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Abstract
Musical cyclic rhythms with a cycle length (timespan) of 8 or 16 pulses are called binary; those with 6 or
12 pulses are called ternary. The process of mapping a ternary rhythm of, say 12 pulses, to a rhythm of
16 pulses, such that musicologically salient properties are preserved is termed binarization. By analogy
the converse process of mapping a binary rhythm to a ternary rhythm is referred to as ternarization. New
algorithms are proposed and investigated for the binarization and ternarization of musical rhythms with
the goal of understanding the historical evolution of traditional rhythms through inter-cultural contacts.
The algorithms also have applications to automated rhythmic pattern generation, and may be incorporated
in composition software tools.

1 Introduction

Research on the evolution of the structure of musical rhythms is difficult and risky for a variety
of reasons. For one, musical phenomena must be well documented. Alas, most musical traditions
are oral traditions, the Western being a notable exception. Furthermore, analysis of evolution must
take into account not only musical issues, but also historical and sociological issues, among others,
as music itself is inherent to a particular human context. Fortunately, thanks to the recording and
transcribing efforts made in several musical traditions by many musicologists over recent decades,
the study of the transformation and evolution of musical phenomena is enjoying reinvigorating
interest.

Examples of the evolution of musical phenomena may be observed in those musical traditions
created by the mixture of other existing traditions, such as in jazz and Latin America music. Ben-
zon [2] analyzes the development of ever more differentiated control over rhythmic patterns in the
jazz music of the twentieth century, and argues that rhythmic elaboration in traditional jazz was
followed by melodic progress in swing, and finally harmonic control in bop. In an award-winning
book, Pérez Fernández [7] describes how African ternary rhythms that travelled to the Americas
may have mutated to duple-metered forms as the more traditional music developed into more com-
mercial popular music, a process he labelled binarization. For several critical discussions of the
theory put forward in this book see [18], [12], and [4]. Manuel [13] describes a similar binarization
transformation that occurred in Spain and Cuba, in which ternary 3/4 and 6/8 rhythms such as the
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flamenco Guajira mutated into the binary rhythm Guajira-Son. A more general discussion of the
evolution of Cuban rhythms may be found in [1].

The approaches reviewed in [22] are different from the aforementioned methods, and mimic those
used in bioinformatics, where an organism is represented by its DNA molecule which, in turn, is
modelled as a sequence of symbols [9], [17]. However, the phylogenetic analysis of families of
rhythms is just beginning [20], [21], [6].

This paper is concerned with mathematical models for a particular kind of rhythmic transfor-
mations, namely, binarization and ternarization. In order to compare our models we will use the
transformations contained in the work of Pérez Fernández [7]. The algorithms proposed and inves-
tigated here are useful for a variety of purposes including their use as composition tools, as tools
for studying the evolution of rhythms, and as tools for music theorists to study the mechanisms of
rhythmic transformations.

2 Mechanisms of Rhythm Mutation

A typical mutation operation found in the music literature explored by David Lewin [11], which he
calls a flip in the context of the pitch domain (scales, chords, and pitch-class-sets), interchanges two
adjacent elements in the cyclic sequence. Transferring this idea into the rhythmic domain for ex-
ample, we could transform the clave Son timeline given by [x . . x . . x . . . x . x . . .] into the clave
Rumba timeline by performing a flip on the 7th and 8th pulses to obtain [x . . x . . . x . . x . x . . .].

In [21] the flip operation is called a swap, and the swap distance between two rhythms with the
same number of onsets is defined as the minimum number of swaps needed to convert one rhythm
into the other. In order to be able to compare two rhythms with different numbers of onsets the swap
distance was generalized in [6].

In computer science the first algorithms to compare two sequences in terms of the minimum num-
ber of a set of predefined operations necessary to convert one sequence to the other were designed
for problems in coding theory by Vladimir Levenshtein [10]. His distance measure, which now goes
by the name of edit distance, allows three operations: insertions, deletions, and substitutions (also
called reversals).

A more general approach to the design of measures of string similarity is via the concept of an
assignment, well developed in the operations research field. An assignment problem deals with
the question of how to assign n items to m other items so as to minimize the overall cost [3].
If the two sets of n and m items are the corresponding two sets of onsets of two rhythms to be
compared, and the cost of assigning an onset x of one rhythm to an onset y of the other rhythm, is
the minimum number of swaps needed to move x to the position of y, then the cost of the minimum-
cost assignment is equal to the swap distance discussed in the preceding [6].

