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(2)Universitat Politècnica de Catalunya, Spain (hurtado@ma2.upc.es)

(3)Queen’s University, Canada (henk/daver@cs.queensu.ca)

(4)Universitat de Girona, Spain (sellares@ima.udg.es)

July 7, 2003

Abstract

Given a set of n points S in the Euclidean plane, we address the problem of computing an

annulus A, (open region between two concentric circles) of largest width, that partitions S into

a subset of points inside and a subset of points outside the circles, such that no point p ∈ S

lies in the interior of A. This problem can be considered as a maximin facility location problem

for n points such that the facility is a circumference. We give a characterization of the centres

of annuli which are locally optimal and we show that the problem can be solved in O(n3 log n)

time and O(n) space. We also consider the case in which the number of points in the inner

circle is a fixed value k. When k ∈ O(n) our algorithm runs in O(n3 log n) time and O(n) space,

furthermore, we can simultaneously optimize for all values of k within the same time bound.

When k is small, that is a fixed constant, we can solve the problem in O(nlogn) time and O(n)

space.

1 Introduction

In this paper we consider the placement of an undesirable circular route through a collection of

existing facilities. We assume that the circumference of the circle has points both in its in interior

and exterior. See Figure 1. We prove that there are a combinatorially small number of candidates

for the centre of a circular route that is maximally far from the facilities. This leads to the design

of a non trivial and efficient algorithm. While our specific problem is new, several similar problems

have been previously considered, as we detail below.
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Figure 1: A largest empty annulus.

Most of the facility location problems described in the literature are concerned with finding a

location for ”desirable” facilities. The goal there is to minimize a distance function between given

points, the ”customers”, and the new facility. However, just as important are the problems dealing

with the location of ”undesirable” or ”obnoxious” facilities, where instead of minimizing the maximal

distance between the facility and the point set, we want to maximize the minimal distance between

the facility and the given points. Notice that if the domain of possible locations for the facility is the

entire plane, then the facility can be removed to infinity. Therefore, some constrains on the location

should be specified, in our case the fact that the circumference of the circle has points both in its

interior and exterior.

In classical location problems, the facilities are one or several points. However, facilities may be

modeled by more complex objects such as line segments, lines, halflines, planes, or circles to name

a few. This leads to new problems and techniques for solving them. See [9] for a recent review of

such results.

In recent years there has been an increasing interest in considering the location of obnoxious

routes (transportation of toxic or obnoxious materials), most of the papers deal with models within

an underlying discrete space. For example see [2, 5]. In the continuous case, in which the route

can be located anywhere, there has been very little progress towards obtaining efficient algorithms.

An iterative approach for finding the location of a polygonal route which maximizes the minimum

distance to a set of points is proposed in [10], but efficient algorithms are not known.

Several problems on computing widest empty corridors have received attention within the area

of computational geometry, for example considering empty strips, L-shapes, as well as many other

possibilities, see [7, 8, 17, 18, 19, 6].

Similar notions can be cast in the setting where an annulus is used for separation. Given a set of

points in the plane, we want to separate the set into two subsets with the widest annulus. Related
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results are given in [3, 13, 22, 23]. Another application for our results is the so called k-clustering

problem, [4, 12]

A dual optimization problem is to find the location of a facility (circumference) which minimizes

the maximum distance from all sites. In [9] this problem is termed the sphere-centre problem, and

it corresponds to computing the smallest width annulus that contains a given set of points. Efficient

algorithms for solving this problem are discussed in [11, 1, 15]. See [24, 14]. for similar problems

using other geometric shapes.

We outline the rest of the paper. In section 2, we establish some notation and preliminary results.

In section 3, we propose an algorithm to compute the centre of a largest empty annulus. In section

4, we address a particular case where we fix the number of points in the inner circle of the annulus.

Finally, section 5 contains some concluding remarks and poses some open problems.

