking
• To minimize access to external memory, two assumptions about use

of data are helpful:
• Temporal Locality: If data is used once, it will probably be

needed again soon after
• Spatial Locality: If data is used once, the data next to it will

probably be needed soon after
• Each assumption gives rise to a different optimization technique:

• Caching (based on temporal locality and virtual memory):
• Provide address space that is as large as secondary storage

(virtual memory)
• When data is requested from secondary storage, it is

transferred to primary storage (cached)
• Blocking (based on spatial locality):

• When address A is requested from secondary storage, a
large contiguous block (page) of data containing A is
transferred into primary storage

5

3/5/05CISC 235 9

Why Is External Memory So Slow?
• Because it requires the mechanical movement of disk

parts, rather than the movement of electrons!

cylinder: set of tracks at same

 distance on all platters

spindle

platter

track head

arm

3/5/05CISC 235 10

Why Is External Memory So Slow?
• External memory is large, slow, cheap
• In fact, external accesses are so slow that many internal accesses

are still faster than a single external access
• It’s slow, because of mechanical positioning of the disk head at

the beginning of a block involved in a memory access
• Once block is found, actual read/write of block is pretty fast

 Our goal is thus to minimize number of accesses, not the
number of bytes read or written

Once the head is positioned, we might as well read the entire
disk block

• For problem of implementing a large dictionary: minimize number
of times we transfer a block between secondary and primary
memory (disk transfer) during queries and updates.

6

3/5/05CISC 235 11

How To Store Canada's Telephone Directory?
• As sequence:

• O(N) time and O(N) disk accesses

 Really, really, really bad!
• As balanced, binary search tree:

• About log2 N time and log2 N disk accesses

Good, but can do better (by a constant factor)

• Consider the search algorithm for (2,4)-trees:
• Every node on search path may have to be read from disk

• Since a node contains at most 3 items, a node typically won't fill a block

 If nodes contain more items, can reduce the height of the tree and make
better use of a single disk access

3/5/05CISC 235 12

(a,b)-Trees: Definition
• Generalize (2,4)-trees to allow for bigger nodes

• An (a,b)-tree is a multi-way search tree such that

1. 2 ≤ a ≤ (b+1)/2

2. Size property: each internal node has

• at least a children, unless it's the root, and
• at most b children

3. Depth property: all external nodes have the same
depth

• Why a ≤ (b+1)/2 ?

7

3/5/05CISC 235 13

(a,b)-Trees: Definition

• Why a ≤ (b+1)/2?

• Because it guarantees that

• An overflow with split results in legal node:
• Break (b+1)-node into (b+1)/2-node and
(b+1)/2-node

• a ≤ (b+1)/2 implies a ≤ (b+1)/2 and a ≤ (b+1)/2

3/5/05CISC 235 14

•An underflow with fusion results in legal node:

•Merge an (a – 1)-node with a sibling that is an
a-node to get a new (2a – 1)-node.
•a ≤ (b+1)/2 implies 2a – 1 ≤ b

(a,b)-Trees: Definition

8

3/5/05CISC 235 15

(a,b)-Trees: Height
• Theorem: The height h of an (a,b)-tree T is Ω(logb n)

and O(loga n)
• For a balanced binary tree with 100 million entries the

height is approximately 18.
• For example suppose that a = 16 and b = 32. That would

yield a height of between approximately approximately
5 and 6.

• In practical terms this would reduce the number of disc
accesses in a search from 18 to 5 or 6, a huge savings.