3 The Data

Pérez Fernández follows the work of the authoritative Ghanaian musicologist Nketia [15, 16] for
some of his terminology. Nketia relates musical phrases to timespan, which is of fixed duration. The
timespan, typically identified with a 12/8 bar when transcribing African music, is further divided
into regulative beats, whose function is to serve as a reference for dancers. These regulative beats
divide the timespan into two equal parts. By refining the timespan down to its smallest unit we find
the basic pulse. The timespan is measured in terms of the number of basic pulses. Pérez Fernández
then introduces the metric foot in between the regulative beat and the basic pulse as an intermediate
level of rhythmic grouping. Metric feet consist of groupings of two or more basic pulses according
to either their duration or accentuation patterns. Here we will consider metric feet only with regards
to duration. The main metric feet considered in this paper appear in Figure 1 .



Rhythmic Foot Rhythm Duration Pattern
Trochee [x . x] L-S

Iamb [x x .] S-L
Molossus [x . x . x .] L-L-L
Tribrach [x x x] S-S-S

Choriamb [x . x x x .] L-S-S-L
Zamba foot [x x x x x .] Tribrach+Iamb

Figure 1: The relevant metric feet. (L=long, S=short)

We now describe the data used for testing our models. We first introduce a set of ternary rhythms
having 6-pulse timespans ([7], pages 82, 83, 91 and 101). They are combinations of two metric feet.
Figure 2 shows those rhythms and their binarizations. Names in the rightmost column correspond
to one of the many possible names for the binarized rhythm.

Description of Rhythm Ternary Rhythm Binarized version Description of the
Binarized Version

Tribrach + Trochee [x x x x . x] [x x . x x . x .] Argentinean milonga
Zamba Foot [x x x x x .] [x x . x x . x .] Argentinean milonga
Choriamb [x . x x x .] [x . . x x . x .] Habanera

Figure 2: Binarized rhythms having timespans of 6 basic units.

For the second set of rhythms, Pérez Fernández gathers rhythmic patterns with timespans of 12
pulses, and their corresponding binarized versions ([7], page 102 and following); see Figure 3. The
rhythms are 6/8 clave son, also called the clave fume-fume [21], variations of it, and the ubiquitous
bembé. Chernoff [5] was one of the first to study the binarization of the bembé.

Description of Notation of Binarized version Description of the
Rhythm the Rhythm Binarized Version

6/8 clave Son [x . x . x . . x . x . .] [x . . x . . x . . . x . x . . .] clave Son
6/8 clave Son [x . x . x . . x . x . .] [x . . x . . x . . x . . x . . .] Variation

Son - 1
6/8 clave Son [x . x . x . . x . x . x] [x . . x . . x . . . x . x . x .] Variation

variation 1 Son -2
6/8 clave Son [x . x . x . . x . x x .] [x . . x . . x . . . x . x . x .] Variation

variation 2 Son -2
Bembé [x . x . x x . x . x . x] [x . . x . . x x . . x . x . . x] Binarized bembé

Figure 3: Binarized rhythms with timespans of 12 basic units.

Names of the binarized rhythms on the last column are provided for reference in the following
sections.

For a third set of rhythms, Pérez Fernández displays what he calls resources of rhythmic variation
([7], pages 73-74 and 112-122). These rhythms are formed by variations of the molossus [x . x . x .],
the first part of the clave son. Figure 4 shows these rhythmic variations with their associated bina-
rized counterparts. Note that some variations have more than one binarized version.
Again, names of the binarized rhythms are mnemonics used for reference to them in the following
sections.



Description of Rhythm Notation of the Rhythm Binarized version Name of the Rhythm
Variation 1(c) [x x x . x .] [x . x x . . x .] Binarized var. 1(c)-1
Variation 1(c) [x x x . x .] [x x . x . . x .] Binarized var. 1(c)-2
Variation 1(d) [. x x . x .] [. . x x . . x .] Binarized var. 1(d)-1
Variation 1(d) [. x x . x .] [. x . x . . x .] Binarized var. 1(d)-2
Variation 2(c) [x x x . x x] [x . x x . . x x] Binarized var. 2(c)
Variation 4(c) [x x x x x x] [x x . x . x x x] Binarized var. 4(c)
Variation 4(a) [x . x x x x] [x . . x x x x .] Binarized var. 4(a)
Variation 5(a) [x . x . . .] [x . . x . . . .] Binarized var. 5(a)
Variation 6(c) [x x x . . x] [x x . x . . . x] Binarized var. 6(c)

Figure 4: Binarized rhythms derived from rhythmic variations.

