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Abstract

A musical scale can be viewed as a subsequence of notes taken from a chromatic sequence. Given
integers (N,K) N > K we use particular integer partitions ofN into K parts to construct distinguished
scales. We show that a natural geometric realization of these scales results in maximal polygons.

1 Introduction

In his book on jazz ear training Steve Masakowski [6] speaks of four key scales that form the basis of
organization that allows jazz musicians to understand and follow the harmony and melody of a piece. In his
paper on seven tone collections Jay Rahn [7] analyzes seven note collections from the perspective of interval
structure. With a small exception his seven note collection is identical to the Masakowski collection. In this
note we present a combinatorial approach to generating a seven note collection of scales. The collection is
not derived from musical consideration but is a collection that satisfies a geometric constraint. Again this
collection with some small exceptions matches those of the Masakowski and Rahn collections.

A landmark result in combinatorial music theory is the characterization of the diatonic scale by Clough
and Douthett [1]. The characterization can be made in numerous ways. In a subsequent paper Clough et al.
[2] enumerate eight different characterizations of the diatonic scale. A more recent mathematical treatment
looking at many of these results pertaining to rhythms as well as scales can be found in the paper by Demaine
et al. [3] . If we consider a scale as a subsequence of a chromatic circular sequence to be realized by a set of
equally spaced points on the circumference of a unit circle, then we can express the distance between notes
of the scale as the Euclidean distance between their point representations. Using this representation there
is a simple geometric property that encapsulates all of these rules and is unique to the diatonic scale. The
diatonic scale is the unique seven note scale (up to rotations) that maximizes the sum of Euclidean distances
between every pair of notes.

In this note we take a purely mathematical approach at deriving an interesting group of seven note collec-
tions. Rather than base the choice on any deep musical analysis, we will simply define some mathematical
objective, solve for it, and report the results. The underlying contribution that is made is a distillation of
a plethora of rules and properties into a simple and general framework. Just as the diatonic scale is char-
acterized by a single geometric property, the collection of seven note scales presented are all maximal in a
geometric sense.

2 Preliminaries

A musical scale can be viewed as a subsequence of notes taken from a chromatic sequence. Thus we can
use the notation (N,K) scales to denote scales ofK notes taken from anN note chromatic universe. We
develop some notation to describe (N,K) scales in general before we turn our focus to (12,7) scales in
particular.

A well known combinatorial object, the “necklace”, captures the notion of modelling a scale with a circular
sequence. An-ary necklace is defined as an equivalence class ofn-ary strings under rotation, see [10]. More



intuitively, think of a string of beads. The string of beads is an implicit sequence that is invariant under
rotations. Relating this concept to the diatonic scale consider a string of black and white beads arranged
in the same pattern as 12 white and black keys comprising a single octave on the piano. Note that in his
well known list of scales Alan Forte [5] considers equivalence classes of strings that are invariant under
rotation and reflection. In music theory terminology rotation = transposition and reflection = inversion. The
requisite combinatorial structure that can be used to enumerate sequences that are invariant under rotation
and reflection is thebracelet. Much is known about the cardinality of necklaces and bracelets, and both of
these combinatorial objects can be enumerated with very efficient algorithms, see [10, 9].

An additional property that is needed to perform our analysis is to embed the combinatorial necklace onto
a concrete geometric surface. Thus we can consider the beads to be placed at equally spaced intervals on
the circumference of a circle of radius one.

For ann-ary necklace we can label the beads from0 . . . n − 1, and by convention always assume that the
0 bead is white. This labelling is useful for describing the distance between any two white beads. We use
three distinct distances. Thus for two white beadsi, j i 6= j, we have:

chromatic The chromatic distance between any two distinct white beadsi andj is denoted byci,j = |{k :
k ∈ [i + 1 . . . j]}| that is the total number of beads in the substring[i + 1 . . . j].

scalar The scalar distance between any two distinct white beadsi and j is given bydi,j = |{k : k ∈
[i + 1 . . . j] and k is white}| that is the total number of white beads in the substring[i + 1 . . . j].

