
Geometry and Harmony
David Rappaport

School of Computing, Queen’s University
Kingston, ON CANADA

Abstract

A musical scale can be viewed as a subset of notes or pitches taken from a chromatic universe. Given
integers (N,K) N > K we use particular integer partitions ofN into K parts to construct distinguished
sets, or scales. We show that a natural geometric realization of these sets have maximal area, so we call
them maximal area sets. We then discuss properties of maximal area sets for the integer pairs (12,5)
(12,6) (12,7) and (12,8) with the obvious relevance to our normal chromatic collection of 12 pitches.

1 Introduction

Geometry and music are intertwined in many different ways. Music notation uses shape and space to convey
pitch and time information. Guitar players visualize harmonic structures such as scales, arpeggios and
chords, as geometric shapes on the fretboard. The origins of our musical system of seven note scales chosen
form a collection of 12 pitches may be described in terms vibrating strings of various lengths. Combinatorics
is another branch of mathematics that is used in music analysis. Inevitably combinatorial insight is supported
by a picture, that is, a geometric representation.

Consider a circle with twelve equidistant points spread out on the boundary of a circle. The twelve points
represent the 12 pitches we use. From these 12 points we choose a subset of points. Musically some subsets
of at least five of the twelve pitches are called scales. Some of these subsets are more prominent than others.

Consider the examples shown in Figure 1. Upon selecting a subset of points we connect them in sequence
to construct a convex polygon. We consider distinct polygons up to rotation. This corresponds to the notion
that different modes from the same scale are not different scales.
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Figure 1: The subsets in a) and b) represent two modes of the diatonic scale, Ionian and Aeolian, also known
as the major and natural minor scales. For our purposes these two scales are considered to be equivalent.
The diagram of part c) represents the ascending melodic minor scale and is distinct from a) and b).

Since there are twelve equally spaced markings on the circle it makes sense to call these diagramsclock
diagrams. Representing the notes of a scale by a polygon appears in a paper published in 1937 by E. Krenek
[8], so sometimes these diagrams are calledKrenek diagramsas in the paper by McCartin [10]. However,
in an account by Nolan [11], Heinrich Vincent used this very same representation in his paper published



in 1862 [15]. When looking at the notes of the usual diatonic scale, we soon observe that they are spread
out evenly amongst the twelve chromatic pitches. Clough and Douthett [1] define a set to be maximally
even if every interval obtainable from the set comes in one of two ”flavours”. Enumerating the intervals in
the diatonic set we have the two flavour intervals : major and minor seconds, thirds, sixths, and sevenths.
Then we have the perfect fifth and fourth and the augmented fourth or diminished fifth to complete the
enumeration. This property is generalized for any choice for pairs of integers (N,K) with K < N , and are
collectively calledmaximally even sets. The maximally even sets are unique (up to rotation) and include
the some of the most widely used scales in Western music, the common anhemitonic pentatonic scale, the
six note whole note scale, and the eight note diminished scale. The symmetric augmented triad and the
diminished seventh chords are also maximally even.

When maximally even sets are represented by a clock diagram, then those points are subsets which
uniquely maximize the sum of inter-point distances [3, 2]. A similar continuous case of this phenomenon is
described by Fejes T́oth [12]. In that paper it is shown that a finite set ofN points that maximize the sum
of inter-point distances are located on the vertices of a regular convexN -gon. That is, the points are spread
out as evenly as possible on the circumference of a circle.

In his book on harmony for the improvising jazz musician Levine [9] describes four fundamental scales
that are useful for jazz improvisation. These four scales are the major scale (and its seven modes) the
melodic minor scale, and the symmetric whole-tone and diminished scales. In jazz termology the term
melodic minor almost always denotes the ascending melodic minor scale, and we follow this convention.

Three of these four scales are maximally even, the exception being the melodic minor scale which is not.
Thus given pairs (12,8) (12,6) and (12,7) we may ask whether there is a mathematical characterization that
exactly describes Levine’s four fundamental scales. In this note we arrive at such a characterization.

The paper is organized as follows. In the next section we provide a mathematical discussion on a class
of subsets ofK elements chosen fromN . This characterization is both combinatorial and geometric. We
begin by describing the so called maximal area sets, and prove some mathematical properties of these sets.
The maximal area sets are interesting in their own right, but do not quite satisfy the goals mentioned above,
as this characterization includes subsets of (12,8) and (12,7) that are not from the four fundametal scales.
We then define and analyze complementary maximal area sets and show that this characterization satisfies
our requirements.