4 Mapping Rules

The process of binarization proposed by Pérez Fernández uses the metric foot as the starting point.
Indeed, the binarization of a ternary rhythm is broken down in terms of its metric feet. Afterwards,
each foot is binarized according to a set of binarization rules, also called mapping rules. Finally, the
binarized feet are put back together so that they constitute the new rhythm. For instance, let us con-
sider the binarization of the zamba foot [x x x x x .]. It is formed by the concatenation of a tribrach
[x x x] and an iamb [x x .]. For this case, the mapping rules are [x x x]−→ [x x . x ] and [x x .]−→
[x . x . ]. Finally, gluing these patterns together yields the binarized rhythm [x x . x x . x .]. All the
mapping rules used by Pérez Fernández are shown in Figure 5.

Metric Feet Binarized Pattern Snapping Rules
[x x x] [x x . x] Nearest neighbor

[x . x x] Clockwise neighbor
[x x x .] Counterclockwise neighbor

[x . x] [x . . x] Nearest neighbor
[x . x .] Furthest neighbor

[x x .] [x x . .] Nearest neighbor
[x . x .] Furthest neighbor

Figure 5: The transformations used by Pérez Fernández, and their proposed geometric interpreta-
tions.

The rules described in the preceding are expressible in terms of snapping rules. Some transforma-
tions of a ternary metric foot (or rhythm) into a binary pattern can be interpreted geometrically as
a snapping problem on a circle. Consider a three-hour clock with a four-hour clock superimposed
on it, as depicted in Figure 6. The problem is reduced to finding a rule to snap onsets in the ternary
clock to onsets in the binary clock. Since both clocks have a common onset at “noon” (the north
pole), this onset is mapped to itself. For the remaining ternary onsets, several rules may be defined.
One that arises naturally is snapping to the nearest onset. By doing so, the durational relationships
among the onsets are perturbed as little as possible, and intuitively, one would expect that the per-
ceptual structures of the two rhythms should remain similar. For instance, this rules takes a tribrach
[x x x] to [x x . x]; it is called the nearest neighbour rule (NN). Other rules to be used in our study
are the following: furthest neighbour rule (FN), where each onset is snapped to its furthest neigh-
bour; clockwise neighbour rule (CN), which moves an onset to the next neighbour in a clockwise
direction; and counter-clockwise neighbour rule (CCN), which is analogous to the clockwise rule,
but travels in counter-clockwise direction. In Figure 5 the rightmost column contains the definitions



of the mapping rules used by Pérez Fernández in terms of the four snapping rules just introduced.
The reader may wonder what the rationale is for using the counter-intuitive FN rule. Two points

are worth mentioning here. First, one would expect mapping rules that make musicological sense
to use high-level musicologically relevant knowledge to select which onsets in one rhythm should
be mapped to which onsets in the other. This is a difficult problem left for future research. In this
study we have chosen to start our investigation with the simplest context-free rules possible, purely
mathematical rules if you will, to see how useful they can be. Therefore, from a combinatorial and
logical point of view it makes sense to include the FN rule in our study. Second, and surprisingly,
we observed that the musicological rules used by Pérez Fernández in several cases were matched
perfectly only by the FN snapping rule. Thus we were motivated to compare this rule with the others
in order to better understand the entire snapping process.

Figure 6: The snapping rules used.

Note that the nearest neighbour and furthest neighbour rules may snap two onsets onto one and the
same onset. Consider the tribrach [x x x] with the furthest neighbour rule; one obtains the pattern
[x . x .]. On the other hand, when these snapping rules are applied to an entire rhythm, an onset may
be mapped to two different onsets, since it may have two nearest or furthest neighbours. For exam-
ple, in the ternarization of [x x . x x . x .], we obtain two possible rhythms, namely, [x x x x x .] and
[x x x x . x] . This creates the problem of breaking ties; we will deal with this problem later.

