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Abstract

Given linearly inseparable sets R of red points and B of blue points, we consider
several measures of how far they are from being separable. Intuitively, given a potential
separator (“classifier”), we measure its quality (“error”) according to how much work it
would take to move the misclassified points across the classifier to yield separated sets.
We consider several measures of work and provide algorithms to find linear classifiers
that minimize the error under these different measures.

1 Introduction

Current massive data collection methods have provided researchers with a wealth of data,
together with the challenge of making sense of it. Partitioning or clustering data as a
method of data analysis is an important tool in providing meaning to large amounts of
data. Performing this type of analysis is multifaceted, and can range from applications
in geography and land use, pattern recognition, medical health studies, economics, detect-
ing similarity between genres of music, and data mining to assist in targeted marketing
strategies, to name but a few.

Partitioning data using separators or classifiers to perform cluster analysis on training
sets is a standard technique, for example it is used in pattern recognition applications [21].
Thus the problem of determining if two disjoint point sets are separable has been widely
studied in the literature. See for instance Megiddo [33] for linear separability, O’Rourke et

∗Dept. of Computer Science and Engineering, Polytechnic Institute of NYU, USA, aronov@poly.edu.
Partially supported by grant No. 2006/194 from the U.S.-Israel Binational Science Foundation, NSA MSP
Grant H98230-06-1-0016, and NSF Grant CCF-08-30691.
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al. [34] and Boissonnat et al. [7] for circular separability, and Hurtado et al. [28] and Arkin
et al. [4] for various different separability criteria.

In some applications the training data may contain some points that have been mis-
classified resulting in the situation where no natural partition scheme classifies the data.
In this case classification is attempted where some amount of error is tolerated. Within
that context, Aronov and Har-Peled [3] studied the following problem: Given a bicolored
point set, find a ball that contains the maximum number of red points without containing
any blue points. Cortés et al. [17] address the problem of finding two boxes SR and SB

such that the number of red and blue points in SR and SB respectively is maximized, while
ignoring the points in SR ∩ SB. Mathematical programming techniques have been used in
the operations research community to solve similar problems [5, 18, 29, 38].

In this paper we present algorithms that minimize the error when using a linear sep-
arator. Given two linearly inseparable point sets we attempt to find a hyperplane which
splits the union of the sets into disjoint subsets in such a way that some error functions are
minimized. We call such hyperplanes optimal classifiers. The notion of optimality is left
intentionally informal as the precise properties that should be optimized are application
dependent. We will examine several different criteria for choosing an optimal classifier. We
will proceed on the assumption that the dimension d of the problem is a small constant
and be mostly concerned about the asymptotic dependence of the speed of our algorithms
on the size n of the point sets.

Let R be a set of r red points and B a set of b blue points in Rd. Let n := r + b be the
total number of points and assume that the point sets are disjoint and in general position,
that is, no d + 1 of the points lie in the same hyperplane in Rd. We say that R and B are
(linearly) separable if there exists a (linear) separator, which is an oriented hyperplane so
that the red points lie to its left and the blue points lie to its right. (Formally, each side
of the hyperplane is a closed half-space delimited by it, so points on the hyperplane are
considered to lie on both sides simultaneously.) If there is no separator for R and B, then
we say that the sets are inseparable.

Let P = {p1, . . . , pn} := R ∪B. Let h be a hyperplane x1a1 + · · ·+ xdad = a0, and let
h− be the halfplane containing the points (x1, . . . , xd) such that x1a1+ · · ·+xdad ≤ a0, and
h+ be the halfspace that contains the points satisfying x1a1 + · · ·+xdad ≥ a0. We will say
that h− lies to the left of h, while h+ lies to the right of h. If h were a separator of P , we
would have R ⊂ h− and B ⊂ h+. As it is not, it misclassifies the red points R(h) := Rrh−

and the blue points B(h) := B r h+. We use Ξ = Ξ(h) := R(h) ∪ B(h) to denote the set
of points misclassified by h. We use s(h) to represent the quality of h as a classifier; it
depends on h and Ξ = Ξ(h). Our goal is to find a hyperplane that minimizes the cost under
one of the following four measures, where d(·, ·) denotes the Euclidean distance between
points in Rd and d(p,X) denotes the Euclidean distance from a point p to a set X:

MinMax: Maximum Euclidean distance from h to a point in Ξ, i.e.,

s∞(h) := max
p∈Ξ(h)

d(p, h) = max{max
p∈R

d(p, h−), max
p∈B

d(p, h+)}.

MinSum: Sum of the Euclidean distances from h to points in Ξ, i.e.,

s1(h) :=
∑

p∈Ξ(h)

d(p, h) =
∑

p∈R

d(p, h−) +
∑

p∈B

d(p, h+).
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MinSum2: Sum of squares of the Euclidean distances from h to points in Ξ, i.e.,

s2(h) :=
∑

p∈Ξ(h)

d2(p, h) =
∑

p∈R

d2(p, h−) +
∑

p∈B

d2(p, h+).

MinMis: Just the cardinality of Ξ, i.e.,

s0(h) = |Rr h−|+ |B r h+|.

We are interested in finding an optimal classifier, which we define to be a halfspace
hOpt minimizing the quantity s(h); it is not always unique. Notice that since d(p, h±) is a
continuous function of h, so are s∞(h), s1(h), and s2(h).

