
Make It Simple – An Empirical Analysis of
GNU Make Feature Use in Open Source Projects

Douglas H. Martin
Queen’s University

Kingston, Ontario, Canada
Email: doug@cs.queensu.ca

James R. Cordy
Queen’s University

Kingston, Ontario, Canada
Email: cordy@cs.queensu.ca

Bram Adams
École Polytechnique

Montréal, Québec, Canada
Email: bram.adams@polymtl.ca

Giulio Antoniol
École Polytechnique

Montréal, Québec, Canada
Email: antoniol@ieee.org

Abstract—Make is one of the oldest build technologies and is
still widely used today, whether by manually writing Makefiles,
or by generating them using tools like Autotools and CMake.
Despite its conceptual simplicity, modern Make implementations
such as GNU Make have become very complex languages,
featuring functions, macros, lazy variable assignments and (in
GNU Make 4.0) the Guile embedded scripting language. Since
we are interested in understanding how widespread such complex
language features are, this paper studies the use of Make features
in almost 20,000 Makefiles, comprised of over 8.4 million lines,
from more than 250 different open source projects. We look at the
popularity of features and the difference between hand-written
Makefiles and those generated using various tools. We find that
generated Makefiles use only a core set of features and that more
advanced features (such as function calls) are used very little, and
almost exclusively in hand-written Makefiles.

I. INTRODUCTION

Build automation tools, or simply build systems, are tools,
or sets of tools, that are responsible for transforming source
code into executable code and thus are a vital part of most
large software development projects. These tools are used by
every developer of the system in some way, yet are notorious
for being difficult to understand and modify by non-experts.

The most widely used build automation tool, Make, was
introduced by Stuart Feldman in 1977 [1] and has since had
many implementations and improvements. The most popular
implementation is GNU Make, which is included in most
Linux distributions and continues to evolve every few years.
For example, version 4.0 was released in October of 2013,
adding two new operators and two new functions. One of those
functions is the “guile” function, which allows Makefiles to
define and run GNU Guile extensions – a whole new scripting
language embedded inside of Make.

Make is often criticized for its difficulty to understand and
general lack of debugging facilities [2], [3]. Although this dif-
ficulty has been studied by measuring the size of Makefiles [4],
coupling of Makefile changes to source code changes [5] and
analysis of the kinds of changes made to build files [6], Make
has not been studied yet from the program comprehension
point of view. Which language features are used the most? Is
there a common set of features that GNU Make can be reduced
to without losing functionality? By knowing how Makefiles are
used, we can help make decisions about future versions and

implementations, such as what features to add, remove, or just
make easier to use.

In this work, we use TXL [7] – a specialized language for
software analysis and transformation – with a custom-written
Makefile grammar to extract and count instances of Make
features. From an extensive and detailed inventory, we address
the following research questions:

1) How frequently are Makefile features used?: What are
the features that are absolutely essential to Makefiles? What
are the least used or unused features? Are there features that
could be removed from Make to make it less bloated?

2) Are features used differently in generated Makefiles?:
How do Makefiles generated by Automake, CMake and
QMake differ from those written by hand? Are generators
using more advanced features?

3) To what extent are bad practices, specifically obsolete
features and recursion, still in use?: The GNU Make manual
specifies a number of still supported, but obsolete features.
How often are they still used? Calling Make within a Makefile
is considered harmful. How many Makefiles do this?

II. THE GNU MAKE LANGUAGE

To understand feature use in Make, we must first know how
it works and the features it offers. There have been many
variations of Make since its invention, but we will be focussing
on the most popular variant, GNU Make.

GNU Make reads Makefiles, which contain a set of instruc-
tions that describe how to build a particular software project.
This is done using rules, which specify targets (files) and how
they should be built or rebuilt, as well as on which other files
they depend. Make will build only what is necessary, which
means only the target files whose prerequisites have changed
will be rebuilt.

Make is run by using the make command in the directory
with a Makefile. With no arguments, GNU Make will look
for a file named GNUMakefile, makefile, or Makefile (in that
order) and execute the first rule. By convention, that will be
a rule to build the whole system. Of course, there are many
command line arguments that can be used to customize the
execution. For example, make foo will look for a rule to
build foo, and make -f build/Rules.mk will execute
the given Makefile instead of the default Makefile.

Figure 1. Example Makefile

The rest of this section describes the features we will be
measuring and discussing in the remainder of this paper. We
group the features based on the syntax of the grammar and
their intention. Figure 1 shows an example Makefile that will
be used for illustration.

A. Readability

1) Comments: Comments in Make are denoted by a “#”
and can occur on their own line or at the end of a line (e.g.,
line 1 of Figure 1). There are no multi-line comments in Make.

2) Continuations: Continuations provide a way of breaking
up long lines of Makefile text by placing a “\” at the end of
a line to denote that it continues on the following line. For
example, lines 7-10 of Figure 1 use continuations to break up
the declaration of the OBJS variable onto multiple lines.

B. Rules

Rules are the heart of the Makefile. They tell Make what
should be made (targets), when they should be made (prereq-
uisites), and how to make them (recipes). They take the form:

targets : prerequisites
[TAB] recipe

We will discuss each part in further detail, as well as some
other aspects of Make rules, in the following sections.

1) Targets: Targets represent the artifacts to be built. Most
of the time, that is the name of a file; however, a phony target,
containing a string of characters not associated with a file, can
be used to execute commands on request. Phony targets can
be used to represent subsystems with one root “all” target,
typically representing the build of the the whole system (lines
19-20 of Figure 1), or to represent a common build task, such
as a “clean” target to remove all previously built files (lines
30-31).

