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UML-RT/RSARTE: Part V

Model debugger
UML-RT: other features

¢ |nheritance

° Capsule, state machine
e Synchronous calls

° invoke vs send in RTProtocol.h
e Message priorities

= Generating multi-threaded code

Support for distributed, web-based systems
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Creating Multi-Threaded Applications

‘ Application ‘ /:

RT Controller 1 RT Controller n

RTS « e
w/ message queue w/ message queue

Target OS (Linux)

l Target HW ‘ l Shared structures & services

= Fixed capsule parts

e instance always runs in the same thread as owning capsule instance
= QOptional and plugin capsule parts

e Instance can run in its own physical thread
= Each physical thread

e has one controller w/ its own message queue, executing possibly
many state machines
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Creating Multi-Threaded Applications

(Cont’d)

Py Top |

= |ogical thread

e Refers to the execution of a capsule
instance/state machine

frame

=  To make the instance in optional
capsule part c1 run in its own thread:
In transformation configuration:

1. Create physical thread w/ some name,
e.g., ‘PTcl’

2. Create logical thread w/ some name ‘LTcl’

=> Code generator creates variable
‘RTController LTcl’

3. Assign LTcl to PTcl
In capsule owning c1:

1. whenincarnating c1, use special version
of incarnate with ‘LTc1’ as argument
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Impact of Multi-Threading (1/7)

=

Threads

Physical threads:
2 MainThread
2 TimerThread

v B, CiThread

Locur

v B, CZThread

L, caur
v 2 Dlhread
Lo
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(s Ponger_sm

(s Pinger_SM
_[count<3]/send (ping) ;
count++;
‘T @ Play
@ Play W & Done
3 N ¢ —
REErAGTeEDE pong[1/_ 211 (count<3)1/_
send (ping) ; ; ping[]/send (pong) ;
count=2;
acts vars mgl (pinger thread) mg2 (ponger thread)
—r_ count=_ [1 []
Play,Play count=2 [1 [ping, ping]
[pong] [ping]
/pinger ponger\
Play,Play count=3 [1] [ping, ping] l l Play,Play count=2 [pong, pong] [1
\ponger pinger/
l Play,Play count=3 [pong] [ping] l

113

Creating Multi-Threaded Applications

(Cont’d)

Example

log.log("[Top] starting up");

RTTypedValue noData ( (const void *)8, (const RTObject_class *)@ );
log.log("[Top] incarnating part 'cl1'");

RTActorId idl = frame.incarnate(cl, noData, CILT);
log.log("[Top] incarnating part 'c2'");

RTActorId id2 = frame.incarnate(c2, noData, C2LT);
log.log("[Top] incarnating part "d™");

RTActorId id3 = frame.incarnate(d, noData, DLT);
log.log("[Top] sending 'go' to "cl'™);
tpl.go().send();

log.log("[Top] sending 'go' to 'c2'");
tp2.go() . send();

Threads

Physical threads:
E. MainThread
P TimerThread

~ B ClThread

Loour
~ B C2Thread

L ocar
~ B DThread

L ot

Incarnation w/ thread assignment (RTFrame)

° RTActorId incarnate (RTActorRef & cp, RTypedValue & info,

RTController * controller, int index)
~ info isdata to be passed into incarnated part
- controller is controller which should run the incarnated part

- index specifies where to insert part in case of replicated parts
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Impact of Multi-Threading (2/7)

Top Top
i i /send(bGo); fromB
send(cGo);
b:B c:C
b:B  bGo/doStuff; c:C
: send(fromB) : : cGo/send(fromC) :

What if b and ¢ execute on

* the same thread/controller (and, thus, share a message queue)?
 different threads/controllers (and, thus, have their own message queues)?

