Complexity

- Complexity: study of how time&space to execute an algorithm vary with problem size
- Let n denote the problem size ("size" of data being manipulated)
- Let function t(n) denote the time to execute algorithm with size n
- The function t(n) depends on
 - implementation details,
 - language used,
 - compiler, etc.
- Solution:
 - Abstraction, ie, concentrate on general characteristics of t(n)
 - eg, growth of t(n) proportional to n.
 - n (linear),
 - n² (quadratic), or
 - log n (logarithmic) etc.

CISC 235

Big-O Notation

Big-O notation is used to express an upper bound of a function. For example f(n) is O(g(n)) if f is bounded from above by a constant multiple of g(n) for sufficiently large values of n.

- More formally: there exist constants c > 0 and m > 0such that $f(n) \le cg(n)$ whenever $n \ge m$
- Or using limit notation:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \text{ or a finite positive constant}$$

Relatives of Big-O Notation

- Big- Ω notation is used to express an **lower** bound of a function. For example f(n) is $\Omega(g(n))$ if f is bounded from below by a constant multiple of g(n) for sufficiently large values of n.
- More formally: there exist constants c > 0 and m > 0such that $f(n) \ge cg(n)$ whenever $n \ge m$
- Or using limit notation:

$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0 \text{ or a finite positive constant}$$

Relatives of Big-O Notation

- Big-Θ notation is used to express a tight bound of a function.
- f(n) is $\Theta(g(n))$ if f(n) is both O(g(n)) and $\Omega(g(n))$
- Or using limit notation:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{g(n)}{f(n)} = \text{a finite positive constant}$$

CISC 235

Examples of Big-O

- General rule: take the **dominant term** (increases the fastest) and discard the constant factor
- Let $f(n) = 3n^2 + 4n + 2$ f(n) is in $O(n^2)$
- Let $t(n) = 5\log_2 n$ t(n) is in $O(\log n)$
- Let $w(n) = 6n + 2\log_2 n$ w(n) is in O(n)