MODEL-DRIVEN
SOFTWARE DEVELOPMENT

FOR

CISC836: Models in Software [EDOWNUSN

SLAY THE
(COMPLEXITY DRAGON
'WITH ABSTRACTION
A Ref(irence AND AUTOMATION
r
Rest of Us!

EE Tips o dummies.com-

Development: Methods,
Techniques and Tools

UML-RT and RSARTE: Part V

Juergen Dingel
Oct 2021

UML-RT CISC 836, Fall 2021 107

Debugging in RSARTE

FHCL

Debugging RTist Models

Martas Mot
Senior Sbwars drchiect
HCL

ing (i)

“The document was st pdated for KTist 103, Al screen shots were captured o the Wi
dowsplattoma.

3 https://www.youtube.com/embed/ oelgrMb3UU

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/RTist%20Model%20Debug.pdf

UML-RT CISC 836, Fall 2021 109

UML-RT/RSARTE: Part V

Model debugger
UML-RT: other features

¢ |nheritance

° Capsule, state machine
e Synchronous calls

° invoke vs send in RTProtocol.h
e Message priorities

= Generating multi-threaded code

Support for distributed, web-based systems

UML-RT CISC 836, Fall 2021 108

Creating Multi-Threaded Applications

‘ Application ‘ /:

RT Controller 1 RT Controller n

RTS « e
w/ message queue w/ message queue

Target OS (Linux)

l Target HW ‘ l Shared structures & services

= Fixed capsule parts

e instance always runs in the same thread as owning capsule instance
= QOptional and plugin capsule parts

e Instance can run in its own physical thread
= Each physical thread

e has one controller w/ its own message queue, executing possibly
many state machines

UML-RT CISC 836, Fall 2021 110

Creating Multi-Threaded Applications

(Cont’d)

Py Top |

= |ogical thread

e Refers to the execution of a capsule
instance/state machine

frame

= To make the instance in optional
capsule part c1 run in its own thread:
In transformation configuration:

1. Create physical thread w/ some name,
e.g., ‘PTcl’

2. Create logical thread w/ some name ‘LTcl’

=> Code generator creates variable
‘RTController LTcl’

3. Assign LTcl to PTcl
In capsule owning c1:

1. whenincarnating c1, use special version
of incarnate with ‘LTc1’ as argument

UML-RT CISC 836, Fall 2021

Impact of Multi-Threading (1/7)

=

Threads

Physical threads:
2 MainThread
2 TimerThread

v B, CiThread

Locur

v B, CZThread

L, caur
v 2 Dlhread
Lo

111

(s Ponger_sm

(s Pinger_SM
_[count<3]/send (ping) ;
count++;
‘T @ Play
@ Play W & Done
3 N ¢ —
REErAGTeEDE pong[1/_ 211 (count<3)1/_
send (ping) ; ; ping[]/send (pong) ;
count=2;
acts vars mgl (pinger thread) mg2 (ponger thread)
—r_ count=_ [1 []
Play,Play count=2 [1 [ping, ping]
[pong] [ping]
/pinger ponger\
Play,Play count=3 [1] [ping, ping] l l Play,Play count=2 [pong, pong] [1
\ponger pinger/
l Play,Play count=3 [pong] [ping] l

113

Creating Multi-Threaded Applications

(Cont’d)

Example

log.log("[Top] starting up");

RTTypedValue noData ((const void *)8, (const RTObject_class *)@);
log.log("[Top] incarnating part 'cl1'");

RTActorId idl = frame.incarnate(cl, noData, CILT);
log.log("[Top] incarnating part 'c2'");

RTActorId id2 = frame.incarnate(c2, noData, C2LT);
log.log("[Top] incarnating part "d™");

RTActorId id3 = frame.incarnate(d, noData, DLT);
log.log("[Top] sending 'go' to "cl'™);
tpl.go().send();

log.log("[Top] sending 'go' to 'c2'");
tp2.go() . send();

Threads

Physical threads:
E. MainThread
P TimerThread

~ B ClThread

Loour
~ B C2Thread

L ocar
~ B DThread

L ot

Incarnation w/ thread assignment (RTFrame)

° RTActorId incarnate (RTActorRef & cp, RTypedValue & info,

RTController * controller, int index)
~ info isdata to be passed into incarnated part
- controller is controller which should run the incarnated part

- index specifies where to insert part in case of replicated parts

UML-RT CISC 836, Fall 2021

112

Impact of Multi-Threading (2/7)

Top Top
i i /send(bGo); fromB
send(cGo);
b:B c:C
b:B bGo/doStuff; c:C
: send(fromB) : : cGo/send(fromC) :

What if b and ¢ execute on

* the same thread/controller (and, thus, share a message queue)?
 different threads/controllers (and, thus, have their own message queues)?

What if ‘doStuff’ takes a really long time?
What about ‘run-to-completion’?