2 Maximal Area Sets

A common misconception is that the prefixdi in diatonic refers to the numbertwo, signifying the character-
istic that there are two step sizes in the usual diatonic set. However, the truth is the prefixdia refers tofrom
the tonic[5]. However, this definition is the ideal spring board from which we can launch an exploration of
scales that satisfy this property, that is collections of subsets of 7 pitches from 12, so that the spaces between
consecutive pitches are either whole tones or semitones. This results in three distinct scales. Using clock
diagrams we show these three distinct scales in Figure 2. In (a) we recognize the standard diatonic scale,
(b) represents the ascending melodic minor (also called jazz minor) and in (c) we have the symmetric whole
note scale plus a note, or the Neapolitan major scale.

It is not hard to verify that the polygons representing the scales have an equal area, and this area is maxi-
mized for any choice of seven points from twelve. Thus we will refer to these scales asmaximal area scales,
or more genericallymaximal area subsetswhich we abbreviate as MA sets.

We generalize this notion for any subset ofK chosen fromN . It will be most convenient to define our
subsets in terms of integer partitions.

An integer partitionof a natural numberN is a way of writingN as an unordered sum of natural numbers.
In [7] Keith points out the connection between integer partitions and musical scales.



Figure 2: Clock diagrams of the three MA scales. The interval structure of these scales are (a) the diatonic
scale, (b) the ascending melodic minor (c) the Neapolitan major scale

Consider positive integersN,K K < N and a partition ofN using exactlyK positive integer summands,
that is,N = a1 + a2 + · · · + ak. Furthermore, if we require that the summands differ by at most one, that
is, |ai − aj | ≤ 1, then we obtain our desired generalization for MA sets.

The following theorem provides a mathematical foundation for constructing and anylizing MA sets.

Theorem 2.1 Given integersN,K with K < N , there exist unique integersu and m such thatN =
mu + (K − m)(u + 1).

Observe that forN,K,U,m as defined above we have the integer partitionN = a1 + a2 + · · ·+ aK with
ai = u, for i = 1 . . .m andai = u + 1, for i = m + 1 . . .K. With the understanding thati = m + 1 . . .K
is the empty set in the event thatm = K, that isK dividesN .

Proof: Let

u =
⌊

N

K

⌋
and v =

⌈
N

K

⌉
.

Note that ifK dividesN thenv = u, otherwisev = u + 1.
For the casev = u we haveN = Ku. Considering the case wherev = u + 1 we have the equality

(N − Ku)v + (Kv − N)u = N(v − u) = N. Thusm = Kv − N = K(u + 1) − N . Sinceu implies
m it suffices to show thatu is the unique value satisfying the required conditions. WhenK dividesN
uniqueness follows from the division algorithm [6]. WhenK does not divideN we enumerate the cases of
using a number larger or smaller thanu. Thus letw be an integer andw >

⌊
N
K

⌋
. However, this implies that

Kw > N sow cannot be greater thanu. A similar symmetric argument can be used to show thatw <
⌊

N
K

⌋
leads to a contradiction.

Thus we have shown thatu is unique, completing our proof. �

Theorem 2.2 If a set is ME then it must also be MA.

Proof: Since all intervals of ME sets differ by at most one, afortiori the single step interval differs by at
most one. The uniqueness ofu as proved in theorem 2.1 completes the argument. �

As was shown by the example illustrated in Figure 2 that although for anyN,K there are unique values
of u, m, one can possibly obtain more than one scale with step sizesu andu + 1 by reordering the positions
of theu steps with respect to theu + 1 steps.

We now turn to the question of the area of the representative polygons. Referring to Figure 3 the area of
the seven-gon is obtained by summing triangle areas.

Assuming that the seven-gon representing these scales is circumscribed by a circle with radius one, an
equation giving the polygon area is:2 sin(π/12) cos(π/12) + 3 sin(2π/12) cos(2π/12). In general given
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Figure 3: One can obtain the area of the seven-gon by summing the areas of triangles as suggested above.
Assuming that the radius of the circumscribing circle is 1, the sidesab andac are of length 1 and the length
of the sidebc is 2 sin(φ/2). Thus, referring to the diagram on the left, we can deduce that the area of the
triangle a, b, c is given by2 sin(φ/2) cos(φ/2). On the right, observe that the area of triangleabc′ > abc
illustrating lemma 2.3.

(N,K, u,m) andm at least 3 the area of the representative polygons is:m sin(uπ/N) cos(uπ/N) + K −
m sin((u + 1)π/N) cos((u + 1)π/N).

We claim that all of these 7-gons are area maximizing 7-gons. This is easy enough to verify for this
example. We prove the result for the general case in the next lemma.

Lemma 2.3 Given(N,K, u,m) all polygon representations of these MA sets have equal area and that area
is maximized.