5 Design of the Experiments

Since this paper is concerned with rhythmic transformations in general, we carry out the experiments
in both directions, that is, from ternary rhythms to binary rhythms, and from binary rhythms to
ternary rhythms. As a matter of fact, we would like to have at our disposal a set of purported
ternarized rhythms, just as we have for binarization. In the absence of such a set, we will use Pérez
Fernández’s set of binarized rhythms; refer to the appropriate columns in Figures 2, 3 and 4.

The first experiment consists of the binarization of the ternary rhythms contained in Pérez Fernán-
dez’s books [7] (Figures 2, 3 and 4) by using the set of snapping rules defined in the preceding
section. We use four snapping rules: NN, FN, CN, CCN. The first four rules not only yield a
procedure for binarization, but also for ternarization, since the rules are applicable in both directions.
The snapping rules will not be applied at the metric foot level, but on the whole rhythmic pattern.

The second experiment deals with centers of rhythm families. They were first used by Toussaint
for analysing binary and ternary clave rhythms [20, 21], and proved to be good initial approxima-
tions to rhythmic similarity. Toussaint also computed phylogenetic graphs of families of rhythms.
Due to lack of space, we will not carry out such an analysis here.

As pointed out in Section 4, when the NN and FN snapping rules are used, ties may arise when an
onset has two equidistant nearest or furthest neighbouring pulses. Among the many ways to break



ties, we have chosen a method based on rhythmic contours because of their importance in music
perception [14, 19].

5.1 Rhythmic Contours
Rhythmic contours have been used for the analysis of non-beat-based rhythms, for the description
of general stylistic features of music, for the design of algorithms for automatic classification of
musical genres, and also for the study of perceptual discrimination of rhythms, among others. The
rhythmic contour is defined as the pattern of successive relative changes of durations in a rhythm.
Some authors represent the rhythmic contour as a sequence of integers reflecting these changes;
others simply describe the changes in a qualitative manner, observing whether a duration becomes
longer, shorter or remains the same. As an example, consider the rhythmic contour of the milonga
[xx.xx.x.]. First, we determine its ordered set of durations 12122. The pattern of durations using
integers is {1,−1,1,0,−1}, and if we are only concerned with the direction of these changes, we
can write {+−+0−}. We will use the latter definition of rhythmic contour. The length of the
rhythmic contour depends only on the number of onsets in the rhythm. To break ties, we compare
the rhythmic contours of the snapped rhythms with those of the original rhythms. Comparison of
two rhythmic contours can be made by using the Hamming distance. The Hamming distance counts
the number of places in which the rhythmic contours do not match. This distance, however, does not
take into account where the mismatches ocurr. Finally, the contour that has the smallest Hamming
distance to the contour of the original rhythm is chosen to break the tie. Some cases arise where one
contour is shorter than the other, and hence both contours cannot be compared using the Hamming
distance. Such cases appear when two onsets are snapped onto the same pulse. As a result, the total
number of onsets in the snapped rhythm is smaller than that of the original rhythm. In these cases,
a different measure has to be used for the comparison.

5.2 Centers of Rhythm Families
The second set of experiments comprises the computation of several types of centers. Given a family
of rhythms with time-spans of n-pulses, we define a center as a rhythm that optimizes some distance
function either within the family or in the entire space of rhythms of time-span n. Here we consider
centers that convey the idea of similarity. In order to do so, we select as optimization criteria the
minimization of the maximum distance (min-max), and the minimization of the sum (min-sum) to
all rhythms in either the family or the entire space. For distance (similarity) functions, we select
two common distances, the Hamming distance and the directed swap distance [6]. Thus, we have
eight possible types of centers, given by the two possible distances, the two possible optimization
criteria, the two possible sets of rhythms, and whether optimization is carried out within the given
family or the entire space.

The swap distance between two rhythms of equal time-span is the minimum number of inter-
changes of adjacent elements required to convert one rhythm to the other. An interchange of two
adjacent elements, either rests or onsets, is called a swap. If the condition of requiring that both
rhythms have equal timespans is relaxed, then a more general distance, the directed swap distance,
can be defined as follows. Let rhythm A have more onsets than rhythm B. Then, the directed swap
distance is the minimum number of swaps required to convert A to B according to the following
constraints: (1) Each onset in A must go to some onset in B; (2) Each and every onset in B must
receive at least one onset from A; (3) No onset may travel across the boundary between the first and
the last position in the rhythm.



