
1

2/7/05CISC 235 (Winter 2002) 1

Multiway Search Trees

• Each internal node v of a multi-way search tree T

• has at least two children

• contains d-1 items, where

• d is the number of children of v

• an item is of the form (ki,xi) for 1 ≤ i ≤ d-1, where

• ki is a key such that ki ≤ ki+1 for 1 ≤ i < d-1

• xi is an element
• "contains" two pseudo-items k0 = - ∞ and kd = +∞

k0 kd.ki-1 kik1

2/7/05CISC 235 (Winter 2002) 2

Multiway-Search Trees (cont’d)

• Children of each internal node are "between" the items in
that node.

• If Ti is the subtree rooted at child vi, then all keys in Ti
fall between the keys ki-1 and ki, that is, ki-1≤ Ti ≤ ki

• As before, external nodes are just place holders.

k1 kkdd

TTii

. kki-1 kkii

TTddTT11

kkd-1

.

k0

2

2/7/05CISC 235 (Winter 2002) 3

Height of Multiway Search Trees

• Proposition: A multi-way search tree T storing n items has
n+1 external nodes.

• Proof: By induction over the height of T

• Induction base: height(T)=1

• Must have a single node with n items, with all subtrees
of height 0. By our definition, there are n+1 subtrees
and thus external nodes.

2/7/05CISC 235 (Winter 2002) 4

Height of Multiway Search Trees (cont’d)

• Induction step: height(T)>1

• Let the root node store m items

• By the definition of a multi-way node, it has m+1 subtrees

• By induction, each subtree Ti, 1 ≤ i ≤ m+1, has pi items and pi + 1
external nodes.

• We thus know that T holds a total of

X = (m + Σ 1 ≤ i ≤ m+1 pi)

items

• … and that T holds a total of

Y = Σ 1 ≤ i ≤ m+1 (pi+1)

external nodes (i.e., add up all external nodes of all subtrees).

• Y = Σ 1 ≤ i ≤ m+1 (pi+1) = (m+1) + Σ 1 ≤ i ≤ m+1 pi = X + 1

 Q.E.D.

3

2/7/05CISC 235 (Winter 2002) 5

Searching in Multiway Search Trees

• The obvious generalization of searching in a binary search
tree.

• Let s be the search key:

• If s < k1, then search the leftmost child

• If s > kd-1, then search rightmost child

• Else, find two keys ki-1 and ki such that s falls between
them and then search the child vi

• A search for a key in a multi-way tree will be O(height)

2/7/05CISC 235 (Winter 2002) 6

Special Cases of Multiway Search Trees

• Definition of Multiway Search Tree is very general

• We will look at two special cases:

• (2,4) Trees

• B-Trees

4

2/7/05CISC 235 (Winter 2002) 7

(2,4) Trees

• A (2,4) tree is a multi-way search tree such that
• Size property: Every internal node has at most four children
• Depth property: All external nodes have the same depth

• Size property offers us just enough flexibility to enforce the
rather strict depth property

• Both properties together ensure that (2,4) trees have
logarithmic height

12

5 10

3 4 6 7 8 11 13 14 17

15

2/7/05CISC 235 (Winter 2002) 8

Height of (2,4) Trees

• Proposition: The height h of a (2,4) tree is Θ(log n).

• Proof:

Let T be (2,4) tree with n items, m = n+1 external nodes.

By size and depth properties:

2h ≤ m ≤ 4h

By external node proposition of multi-way trees, we have m = n+1.

Thus,

2h ≤ n+1 ≤ 4h

h ≤ log(n+1) ≤ 2h

_ log(n+1) ≤ h ≤ log(n+1)

Thus, h is Θ(log n). QED

5

2/7/05CISC 235 (Winter 2002) 9

(2,4) Tree Insertion

• Let’s start with an example:

• A node may overflow if the node already stores 3 items and
 you try to insert another item into it.

Empty
tree 4

Insert 4

4 6 12

Insert 12

4 6
Insert 6

Insert 15 ?