2 Characterization of candidate centres

We begin by introducing some notation. Let A denote an annulus, that is, the open region between

two concentric circles. It will be convenient to access features of the annulus, thus we use c(A) to

denote the centre of the circles, r(A) and R(A) the radii of the circles, where it understood that

r(A) ≤ R(A), and o(A) and O(A) the boundary of the circles, such that the radius of o(A) is r(A)

and the radius of O(A) is R(A). Let w(A) = R(A) − r(A) denote a quantity we call the width

of A. We use d(p, q) to denote the Euclidean distance between points p and q. Given a set, S,

of n points in the Euclidean plane, we say that an annulus A is an empty annulus for S if the

annulus induces a partition of S into two non-empty subsets IN(A, S) = {s : d(s, c(A)) ≤ r(A)} and

OUT(A, S) = {s : d(s, c(A)) ≥ R(A)}. Let E(S) denote the set of all empty annuli for S, and let

Γ(S) denote the subset of E(S) consisting of empty annuli of greatest width, defined precisely as:

Γ(S) = {A ∈ E(S) : w(A) ≥ w(B) for all B ∈ E(S)} (1)

Observe that Γ(S) is non-empty for any set of two or more points. We define ω(S) to be equal

to w(A) where A is any annulus in Γ(S). We present an algorithm that determines the quantity

ω(S). The algorithm will also be able to produce a witness annulus A ∈ Γ(S). Although Γ(S) may

be infinitely big, our algorithm can also produce a concise description of Γ(S). In this section we

provide characterizations for largest empty annuli, that is, the annuli in Γ(S).

To begin with we make the obvious observation that if A ∈ Γ(S) then

|o(A) ∩ S| ≥ 1 and |O(A) ∩ S| ≥ 1. (2)
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Figure 2: If A is an optimal non-syzygy annulus then |o(A) ∩ S| ≥ 2 and |O(A) ∩ S| ≥ 2.

Consider the case where an annulus A ∈ Γ(S) has the property that |IN(A, S)| = 1. For a point

s ∈ S define α(s) = min(d(s, t), t ∈ S − {s}). In this case ω(S) = max(α(s), s ∈ S). That is ω(S)

is realized by the farthest nearest neighbours. For example if q is the nearest neighbour of p then

we can construct an annulus A such that c(A) = p, r(A) = 0, and R(A) = d(p, q). The all nearest

neighbour graph of a set of points is a well known structure that can be found in O(n log n) time

[21, page 183]. Thus we can easily dispense with this special case.

From now on we restrict our attention to annuli where |IN(A, S)| > 1.

A syzygy is an astronomical term meaning the points on the moon’s orbit when the moon is in

line with the earth and the sun. We borrow this term to define a syzygy annulus as an annulus

A ∈ Γ(S) such that there are points p, q, with p ∈ S ∩ o(A) and q ∈ S ∩O(A), and p is contained in

the open segment (c(A), q).

Lemma 2.1 Let A ∈ E(S), where A is not a syzygy annulus. If |o(A) ∩ S| = 1 or |O(A) ∩ S| = 1

then A 6∈ Γ(S).

Proof: We begin by showing that if A ∈ E(S) such that |S ∩ o(A)| = 1 and |S ∩O(A)| ≥ 1 then

A 6∈ Γ(S). Let p = S ∩ o(A). This implies that we can find an annulus A′ ∈ E(S) such that c(A′) is

on the open segment {c(A), p} and there is a q ∈ S such that q ∈ S ∩O(A) and q ∈ S ∩O(A′). The

point q is simply a point in S ∩ O(A) that is closest to c(A′). See Figure 2 (a). Using the triangle

inequality we have:

R(A′) + (r(A) − r(A′)) > R(A) → R(A′) − r(A′) > R(A) − r(A). (3)
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Thus w(A′) > w(A) so A 6∈ Γ(S).

Now suppose that A ∈ E(S) and |o(A) ∩ S| ≥ 2 and |O(A) ∩ S| = 1. Let q = S ∩ O(A). This

time we construct an annulus A′ ∈ E(S) such that c(A) is on the open segment (c(A′), q) and there

is a p ∈ S such that p ∈ S ∩ o(A) and p ∈ S ∩ o(A′). The point p is simply a point in S ∩ o(A) that

is furthest from c(A′). See Figure 2 (b). Again by the triangle inequality we have:

r(A) + (R(A′) − R(A)) > r(A′) → R(A′) − r(A′) > R(A) − r(A). (4)

Thus w(A′) > w(A) so A 6∈ Γ.

Thus we conclude that if A is not a syzygy annulus and |o(A) ∩ S| = 1 or |O(A) ∩ S| = 1, then

A 6∈ Γ.

2

As a consequence of equation 2 together with lemma 2.1 we conclude that every optimal non-

syzygy annulus A has |o(A) ∩ S| ≥ 2 and |O(A) ∩ S| ≥ 2.