We will use a standard duality transform. It maps a point p ∈ Rd to a non-vertical
hyperplane p∗ ⊂ Rd, and vice versa, that is, it maps a non-vertical hyperplane h to the
point h∗ such with (h∗)∗ = h and (p∗)∗ = p; moreover p is above h if and only if h∗ is
above p∗.

Outline of the paper. We present algorithms to find optimal classifiers using the four mea-
sures described above. In Section 2 we solve the one-dimensional problem, as this will
provide some illuminating intuition for proceeding on to problems of higher dimension.
We devote Section 3 to describing some crucial observations that relate the separability
problems in one dimension to those in higher dimensions. In Sections 4 through 7 we study
each of the measures in arbitrary dimension. Our results are based on existing techniques
from the computational geometry literature. We show that finding an optimal classifier
using the MinMax measure is equivalent to determining the penetration depth between
two convex polyhedra, and can therefore be solved using existing methods. For optimizing
classifiers using the MinSum, MinSum2, and MinMis measures we use duality and lev-
els in arrangements to systematically enumerate candidate solutions. The computational
complexities of our results are summarized in the following table.

Dimension MinMax MinSum MinSum2 MinMis

d = 1 Θ(n) Θ(n) Θ(n) Θ(n log n)

d = 2 Θ(n log n)
O(n4/3 log1+ε

n)

O(n4/3) (∗)
O(n2) O(n2)

d = 3 O(n2) O(n5/2 log6
n) (∗) O(n3) O(n3)

d ≥ 4 O(ndd/2e) O(nd) O(nd) O(nd)

(∗) randomized expected time

2 One dimension

We first consider the one-dimensional case of our set of problems. The input sets R and
B lie on the real line. Then a classifier is a point h. We will assume that h+ is the half-
line [h,+∞) and h− is the half-line (−∞, h]; the reverse case is handled by a symmetric
argument. For simplicity, we will omit the symmetric cases in the statement of our lemmas.
We seek the point (or points) hOpt minimizing s(h).
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Notice that d(p, h+) is convex as a function of h, as is its square ((p−h)2 for h ≥ p, and
0 for h < p); the same holds for d(p, h−). Since the first three error measures are defined
as the maximum, sum, and the sum of squares of these functions over all p ∈ P , in each
case s(h) is a convex function of h. Therefore it attains its minimum at a unique closed
interval. In fact, only s1 may attain its minimum on a non-zero-length interval.

2.1 MinMax

Recall that s∞(h) is the pointwise maximum of piecewise-linear convex functions and thus
piecewise-linear and convex. It is easily checked that it is nowhere constant, since R and
B are inseparable, and hence has a unique minimum.

Observation 1. The optimal MinMax classifier hOpt is the mean of the leftmost blue
point and the rightmost red point and can be computed in Θ(n) time.

Indeed, by definition, the cost s∞(h) is realized by the misclassified points furthest
from h and thus can be reduced by a small change of h in the appropriate direction, unless
it is midway between extreme misclassified points, as claimed.

2.2 MinSum

Recall that s(h) := s1(h) is a sum of n piecewise-linear convex functions and thus piecewise-
linear and convex. Therefore it achieves its minimum at a unique point or a closed
interval, where it is constant. Specifically, between consecutive points of P , s(h) =∑

p∈R(h) d(p, h−)+
∑

p∈B(h) d(p, h+) =
∑

p∈R(h)(p−h)+
∑

p∈B(h)(h−p) is a linear function
with slope −|R(h)|+ |B(h)|. It has breakpoints at points of P . Therefore, we have

Theorem 1. In one dimension, optimal MinSum is achieved at any point with the property
that the number of red and blue misclassified points is equal. More precisely, hOpt lies in
the closed interval between the rth and (r + 1)st point of P , counting from the left, or
between the bth and (b +1)st point, counting from the right. This interval can be computed
in optimal linear time.

Proof. The first statement follows from previous discussion, while the second can be de-
duced by counting the number of points to the left of hOpt, when it does not coincide
with a point of P : Since the number of red points to the right of hOpt is equal to the
number of blue points to the left of it, the total number of points to its left is precisely r,
as claimed. Since the minimum must be achieved on a closed interval, this must be the
interval delimited by the rth and (r + 1)st points from the left; such an interval always
exists, as −|R(h)| + |B(h)| starts at −r, ends at b and shrinks by exactly one every time
h crosses a point of P . Since the total number of points is n = r + b, the claim follows.

The desired interval can be computed by using a linear-time select algorithm [6].

2.3 MinSum2

Uniqueness of the optimum follows from our previous observations. Indeed, d2(p, h+)
and d2(p, h−) are both convex, continuous, everywhere differentiable functions; each is
composed of a quadratic and strictly convex portion and an identically zero portion. The
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sum of n such functions is convex. Moreover, its minimum can be attained along a non-
zero-length interval only if all the constituent functions are zero within it, which is not
possible for inseparable point sets.