2) Prerequisites: Prerequisites (or dependencies, as they
are sometimes called) are other targets or names of files that
are required to build the target(s) of the rule in which they are
specified. The prerequisite list of a target T serves 2 purposes:
First, the rule for each prerequisite of T is found and the
corresponding recipe is executed if the prerequisite is out-of-
date; second, if any of those prerequisites was found to be
out-of-date, the recipe of T itself is executed to update the
target(s). In certain cases, a target may not need to be updated
if one of the prerequisites was found to be out-of-date. In such
cases, these prerequisites – called order-only prerequisites –
can be listed at the end of the prerequisite list after a pipe
symbol (“|”).

3) Recipe: A recipe is a list of commands to be executed.
These commands, in theory, build the rule target(s) using the
prerequisite files and should only update the target(s) and
nothing else, but this is not guaranteed. For example, compiler
commands or scripts can be invoked from inside a recipe, as
in lines 20, 23, and 27 of Figure 1.

4) Special Targets: Make also defines a set of special
targets that have special meanings. They all begin with a period
(“.”) and are conventionally written in all caps. For example,
the Makefile in Figure 1 contains 2 rules with the .PHONY
target (line 18 and line 29). A rule with the .PHONY target
means that the prerequisite(s) should not be considered as a
filename, but rather as a subsystem or build phase. Without
these rules, if there are files named “all” or “clean” in the
same directory, Make would assume that those files are up-
to-date and do not need to be rebuilt using a rule. In such a
case, the “clean” target would therefore never be executed.

5) Recipe Flags: There are 3 prefixes that may be used
in front of recipe commands. A minus sign (“-”) indicates
that Make should ignore any errors that the command may
yield. A plus sign (“+”) indicates that Make should execute
this command even during a dry run, when the user has
specified that it should not execute any commands (useful for
debugging). And an at sign (“@”) indicates that Make should
not print the command itself to the standard output, only its
programmed output. In the example in Figure 1, the recipe
command on line 26 begins with a “+” to indicate that the
echo command should always print the name of the file to be
compiled, even when the user has specified otherwise.

6) Single vs. Double Colon: Ordinarily, a target should
appear in only one rule. If not, Make will execute the recipe
of the last rule and print an error message. However, there
are some circumstances where a different recipe should be
executed depending on which prerequisite has changed. In this

case, a double-colon is used in each rule rather than a single
colon.

7) Pattern Rules: Pattern rules are used to define implicit
rules in Make. Implicit rules describe a recipe for making
certain types of files that are all built the same way. Make
includes many predefined implicit pattern rules, such as the
rule to compile .c files into .o files. A pattern rule looks
the same as an ordinary rule, but it contains a target with a
percent symbol (“%”), which matches any non-empty string.
The “%” can then be used in the prerequisites list to match
the same string. For example, lines 25-27 in Figure 1 show a
pattern rule with target “%.o” to match all object files, while
its prerequisite (“%.c”) matches the corresponding C file.

8) Static Pattern Rules: Static pattern rules are the same
as normal pattern rules, but operate on a static list of targets
that come before the target pattern. Instead of searching the
file system for targets matching the pattern, Make applies the
pattern to the list of specified targets to extract the stem (“%”)
and find the prerequisites. If, for example, we only wanted the
pattern rule on line 25 of Figure 1 to apply to foo.o and bar.o,
we could add “foo.o bar.o:” before “%.o : ...”.

9) Suffix Rules: Suffix rules are the older, now obsolete,
way of defining implicit rules. They contain no prerequisites,
and only a single target specifying one or two file suffixes.
A single suffix rule contains one suffix and is a general rule
applied to all targets with that suffix. A double suffix rule
contains two suffixes together and apply to all targets that
match the second suffix, with prerequisites that match the first
suffix. For example, the pattern rule on line 25 of Figure 1
could be turned into an equivalent suffix rule by changing
“%.o: %.c” to “.c.o:”.

10) Recursive Make: A common but discouraged technique
of creating a build system with Make is to split the system into
multiple Makefiles, each responsible for building their own
subsystem, that invoke each other as separate Make processes.
These Makefiles are usually put into separate folders with the
source code on which they operate, with a root Makefile at
the top that calls these Makefiles (in recipe commands) to
build the whole system. Invoking another Makefile within a
Makefile like this is referred to as recursive Make, and it
can have unwanted effects [8]. The problem with this is that,
because separate Make processes are used, each Makefile has
no knowledge of what is happening in the other Makefiles, and
therefore may not rebuild all of the targets that require it. For
example, if two of the Makefiles refer to the same physical
file, it is possible that the second one rebuilds that file, making
a new compiled version, while the first one has already made
decisions based on the previously compiled version of that file,
thus not rebuilding the targets on which it depends.

There are a number of solutions to fix this. The easy solution
is to invoke the root Make more than once, thus giving the
first Makefile the opportunity to notice changes made by the
second. However, in general the number of times you would
have to invoke Make to ensure everything was up-to-date
varies depending on how many subsystems there are, not to
mention the overhead involved (which can be huge for a large

system). The best solution is to write one large Makefile or,
to break it up, to use the include directive (described later)
to put the subsystem Makefiles directly in the root Makefile.
This method ensures that Make can find all of the required
dependencies and rules it needs to build a complete and up-
to-date system.