Proof: Consider for the sake of contradiction aK-gonP ′ from theN clock that is not from the set of MA
scales. Since theK-gon is not from the MA set the difference between the smallest and largest interval sizes
is greater than one. Usingw to denote the smaller interval size the area contributions of these two intervals is
found by taking the area of two triangles which aresin(wπ/N) cos(wπ/N) andsin((w+k)π/N) cos((w+
k)π/N) wherek > 1. The first derivative ofsin(x) cos(x), namelycos2(x)−sin2(x) is positive and strictly
decreasing in the range0 ≤ x ≤ π/4. Let X = sin(wπ/N) cos(wπ/N) + sin((w + k)π/N) cos((w +
k)π/N) andY = sin((w +1)π/N) cos((w +1)π/N)+ sin((w + k− 1)π/N) cos((w + k− 1)π/N). And
we have the inequalityX < Y .

ThusP ′ cannot have maximal area. �
An intuitive geometric demonstration of the proof of Lemma 2.3 shows the difference in area obtained by

increasing the size of the smallest interval by one and decreasing the size of the largest interval by one. In
fact for eachK-gon there is an equivalence class ofK-gons with equal area, that is allK-gons that have the
sameK partition ofN . We can choose to realize the K-gon with a polygon that has the smallest and largest
intervals of theK-gon are adjacent. Since theK-gon is not from an MA set the difference between the
largest and smallest interval sizes is more than one. See Figure 3 for an illustration. The rest of the argument
follows by using simple geometry. Again referring to Figure 3 we obtain polygonP ′ from polygonP by
moving the pointc to c′, that is, we decrease the size of the largest interval by one and increase the size of
the smallest interval by one. The difference in area between the initialK-gon P and a newly constructedP ′

can be completely characterized by the difference in areas of the trianglesabc andabc′.

3 Complementary Maximal Area Sets.

We consider the scales that are discussed by Levine [9] in his book on Jazz harmony. The most important
5 note scales are the common anhemitonic pentatonic scales. These scales can be characterized as the



Figure 4: The five and six note maximal area scales.

complement of the diatonic set. Their use is ubiquitous and forms the basis of improvisation in much of
popular music. The familiar pentatonic scales are known to be ME, and thus by Theorem 2.2 the pentatonic
scales are also MA. There is one more collection of 5 notes that are MA and they are shown in Figure 4.
To my knowledge this scale is not widely used. There is a single MA set (12,6) the symmetric wholetone
scale, also shown in Figure 4. The seven note MA sets have already been discussed. There are 10 eight note
MA sets, as described in [7, p. 31], too many to illustrate here. However, let us instead consider all MA sets
of of size eight whose complementary set is also MA. We now have just a single set. In Figure 5 we show
the single MA set of size eight whose complement is also MA. Let us call these two sets complementary
MA sets. The six note MA set is its own complement. Let us now consider complementary MA sets of size
seven and five.

Figure 5: The single complementary maximal area octatonic scale (diminished scale) with its complement.

We see that there are exactly two sets of size 7 that are complementary MA, and these are the diatonic set,
and the melodic minor. Their complements are shown in Figure 4 a) and b) respectively.

Thus we have been able to capture a mathematical property that characterizes Levine’s four fundamental
scales.

We showed that ME sets are MA. Using CMA to denote complementary maximal area sets, it is easy to
argue that ME sets are also CMA. This follows immediately from the fact that the complement of an ME set
is also ME [1].

4 Discussion

We have shown that a particular integer partition ofN into K parts leads to maximal area polygons when
these sets are represented with a clock diagram. These so called maximal area sets are computationally easy



to find. However, a classification that seems more interesting uses the complementary maximal area sets. We
have demonstrated that the complementary maximal area sets for (12,6) (12,7) and (12,8) contain the four
fundamental scales as defined by Levine in his book on Jazz improvisation. These fundamental four scales
by no means exhaust the large number of scales that are regularly used by jazz musicians. The common
anhemitonic pentatonic scale is widely used. It is interesting to note that there are two complementary
maximal area sets derived from (12,5). The five note scale depicted in Figure 4 (b) is new to me. It would
be interesting to know whether there are any useful melodic musical properties of this scale. If we consider
a rhythmic analog of the clock diagrams, that is, selected points represent onsets of beats, then the MA set
shown in Figure 4 (b) represents the hand Flamenco clapping pattern used in the Solea, Buleria, and Guajira,
see [4]

I am pleased to acknowledge the papers of Godfried Toussaint, [13, 14] as my first encounter with the use
of clock diagrams to represent musical pitch and/or musical rhythm.
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