To find the unique minimum, consider a candidate separator h. Then MinSum2 error
is given by

s2(h) =
∑

p∈R

d2(p, h−) +
∑

p∈B

d2(p, h+) =
∑

p∈R(h)

d2(p, h) +
∑

p∈B(h)

d2(p, h)

=
∑

p∈Ξ(h)

(p− h)2 = h2 · |Ξ(h)| − 2h ·
∑

p∈Ξ(h)

p +
∑

p∈Ξ(h)

p2,

which is a piecewise quadratic function. Put Σ(h) :=
∑

p∈Ξ(h) p. By previous discussion,
s2(h) is strictly convex and differentiable everywhere, hence its minimum value must occur
in that interval between consecutive points of P where hOpt := Σ(h)/|Ξ(h)| occurs within
the interval; this value has a geometric interpretation: hOpt is the arithmetic mean (i.e.,
the centroid) of the misclassified points.

Thus it remains to explain how to find this unique minimum. An O(n log n) algo-
rithm is clear: after sorting P , we compute |Ξ(−∞)| and Σ(−∞), and then incrementally
update them, maintaining Σ(h) and Ξ(h), and evaluating Σ(h)/|Ξ(h)| for every interval
between consecutive points of P , until we find the unique interval containing the local
(and, therefore, global) minimum. In fact, the optimum can be identified in linear time by
a prune-and-search procedure; refer to Algorithm 1. Its correctness follows from the con-
vexity of s2(h) and the above discussion. Its running time is linear, as it obeys a recurrence
of the form T (n) ≤ cn + T (n/2). Thus we have shown

Theorem 2. The one-dimensional MinSum2 problem has a unique solution which can be
found in optimal linear time.

2.4 MinMis

Consider inseparable point sets R and B. A different way to achieve separability is by
removing misclassified points. The MinMis problem for R ∪B is equivalent to computing
an optimal classifier for B and R that minimizes the number of misclassified points (see [23]
for the problem in two dimensions).

In order to compute a classifier hOpt yielding the minimum number of misclassified
points, i.e., the classifier hOpt that minimizes s := s0(h) = |Ξ(h)|, we sort the points in
O(n log n) time, obtaining a linear number of intervals delimited by consecutive points.
Any point in an interval gives the same value of s. Scanning the points left to right, while
maintaining the number of misclassified points of either color, one can determine the value
of s in each interval, and therefore the minimum value, in linear time. We thus obtain
an overall O(n log n) time algorithm for computing the optimal classifier (either point or
interval).

Next we see that this algorithm is optimal. Consider the following ε-distance problem
for points on a line [4]:

The ε-distance problem. Given a set of n points x1, . . . , xn on a line and a real value
ε > 0, decide whether |xi − xj | > ε, for all i, j ∈ {1, . . . , n}, i 6= j.
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Input: Inseparable sets R of red points and B of blue points on a line, with a total
of n points.

Output: The value hOpt at which the MinSum2 error measure s2(h) is minimized.
Initialization: Σ ← 0; N ← 0 ;
repeat

Determine p and q, the points that straddle the median rank in P ;
ΣB ← the sum of the coordinates of the blue points to the left of p in P ;
ΣR ← the sum of the coordinates of the red points to the right of q in P ;
NB ← the number of blue points to the left of p in P ;
NR ← the number of red points to the right of q in P ;
h ← ΣB+ΣR+Σ

NB+NR+N ;
switch h do

case p < h < q
return h;

end
case h < p

P ← subset of P to the left of h;
Σ ← Σ + ΣR;
N ← N + NR;

end
case h > q

P ← subset of P to the right of h;
Σ ← Σ + ΣB;
N ← N + NB;

end
end

until;
Algorithm 1: AverageOfMisclassified.

The ε-distance problem has an Ω(n log n)-time lower bound in the algebraic compu-
tation tree model [4]. Now we reduce the ε-distance problem to our MinMis problem as
follows.

We are given x1, . . . , xn and ε > 0. For each xi we add ri = xi − ε/2 to R and
bi = xi +ε/2 to B. In addition, we create 10n red points to the left of all points considered
so far and 10n blue points to the right of all of them. This can be easily done in linear
time. This ensures that the left side of the classifier is considered red and the right is blue,
for the optimal classifier. Refer to Figure 1.

R Bx3x1 x2

ε/2

Figure 1: Lower bound construction.

Now, if |xi−xj | > ε, for all i, j ∈ {1, . . . , n}, i 6= j, then the red and blue points coming
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from points xi alternate along the line: red, followed by blue, followed by red, etc. Thus
for a separator h lying between these points, the number of misclassified points oscillates
between n and n − 1. In particular, it is easy to check that the number of misclassified
points is at least n− 1 for any position of h and the minimum is n− 1.

On the other hand, if there exist i and j 6= i, such that |xi − xj | ≤ ε, then there is
at least one point common to the intervals [ri, bi] and [rj , bj ], for i 6= j. Such a point
misclassifies no more than n− 2 points. Thus we have proved

Theorem 3. The one-dimensional MinMis problem can be solved in O(n log n) time and
this is the best possible in the algebraic computation tree model.

3 From One to Higher Dimensions

Before proceeding with the higher-dimensional versions of our problem, we make the fol-
lowing simple but crucial observation which follows from the fact that signed Euclidean
distances to a hyperplane are preserved under an orthogonal projection to a line orthogonal
to the hyperplane (refer to Figure 2):

Observation 2. Let hOpt be an optimal classifier for inseparable sets R, B ⊂ Rd, d > 1,
for any of our error measures. Let ` be the line perpendicular to hOpt and passing through
the origin, and let R⊥, B⊥, and h⊥Opt be the respective orthogonal projections of R, B, and
hOpt to `. Then h⊥Opt is an optimal classifier for the one-dimensional problem R⊥, B⊥ for
the same error measure.