C. Variables

Like many languages, Make provides variables that can be
referenced in target/prerequisite lists, recipes, or even other
variables and functions. There are two flavours of variables:
recursively expanded, which are evaluated as they are needed
(i.e., when a reference is read), and simply expanded, which
are evaluated when they are defined.

1) Assignments: Recursively expanded variables are de-
fined using the “=” operator, or the define directive (see Multi-
line Variables). Simply expanded variables are assigned with
the “:=” or “::=” operators. There are also three special types
of assignment operators: the “?=” operator will only set the
variable if it has not already been set; the “+=” operator
appends the value to the end of the variable; and the “!=”
operator is used to assign a variable with the result of a shell
command (e.g., “var != ls *.c”). In the example in Figure 1,
the simply expanded OBJS variable is assigned on lines 7-10.

2) Variable References: Variables can be referenced any-
where in the Makefile (targets, prerequisites, recipes, variable
assignments, etc.) by putting the variable name inside brackets
with a “$” sign before it (e.g., “$(VAR)”). In the example in
Figure 1, the OBJS variable is referenced in the prerequisite
list and the recipe of the rule on line 19-20.

3) Multi-line Variables (Macros): Normal variables cannot
contain newlines, but sometimes they are needed (for example,
to define a common recipe segment). To do this, the define
directive is used. They are defined in much the same way
as regular variables but with the “define” keyword before the
variable name, and “endef” after the value. For example, the
definition below could be used to define the recipe on lines
26-27 of the example in Figure 1.

define recipe :=
+echo "Compiling... " $(basename $@)
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@
endef

4) Automatic Variables: When using patterns, function
calls, or variable references in rule headers, it can be impos-
sible to tell which target or prerequisite is being evaluated.
For this reason, Make provides a set of Automatic Variables
to refer to them inside a recipe (or prerequisite list). Table I
lists the automatic variables offered by Make. In the example
in Figure 1, the $< and $@ variables are used in the rule
on lines 25-27 to get the name of the prerequisite and target,
respectively, since they are not known until runtime.

D. Statements

In addition to rules and variable assignments, there are a
few special statements that can be used in a Makefile. We
will discuss these in this section.

Table I
AUTOMATIC VARIABLES

$@ the filename of the target (in the case of multiple targets,
the target that forced the rule to run)

$% the member name of the target if the file is part of an archive
$< the first prerequisite
$? all prerequisites that are newer than the target
$ˆ all prerequisites, with duplicates removed
$+ all prerequisites, with duplicates
$| the order-only prerequisites
$* the stem (“%”) of the pattern matched in a pattern rule

1) VPATH Variable and vpath Directive: By default, Make
will look for target and prerequisite files in the current working
directory; if the file is not there, an error has occurred. The
VPATH variable and vpath directive allow the build engineer
to tell Make where to look for files that cannot be found
in the current directory. It allows a directory to be specified
for a particular pattern, where the directory is searched if
the target file meets some criteria (e.g., “*.c”). The example
in Figure 1 contains both the variable and directive. Line 3
assigns “/usr/lib/” to the VPATH variables, meaning that Make
should look there for any file that it cannot find in the current
directory. And Line 4 uses the vpath directive to tell Make to
look in “/usr/src/” for .c files that it cannot find in the current
directory.

2) Includes: The include directive is used to tell Make
to suspend reading the current Makefile and read some
other specified Makefile(s). Once Make has finished reading
the other Makefile(s), it continues reading after the include
directive. This is used to separate the build into multiple
subsystems, a safer method than using recursive Make [8].
The example in Figure 1 includes 2 external Makefiles called
flags.mk (line 15) and flags debug.mk (line 13), depending
on whether the DEBUG variable is set to “yes” or not (more
on conditionals in the next section). These Makefiles, as their
names suggest, contain variable definitions for the CFLAGS
and CPPFLAGS variables, used by the recipe command on
line 27.

3) Conditionals: Like most languages, Make provides sim-
ple conditional if-statements that allow the build engineer to
include parts of the Makefile only if certain conditions are met.
Make evaluates conditionals, and replaces them with the text
corresponding to the conditions that evaluate to true. The text
can be rules or statements that could occur inside the Makefile,
or recipe commands within a rule. For example, in Figure 1,
lines 12-16 show a conditional statement that checks to see if
the DEBUG variable is set to “yes” and includes an external
Makefile if so.

E. Functions

Make includes a number of built-in functions for a variety of
uses. Functions are called in much the same way as variables
are referenced, using commas (and no spaces) to separate
parameters, as shown below.

$(function param1,param2,param3 ...)

The example in Figure 1 uses the basename function
on recipe line 26 to print the name (minus the .o) of the
target file matching the rule. The remainder of this section
briefly describes the other functions provided by GNU Make,
categorized based on the manual [9].

1) String Functions: String functions operate on strings
or lists (strings separated by spaces). These include:
findstring, subst, patsubst for finding and replacing
substrings; strip for removing trailing whitespace; and
filter, filter-out, sort, word, wordlist, words,
firstword, and lastword for operating on lists.

2) Filename Functions: Filename functions operate specif-
ically on filenames and directories, or lists of filenames and
directories. These include: dir and notdir for identifying
directories; basename and suffix for stripping and retriev-
ing file extensions (like .c), respectively; addprefix, and
addsuffix for adding strings to the beginning and end of a
path, respectively; join for concatenating lists; wildcard,
for searching for files (with patterns); and realpath and
abspath for returning non-relative paths (no “.” or “..”).