6 Experimental Results

In the experiments the families of rhythms were grouped according to the length of their timespans.
Given the scope of this paper, we cannot describe all the details of all the experiments carried out
for the four snapping rules. Due to the problem of breaking ties between rhythms, tables displaying
the results are several pages long in some cases. We will show the most relevant results and briefly
comment on those remaining. For the centers of rhythm families we will follow a similar approach.
Centers computed on a given family of rhythms are discussed at length, whereas centers computed
on the entire space of rhythms will not be analysed in full; in some of these cases nearly one hundred
instances of centers are obtained.

6.1 Snapped Rhythms
To begin with, we consider the NN rule applied to binarization. Figures 7 and 8 display the results
of the experiment. The rhythms in boldface match the binarized rhythms in the books by Pérez
Fernández. As can be seen, the NN rule yields almost no match. Furthermore, its binarizations are
of little interest in the sense that they keep little perceptual resemblance to their ternary counterparts;
see, for example, the binarization of the bembé and compare it to [x . . x . . x x . . x . x . . x].

Ternary rhythm Name Binarized rhythm
x x x x x . x . x . x . Zamba+Molossus x . x . x . x . x . x . . . x .
x . x . x . . x . x . . 6/8 clave Son x . x . . . x . . . x . x . . .
x . x . x . . x . x . x 6/8 clave Son -var. 1 x . x . . . x . . . x . x . x .
x . x . x . . x . x x . 6/8 clave Son -var. 2 x . x . . . x . . . x . x . x .
x . x . x x . x . x . x Bembé x . . x . x . x . x . . x . . x

Figure 7: Binarization of 12-pulse rhythms using NN rules.

Ternary rhythm Name Binarized rhythm
x x x x . x Tribrach+Trochee x x . x x . . x
x x x x x . Zamba foot x x . x x x . .
x . x x x . Choriamb x x . x x x . .
x x x . x . Var. 1(c)-1 x x . x . x . .
. x x . x . Var. 1(d)-1 . x . x . x . .
x x x . x x Var. 2(c) x x . x . x . x
x x x x x x Var. 4(c) x x . x x x . x
x x x . . x Var. 6(c) x x . x . . . x
x . x . . . Var. 5(a) x . . x . . . .

x . x x x x Var. 4(a) x . . x x x . x

Figure 8: Binarization of 6-pulse rhythms using NN rules.

Next, we show the table corresponding to the ternarization of 8-pulse rhythms obtained by ap-
plying the NN rule; see Figure 9. The meaning of the columns from left to right is the following:
original rhythm; its name; the snapped rhythm; its name in case it is in our list of rhythms; the num-
ber of ties encountered; the list of rhythms with minimal Hamming distance in the tie breaking rule,
or the list of all rhythms given by ties that have overlapping onsets; the contours of the ties and the
contour of the original rhythm; the list of all rhythms generated by ties with overlapping onsets; the
contours of the ties and the contour of the original rhythm. Several matches for the original binary
rhythms are found. In this table the tie breaking procedure can be observed in detail. For instance,



variation 6(c) was ternarized in a unique manner since no ties arose. However, variation 1(c)-1
produced two ties, [x x x . x .] and [x x x . . x]. In the latter case we compare their rhythmics con-
tours to break the tie. The rhythmic contours are {0 + 0−} and {0 +−0}, respectively. For the
ternary rhythm the rhythmic contour turns out to be {−+−0}; therefore, the rhythmic contour of
[x x x . x .] is more similar, and [x x x . x .] is output as the ternarized rhythm. In the case of varia-
tion 1(d)-1, the rhythmic contour cannot break the tie between the two snapped rhythms; note that
both contours are made up of the same symbols. Hence, the tie remains unresolved.

Figure 9: Ternarization of 8-pulse rhythms using NN rules.

Figures 10 and 11 display the binarizations given by the CN rule. For both 12-pulse and 6-
pulse rhythms many matches are found. For example, the bembé is transformed to its commonly
accepted binarized form [x . . x . . x x . . x . x . . x]. As mentioned in the preceding, this rule does
not produce ties.