What if ‘doStuff’ takes a really long time?
What about ‘run-to-completion’?
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Impact of Multi-Threading (3/7)

b and c run on same thread
Thread/controller T1

/send(bGo); fromB
send(cGo);

UML-RT

Th

CISC 836, Fall 202

read/controller T2

b:B  bGo/doStuff;

: send(fromB) :

c:C
cGo/send(fromC)

O——0

1

Impact of Multi-Threading (5/7)

b and c run on same thread
Thread/controller T1

/send(bGo); fromB
send(cGo);

/send(bGo); fromB
send(cGo);

Thread/controller T2
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b:B  bGo/doStuff;

: send(fromB) :

c:C
cGo/send(fromC)

O——0

b:B bGo/doStuff;

: send(fromB) :

c:.C
cGo/send(fromC)

Oo——0

Impact of Multi-Threading (4/7)

b and c run on same thread
Thread/controller T1

/send(bGo); fromB
send(cGo);

UML-RT

Thread/controller T2

b:B  bGo/doStuff;

: send(fromB) :

c:C
cGo/send(fromC)

O——0
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Impact of Multi-Threading (6/7)

b and c run on different threads

Thread/controller T1

/send(bGo); fromB
send(cGo);

UML-RT

Thread/controller T2

b:B  bGo/dostuff;

: send(fromB) :

cGo/send(fromC)

O——0
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Impact of Multi-Threading (7/7)

n
b and c run on different threads
Thread/controllerTl Ihfrfe;gdﬁ[ggntrg![@[f[; """""""""""""""" N
’ \“.‘ ‘ b:B  bGo/dostuff; ‘
/send(bGo);  fromB b send(fromB) }
send(cGo); P O ;O !
| Thread/controllerT3
c:C MQ ,,,,,
| w : cGo/send(fromC): GGO‘ n

$ ./executable.exe -URTS_DEBUG=quit -UARGS "different” 25008

3 cases: [Top] sending 'go’ to 'b' and then to 'c'; waiting to see who responds first
. . c ot 'go’ from 'Top'[b ot 'go’ to 'Top', iterating now ...
if doStuff ‘short’, b always wins ke Yig s PiE et s d B
) , , i [c ] sending "fromC’ to 'Top'[b ] ... done, sending 'froms’ to 'Top’
elsif doStuff ‘long’, ¢ always wins
[Top] got 'fromC'
else ? [Top] got 'fromB', 'c' wins
[Top] sending 'go’ to 'b' and then to 'c'; waiting to see who responds first
[b ] got 'go’ to 'Top', iterating now ...[c ] got 'go’ from 'Top'
Model available as sample model [b ] ...done, sending "fromB' to 'Top'[c ] sending 'fromC' to 'Top'
[Top] got 'froms"
UML-RT [Top] got 'fromC', 'b’ wins

“What if a model needs to receive user input
during execution?”

(3 TrafficLight_SM

Initial
- ready
4 @ WaitForObserver @ Active
L

3

% Top
(ir]
trafficLight : Trafficlight
obsenation inpintP IogP frameP
obsenvation~ inpintP~

[Ri= ]
inputint < inputint (o..;?

&
i)
observer : Observer

starting up, thread id: 570416

waiting for requests for input 'getInput’
please input an integer: 1

got 1

please input an integer: 2

got 2

please input an integer: 1

got 1

please input an integer: |
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[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
[inpInt]
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Creating Multi-Threaded Applications (Cont’d)

Pros

Make parts of application more independent

o

Long execution steps in one part will not reduce responsiveness of another

o |f threads have priority
° better performance for tasks on threads with higher priority

e |f threads are mapped to cores
° better performance for all tasks

Cons
e Multi-threading typically introduces the possibility for more than one transition to
be enabled in a stable state configuration

=> Correct design requires ensuring that messages arrive and are processed in correct
order by several different controllers

e Multi-threading makes application more susceptible to

° Specifics of platform (RTS/OS, hardware) and communication media
= Change in RTS, OS, C++ libraries, hardware, resource use can lead to messages being
delivered and processed in different order

= Model must be carefully designed to make it robust to these changes
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“Every computation needs to be
triggered by an incoming message.
Isn’t that a restriction?”
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“Every computation needs to be
triggered by an incoming message.
Isn’t that a restriction?”
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