2/7/05CISC 235 (Winter 2002) 10

(2,4) Tree Insertion (cont’d)

• Use search to find location in tree where new key is to be placed

• Case: Search stops successfully

• key already in tree

• done
• Case: Search stops unsuccessfully at node v

• Then, v must be “at bottom” of tree, that is, have empty children only
• Subcase: No overflow, ie, v has less than 3 keys

• insert new key
• Done. New tree is (2,4) tree

• Subcase: Overflow, i.e., v has 3 keys
• temporarily insert key
• since v now violates size property, perform split operation

6

2/7/05CISC 235 (Winter 2002) 11

(2,4) Tree Insertion: Split

• Must perform a split operation if a node v overflows:

• Replace node v with two nodes v' and v'' where

• v' gets the first two keys

• v'' gets the last key

• Send the other (third) key up the tree

• If v is root, create new root node v''' that stores the
third key and make v' the left child of v''' and v'' the
right child.

• Otherwise, add third key to the parent of v.

4 6 1512
v

v’ v’’

4 6 12 15

T1 T2 T3 T4 T5

4 6 15

T1 T2 T3 T4 T5

12

2/7/05CISC 235 (Winter 2002) 12

(2,4) Tree Insertion: Example 1

4 6

12

15

3 4 15

5 12

6

4 6 15
12

4 6 12 15

Insert 15

3 4 6 15

12

Insert 3

12

3 4 5 6 15

Insert 5

15

12

3 4 6

7

2/7/05CISC 235 (Winter 2002) 13

(2,4) Tree Insertion: Split (cont’d)

• A split operation is O(1)

• A split operation on a (2,4) tree retains the (2,4) tree
properties:

• size property: new nodes have 2 – 4 children
• depth property: depth of all leaves grows by 1
• order property: key values in children increase from left

to right.

2/7/05CISC 235 (Winter 2002) 14

(2,4) Tree Insertion: Split (cont’d)

• If parent is already full (i.e., has 3 keys) then overflow may
propagate, requiring another split operation at a higher level
all the way to the root.

• Since height is O(log n), one insert can cause at most
O(log n) overflows.

8

2/7/05CISC 235 (Winter 2002) 15

(2,4) Tree Insertion: Example 2

5 10 12

3 4 6 8 11 13 14 15 17

Insert 17

5 10 12

3 4 6 8 11 13 14 17

15

12

5 10 15

3 4 6 8 11 13 14 17 12

3 4 6 8 11 13 14 17

5 10 15

2/7/05CISC 235 (Winter 2002) 16

(2,4) Tree Deletion
• Use search to find key k in tree

• Case: Search stops unsuccessfully

• key not in tree. Done
• Case: Search stops successfully at node v

• Subcase: v is not a leaf, i.e., v has nonempty children
• find key k’ the in-order successor of k
• swap k’ and k (k is now in a leaf node we call v)
• remove one item and one child from v.

• Subcase: v is a leaf, i.e., v has only empty children
• remove one item and one child from v

11
6 15

5 8 10 14 17
13

Delete 13

9

2/7/05CISC 235 (Winter 2002) 17

(2,4) Tree Deletion: Underflow

• After deletion if v is left with no items and one child we say that an
underflow occurs.

• We resolve an underflow in one of two ways.

• Case 1: A sibling immediately to the left or to the right of v has more
than one item

Perform a transfer operation.

• Case 2: The immediate siblings of v all have exactly one item

Perform a fusion operation.

2/7/05CISC 235 (Winter 2002) 18

(2,4) Tree Deletion: Transfer Example 1

5 10

6 8 11

4

6 10

8 115

10

8 11

5 6

Delete 4

10

2/7/05CISC 235 (Winter 2002) 19

(2,4) Tree Deletion: Fusion Example 1

• We know that the node's sibling is a 2-node, so we fuse
them into one node.

6 10

5 8

12Delete 12

6 10

5 8

6

5 8 10

2/7/05CISC 235 (Winter 2002) 20

(2,4) Tree Deletion: Fusion Example 2

Delete 14

11

6

5 8 10 15 17

6 11

5 8 10 15 17

11
6 15

5 8 10 17

11

6 15
5 8 10

14
17

11

2/7/05CISC 235 (Winter 2002) 21

(2,4) Tree Deletion: Fusion + Transfer Example

Delete 14

11

15

17

6 9

5 8 10

11

15 17

6

5 8 10

9

11

6 9 15
5

14
178 10

11

15 17

6

5 8 10

9

Note: Exactly
one child

Fusion

Transfer

2/7/05CISC 235 (Winter 2002) 22

(2,4) Tree Deletion: Transfer

• Transfer operation: Immediate sibling s of underflow node v has more
than one key