R
B

`

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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hOpt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

h⊥

Opt

Figure 2: Projecting an optimal solution.

We find the following general approach to obtain an optimal classifier useful for several
different error measures. Given a non-vertical candidate classifier hyperplane h, we aim to
place red points above it and blue points below it (vertical classifiers can often be handled
by an extension of the following discussion, or directly, as a problem of finding an optimal
classifier in one lower dimension). Classifiers with red points below them and blue points
above are handled by a symmetric argument.

Given a set P = B ∪ R of points, and a candidate classifier h, the exact analytical
form of the error measure s(h) depends on the set Ξ(h) of misclassified points, which in
turn is determined by the way in which h partitions P ; in fact, for all measures but s∞
the analytical form is completely determined by this bipartition. We now consider the
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situation in the dual: Let A := A(P ∗) be the arrangement of the planes dual to points of
P [22]. The various bipartitions of P by h correspond precisely to the various cells of A
that may contain the point h∗ dual to h. As we will see in following sections, the analytical
form of s(h) for MinSum and MinSum2 is not only completely determined by the cell C
containing h∗, but can also (1) be updated from cell to neighboring cell in constant time
and (2) be used to compute arg minh∗∈C s(C) in constant time, under certain assumptions
on our model of computation; see below for details. An analogous statement holds for
MinMis, with “cells” replaced by “faces of any dimension,” as this error measure is not
continuous. This implies

Theorem 4. Let R and B be inseparable points sets in Rd, d > 1. An optimal classifier
according to MinSum, MinSum2, or MinMis error measure can be computed in O(nd) time.

We devote the next section to MinMax, which requires separate treatment. We further
discuss the remaining measures and related existing work in Sections 5 through 7.

4 Higher Dimensions: MinMax

Recall that we have assumed that R and B are inseparable, so that the convex hulls CH(R)
and CH(B) properly intersect. Combining Observations 1 and 2, we notice that an optimal
classifier h in any fixed direction, for the MinMax measure, occurs half-way between the
left supporting hyperplane of B and the right supporting hyperplane of R parallel to h.
The error s(h) is precisely half the distance between these hyperplanes. Hence minimizing
s(h) is equivalent to minimizing this distance, over all orientations of h. It is not difficult
to see that the smallest such distance, over all possible orientations of h, is precisely the
minimum distance by which one needs to translate CH(R) to separate it from CH(B). This
quantity has been studied in the past, under the names intersection depth and penetration
depth [1, 8, 14, 20, 30, 31].

In the light of the previous discussion, the two-dimensional version of the problem can
be solved in linear time by the rotating-calipers method [41], once the convex hulls of R
and B have been computed. See Figure 3 for an illustration. Thus we have

Theorem 5. The two-dimensional MinMax problem can be solved in O(n log n) time, using
O(n) space. This cannot be improved in the algebraic computation tree model.

To show that the algorithm is worst-case optimal, we use a reduction from the Max–Gap
problem for points on the first quadrant of the unit circle [4] which is known to have an
Ω(n log n) lower bound in the algebraic computation tree model. An instance of Max–Gap
for points on the first quadrant of the unit circle is a set of points Z, together with the
question: What is the maximum Euclidean distance between consecutive points?

The reduction is as follows. Let a set Z of n points on the open first quadrant of
the unit circle be an instance of Max–Gap. Put R1 := Z = {r1, . . . , rn}, where ri are
numbered in their x-order (which is not given). Reflect R1 through the origin to obtain
a set B1 = {b1, . . . , bn} of blue points in the third quadrant, as illustrated in Figure 4.
Construct three additional red points r′i and symmetrically located blue points b′i; refer to
Figure 4. Here r′1 is chosen so that r1r

′
1 is tangent to the circle. The remaining additional

points are constructed analogously. Put R := R1 ∪ {r′1, r′2, r′3} and B := B1 ∪ {b′1, b′2, b′3}.
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(a) (b) (c)

Figure 3: Antipodal pairs from CH(B) and CH(R) are shown in three representative
configurations.

Now consider the resulting MinMax optimization problem for R and B. Observe that
the smallest distance between parallel support lines of CH(R) and of CH(B) occurs when
the lines pass through points that give the Max–Gap of Z (Figure 4).

Thus the solution of the MinMax problem would yield a line h from which one can, in
linear time, identify Max–Gap in Z, completing the proof.

R

B

O

r1

b′
2

1

rn

b1

bn

.............................................

b′
1

b′
3

h

r′
2

r
′

3

r′
1

Figure 4: The construction of the sets R and B from Z is shown illustrating the lower
bound argument.

In three dimensions, the MinMax problem (also known as penetration depth) can be
solved by examining all pairs of potential contacts made by two supporting planes with
opposite orientations, one for CH(R) and one for CH(B). The problem with this approach
is that the number m of such pairs of contacts is quadratic in the worst case, as in the
width problem [27]. Any algorithm that evaluates all such pairs of contacts will run in
worst-case time Ω(n2). By using the techniques developed by Houle and Toussaint [27]
we can obtain an optimal approximate MinMax separator in O(m + n log n) time, but
this is not the best possible. There exists extensive literature on width computation and
penetration depth, as mentioned before. In particular, in [1] it was shown how to compute
the penetration depth in expected time O(n3/2+δ), for any δ > 0. (In fact, the expected

9



running time of the algorithm is actually O(m1/2+δn1/2 +n1+δ), so it will run significantly
faster when m ¿ n2.)