3) Conditional Functions: There are 3 conditional func-
tions: if, and, and or. The if function differs from the if
directive (“ifdef”/“ifeq”) because it can be used in rule targets
or prerequisites. The and and or functions are typical logical
operators that return true or false when passed a series of
conditions. They are normally used in conjunction with the
if function.

4) Control Functions: Control functions can alter the way
Makefiles are run. The error function will print a given
error message and exit. The warning function will throw
a warning with the given error message, but continue running.
The info function simply prints a given message.

5) Variable Functions: The value, flavor, and
origin functions are useful for determining the origin of
a variable. The value function will return the current value
of a variable, without expanding it (i.e., as text with variable
names). The flavor function will return the flavour of a
given variable (i.e., simple or recursive), while the origin
function returns where a variable was defined (e.g., command
line, automatic variable, environment variable, etc).

6) Other Functions: Make offers some other useful spe-
cialized functions. The shell function can be used to call
a shell command. The guile function is used to run GNU
Guile scripts. The foreach function iterates through a list of
words and performs some other function using it. The file
function allows a Makefile to write to a file by overwriting it
or appending to it.

7) Custom Functions (The Call Function): If Make doesn’t
provide a function, or a particular sequence of function calls
becomes too difficult to read, Make allows developers to
write custom functions and invoke them using the call
function. Invoking the call function is much like any other
function, where the first parameter is the name of the function.
Subsequent parameters are passed to the custom function and
referred to using $(1), $(2), and so on.

Table II
OVERVIEW OF DATASET.

Generator # Projects # Makefiles Average Lines
Automake 147 1704 1153
CMake 80 8672 135
QMake 2 2460 2031
Hand-written 129 6683 49
All 270 19519 433

III. APPROACH – TOOLS AND DATASET

This section discusses our approach to studying the use of
the GNU Make features discussed in the previous section.

A. Subject Systems

Our dataset contains almost 20,000 Makefiles spanning 270
different projects, comprising over 8.4 million lines of build
scripts. We began with the latest snapshot of the Linux kernel
(v3.19) and the most recent version of all GNU library projects
updated within the past 5 years (since 2010)1. We chose these
because they are among the most advanced users of GNU
Make [10]. We were also interested in comparing Makefiles
that were generated by the most popular Makefile generators
– Automake, CMake, and QMake [11] – so we chose projects
that were known to use those generators. Such generators help
to automate the process of Makefile authoring, for example,
by analyzing the project source to infer dependencies, or by
generating customized builds from configuration files. The
Linux kernel is known to contain almost 2000 hand-written
Makefiles, while the GNU projects use a mixture of hand-
written and Automake-generated Makefiles. For CMake, we
chose the KDE library of applications and libraries because
it is known to have switched to CMake [12]. Other CMake-
based projects we included were CMake itself, MiKTeX, Ogre,
Scribus, and Blender. QMake is developed by Qt and used
mostly by Qt, so we included the Qt library and the Ruby
Qt bindings. Each project was configured and, in the case of
CMake and QMake, the Makefiles were generated.

To distinguish generated Makefiles from manually devel-
oped ones, we used a combination of knowledge drawn from
previous experience with these generators, and the comments
that each generator leaves in its generated Makefiles (e.g.,
“generated automatically by automake from Makefile.am”).
Makefiles generated using CMake and QMake were easy to
identifiy because they must be generated manually. However,
Makefiles generated with Automake posed a challenge. Au-
tomake is a part of the Autotools family, along with Autoconf
– a configuration tool that sets environment-specific values
in Makefiles. Most, if not all, GNU projects use Autoconf,
but only some use Automake. In addition, a system that uses
Automake-generated Makefiles is also free to use hand-written
Makefiles (Automake templates can even include hand-written
Makefile code). Because of this we had to solely rely on the
comments within the generated Makefiles, such that Makefiles
with no such comment were assumed to be hand-written. The

1ftp://ftp.gnu.org/gnu/

define Assignment
[WS] [PrivateExportOverride?] [WS] [Id] [WS]

[AssignmentOp] [WS] [BSWS?] [Expr?]
[AssignmentContinuation*] [EOL?]

end define

define AssignmentContinuation
[EOL] [tabspace] [WS] [Expr]

end define

define AssignmentOp
’+= | ’:= | ’?= | ’=

end define

Figure 2. A Snippet from our TXL Grammar for Makefiles.

This small portion of the subgrammar for assignments demonstrates
one of the many ambiguities of the Makefile language. Although the
language manual says that a backslash should be used [BSWS],
assignments are commonly continued over several lines [EOL] with
no indication other than blank space [tabspace] that they are part
of a continuation and no marker at the end of the statement.

breakdown of the number of Makefiles for each generator and
the average number of lines is shown in Table II.

B. Measuring Feature Usage

In order to accurately measure feature usage, we required
an accurate and detailed identification of both the high level
structure and the low level elements in Makefiles. For this
purpose we created a new Makefile parser implemented in
the TXL source transformation language [7]. Crafting a high
quality parser for Makefiles is a particular challenge because
there exists no formal documentation for its syntax, because
Makefiles contain embedded languages such as bash shell
and guile commands, because it uses a mix of strict lexical
and free-form syntactic conventions to distinguish compo-
nents, and because the interpretation of Makefiles is highly
implementation- and version-dependent.

