Multiway Search Trees

» Each internal node v of a multi-way search tree T
* has at least two children
* contains d-1 items, where

* d is the number of children of v
* an item is of the form (k;,x;) for 1 =i =<d-1, where
* k;is akey such thatk; <k, , for 1 =i<d-1
* X, 1s an element
* "contains" two pseudo-items k, = - « and k,; = +o

CISC 235 (Winter 2002) 2/7/05

Multiway-Search Trees (cont’d)

e Children of each internal node are "between" the items in
that node.

* If T, is the subtree rooted at child v,, then all keys in T,
fall between the keys k; ; and k;, thatis, k; ;= T, <k

1

» As before, external nodes are just place holders.

CISC 235 (Winter 2002) 2/7/05

Height of Multiway Search Trees

* Proposition: A multi-way search tree T storing n items has
n+1 external nodes.
* Proof: By induction over the height of T
 Induction base: height(T)=1

* Must have a single node with n items, with all subtrees
of height 0. By our definition, there are n+1 subtrees
and thus external nodes.

CISC 235 (Winter 2002) 2/7/05 3

Height of Multiway Search Trees (cont’d)

* Induction step: height(T)>1
¢ Let the root node store m items

* By the definition of a multi-way node, it has m+1 subtrees

* By induction, each subtree T,, 1 <i=<m+1, has p; items and p; + 1
external nodes.

* We thus know that T holds a total of
X =m+Z _ i.niPi)

items

* ... and that T holds a total of
Y = Z o (0D

external nodes (i.c., add up all external nodes of all subtrees).

* Y = Z () = (mtD+E,__ap = X+
Q.E.D.

CISC 235 (Winter 2002) 2/7/05 4

Searching in Multiway Search Trees
The obvious generalization of searching in a binary search
tree.
Let s be the search key:
+ If' s <k, then search the leftmost child
+ If s>k, ,, then search rightmost child

* Else, find two keys k;_; and k; such that s falls between
them and then search the child v;

A search for a key in a multi-way tree will be O(height)

CISC 235 (Winter 2002) 2/7/05

Special Cases of Multiway Search Trees

Definition of Multiway Search Tree is very general
We will look at two special cases:

* (2,4) Trees

* B-Trees

CISC 235 (Winter 2002) 2/7/05

(2,4) Trees

* A (2,4) tree is a multi-way search tree such that
* Size property: Every internal node has at most four children
* Depth property: All external nodes have the same depth

* Size property offers us just enough flexibility to enforce the
rather strict depth property

* Both properties together ensure that (2,4) trees have
logarithmic height

CISC 235 (Winter 2002) 2/7/05 7

Height of (2,4) Trees

* Proposition: The height h of a (2,4) tree is ©(log n).
* Proof:
Let T be (2,4) tree with n items, m = n+1 external nodes.

By size and depth properties:

2h < m < 4h

By external node proposition of multi-way trees, we have m =n+1.

Thus,
2 < ntl = 4h
h =< log(ntl) = 2h
_log(ntl) = h = log(ntl)
Thus, h is ©(log n). QED

CISC 235 (Winter 2002) 2/7/05 8

(2,4) Tree Insertion

» Let’s start with an example:

Empty Insert 4 Insert 6
—_— > e
tree @

Insert 12

Insert 15 .9

* A node may overflow if the node already stores 3 items and
you try to insert another item into it.

CISC 235 (Winter 2002) 2/7/05 9

(2,4) Tree Insertion (cont’d)

* Use search to find location in tree where new key is to be placed
* Case: Search stops successfully
* key already in tree

* done
* Case: Search stops unsuccessfully at node v
* Then, v must be “at bottom” of tree, that is, have empty children only
* Subcase: No overflow, ie, v has less than 3 keys
* insert new key
* Done. New tree is (2,4) tree
* Subcase: Overflow, i.e., v has 3 keys
* temporarily insert key
* since v now violates size property, perform split operation

CISC 235 (Winter 2002) 2/7/05 10

(2,4) Tree Insertion: Split

* Must perform a split operation if a node v overflows:

* Replace node v with two nodes v' and v'"' where
* v' gets the first two keys e N S—
V" gets the last key

* Send the other (third) key up the tree

 If'v is root, create new root node v'" that stores the
third key and make v' the left child of v""" and v" the
right child.

 Otherwise, add third key to the parent of v.

— 2
Tl T2 T3 T4 T5 Tl T2 T3 T4 T5
CISC 235 (Winter 2002) 2/7/05 11

(2,4) Tree Insertion: Example 1
\ @ (12)
Insert 15

Insert 3

4‘\ 4’\

CISC 235 (Winter 2002) 2/7/05 12

(2,4) Tree Insertion: Split (cont’d)

A split operation is O(1)

» A split operation on a (2,4) tree retains the (2,4) tree
properties:

* size property: new nodes have 2 — 4 children

* depth property: depth of all leaves grows by 1

 order property: key values in children increase from left
to right.

CISC 235 (Winter 2002) 2/7/05 13

(2,4) Tree Insertion: Split (cont’d)

 If parent is already full (i.e., has 3 keys) then overflow may
propagate, requiring another split operation at a higher level
all the way to the root.

+ Since height is O(log n), one insert can cause at most
O(log n) overflows.

CISC 235 (Winter 2002) 2/7/05 14

(2,4) Tree Insertion: Example 2

Insert 17} m

CISC 235 (Winter 2002) 2/7/05 15

(2,4) Tree Deletion

» Use search to find key k in tree
» Case: Search stops unsuccessfully
* key not in tree. Done
» Case: Search stops successfully at node v
* Subcase: v is not a leaf, i.e., v has nonempty children
+ find key k’ the in-order successor of k
» swap k’ and k (k is now in a leaf node we call v)
* remove one item and one child from v.
* Subcase: v is a leaf, i.e., v has only empty children
* remove one item and one child from v

Delete 13
<r>
By~ O

CISC 235 (Winter 2002) 2/7/05 16

(2,4) Tree Deletion: Underflow

» After deletion if v is left with no items and one child we say that an
underflow occurs.