Ternary rhythm Name Binarized rhythm
x x x x x . x . x . x . Zamba+Molossus x . x x x . x . x . . x . . x .
x . x . x . . x . x . . 6/8 clave Son x . . x . . x . . . x . x . . .
x . x . x . . x . x . x 6/8 clave Son -var. 1 x . . x . . x . . . x . x . . x
x . x . x . . x . x x . 6/8 clave Son -var. 2 x . . x . . x . . . x . x . x .
x . x . x x . x . x . x Bembé x . . x . . x x . . x . x . . x

Figure 10: Binarization of 12-pulse rhythms using CN rules.

The FN rule produced no matches in either the binarization or the ternarization. Interestingly
enough, there were no ties with binarization, but there were many with ternarization, in some cases
as many as three. Furthermore, in numerous cases the ties are unresolved (in the case of 16-pulse
rhythms no output was produced; all ties were unresolved). For the binarization, rhythms produced



Ternary rhythm Name Binarized rhythm
x x x x . x Tribrach+Trochee x . x x x . . x
x x x x x . Zamba foot x . x x x . x .
x . x x x . Choriamb x . . x x . x .
x x x . x . Var. 1(c)-1 x . x x . . x .
. x x . x . Var. 1(d)-1 . . x x . . x .
x x x . x x Var. 2(c) x . x x . . . x
x x x x x x Var. 4(c) x . x x x . x x
x x x . . x Var. 6(c) x . x x . . . x
x . x . . . Var. 5(a) x . . x . . . .

x . x x x x Var. 4(a) x . . x x . x x

Figure 11: Binarization of 6-pulse rhythms using CN rules.

with the FN rule are somewhat monotonous, in many cases consisting of rhythms with many con-
secutive eighth notes, and again they do not reflect the perceptual structure of their counterparts.
With respect to the CCN rule, the results are better than those obtained for the CN rule. Ternariza-
tion worked very well; for example, the ternarization of [x . . x . . x x . . x . x . . x] is the bembé.
No match was obtained in the binarization, but the rhythms produced are still interesting inasmuch
as they maintain a perceptual resemblance with their counterparts. CN and CCN rules do not give
good results when transforming rhythms like [. x x . x .], since both rules produce rhythms with an
onset on the first pulse. Obviously, that changes the essence of the rhythm since it takes an upbeat
to a downbeat.

6.2 Centers of Rhythm Families
In this last section we discuss those centers computed on families of rhythms. We have used two
distances, the Hamming distance and the directed swap distance; and two types of centers, the min-
sum and the min-max functions. We have analysed the cases of both binary and ternary rhythms,
and all possible lengths of rhythms.

We start with binary rhythms of 8-pulses. The results are summarized in Figure 12. We note that
rhythm [x x . x . . x .] is the center for all the distances and for all the functions. The center for
the directed swap distance with the min-max function contains four rhythms. Therefore, rhythm
[x x . x . . x .] may be considered as the one most similar to the others.

Distance Function Value Rhythm Name
Hamming Min-Sum 23 [x x . x . . x .] Bin. var. 1(c)-2
Hamming Min-Max 3 [x x . x . . x .] Bin. var. 1(c)-2

Directed swap Min-Sum 24 [x x . x . . x .] Bin. var. 1(c)-2
Directed swap Min-Max 4 [x . . x x . x .] Habanera

[x . x x . . x .] Bin. var. 1(c)-1
[x x . x . . x .] Bin. var. 1(c)-2
[. x . x . . x .] Bin. var. 1(d)-2

Figure 12: Results for centers in the set of 8-pulse rhythms.

For the binary rhythms of 16 pulses we obtain the table shown in Figure 13. The clave son and its
variation [x . . x . . x . . . x . x . x . ] appear as centers in all cases. This is not surprising, since the
set of binary rhythms considered are rhythms based mainly on the clave son.

Figure 14 displays the results for the ternary rhythms of 6 pulses. As with the binary case, there is



Distance Function Value Rhythm Name
Hamming Min-Sum 13 [x . . x . . x . . . x . x . . . ] Bin. clave Son

[x . . x . . x . . . x . x . x . ] Bin. clave Son-var. 1
Hamming Min-Max 6 [x . . x . . x . . . x . x . x . ] Bin. clave Son-var. 1

Directed swap Min-Sum 12 [x . . x . . x . . . x . x . x . ] Bin. clave Son-var. 1
Directed swap Min-Max 4 [x . . x . . x . . . x . x . x . ] Bin. clave Son-var. 1

Figure 13: Results for centers in the set of 16-pulse rhythms.

a rhythm that appears in all the centers, namely, variation 1(c)-1 [x x x . x .]. Again, this indicates
that this rhythm is the one most similar to the others.