We began with the grammar previously published by Tam-
rawi et al. [13] as part of their work on Makefile analysis using
symbolic dependency evaluation. While the Tamari grammar
identifies the main structural components that those authors
were interested in, it uses island grammar techniques to
abstract lower level details that are not of interest in their
application. To facilitate feature analysis, we require a much
more detailed and precise parse. Beginning with a translation
of their grammar to TXL, we spent the first two months of our
project refining and extending the parser to provide a detailed
and precise parse that accurately identifies both high level
structures and low level detailed elements. Accurately parsing
Makefiles is surprisingly difficult, and much of this time
was spent discovering, researching and decoding the intended
meaning of many little known and seemingly ambiguous
combinations of features discovered in our test set. A snippet
of our grammar is shown in Figure 2.

To insure its accuracy, we tested our new Makefile parser
on our dataset of almost 20,000 Makefiles extracted from
GNU, Linux, and other open source projects. The grammar
was validated with respect to completeness by ensuring that
every Makefile in the test set could be parsed. The accuracy of

% Grammar overrides to specialize special and suffix targets
redefine Target

[SpecialTarget] [WS]
| [SuffixTarget] [WS]
| ...

end redefine

define SpecialTarget
’.PHONY | ’phony | ’.INTERMEDIATE | ’.intermediate

| ’.SECONDARY | ’.secondary | ’.PRECIOUS | ’.precious
| ’.DELETE_ON_ERROR | ’.delete_on_error
| ’.SUFFIXES | ’.suffixes | ’.NO_EXPORT | ’.no_export
| ’.MAKE | ’.make | ’.SILENT | ’.silent
| ’.IGNORE | ’.ignore

end define

define SuffixTarget
’. [id]

end define

. . .

% Extract and count all targets in rules
construct Targets [Target*]

_ [ˆ Rules]
construct _ [number]

_ [length Targets] [putp "rule targets: %"]

% Extract and count special targets .PHONY .INTERMEDIATE ...
construct SpecialTargets [SpecialTarget*]

_ [ˆ Targets]
construct _ [number]

_ [length SpecialTargets]
[putp "rule target special targets: %"]

% Extract and count function calls in targets of rules
construct TargetFuncs [FunctionCall*]

_ [ˆ Targets]
construct NTargetFuncs [number]

_ [length TargetFuncs]
[putp "rule target function calls: %"]

Figure 3. Example TXL Grammar Specializations and Extraction Construc-
tors to Count Feature Instances in Context

The TXL extract operator [ˆ] allows us to extract a list of all
occurrences of a given grammatical feature, such as rule Targets,
from the parse. Cascaded extractions, such as the one for TargetFuncs
above, extract from the results of a previous extraction, such as
Targets, to identify features in the context of other features. Grammar
specializations, such as [SpecialTarget] and [SuffixTarget] above,
allow for more detailed analysis.

the parses was qualitatively validated using hand examination
of the XML markup versions of the parses of a random
sample of about 100 Makefiles, and quantitatively validated by
comparing the extracted set of identified elements with those
identified using independent lexical searches.

Several iterations of adapting, tuning and refining resulted
in a reliable parser that yields an accurate, robust and highly
detailed parse of GNU Makefiles and Makefile templates. This
parser can serve not only for the high level feature analysis of
this paper, but also for more detailed build system analysis.
Figure 4 shows the XML markup version of the parse of the
example Makefile shown in Figure 1.

To compute the metrics for each feature, we used a combi-
nation of agile parsing [14] to specialize our grammar and to
distinguish elements and structures representing the features
in which we are interested, and TXL type extraction [15] to
extract and count instances of these features in each Makefile.
An example of this specialization and extraction process in
TXL is shown in Figure 3. By exploiting the structure of the

<Statement><Comment>
#This is an example of a Makefile

</Comment></Statement>
<Statement><Assignment>

VPATH=usr/lib/
</Assignment></Statement>
<Statement><Directive>

vpath *c usr/src/
</Directive></Statement>
<Statement><Assignment>

DEBUG=yes
</Assignment></Statement>
<Statement><Assignment>

OBJS:= \
bin/main.o \
bin/foo.o \
bin/bar.o

</Assignment></Statement>

<Statement><IfStatement>
ifeq(<Evaluation>$(DEBUG)</Evaluation> , yes)

<Statement><Directive>
include build/flags_debug.mk

</Directive></Statement>
else

<Statement><Directive>
include build/flags.mk

</Directive></Statement>
endif
</IfStatement></Statement>

<Rule>
<Target>.PHONY</Target> :

<Dependency>all</Dependency>
<Recipe></Recipe>

</Rule>

<Rule>
<Target>all</Target> :

<Dependency>
<Evaluation>$(OBJS)</Evaluation>

</Dependency>
<Recipe>

cc -o <Evaluation>$(OBJ)</Evaluation>
</Recipe>

</Rule>

<Rule>
<Target>foo.o</Target> :

<Dependency>foo.c</Dependency>
<Dependency>foo.h</Dependency>

<Recipe>
cc -c foo.c

</Recipe>
</Rule>

<Rule>
<Target>%.o</Target> :

<Dependency>%.c</Dependency>
<Recipe>

+echo "Compiling... "
<FunctionCall>$(basename

<AutoEval>$@</AutoEval>)
</FunctionCall>

<Evaluation>$(CC)</Evaluation> -c
<Evaluation>$(CFLAGS)</Evaluation>
<Evaluation>$(CPPFLAGS)</Evaluation>
<AutoEval>$<</AutoEval> -o
<AutoEval>$@</AutoEval>

</Recipe>
</Rule>

<Rule>
<Target>.PHONY</Target> :

<Dependency>clean</Dependency>
<Recipe></Recipe>

</Rule>

<Rule>
<Target>clean</Target> :
<Recipe>

rm bin/*
</Recipe>

</Rule>

Figure 4. Example XML Markup of Makefile Parse (Note: Lower level
markup detail not shown for readability)

Figure 5. Feature Use (% of Makefiles)

parse using multi-level TXL type extraction to isolate context,
we are not only able to measure the overall total number
of features, but also where they occur. For example, we can
measure not only the total number of function calls, but also
how many function calls occur in rule targets, in prerequisite
lists, in assignment expressions, and so on.