• Take key from parent of v which is between v and s, and add that key
to v

• Replace missing key in the parent with key that is closest in value
from the sibling s of v

• s now stores one fewer keys, but still has an extra subtree

• If transfer operation occurs when v is at bottom level, the extra
subtree is empty and can just be deleted

• If transfer operation occurs at higher level, node v will always have
exactly one child before the transfer. We can thus move the extra
subtree of s to v

• Transfer does not propagate underflow

• Transfer is O(1)

12

2/7/05CISC 235 (Winter 2002) 23

(2,4) Tree Deletion: Fusion

• Fusion operation: The immediate siblings of v have exactly one key

• Choose an immediate sibling s of node v. Let’s say that s contains
the key ks

• Take key kp from parent of v which is between v and s, and add that
key to v

• Merge v and s into single new node that contains the single key now
in v and the single key from s (i.e., ks and kp)

• The parent now has one fewer keys and one fewer subtrees

• If parent previously had only one key stored, then it now also suffers
from underflow, and contains exactly one subtree

• If fusion propagates to root, then remove root and make new merged
node the new root

• Fusion is O(1), but may propagate underflow

2/7/05CISC 235 (Winter 2002) 24

(2,4) Tree Deletion Algorithm
Algorithm to delete k:

 0. Search for k
1. If necessary, swap k with inorder successor to bottom of tree into node v

such that v has only external children

2. Delete k from v

3. If v does not underflow, then done

4. If v underflows, then

a) if v root, replace v with its child. Done

 b) else pull key down from parent into v

5. If an immediate sibling is 3- or 4-node, then

a) transfer key up to parent from sibling. Move subtree if necessary. Done

b) else

• fuse node v and its sibling

• if underflow in parent, then repeat from step 4 using parent as node v,
else done

13

2/7/05CISC 235 (Winter 2002) 25

(2,4) Tree Deletion Algorithm (cont’d)

delete(Key k) :

v = search(k);
if (v not leaf) {
swap k with successor key;
v = node of successor key;
delete k from v

}
// v is leaf
if v does not underflow, then done;
else handleUnderflow(v);

2/7/05CISC 235 (Winter 2002) 26

(2,4) Tree Deletion Algorithm (cont’d)

handleUnderflow(node v):
 // called when v is underflowing, ie, v is 1-node
 if v is the root
 replace it with its one child
 else if v has left sibling & is a 3 or 4-node

 transfer(v, v's left sibling)
 else if v has right sibling & is 3 or 4-node
 transfer(v, v's right sibling)
 else

 // must do a fusion
 if v has a left sibling
 fuse(v's left sibling, v)
 else
 fuse(v, v's right sibling)
 if fusion made parent into a one-node

 handleUnderflow(parent)

14

2/7/05CISC 235 (Winter 2002) 27

(2,4) Tree Deletion (cont’d)

• Underflow may propagate all the way to root.
• Underflow only propagates when a fusion results in an

empty parent.
• Fusion resulting in a 2- or 3-node parent or a transfer will

complete the deletion process.
• That is, deletion involves a (possibly empty) sequence of

fusion operations followed (possibly) by a transfer operation
• Interesting fact:

• Can always do fusion (possibly followed by a split)
instead of transfer

• If only use fusions and no transfer, still get O(log n) but
with larger constant factor

2/7/05CISC 235 (Winter 2002) 28

(2,4) Tree Deletion Complexity

• Find key to remove: O(h)

• Swap with successor if not leaf: O(h)

• Transfer or fuse if underflow: O(1)

• Maximal number of underflows: O(h)

• Thus, since h is O(log n), complexity of deletion is O(log n)

15

2/7/05CISC 235 (Winter 2002) 29

(2,4) Tree Summary

• Height of a (2,4) tree is Θ(log n)

• Helper functions: split, transfer, and fusion (all take O(1))

• Search, insert, and delete each take O(log n)

• Advantages of (2,4) trees over AVL trees:

• Easier to understand and implement (no rotations).

• Tree may have fewer nodes.

• Disadvantages of (2,4) trees over AVL trees:

• Both trees perform dictionary operations in O(log n) worst case
time. However, AVL trees are more efficient by a constant factor.

• (2,4) trees use 3 different types of node (i.e. 2, 3, or 4 children).

