CISC836: Models in Software
Development: Methods,
Techniques and Tools

UML-RT and RSARTE: Part V

Juergen Dingel
February 2021

UML-RT CISC 836, Winter 2021

Debugging in RSARTE

g (RT)

“The document was st pdated for KTist 103, Al screen shots were captured o the Wi
dowsplttom.

MODEL OR DIE! v
SOFTWARE
Mopgy ING

vouikEar oo o]
UNLOCK THE
'POWER OF EVERY PROBLEM
MODELS VIA
ABSTRACTION, |
AUTOMATION
& ANALYSIS

b 2pic com

86

3 https://www.youtube.com/embed/ oelgrMb3UU

https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/RTist%20Model%20Debug.

UML-RT CISC 836, Winter 2021

88

UML-RT/RSARTE: Part V

= Model debugger
= UML-RT: other features

¢ Inheritance
° Capsule, state machine

e Synchronous calls

o

invoke vs send in RTProtocol.h
e Message priorities
= Generating multi-threaded code

= Support for distributed, web-based systems

UML-RT CISC 836, Winter 2021 87

Creating Multi-Threaded Applications

‘ Application ‘ /{

RTS RT Controller 1 RT Controller n
w/ message queue w/ message queue
Target OS (Linux)
l Target HW ‘ l Shared structures & services ‘

= Fixed capsule parts

e instance always runs in the same thread as owning capsule instance
= QOptional and plugin capsule parts

e Instance can run in its own physical thread
= Each physical thread

e has one controller w/ its own message queue, executing possibly
many state machines

UML-RT CISC 836, Winter 2021 89

Creating Multi-Threaded Applications

(Cont’d) ..,

Logical thread

o Refers to the execution of a capsule

frame

instance/state machine

To make the instance in optional
capsule part cl runin its own thread:
In transformation configuration:
1. Create physical thread w/ some name,
e.g., ‘PTcl’
2. Create logical thread w/ some name ‘LTcl’

=> Code generator creates variable
‘RTController LTc1’
3. Assign LTcl to PTcl
In capsule owning c1:

1. whenincarnating c1, use special version
of incarnate with ‘LTc1’ as argument

UML-RT CISC 836, Winter 2021

=

Threads
Physical threads:
2 MainThread
. TimerThread
v E ClThread
Lot
v B C2Thread
L caur
~ E. DThread
Lo

Impact of Multi-Threading (1/5)

Top Top
i i /send(bGo); fromB
send(cGo);
b:B c:C
b:B bGo/doStuff; c:C
: send(fromB) : : cGo/send(fromC) :

¢ What if b and c execute on

* the same thread/controller (and, thus, share a message queue)?

 different threads/controllers (and, thus, have their own message queues)?

¢ What if ‘doStuff’ takes a really long time?
e What about ‘run-to-completion’?

UML-RT CISC 836, Winter 2021

90

92

Creating Multi-Threaded Applications

(Cont’d)

= Example

log.log("[Top] starting up");
RTTypedValue noData ((const void *)8, (const RTObject_class *)@);
log.log("[Top] incarnating part "cl1'");

RTActorId idl = frame.incarnate(cl, noData, CILT);
log.log("[Top] incarnating part 'c2'");

RTActorId id2 = frame.incarnate(c2, noData, C2LT);
log.log("[Top] incarnating part "d™");

RTActorId id3 = frame.incarnate(d, noData, DLT);
log.log("[Top] sending "go' to "cl'™);
tpl.go().send();

log.log("[Top] sending 'go' to 'c2'");
tp2.go() . send();

Threads

Physical threads:
E. MainThread
P TimerThread

~ B ClThread

Loour
~ B C2Thread

L ocar
~ B DThread

L or

= |ncarnation w/ thread assignment

° RTActorId incarnate (RTActorRef & cp, RTypedValue & info,

RTController * controller, int index)

~ info isdata to be passed into incarnated part

- controller is controller which should run the incarnated part

- index specifies where to insert part in case of replicated parts

UML-RT CISC 836, Winter 2021

91

Impact of Multi-Threading (2/5)

b and c run on same thread

/send(bGo); fromB
send(cGo);

b:B bGo/doStuff;

: send(fromB) :

c:C

Go/send(fromC)

OO0

UML-RT CISC 836, Winter 2021

93

Impact of Multi-Threading (3/5) Impact of Multi-Threading (4/5)

b and c run on same thread b and c run on same thread
Thread/controller T1 Thread/controller T2 Thread/controller T1 Thread/controller T2

b:B bGo/doStuff;

: send(fromB) :

b:B bGo/doStuff;

: send(fromB) :

c:C cc
' cGo/send(fromC)

cGo/send(fromC)
QL ; | | oeteng

/send(bGo); fromB
send(cGo);

/send(bGo); fromB
send(cGo);

' b:B bGo/doStuff;

: send(fromB) :

c:.C
cGo/send(fromC)

Oo——0

/send(bGo); fromB
send(cGo);

UML-RT CISC 836, Winter 2021 94 UML-RT CISC 836, Winter 2021 95

Impact of Multi-Threading (5/5) Impact of Multi-Threading (5/5)

b and c run on different threads b and c run on different threads

Thread/controller T1 'I'_hrrgargjr[ggn'girglrlgrjg —————————————————————— N Thread/controller T1 '[h[egdj{:gntrg![@[j[} —————————————————————— N

b:B bGo/dostuff;

: send(fromB) :

'I'_hrread/controller T3

b:B bGo/dostuff;

: send(fromB) :

'I'_hrread/controller T3

/send(bGo); fromB
send(cGo);

/send(bGo); fromB
send(cGo);

Go/send(fromC) Go/send(fromC)

Oesendliromg~ | N OSolsendifrond)

$./executable.exe -URTS_DEBUG=quit -UARGS "different” 2500@

3 cases:

if doStuff ‘short’, b always wins

[Top] sending 'go’ to 'b' and then to 'c'; waiting to see who responds first
[c] got 'go’ from 'Top'[b] got 'go’ to 'Top', iterating now ...

. , , X [c] sending 'fromC' to 'Top'[b] ... done, sending 'fromB' to 'Top’
elsif doStuff ‘long’, c always wins
[Top] got 'fromC'

else ? [Top] got 'from', 'c' wins

[Top] sending 'go’ to 'b' and then to 'c'; waiting to see who responds first

[b] got 'go’ to 'Top', iterating now ...[c] got 'go’ from 'Top'

Model available as sample model [b] ... done, sending 'from8' to 'Top'[c] sending 'fromC' to 'Top'
[Top]
[Top]

got 'fromB'
got 'fromC', 'b’ wins

UML-RT UML-RT

Creating Multi-Threaded Applications (Cont’d)

= Pros

e Make parts of application more independent

° Long execution steps in one part will not reduce responsiveness of another
o |f threads have priority

° better performance for tasks on threads with higher priority
o |f threads are mapped to cores

° better performance for all tasks

= Cons

e Multi-threading typically introduces the possibility for more than one transition to
be enabled in a stable state configuration
=> Correct design requires ensuring that messages arrive and are processed in correct
order by several different controllers
e Multi-threading makes application more susceptible to
° Specifics of platform (RTS/OS, hardware) and communication media
= Change in RTS, OS, C++ libraries, hardware, resource use can lead to messages being
delivered and processed in different order
= Model must be carefully designed to make it robust to these changes
UML-RT CISC 836, Winter 2021 98