Distance Function Value Rhythm Name
Hamming Min-Sum 19 [x x x . x .] Var. 1(c)-1
Hamming Min-Max 3 [x x x x x .] Zamba foot

[x x x . x .] Var. 1(c)-1
[x x x . x x] Var. 2(c)

Directed swap Min-Sum 18 [x x x . x .] Var. 1(c)-1
Directed swap Min-Max 3 [x . x x x .] Choriamb

[x x x . x .] Var. 1(c)-1
[. x x . x .] Var. 1(d)

Figure 14: Results for centers in the set of 6-pulse rhythms.

Finally, we discuss the centers for ternary rhythms of length 12; see Figure 15. The situation
is very similar to that of binary rhythms. The 6/8 clave son and its variation [x . x . x . . x . x x .]
determine the entire set of centers, the latter appearing in three centers out of four.

Distance Function Value Rhythm Name
Hamming Min-Sum 11 [x . x . x . . x . x . .] 6/8 clave Son
Hamming Min-Max 6 [x . x . x . . x . x x .] 6/8 clave Son var. 2

Directed swap Min-Sum 9 [x . x . x . . x . x x .] 6/8 clave Son var. 2
Directed swap Min-Max 4 [x . x . x . . x . x x .] 6/8 clave Son var. 2

Figure 15: Results for centers in the set of 12-pulse rhythms.

7 Concluding Remarks

Numerous specific conclusions may be drawn from these experiments concerning the data, snapping
rules, and centers, as well as more general conclusions.
Data: It would be desirable to have more documented examples of binarized rhythms. The 12-
pulse rhythms considered here are rather limited since they are almost all based on the 6/8 clave
son. Figure 3 contains only five rhythms, four of which consist of the 6/8 clave son and its variants.
Since we are using its binarizations as our set of binary rhythms, the situation repeats itself for the
ternarization results.
Snapping rules: The snapping rules based on nearest (NN) and furthest (FN) neighbours appear
not to work as well as expected. Especially surprising is the behaviour of the NN rule. One would
expect this rule to respect the perceptual structure of the original rhythm, but this is not the case, at
least when it is applied to the entire rhythmic pattern. More experiments applying this rule at the
metric foot level should be carried out.



Rules based on snapping in a preferred direction, such as CN and CCN, work better than NN
and FN. Curiously, CN works much better for binarization than for ternarization, whereas CCN
performs better for ternarization.
Centers: As a consequence of the small size of the sets of 12- and 16-pulse rhythms, the results
for the families of rhythms are poor in general. Centers computed on the families of 6- and 8-pulse
rhythms are more meaningful. It would appear that perhaps a certain critical number of rhythms
is necessary for the centers to make sense. Interestingly enough, on the whole, the computation of
the centers yields large families of rhythms that are musicologically interesting on their own. Thus
centers provide a nice tool for generating new rhythms that are similar to a given group, and can be
used as composition tools as well as automatic rhythm transformation rules. The entire collection is
not listed here for lack of space, but it can be found at [8]
General conclusions: The results of these experiments are encouraging and suggest several avenues
for further research towards our goals, which are the automatic generation of new rhythms as a
composition tool, the possible testing of evolutionary theories of rhythm mutation via migration, the
understanding of perceptual rhythm similarity judgements, and the development of a general theory
of rhythm. In this preliminary study we only considered snapping rules on the entire rhythmic
patterns. The next step is to repeat these experiments at the finer level of the metric feet contained
in a rhythmic pattern. The families of rhythms considered in this study are rather small since they
consist of the documented examples of binarizations found in the literature. It would be very useful
for comparison purposes to repeat these experiments using all known binary and ternary rhythms
used in world music to discover which other binary-ternary pairs are identified by the snapping rules
investigated here. Finally, mapping rules that use higher level musicological knowledge should be
designed and compared to the context-free snapping rules used here, to determine how relevant such
high level knowledge might be.
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