As for the width problem, for d ≥ 4, an O(ndd/2e) time algorithm can be achieved by
realizing the solution space as a convex polytope in Rd+1, applying an optimal half-space
intersection algorithm, triangulating the resulting set, and explicitly optimizing s∞(h)
function over each simplex separately [9, 15].

5 Higher Dimensions: MinSum

As outlined at the end of Section 3, one can find the optimal classifier for the MinSum
measure by effectively examining all candidate classifiers h, or equivalently, enumerating
all possible placements of the point h∗ dual to h in the arrangement A. In this section
we explain the details of this process and simplify it a great deal by proving the follow-
ing theorem, which implies that only the vertices of the dual arrangement A need to be
examined.

Theorem 6. Let R and B be inseparable points sets in Rd, d > 1. Then there is an
optimal classifier hOpt of R and B that contains d affinely independent points of R ∪ B.
Equivalently, h∗Opt lies at a vertex of A. The vertex must belong to a cell of the r-level
of A.

Proof. We will make a slight notational adjustment, just for the duration of this section.
We will be discussing ways in which a hyperplane h partitions a point set P . This is
unambiguous as long as h does not pass through any of the points. In the dual, as long as
h∗ stays off the hyperplanes of P ∗, there is a clear notion of which hyperplanes lie below
it and which lie above. Starting with a point h∗ in an open cell c of A, consider the set
Ξ(c) = Ξ(h) of misclassified points. Now fix this set Ξ(c) and let h∗ vary over the closed
cell c̄: in the following discussion we treat just the points of Ξ(c) as misclassified, and none
other. This varies from our original definition in that some points contained in h will now
be considered misclassified. This does not affect our measure of error, as the contribution
of a point on h to s(h) is zero, whether or not it is considered misclassified.

The effect of this adjustment in the dual is as follows: For a generic point h∗ ∈ c,
we determine which hyperplanes of P ∗ lie above and which below, and then extend this
convention to points h∗ lying on the boundary of c.

Recall that translating a candidate classifier h parallel to itself corresponds to moving
h∗ along a line parallel to the xd-axis. Applying Theorem 1 and Observation 2 to the
best classifier in this family of hyperplanes, we conclude that there must be precisely r
hyperplanes above h∗ and precisely b hyperplanes below it, i.e., h∗ must lie in a (closed)
cell on the r-level of A. Additionally, putting ρ = ρ(h) := |R(h)| and β = β(h) := |B(h)|,
we must have ρ = β for an optimal classifier. We observe that

s(h) =
∑

p∈R(h)

d(p, h) +
∑

p∈B(h)

d(p, h) = ρd(p, C(R(h))) + βd(p, C(B(h)))

= ρ
(
d(p, C(R(h))) + d(p, C(B(h)))

)
,

where we have used C(·) to denote the centroid of a set. Fix a closed r-level cell c̄. Since
(with our adjusted convention) ρ is a constant over c̄, to minimize s(h) over c̄, it is sufficient
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to minimize the expression H(h) := d(p, C(R(h))) + d(p, C(B(h))) over c̄. We now argue
that this latter expression can attain its minimum only at a vertex of c̄.

In short, the function we are minimizing is the sum of the distances to centroids of the
red and the blue misclassified points, which by definition lie on the opposite sides of h. If
there were no restrictions on positioning the hyperplane h, the function would achieve its
minimum value of zero when h passed through the two centroids. Minimizing H(h), while
constraining h∗ to lie in c̄, is equivalent to restricting our attention to those hyperplanes h
that separate CH(R(h)) and CH(B(h)). We argue that among all such hyperplanes h, none
can minimize s(h) without passing through d (affinely independent) points of P . Indeed,
H(h) = |s| sinα, where α is the angle between h and the segment s := C(R(h))C(B(h))
and |s| is the length of s; H(h) cannot achieve its minimum of zero, since the endpoints
of s lie on opposite sides of h and having s lie within h would imply that R and B are
separable, contradicting our assumptions.

We first argue that h must be a separating tangent of CH(R(h)) and CH(B(h)). If
h strictly separates the two sets, it can be rotated (say, around s ∩ h) to decrease α and
thus h. Hence h must touch at least one of the sets. If h misses the other set, it can be
shifted parallel to itself without affecting H(h) to strictly separate the two sets, yielding a
contradiction, as above. Thus h is a tangent to the two sets and passes through at least
two of their vertices.

As long as the affine dimension of h ∩ P is less than d − 1, we can rotate h around
h ∩ P . It is easy to check that at least one “direction” of this rotation reduces α and thus
H(h). (For specificity, pick any d− 2-flat π containing h∩P and rotate h around it: there
is a one-dimensional family of hyperplanes containing π, so this rotation is well-defined.
By assumption, if rotated by a sufficiently small amount in either direction, h continues to
be an inner tangent of CH(R(h)) and CH(B(h)). In at least one direction, however, the
angle α decreases. Hence the original h could not minimize H(h), as claimed.)