UML-RT CISC 836, Fall 2021

114

Impact of Multi-Threading (3/7)

b and c run on same thread
Thread/controller T1

/send(bGo); fromB
send(cGo);

UML-RT

Th

CISC 836, Fall 202

read/controller T2

b:B bGo/doStuff;

: send(fromB) :

c:C
cGo/send(fromC)

O——0

1

Impact of Multi-Threading (5/7)

b and c run on same thread
Thread/controller T1

/send(bGo); fromB
send(cGo);

/send(bGo); fromB
send(cGo);

Thread/controller T2

CISC 836, Fall 2021

115

b:B bGo/doStuff;

: send(fromB) :

c:C
cGo/send(fromC)

O——0

b:B bGo/doStuff;

: send(fromB) :

c:.C
cGo/send(fromC)

Oo——0

Impact of Multi-Threading (4/7)

b and c run on same thread
Thread/controller T1

/send(bGo); fromB
send(cGo);

UML-RT

Thread/controller T2

b:B bGo/doStuff;

: send(fromB) :

c:C
cGo/send(fromC)

O——0

CISC 836, Fall 2021 116

Impact of Multi-Threading (6/7)

b and c run on different threads

Thread/controller T1

/send(bGo); fromB
send(cGo);

UML-RT

Thread/controller T2

b:B bGo/dostuff;

: send(fromB) :

cGo/send(fromC)

O——0

CISC 836, Fall 2021 118

Impact of Multi-Threading (7/7)

n
b and c run on different threads
Thread/controllerTl Ihfrfe;gdﬁ[ggntrg![@[f[; """""""""""""""" N
’ \“.‘ ‘ b:B bGo/dostuff; ‘
/send(bGo); fromB b send(fromB) }
send(cGo); P O ;O !
| Thread/controllerT3
c:C MQ ,,,,,
| w : cGo/send(fromC): GGO‘ n

$./executable.exe -URTS_DEBUG=quit -UARGS "different” 25008

3 cases: [Top] sending 'go’ to 'b' and then to 'c'; waiting to see who responds first
. . c ot 'go’ from 'Top'[b ot 'go’ to 'Top', iterating now ...
if doStuff ‘short’, b always wins ke Yig s PiE et s d B
) , , i [c] sending "fromC’ to 'Top'[b] ... done, sending 'froms’ to 'Top’
elsif doStuff ‘long’, ¢ always wins
[Top] got 'fromC'
else ? [Top] got 'fromB', 'c' wins
[Top] sending 'go’ to 'b' and then to 'c'; waiting to see who responds first
[b] got 'go’ to 'Top', iterating now ...[c] got 'go’ from 'Top'
Model available as sample model [b] ...done, sending "fromB' to 'Top'[c] sending 'fromC' to 'Top'
[Top] got 'froms"
UML-RT [Top] got 'fromC', 'b’ wins

“What if a model needs to receive user input
during execution?”

(3 TrafficLight_SM

Initial
- ready
4 @ WaitForObserver @ Active
L

3

% Top
(ir]
trafficLight : Trafficlight
obsenation inpintP IogP frameP
obsenvation~ inpintP~

[Ri=]
inputint < inputint (o..;?

&
i)
observer : Observer

starting up, thread id: 570416

waiting for requests for input 'getInput’
please input an integer: 1

got 1

please input an integer: 2

got 2

please input an integer: 1

got 1

please input an integer: |

CISC 836, Fall 2021

[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]

UML-RT 121

Creating Multi-Threaded Applications (Cont’d)

Pros

Make parts of application more independent

o

Long execution steps in one part will not reduce responsiveness of another

o |f threads have priority
° better performance for tasks on threads with higher priority

e |f threads are mapped to cores
° better performance for all tasks

Cons
e Multi-threading typically introduces the possibility for more than one transition to
be enabled in a stable state configuration

=> Correct design requires ensuring that messages arrive and are processed in correct
order by several different controllers

e Multi-threading makes application more susceptible to

° Specifics of platform (RTS/OS, hardware) and communication media
= Change in RTS, OS, C++ libraries, hardware, resource use can lead to messages being
delivered and processed in different order

= Model must be carefully designed to make it robust to these changes

UML-RT CISC 836, Fall 2021 120

“Every computation needs to be
triggered by an incoming message.
Isn’t that a restriction?”

UML-RT CISC 836, Fall 2021 122

“Every computation needs to be
triggered by an incoming message.
Isn’t that a restriction?”

itial @ WaitingForDimensions

i @ Done
Lo "gotAlIVaIuesy// w_

p \
notGotAllvalues gotAv;\

S ‘// “\
‘ @ WaitForvalueing {

gotDims

e ‘ @ WaitForvaluelnA
‘ @ SendDimensionsToOutputCollector W

..[

tick
tick £l
aliReceived

' @ SendDimensionsToProviders ‘ @ SendStartToProcessors

—g_ O0tEWI

e
—— —

+ . N 1

notAllReceived
tick

e |

[QSﬂupCunneﬁionToPlomssors | l @ Wwait : L—ﬁ
ey B aliReceived .

tick lm
I @ ConfirmReadyForincarnation P tick @ Wait imensi
\ - {) request

UML-RT CISC 836, Fall 2021