* We resolve an underflow in one of two ways.

* Case 1: A sibling immediately to the left or to the right of v has more
than one item

—> Perform a transfer operation.
* Case 2: The immediate siblings of v all have exactly one item

-> Perform a fusion operation.

CISC 235 (Winter 2002) 2/7/05 17

(2,4) Tree Deletion: Transfer Example 1
Delete 4

T~ ®o oo

CISC 235 (Winter 2002) 2/7/05

(2,4) Tree Deletion: Fusion Example 1

* We know that the node's sibling is a 2-node, so we fuse
them into one node.

Delete 12 12
> D

CISC 235 (Winter 2002) 2/7/05

(2,4) Tree Deletion: Fusion Example 2

Delete 14 /®\

CISC 235 (Winter 2002) 2/7/05

20

10

(2,4) Tree Deletion: Fusion + Transfer Example

Delete 14

Note: Exactly
one child

CISC 235 (Winter 2002) 2/7/05 21

(2,4) Tree Deletion: Transfer

* Transfer operation: Immediate sibling s of underflow node v has more
than one key

» Take key from parent of v which is between v and s, and add that key
tov

* Replace missing key in the parent with key that is closest in value
from the sibling s of v

* s now stores one fewer keys, but still has an extra subtree

« [If transfer operation occurs when v is at bottom level, the extra
subtree is empty and can just be deleted

« If transfer operation occurs at higher level, node v will always have
exactly one child before the transfer. We can thus move the extra
subtree of s to v

* Transfer does not propagate underflow

* Transfer is O(1)

CISC 235 (Winter 2002) 2/7/05 2

11

(2,4) Tree Deletion: Fusion

* Fusion operation: The immediate siblings of v have exactly one key

* Choose an immediate sibling s of node v. Let’s say that s contains
the key k,

* Take key k,, from parent of v which is between v and s, and add that
key tov

* Merge v and s into single new node that contains the single key now
in v and the single key from s (i.e., k; and k)

* The parent now has one fewer keys and one fewer subtrees

 If parent previously had only one key stored, then it now also suffers
from underflow, and contains exactly one subtree

« If fusion propagates to root, then remove root and make new merged
node the new root

* Fusion is O(1), but may propagate underflow

CISC 235 (Winter 2002) 2/7/05 23

(2,4) Tree Deletion Algorithm

Algorithm to delete k:
0. Search for k
1. If necessary, swap k with inorder successor to bottom of tree into node v
such that v has only external children

2. Delete k from v
3. If v does not underflow, then done
4. If v underflows, then
a) if v root, replace v with its child. Done
b) else pull key down from parent into v
5. If an immediate sibling is 3- or 4-node, then
a) transfer key up to parent from sibling. Move subtree if necessary. Done
b) else
* fuse node v and its sibling

¢ if underflow in parent, then repeat from step 4 using parent as node v,

else done
CISC 235 (Winter 2002) 2/7/05 24

12

(2,4) Tree Deletion Algorithm (cont’d)
delete (Key k)

v = search(k) ;
if (v not leaf) {
swap k with successor key;
v = node of successor key;
delete k from v
}
// v is leaf
if v does not underflow, then done;
else handleUnderflow(v) ;

CISC 235 (Winter 2002) 2/7/05 25

(2,4) Tree Deletion Algorithm (cont’d)

handleUnderflow (node v) :
// called when v is underflowing, ie, v is l-node
if v is the root
replace it with its one child
else if v has left sibling & is a 3 or 4-node
transfer (v, v's left sibling)
else if v has right sibling & is 3 or 4-node
transfer (v, v's right sibling)
else
// must do a fusion
if v has a left sibling
fuse(v's left sibling, v)
else
fuse(v, v's right sibling)
if fusion made parent into a one-node
handleUnderflow (parent)

CISC 235 (Winter 2002) 2/7/05 26

13

(2,4) Tree Deletion (cont’d)

Underflow may propagate all the way to root.

Underflow only propagates when a fusion results in an
empty parent.

Fusion resulting in a 2- or 3-node parent or a transfer will
complete the deletion process.

That is, deletion involves a (possibly empty) sequence of
fusion operations followed (possibly) by a transfer operation

Interesting fact:

 Can always do fusion (possibly followed by a split)
instead of transfer

« If only use fusions and no transfer, still get O(log n) but
with larger constant factor

CISC 235 (Winter 2002) 2/7/05 27

(2,4) Tree Deletion Complexity

Find key to remove: O(h)

Swap with successor if not leaf: O(h)

Transfer or fuse if underflow: O(1)

Maximal number of underflows: O(h)

Thus, since h is O(log n), complexity of deletion is O(log n)

CISC 235 (Winter 2002) 2/7/05 28

14

(2,4) Tree Summary

Height of a (2,4) tree is ©@(log n)
Helper functions: split, transfer, and fusion (all take O(1))
Search, insert, and delete each take O(log n)
» Advantages of (2,4) trees over AVL trees:
* Easier to understand and implement (no rotations).
* Tree may have fewer nodes.
» Disadvantages of (2,4) trees over AVL trees:

* Both trees perform dictionary operations in O(log n) worst case
time. However, AVL trees are more efficient by a constant factor.

* (2,4) trees use 3 different types of node (i.e. 2, 3, or 4 children).

CISC 235 (Winter 2002) 2/7/05 29

15