Euclidean The Euclidean distance between any two distinct white beadsi andj is denoted byei,j is the
length of the line segment between points representing the beads.

In 1956 Fejes T́oth asked for the configuration of points on a continuous circle of fixed radius that maxi-
mizes the sum of inter-point distances. The answer is to place then points at the vertices of a regularn-gon
[4]. Asking a similar question for placing points on a discrete circle, that is a circle with a finite number of
equally spaced possible positions with fixed radius, yields the diatonic collection as the unique answer when
the number of points is seven and the number of positions on the circle is twelve. In essence the points are
spread out as evenly as is possible. Hence the name given by Clough and Douthettmaximally even[1].

The quantity that is maximized can be written as:∑
for all distinct i,j

ei,j .

This sum can be broken down into components, each representing the sum of the inter-point distances for
pairs that are at the same scalar distance. Let

Σ` =
∑

i,j:di,j=`

ei,j

Our distinguished set of scales are defined as those scales whose point representation maximizes indi-
vidual Σ` quantities. Noting thatΣi = ΣK−i for i = 1 . . .

⌊
N
2

⌋
we consider those scales that maximize

Σ1,Σ2, . . . ,ΣbN
2 c.

We now present a general and efficient way to obtain this collection of scales.
An integer partitionof a natural numberN is a way of writingN as an unordered sum of natural numbers.

Consider positive integersN,K K < N and a partition ofN using exactlyK positive integer summands,
that is,N = a1 +a2 + · · ·+aK . The valuesai, 1 ≤ i ≤ K denote the different chromatic distances between
notes that are at scalar distance 1, or in musical terminology the length of an interval of a second. In [8] the
scales with the property that notesi, j at scalar distancedi,j = 1 have their chromatic distanceci,j come



from two consecutive values that differ by at most one are examined. It was shown that given integersN,K
with K < N , there exists a uniquem such thatN = m

⌊
N
K

⌋
+ (K − m)

⌈
N
K

⌉
.

Thus let an integer partition ofN into K summandsai, 1 ≤ i ≤ k such thatai ∈ {
⌊

N
K

⌋
,
⌈

N
K

⌉
} be called

aneven integer partitionof N into K summands, which we denote by EP(N,K).
In [8] it is shown that any scale (N,K) with the property that notesi, j at scalar distancedi,j = 1 have

chromatic distanceci,j ∈ EP(N,K) maximizes area. A similar approach can be used to show that the sum of
distances between adjacent points is maximized.

As integer partitions are not ordered and our model of a scale is, we need to impose a particular ordering
of the summands to obtain a scale. For example consider the valuesN = 12 andK = 7 there are three
distinct scales resulting from EP(12,7). The method to enumerate these scales is by using combinatorial
necklaces. Rather that use necklaces withN beads,K of them white, we useK beads wherem are labelled⌊

N
K

⌋
andK − m are labelled

⌈
N
K

⌉
. The distinct number of these necklaces enumerates the different scales

with this property. It should be noted that enumerating all two coloured fixed density necklaces (that is we
fix the number of beads of each type) can be performed in time that is a linear function of the total number
of necklaces enumerated [10].

3 Necklaces and Polygons

For melodic considerations it is desirable to have “smooth” diatonic steps. Thus, as was discussed above,
we enumerate the necklaces obtained from EP(12,7).