We now deal with the syzygy annuli.

Lemma 2.2 Suppose that A is a syzygy annulus such that |IN(A, S)| ≥ 2 and A ∈ Γ(S). Then

there exists an annulus A′ ∈ Γ(S) such that |o(A′) ∩ S| ≥ 2.

Proof: If |o(A)∩ S| ≥ 2, then we set A′ = A and we are done. Otherwise, using the methods of

lemma 2.1 equation 3 we can obtain an empty annulus A′ such that w(A) = w(A′) and |o(A′)∩S| ≥ 2.

2

The preceding lemmas suggest the following theorem.

Theorem 2.3 If there is an annulus A ∈ Γ(S) such that |IN(A, S)| ≥ 2 then there is an annulus

A′ ∈ Γ(S) such that |o(A′) ∩ S| ≥ 2.

Proof: Follows immediately from Lemma 2.1 and Lemma 2.2. 2

This theorem implies that the search space for the centre of a largest empty annulus can be

limited to the right bisectors of pairs of points from S.

3 Finding a largest empty annulus

We describe an algorithm to determine the centre of a largest empty annulus that is constrained to

lie on the right bisector of a pair of points p and q, B(p, q). For convenience we adopt a Cartesian

coordinate system such that B(p, q) is the line L : y = 0. We denote the x and y coordinates of a

point s as xs and ys. Now for every point s ∈ S we determine the curve Ls : y =
√

(xs − x)2 + y2
s .
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Figure 3: An arrangement of curves, Ls(x), and a minimization partition of the bisector B(p, q).

The point marked with an x is representative of p and q.

Observe that for any two points s and t in S, the intersection of Ls and Lt satisfies

x =
x2

t − x2
s + y2

t − y2
s

2(xt − xs)
(5)

Thus

• Ls and Lt are coincident when xs = xt and ys = −yt

• Ls and Lt have no common point when xs = xt and ys 6= −yt

• Ls and Lt have one common point when xs 6= xt

For a fixed value of x let Ls(x) =
√

(xs − x)2 + y2
s . Then

ds(x) =







Ls(x) − Lp(x) if Ls(x) > Lp(x)

∞ otherwise

Let S′ = S − {p, q}, and set

F (x) = {s ∈ S′ : ds(x) ≤ dt(x) for all t ∈ S′}.

Observe that F induces a partition of L into intervals. Each equivalence class is a maximal

interval of L such that for all points in the interval, F (x) is the same subset of S. See Figure 3. We

slightly modify the partition such that it only consists of single points and open intervals. Closed

intervals of the form [a, b] or a half-open interval (a, b] or [a, b) are replaced by [a], (a, b), [b], or by

(a, b), [b], or [a], (a, b) respectively. The number of intervals in the partition is in O(n), because the

partition is a minimization partition of a pseudoline arrangement. See [16].

We can compute the intervals induced by F in O(n logn) time using a divide and conquer

algorithm. The merge step simply scans two sorted lists of intervals. We then compute intersections

of curves within overlapping intervals to merge in linear time.
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We say that an interval is good if it contains a point (x, 0) such that ds(x) is a positive finite

value, for s ∈ F (x). Then there is an empty annulus A such that c(A) = (x, 0), p, q ⊆ o(A) ∩ S and

F (x) = O(A) ∩ S. If ds(x) = ∞ for s ∈ F (x) then a circle centred at (x, 0) and passing through

{p, q} is a spanning circle of S. So this circle is not the inner circle o(A) of an empty annulus A.

Once we have a determined the partition of L into intervals, we can determine for each good

interval a locally maximal empty annulus. When an interval u is just a single point there is a unique

annulus there. Let u be an interval that is not a single point and let z be a value in u. Let s ∈ F (z).

We need to find the x such that ds(x) is finite and maximal. It is easy to show that if this maximum

exists, then it occurs at x = (xsyp − xpys)/(yp − ys). At this point x the distance between Ls and

Lp is maximal, so either ds(x) is infinite or maximally finite. If x ∈ u and ds(x) is finite, we have

a syzygy annulus A centred at (x, 0) with {p, q} ⊆ o(A) ∩ S and F (x) = O(A) ∩ S. If x /∈ u then

we know that any annulus A centred at a point within the interval u with p, q ⊆ o(A) ∩ S and

F (x) ⊆ O(A) ∩ S is not optimal.