Therefore, as long as h contains fewer than d points of P , there is at least one direction in
which it can be infinitesimally rotated around the points h∩P , while maintaining tangency
to CH(R(h)) and CH(B(h)) and reducing α. Thus any such choice of a hyperplane cannot
be a minimum, for a given bipartition. In other words, the affine hull of hOpt ∩ P , for
an optimal classifier hOpt, must have dimension d − 1, or h∗Opt must be a vertex of A, as
claimed.

5.1 d = 2

Let h be a candidate classifier line for R and B according to the MinSum criterion, with
h+ (h−) denoting the closed half-plane above (below) h.

Let h : ax + y + e = 0. Denote by px, py the coordinates of a point p. The contribution
of p ∈ R(h) to s(h) := s1(h) is

apx + py + e√
a2 + 1

,

while the contribution of p ∈ B(h) is given by a similar expression, with a negative sign.
Summing the contributions of all points and using the fact that |B(h)| = |R(h)| (see proof
of Theorem 6), we obtain

s(h) = s(a) =
A1a + A2√

a2 + 1
,

11



where A1 = A1(h) :=
∑

p∈R(h) px−
∑

p∈B(h) px and A2 = A2(h) :=
∑

p∈R(h) py−
∑

p∈B(h) py;
A1 and A2 depend only on the bipartition of P by h and not on the precise placement of h;
the function, for a fixed Ξ, depends only on a, the slope of h.

As noted above, the optimum must be achieved at a vertex of an r-level cell in A. Tight
bounds on the maximum complexity (i.e., number of edges and vertices) of the r-level cells
in an arrangement of n lines are not known—determining the order of magnitude of this
quantity as a function of n is a long-standing open problem in discrete geometry. For
r = Θ(n) it is known to be neΩ(

√
log n) [40] and O(n4/3) [19]. There is extensive literature

for constructing levels in line arrangements. The best known deterministic algorithm is due
to Chan [12] and runs in O(n4/3 log1+ε n) time and O(n) space. Chan [12, 13] presented a
randomized algorithm that guarantees O(n4/3) expected time for constructing the r-level
in an arrangement of n lines in the plane; the bounds improve somewhat if r ¿ n.

Once the r-level cells have been computed, the remaining computations can be car-
ried out in time proportional to the size of the level. Hence we have a deterministic
O(n4/3 log1+ε n) time algorithm and a randomized O(n4/3) expected running time algo-
rithm for finding the set of all optimal classifiers minimizing the MinSum error measure in
the plane.

x   a

Figure 5: A set of 8 points in the plane (left). The level-4 cells in the dual arrangement of
the 8 lines (right).

Theorem 7. The two-dimensional MinSum problem can be solved deterministically in time
O(n4/3 log1+ε n) for an arbitrarily small constant ε > 0 or in O(n4/3) expected time.

5.2 d ≥ 3

The foregoing discussion extends to three and higher dimensions. We illustrate the calcu-
lations in three dimensions. Let h : ax + ey + z + f = 0 be a plane with normal vector
(a, e, 1). Let p = (px, py, pz) ∈ P , then d(p, h) is given by

d(p, h) = ±apx + epy + pz + f√
a2 + e2 + 1

,
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with the sign chosen according to whether p ∈ h+ or p ∈ h−. Since, by Theorem 1 and
Observation 2, |B(h)| = |R(h)|, we have

s(h) =
aA1 + eA2 + A3√

a2 + e2 + 1
,

where A1 = A1(h) :=
∑

p∈R(h) px −
∑

p∈B(h) px, A2 = A2(h) :=
∑

p∈R(h) py −
∑

p∈B(h) py,
and A3 = A3(h) :=

∑
p∈R(h) pz −

∑
p∈B(h) pz. These values are constants for a fixed

bipartition, i.e., for h∗ in a fixed cell of A. Hence, these quantities and the exact analytic
expressions for s(h) can be maintained in constant time, when moving from a level-r cell
to an adjacent level-r cell.

The total complexity of the cells on the r-level is the number of their vertices, edges, and
faces. Under general position assumptions, it is proportional to the number of vertices of
the cells involved. The number of vertices of the r-level is at most O(nr3/2) [39]; the exact
maximum complexity of the r-level is a long-standing open problem in discrete geometry.
Chan [11] gives an O(n log n + nr3/2 log6 r) expected time algorithm for construct the r-
level in an arrangement of n planes. As before, given the set of r-level cells, we traverse
these cells in a, say, depth-first-search order of the graph of their adjacencies, going from
cell to neighboring cell c, updating the quantities A1(c), A2(c) and A3(c) in constant time
and obtaining the exact closed-form equation for the function s(c) for the current cell. By
Theorem 6, evaluating s(h) on all vertices of r-level cells is sufficient to locate the optimal
classifier(s). Each such evaluation is done in constant time, apart from some initialization
cost, so the running time is dominated by the complexity of computing the r-level.

Theorem 8. The three-dimensional MinSum problem can be solved in O(n5/2 log6 n) ex-
pected time.

In higher dimensions, the same approach still applies. Namely the optimum is achieved
by h dual to a vertex of an r-level cell of A. Thus it is sufficient to evaluate the function at
these vertices. This can be done in constant time per vertex, after some linear-time set-up.
The bottleneck again is computing the said vertices.

