
CISC 235 1

Complexity

• Complexity: study of how time&space to execute an algorithm
vary with problem size

• Let n denote the problem size (“size” of data being manipulated)
• Let function t(n) denote the time to execute algorithm with size n
• The function t(n) depends on

• implementation details,
• language used,
• compiler, etc.

• Solution:
• Abstraction, ie, concentrate on general characteristics of t(n)
• eg, growth of t(n) proportional to n.

• n (linear),
• n2 (quadratic), or
• log n (logarithmic) etc.

CISC 235 2

Big-O Notation

• Big-O notation is used to express an upper
bound of a function. For example f(n) is
O(g(n)) if f is bounded from above by a
constant multiple of g(n) for sufficiently
large values of n.

n→∞
lim f (n)

g(n)
= 0 or a finite positive constant

• More formally:
there exist constants c > 0 and m > 0
such that f(n) ≤ cg(n) whenever n ≥ m

• Or using limit notation:

f(n)

cg(n)

CISC 235 3

Relatives of Big-O Notation

• Big-Ω notation is used to express an lower
bound of a function. For example f(n) is
Ω(g(n)) if f is bounded from below by a
constant multiple of g(n) for sufficiently
large values of n.

n→∞
lim g(n)

f (n)
= 0 or a finite positive constant

• More formally:
there exist constants c > 0 and m > 0
such that f(n) ≥ cg(n) whenever n ≥ m

• Or using limit notation:

f(n)

cg(n)

CISC 235 4

Relatives of Big-O Notation

• Big-Θ notation is used to express a tight
bound of a function.

n→∞
lim f (n)

g(n)
=

n→∞
lim g(n)

f (n)
= a finite positive constant

• f(n) is Θ(g(n)) if f(n) is both O(g(n))
and Ω(g(n))

• Or using limit notation:

f(n)

c1g(n)

c2g(n)

CISC 235 5

Examples of Big-O

• Let f(n) = 3n2 + 4n + 2
f(n) is in O(n2)

• Let t(n) = 5log2n
t(n) is in O(log n)

• Let w(n) = 6n + 2log2n
w(n) is in O(n)

• General rule: take the dominant term (increases the fastest)
and discard the constant factor