As a concrete example, one of the parsed Evaluations of the
OBJS variable in the “all” rule of Figure 4 is in a Dependency,
while the other is in a Recipe. Thus we can count evaluations
in dependencies in rules by separately extracting from the
parse all Dependencies and then all the Evaluations in them,
and all evaluations in recipes of rules by first extracting all
Recipes and then all the Evaluations in them.

IV. ANALYSIS

To help answer our research questions, we plotted several
graphs illustrating feature use across the Makefiles in our
dataset. Each graph shows the proportion of the dataset that
uses the feature listed on the Y-axis at least once.

RQ1. How frequently are Makefile features used?

Figure 5 shows feature use of the whole dataset for the
features listed. We group the features using the breakdown of
Section II to simplify the chart. As we can see, Makefiles are
frequently commented, with comments appearing in more than
80% of files. Assignments and variable references are the most
used language features, at over 85% and 65% (respectively) of
all Makefiles. Rules, targets, prerequisites, and recipes account
for just under 50%. This indicates that Makefiles are split into
two categories: Makefiles with rules, and Makefiles with only
assignments that are included in the former. This is further
supported by the number of Makefiles that use includes (just
over 25%) and by browsing the Makefile source.

There are some features mentioned in the GNU Make
manual that we did not find in our dataset. To see this, we have

Figure 6. Assignment Use (% of Makefiles)

Figure 7. Automatic variables (% of Makefiles)

to unpack some of the categories of features we used. First,
there are 6 different kinds of assignment operators: lazy (“=”),
strict (“:=” and “::=”), iterative (“+=”), conditional (“?=”), and
shell (“!=”). From the graph in Figure 6, we can see that the
shell operator and the alternative strict operator (introduced to
conform to the POSIX standard) are never used, which is not
surprising considering that they were only introduced in GNU
Make v4.0 (released October 2013). Lazy assignments are
used the most, but what is interesting is the difference between
hand-written and generated Makefiles. CMake and QMake
use only lazy assignments, with Automake also using strict,
iterative and conditional. It is a good time to note that, since it
uses templates, Automake can have hand-written Make code
inserted into the Makefiles it generates. Because of this, we see
some similar features popping up in the feature composition
of generated and hand-written Makefiles. For example, we can
see that Automake uses other assignment operators in the same
descending order as hand-written Makefiles.

In Figure 5, we can see that automatic variables are used
in about 13% of Makefiles, but some are more common than
others. Looking closer (Figure 7), we see that $@ is the most
common of these variables, followed by $?, $<, $*, and $ˆ.
$| and $+ are also used to some extent, although they are
not visible on the graph (0.01%), however, $% is never used.
Automake is by far the biggest user of automatic variables,
with almost every Makefile it generates using at least one, but
they are also used in hand-written Makefiles.

Functions are another feature that is almost exclusively used
in hand-written and Automake-generated Makefiles. Figure 5

Figure 8. Function calls (% of Makefiles)

indicates that they are only used in about 5% of Makefiles.
Figure 8 shows the use of all the built-in functions listed in
the Make manual. The call and wildcard functions are
the most common with 1.8% and 1.7% use respectively, with
the next highest function at 1.4%. On the other end of the
list, there are a number of functions that are never used in
our dataset. The lastword, suffix, file, flavor, and
guile functions all have 0% usage. The guile and file
functions were only recently added to GNU Make, which
likely accounts for their absence.

RQ2. Are features used differently in generated Makefiles?

We have already seen how generators use assignment op-
erators, automatic variables, and function calls differently, but
Figure 9 shows the breakdown of feature use by all categories.
A set of core Makefile features emerge that are used by
all generated files, mainly variables (assignments, references)
and single colon rules (targets, prerequisites, recipes). Other
features such as special targets, continuations, and recipe com-
mand flags (“@”, “-”, and “+”) are used by most. On the other
hand, there are some features that seem designed specifically
to make it easier for writing Makefiles by hand. Conditionals,

Figure 9. Feature Use By Generator (% of Makefiles)

functions, vpaths, double colon rules, pattern rules, and macros
are all used only by hand-written or Automake Makefiles.

The graph also shows a set of features that are used very
little in our dataset (i.e., <10%), and only by Makefiles
with hand-written Make code (i.e., Automake-generated and
hand-written Makefiles). Exceptions are pattern and double-
colon rules, which are also used by a small number of
QMake-generated Makefiles (i.e., <0.5%). Vpaths, functions,
conditionals, macros, pattern rules, double colon rules, and –
to some extent – automatic variables are what we consider to
be the more advanced features of Make because they allow
more general Makefiles to be written as opposed to a more
verbose Makefile.

RQ3. To what extent are bad practices, specifically obsolete
features and recursion, still in use?