Again, determining the order of magnitude of the maximum number of such vertices is
a long-standing open problem in discrete geometry. It is asymptotically the same as the
complexity of the r-level. For dimension d ≥ 4, the best known upper bound for the size
of the r-level is only slightly better than the O

(
nbd/2crdd/2e) [15]. More specifically, it is

O(nd−αd) for a very small constant αd = 1/(4d− 3)d. As Agarwal et al. [2] observed, the
bound can be made sensitive to r, namely O(nbd/2crdd/2e−αd). Matoušek et al. [32] give an
O(n4−2/45) upper bound for d = 4.

For an arbitrary fixed dimension d, the r-level in an arrangement of n hyperplanes in
Rd can be constructed deterministically (see Chan [13]) in time

O

(
nbd/2crdd/2e

(
log n

log r

)O(1)
)

.

To summarize, we have proven

Theorem 9. The d-dimensional MinSum problem can be solved deterministically in time

O

(
nbd/2crdd/2e

(
log n

log r

)O(1)
)

= O(nd).
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6 Higher Dimensions: MinSum2

We proceed to implement the plan outlined at the end of Section 3 for MinSum2. Namely,
we consider the dual arrangement A and evaluate s2(h) for h∗ ranging over all cells c
of A. This corresponds to fixing the sets R(h) = R(c) and B(h) = B(c) and therefore
the expression for s2(h) in terms of the coordinates of h∗. The function is a quadratic
expression whose minimum can be computed in constant time, in constant dimension; this
assumes the ability to compute roots of a system of O(d) equations in d unknowns, which
is not an uncommon assumption in computational geometry; in d = 2 the minima can be
computed explicitly in radicals. We fill in some of the details below.

6.1 d = 2

Let hOpt : ax+ y + e = 0 be the optimal classifier line according to the MinSum2 criterion.
The squared distance between a point p and the line h is given by

d2(p, h) =
(apx + py + e)2

a2 + 1
.

Thus

s(h) = s2(h) =
∑

p∈Ξ(h)

(apx + py + e)2

a2 + 1

=
A1a

2 + A2 + A3e
2 + 2A4a + 2A5ae + 2A6e

a2 + 1
,

where A1 = A1(h) :=
∑

p2
x, A2 = A2(h) :=

∑
p2

y, A3 = A3(h) := |Ξ(h)|, A4 = A4(h) :=∑
pxpy, A5 = A5(h) :=

∑
px, and A6 = A6(h) :=

∑
py, which are constants for a given

partition; all the summations are over points p ∈ Ξ(h). Thus, s(h) only depends on a
and e, so we write s(h) = s(a, e). To identify the minimum of s(a, e), we set its partial
derivatives to zero.

∂s(a, e)
∂a

=
a2(−2A5e− 2A4)− 2a(A3e

2 + 2A6e + A2 −A1) + 2(A5e + A4)
(a2 + 1)2

= 0

∂s(a, e)
∂e

=
2A3e + 2A5a + 2A6

a2 + 1
= 0

These conditions can be rewritten as

e = A′1a + A′2, A′3a
2 + A′4a + A′5 = 0,

for coefficients A′i that can be expressed explicitly in terms of Aj ’s. The system can be
solved for (a, e), yielding at most two candidate points at which s(a, e) may achieve its
minimum in the interior of the current cell c; the points are discarded if they are found not
to lie in c. To know which one is the minimum we evaluate the function at both points.
Since the minimum may occur along an edge of A, we must repeat this process for every
such edge, expressing s(·, ·) as a function of position of h∗ along the edge and computing
its minimum. Finally, we also evaluate s(·, ·) at every vertex of A.

14



To summarize, we compute the precise analytic form of the function s2(h) in each
face (of every dimension) of the dual arrangement A and explicitly compute its minima.
As the coefficients of the function can be updated in constant time from one face of the
arrangement to its neighbor, a single traversal of the arrangement allows us to find the
global minimum in O(n2) time.

Theorem 10. The two-dimensional MinSum2 problem can be solved in O(n2) time.

Consider s(â, ·) as univariate function on a vertical line a = â in the dual plane. This
corresponds to fixing the slope of a candidate classifier at â and varying its vertical position.
From Observation 2 and the discussion in Section 2.3 we conclude that s(â, ·) has a unique
minimum and its position varies continuously with â. The minimum traces an a-monotone
curve λ through A, which here means a curve that meets every line a = constant in
precisely one point. Let X denote the number of intersections of λ with the lines of P ∗.
We can use the algorithm of Har-Peled [25] for “walking in arrangements” to compute these
faces, provided we can follow the curve from face to face (which is possible by using explicit
computation of the minimum’s position as a function of â, in a fixed cell, as outlined above)
in expected time O((X + n)α(n) log n), where α(·) is the extremely slowly growing inverse
Ackermann function. (Note that roughly comparable, though slightly larger deterministic
running times can be obtained by using deterministic dynamic convex hull (or, equivalently,
dynamic halfplane intersection) algorithms [35, 37].)

Theorem 11. The two-dimensional MinSum2 problem can be solved in expected time
O((n + X)α(n) log n), where X is the number of candidate classifier lines h with the prop-
erty that (a) h passes through one of the given points and (b) h is the optimal classifier
among all the lines parallel to it.

Does λ visit Θ(n2) cells of A, in the worst case? It would be interesting to determine
the worst-case asymptotic behavior of the quantity X as a function of n. Can it really
reach quadratic?