The triad is the basic building block in Western harmony. A triad consists of three notes and there is an
interval of a third between the first and second and the second and third notes. The interval of a third is
made up of 3 or 4 chromatic steps. If we think of traversing a scale by leaps of consecutive thirds, that
is by skipping over one note, we see that we make two complete revolutions around the scale. This is the
intuition that explains why we consider an even integer partition EP(24,7). Observe that

⌊
24
7

⌋
= 3, and that⌈

24
7

⌉
= 4, and24 = 3∗4+4∗3. Thus we consider distinct necklaces that can be obtained with seven beads

where three are labelled4, and four are labelled3.
One of the attributes of the Diatonic scale is that it can be obtained using a generator, see [2]. The next

necklace we consider represents the even integer partition EP(36,7). We see that 36 = 6*5+6, or expressed in
another way36 ≡ 1 (mod 7). This in turn implies there is a unique necklace corresponding to EP(36,7).
Observe that the sequence of diatonic notes taken at chromatic distance 5 corresponds to the familiarcircle
of fourths.

Interval Pitch Notes Forte No. M R
1 1221222 0, 1, 3, 5, 6, 8, 10 Diatonic 7-35 Y Y
2 1212222 0, 1, 3, 4, 6, 8, 10 Melodic Minor 7-34 Y Y
3 1122222 0, 1, 2, 4, 6, 8, 10 Neapolitan 7-33 N Y

4 3343434 0, 1, 3, 5, 6, 8, 10 Diatonic 7-35 Y Y
5 3343344 0, 1, 3, 4, 6, 8, 10 Melodic Minor 7-34 Y Y
6 3334434 0, 1, 4, 5, 7, 9, 10 Harmonic Major 7-32 Y Implicit
7 3334344 0, 2, 3, 5, 7, 8, 11 Harmonic Minor 7-32 Y Y
8 3333444 0, 1, 3, 5, 6, 9 Aug. Triad & Dim.7 6-Z28 N N

9 5555556 0, 1, 3, 5, 6, 8, 10 Diatonic 7-35 Y Y

Table 1: Necklaces and scales corresponding to EP(12,7) [1. . . 3] , EP(24,7) [4 . . . 8] and EP(36,7) [9] .

We enumerate the appropriate necklaces and present the results in Table 1. We have identified each scale



by an interval sequence. This corresponds directly to the enumerated necklaces. Each interval sequence
is in turn represented by a pitch sequence. This pitch sequence can be interpreted either by fixing0 to
C, or more neutrally to a moveable ”Do” system where0 corresponds to scale degree1̂. We then use a
familiar name to identify the scales. We obtain five uniquely named 7 note scales, diatonic, melodic minor
(ascending), neapolitan (or whole-tone plus a note), harmonic major, and harmonic minor. Note that our
analysis produces one 6 note scale, which may be described as an augmented triad superimposed with a
symmetric diminished seventh chord. The reason we only get 6 notes is revealed by the interval sequence
3333444. The sequence of four consecutive three’s produces a second copy of the0 pitch. We also use
Forte’s scale numbering system, [5] as one further standardized representation. Note that the harmonic
major and harmonic minor scales share the same Forte number, because one is just a reflection of the other.
In the final two columns of the table we denote the scales that are in the Masakowski [6] and Rahn [7]
collections respectively. All of our seven note scales appear in the Rahn collection, although the harmonic
major is implicit as it is the reflection of the harmonic minor. Only the Neapolitan scale is missing in the
Masakowski list.

The necklaces in all but one case lead to a 7-gon inscribed in a regular 12-gon, 24-gon, or 36-gon. Each of
the inscribed 7-gons are maximal polygons, that is they maximize eitherΣ1,Σ2, or Σ3. The diatonic scale
is unique as it maximizes all three. Also note that the six note scale that is obtained is an anomaly. Not only
does it have less that seven notes, it is not maximal for 6-gons.

4 Discusion

We have shown in one unifying method a way to characterize a collection of seven note scales. The col-
lection is constructed by a simple enumeration of scales that satisfy a geometric property. This collection
matches collections that are chosen for conforming to detailed harmonic and melodic considerations. Thus
complex properties involving intricate structures are distilled into a simple mathematical formula.

I would like to acknowledge the advice of an anonymous referee who pointed out the connections between
these results and those in Jay Rahn’s paper.
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