The GNU Make manual gives 4 features that are “semi-
obsolete” meaning that, while still supported, they are replaced
by other features.

The first of these features are the .SILENT and .IGNORE
special targets, which are obsolete because the “@” and “-”
recipe command flags (respectively) offer a more fine-grained

Table III
OBSOLETE FEATURES IN MAKEFILES.

All Automake CMake QMake Hand
.SILENT 25.76% 0.00% 43.38% 0.00% 0.03%
.IGNORE 0.00% 0.00% 0.00% 0.00% 0.00%
suffix rules 27.09% 98.77% 0.00% 83.50% 3.31%
old auto vars 0.17% 0.12% 0.00% 0.00% 0.34%

implementation. We can see from our data that .IGNORE is
never used. We can also see that .SILENT is only used in a
small number of hand-written Makefiles (two, actually), and
more than 40% of CMake-generated Makefiles.

Another obsolete feature is suffix rules, the old way of
expressing implicit rules, which were replaced by pattern rules.
Our results show that these are still used often across most
categories, appearing in almost every Automake-generated
Makefile in or dataset, and in the majority of QMake-generated
files. On the other hand, CMake doesn’t use it at all. Inter-
estingly, there are 100 Makefiles in our set – across multiple
generators – that use a mixture of both suffix and pattern rules.

The last obsolete feature is a variation on automatic vari-
ables. Each automatic variable returns a file or list of files,
which is in the form of a path. These paths can be reduced
to filenames or directories only by appending an “F” or a
“D” (respectively) to the automatic variable (e.g., “$(@F)” or
“$(%D)”). This form is considered obsolete because the dir
and notdir functions provide a similar output. When we
look at the results, we can see this form used in less than 0.2%
of all Makefiles (25 total), and only appear in Automake or
hand-written Makefiles (the only Makefiles that use automatic
variables).

As discussed in Section II, Make can be run recursively by
calling itself within a recipe. This can be dangerous and can
lead to unexpected results if not done carefully [8]. Generators
can also be recursively invoked from a Makefile recipe, to
report build progress back to the generator or to compile a
report. As such, these are likely less harmful, but we measure
them nonetheless.

Table IV shows the use of recursive calls across all cate-
gories of Makefiles. What we see is that generators rely heavily
on recursive calls. Most Automake Makefiles use recursive
Make and Automake calls (about 99%). The same goes for
CMake and QMake: 43% of CMake files call CMake, all
QMake files call QMake, and both use recursive Make calls
(29% and 83%, respectively). Interestingly, only about 5% of
the hand-written Makefiles use recursion. A tiny number of
hand-written Makefiles seem to call Automake, possibly an
indicator of misclassification for some Makefiles.

V. DISCUSSION

From our analysis, it appears that there is a core set of
features that are essential to any Make-based build system,
roughly corresponding to Feldman’s original Make features.
Assignments and variable references are by far the most com-
mon, appearing in almost every Makefile. This makes sense,
considering that some Makefiles consist only of assignments

Table IV
RECURSION IN MAKEFILES.

All Automake CMake QMake Hand
make 44.62% 99.24% 28.29% 82.76% 5.06%
automake 11.51% 98.53% 0.00% 0.00% 0.04%
cmake 25.75% 0.00% 43.38% 0.00% 0.00%
qmake 16.84% 0.00% 0.00% 100.00% 0.00%

that are then included in another Makefile (as a configuration
technique). For example, the Linux kernel adopted this pattern
to improve the life of driver developers, who no longer need to
write their own rules but just assign the names of their source
code and object files to the right variable. The Linux build
system then automatically reads these variables and processes
them using generic build rules.

Rules and their associated parts (targets, prerequisites, and
recipe commands) form the other essential Make features.
What is surprising is how many hand-written Makefiles con-
tain no rules. It is possible that these files have been incorrectly
classified as hand-written, when in fact they may have been
generated by Autotools (and Automake). Autotools often pro-
duces smaller Makefiles containing only variable assignments,
but doesn’t produce any comment to say they were generated,
so it is difficult to know for certain.

Special targets are used a lot by generators, but not often
in hand-written Makefiles. We saw earlier that all CMake-
generated Makefiles use the obsolete .SILENT target. This is
because all CMake-generated Makefiles containing rules use a
rule with a variable called VERBOSE. By default, VERBOSE
is null and therefore an empty rule with only the .SILENT
target is produced, which Make interprets to suppress all
output from the Makefile. If VERBOSE is set to any non-
null value, the target ceases to be the special .SILENT target
and the rule is meaningless.

It may seem like include statements are not used that much,
but it makes sense when one realizes that not every file is going
to include another file. Some Makefiles will be be written for
the purpose of being included in other Makefiles, and therefore
probably won’t include others.

All CMake-generated Makefiles that contain rules use re-
cursive Make calls, which the developers argue is necessary
in order to automatically scan implicit dependencies [16]. This
works using 3 levels of Makefiles that call each other. The top-
level Makefile is the one that is called from the command line.
It then calls the second-level Makefile (Makefile2) with the
appropriate target. The second-level Makefile calls the third-
level Makefiles (build.make) that are within the sub-directories
of the system. These third-level Makefiles get called twice: the
first time with the “depend” target, which scans the system for
implicit dependencies; and again with the “build” target, which
actually builds the system. This is how it avoids the pitfalls
of recursive Make described by Miller [8].