6.2 d ≥ 3

The previous discussion generalizes to any dimension. We construct the dual arrangement
A in Θ(nd) time and compute an explicit description of the function s2(h), for all h∗ in a
given face ∆, by traversing the entire arrangement. Over a fixed face ∆, the function is
always a ratio of two quadratic functions, with the same denominator. The function can
be minimized over ∆ in constant time, assuming we can solve systems of d equations in
d unknowns, of degree at most three, in constant time. Repeating the calculation for every
face ∆, we obtain the optimal classifier hOpt in O(nd) time.

Theorem 12. The d-dimensional MinSum2 problem can be solved in O(nd) time, assuming
systems of d polynomial equations in d unknowns and degree at most three can be solved in
constant time.

7 Higher Dimensions: MinMis

We denote by kOpt the smallest achievable number of misclassified points.
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Again, we view the error measure s0(h) as a function, with h∗ ranging over the dual
arrangement A. It is constant over any face of A and changes in easy to compute ways
from face f to an adjacent face. Being the number of misclassified points, it is equal to the
number of red hyperplanes strictly below f plus the number of blue hyperplanes strictly
above f . This quantity can clearly be maintained in constant time per face, by traversing
the entire arrangement, say in a depth-first manner, yielding an O(nd) time algorithm.

Theorem 13. The d-dimensional MinMis problem can be solved in O(nd) time.

We now discuss alternative approaches, reformulations, previous related work, and
hardness arguments. Houle [26] gave an O(n2) time algorithm for this problem in the
plane; in fact, the problem is 3sum-hard [24]. Indeed, since a point p being correctly
classified translates to h∗ lying in the appropriate (closed) halfspace bounded by p∗, our
problem is equivalent to finding the “deepest” point (i.e., a point contained in the maximum
number of halfspaces) in an arrangement of n halfspaces. The two-dimensional version of
this problem is known to be 3sum-hard [24]. (A reduction that produces a less degenerate
arrangement, corresponding to disjoint sets of red and blue points in the primal, can be
carried out along the lines of the argument in [3], where the more general problem of finding
the maximum depth in a disk arrangement is shown to be 3sum-hard.)

An O(nk log2 n) time algorithm to compute the space of all classifiers misclassifying up
to k points in the plane, for a given k (or, equivalently, finding all feasible points with up
to k constraints removed; see below) was presented in [16]. A different approach was taken
in [23] to compute kOpt in O(nkOpt log kOpt + n log n) time.

An equivalent restatement of the dual problem is to consider the set of the (closed dual)
halfspaces corresponding to correctly classified points and ask how many such halfspaces
need to be removed in order or the remaining ones to have a point in common. Phrased
differently, given an infeasible linear program, what is the minimum number of constraints
that need to be removed to make it feasible? The above question is closely related to the
linear programming with violations problem [10, 36]: Given a set of n linear constraints,
an integer k < n/2, and a linear function f(·) to maximize, find the point x that attains
the largest value f(x), while satisfying all but at most k of the given constraints, or
reports that no such point exists. This problem has been extensively studied. Several
papers on linear programming with violations directly find the minimum number kOpt of
constraints that need to be removed to ensure feasibility. For example, Chan [10] presents
a randomized algorithm that runs in O((n + k2

Opt) log n) expected time in the plane and
O(n log n + k

11/4
Opt n1/4 logc n) expected time in d = 3, 4.

Another approach to the problem is to use approximation, as exact solutions, especially
when the optimal value kOpt is comparable to n, seem expensive. In [3], a number of
algorithms are constructed for approximating the depth of the deepest point in a variety
of circumstances. In particular, an approximate solution to the linear programming with
violators problem is described, giving an O(n log(ε−1 log n)+(ε−1 log n)O(1)) expected time
algorithm (for d = 2, 3) and O(n(ε−2 log n)d+1) expected time algorithm, for d > 3, which
will, with high probability, find a hyperplane that misclassifies at most (1 + ε)kOpt points.
Recall that the best hyperplane misclassifies kOpt points.
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8 Conclusions

We have shown how known techniques from the computational geometry literature can be
used to find optimal classifiers. Our algorithms produce exact solutions, but suffer from the
fact that the computational complexity grows sharply with the dimension of the problem.
The interesting open question that remains unresolved is to develop algorithms to find
optimal classifiers with computational complexity that is less sensitive to the dimension.

Acknowledgments. We thank Sariel Har-Peled for his expert advice on walking in
arrangements and looking for depth, not necessarily at the same time.
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[32] J. Matoušek, M. Sharir, S. Smorodinsky, and U. Wagner. k-Sets in four dimension.
Discrete Comput. Geom., 35 (2006) 177–191.

[33] N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of the ACM, 31:1 (1984) 114–127.

[34] J. O’Rourke, S. R. Kosaraju, N. Megiddo. Computing circular separability. Discrete
Computational Geometry, 1:1 (1986) 105–113.

[35] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Sys. Sci., 23 (1981) 166–204.

[36] T. Roos and P. Widmayer. k-Violation linear programming. Information Processing
Letters, 52 (1994) 109–114.

[37] J. Rico. Dynamic planar convex hull. PhD dissertation, BRICS, Aarhus, Denmark,
(2002).

[38] B. Schölkopf and A. J. Smola. Learning with kernels. The MIT Pres, (2002).

[39] M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three
dimensions. Discrete Comput. Geom., 26 (2001) 195–204.
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