To summarize, by searching through bisectors for every pair of points in S, we can determine

ω(S) in O(n3 log n) time and O(n) space. Furthermore we can characterize all annnuli that realize

ω(S) by an ordered pair (o(A) ∩ S, O(A) ∩ S).

4 Largest empty k-inner points annulus problem

An interesting related problem fixes the number of points in IN(A, S). In fact, in some situations

we may be interested in separating exactly k points from the rest of the set S. Using a separation

criteria of the widest circular corridor, leads to the problem of computing a largest empty annulus

containing k points in its inner circle.

We adapt the notation of section 2 to handle the situation when the number of points in IN(A, S)

is fixed. Let Ek(S) denote the set of all empty annuli with k inner points, and let Γk(S) denote the

subset of Ek(S) consisting of empty annuli with greatest width.

Theorem 4.1 If there is an annulus A ∈ Γk(S) with k ≥ 2 then there is an annulus A′ ∈ Γk(S)

such that |o(A′) ∩ S| ≥ 2.

Proof: The arguments of lemma 2.1 and lemma 2.2 do not modify the sets IN(A, S). Thus the

results immediately hold for largest empty k-inner point annuli. 2

We can apply the algorithm of section 3 with a simple modification. Recall, we constrain our

search to empty annuli that lie on the right bisector, B(p, q) of a pair of points from S, p and q .

The simple modification is that we only consider empty annuli with k-inner points. Consider the

arrangement of curves Ls for all s ∈ S. For every real value x we define
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M(x) = {s ∈ S : Lx(s) ≤ Lx(p)}

Thus when |M(x)| = k there is a circle centred at (x, 0) passing through the points p and q and

containing exactly k points in its interior and boundary. As before we have a set of intervals. Let

us number the intervals from left to right as I0, I1, . . . , Im. If two points (x1, 0) and (x2, 0) are both

in the same interval then M(x1) = M(x2). Furthermore, it is easy to see that we can modify the

algorithm that computes the intervals of L in such a way that it also computes M(Ij+1) − M(Ij).

Thus we can solve the empty annulus problem when k is fixed in the same time and space bound

as before, that is, in O(n3 log n) time and O(n) space. Observe that our method allows us to

simultaneously keep track of optimal solutions for a range of values of k, within the same time and

space complexity.

If k is a small fixed constant, then we can do considerably better by using a different approach.

Given a set of points S, let VDk(S) denote the order-k Voronoi diagram of S. Recall that VDk(S)

partitions the plane into cells, each of which is a locus of points closest to some k element subset of

S. See [20]. Let C be a cell in VDk+1(S) and let SC denote the k +1 element subset of S associated

with the cell C. Suppose A is a largest k-inner point empty annulus of S and c(A), the centre of

A, is in C. Then A is also a largest k-empty annulus of SC with |IN(A, SC)| = k. Moreover, by

Lemma 4.1, at least two points from SC lie on o(A), so c(A) lies on a bisector of two points of

SC . This leads us to the following algorithm. We first find VDk+1(S). In [20] D.T. Lee shows that

VDk(S) can be found in O(k2n log n) time and O(k(n − k)) space. For each cell C of VDk+1(S)

we find a point c(A) in C that gives the largest empty k-inner point annulus. If k is a small fixed

constant, then VDk+1(S) can be computed in O(n log n) time and O(n) space. Finding the largest

empty annulus in a cell C can be done in constant time by processing the bisectors of pairs of point

from SC . Therefore for k a fixed constant we can find the largest empty k-inner point annulus in

O(n log n) time and O(n) space.

5 Conclusions and further research

In this paper we have dealt with the problem of computing an empty annulus of maximum width for

a set of n points in the plane. We have characterized the centres of annuli which are locally optimal

and we have proposed an algorithm to solve the problem in O(n3 log n) time. We remark that the

algorithm is easy to implement and produces a description of all the optimal annuli.

We have also presented an approach by using Voronoi diagrams to solve the case in which the

number of interior points is a fixed constant k. When k is a fixed constant we obtain a substantially

faster algorithm.
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Finally, there are a set of open problems in this context where one may consider parabolic, or

conic routes. Then we must find other geometric largest empty regions. Another issue to consider

is attempting to find largest empty annuli in higher dimensions.
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