The lack of rule patterns in automatically generated Make-
files can be explained by the fact that generators specialize
their Makefiles after scanning for the names of all source code
files and their header file dependencies. Hence, they know all

the files by name during generation, and no generic rules are
necessary. Apart from being faster, the use of only essential
Make features makes these Makefiles more portable to other
implementations such as BSD Make.

VI. RELATED WORK

Adams et al. investigated evolution in the Linux build
system [4] from version 0.01 to 2.6.21.5 using lines of code
as a measurement. They showed that build systems evolve in
tandem with the source code. They also asserted that Makefile
complexity increases, based on the increasing number of
targets, and thus the number of tasks, to be built.

McIntosh et al. [6] extended this analysis to show that
Java systems using Ant evolved in the same way. They used
static measurements, like the number of files, lines (SBLOC),
targets, tasks (similar to Make recipes), and modified Halstead
complexity metrics – measurements for estimating how much
information someone reading the source code would have
to absorb, and how much mental effort would be required.
The Halstead metrics, which usually utilize operators and
operands, were modified to use tasks, targets (operators) and
the parameters passed to them (operands). They also used
some dynamic measurements, like the length (total number
of executed tasks/targets) and depth (the maximum number
of tasks to create one target) of the build graph. They found
a general growth in the number of lines of code in the
build scripts, and a high correlation between the Halstead
complexity and lines of code. As for the dynamic metrics, they
found two patterns concerning the depth of the build graph:
one where the depth remains mostly unchanged and one where
the depth increases over time. Further analysis showed that the
projects where the depth increased used a recursive design,
whereas the others did not.

Zadok proposes a different approach for measuring build
system complexity (as it relates to portability) [17]. After
plotting the number of lines of code and the number of CPP
conditionals (e.g., #if, #ifdef, etc.), he notes their similarity.
The packages with the fewest lines have the fewest CPP
conditionals, and vice versa. He takes this to mean that neither
is a good measure of complexity, and instead proposes the
number of CPP conditionals per 1000 lines of code. He found
that the biggest factor in complexity was related to the number
of operating system calls and the portable C code that comes
with it.

Tamrawi et al. [13], [18], created a tool called SYMake2 that
uses Symbolic Dependency Graphs (SDGs) to automatically
detect build errors and smells, as well as to allow refactoring
(e.g., rule removal, target renaming). Targets are represented
as rectangles, with the initial target “install” at the far left.
Recipes are represented as rounded rectangles, and diamond-
shaped “Select” nodes represent a choice between alternatives.
Each recipe is associated with a V-model, representing a string
value. The grammar published in their work was a starting
point for our TXL grammar.

2http://home.engineering.iastate.edu/˜atamrawi/SYMake/

Adams et al. recognized that the build system is used by
almost all project stakeholders at some point, and that they
suffer from understandability and maintainability issues [19],
[20]. With this in mind, they set out to build the MAKAO tool
(Makefile Architecture Kernel featuring Aspect Orientation)3.
This tool is built on top of the GUESS graph exploration tool
and presents a visualization of the whole build system that
allows the user to explore by zooming. The user can also use
Python to query, filter, refactor, and validate the system.

Shridhar et al. [21] manually analyzed the changes made
to Java-based build systems. Corrective, adaptive and new
functionality changes are the most common, and require the
largest changes to a build system. The authors also analyzed
who is responsible for making these changes. More invasive
changes tended to be made by the build experts rather than
regular developers.

VII. CONCLUSION AND FUTURE WORK

By looking at the frequency of use of GNU Make features,
we observed two things. First, there is a core set of features
that are used in more than a third of all Makefiles. Second,
there is a set of more advanced features that seem to be more
suited to writing Makefiles by hand, and that are used almost
exclusively in that context. We also found that recursive Make
is used a lot – especially by generators – even though it has
been considered bad practice for almost two decades, and that
suffix rules are still used extensively despite being considered
semi-obsolete.

While in this paper we only have room to present a summary
of our feature use analysis, our entire raw analysis can be
downloaded as a spreadsheet from http://research.cs.queensu.
ca/∼doug/ICPC15/. We have only begun to scratch the surface
of what can be analyzed in Makefiles. Our analysis infrastruc-
ture allows for much more than feature usage. For example, it
can be used to measure other aspects of Makefiles such as their
complexity. We are also interested in automatically detecting
and analyzing design patterns in Make-based build systems.

REFERENCES

[1] S. I. Feldman, “Make — a program for maintaining computer programs,”
Software: Practice and Experience, vol. 9, no. 4, pp. 255–265, 1979.

[2] “What’s wrong with GNU make? - conifer systems.” [Online].
Available: http://www.conifersystems.com/whitepapers/gnu-make/

[3] J. Graham-Cumming, “Debugging makefiles.” [Online]. Available:
http://www.drdobbs.com/tools/debugging-makefiles/197003338

[4] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the linux build system,” Electronic Communications of the EASST,
vol. 8, no. 0, Oct. 2008.

[5] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proceedings of the
33rd International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 141–150. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985813

[6] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of java build
systems,” Empirical Software Engineering, vol. 17, no. 4-5, pp. 578–
608, Aug. 2012.

[7] J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, Aug. 2006.

3http://mcis.polymtl.ca/˜bram/makao/index.html

http://research.cs.queensu.ca/~doug/ICPC15/
http://research.cs.queensu.ca/~doug/ICPC15/
http://www.conifersystems.com/whitepapers/gnu-make/
http://www.drdobbs.com/tools/debugging-makefiles/197003338
http://doi.acm.org/10.1145/1985793.1985813

[8] P. Miller, “Recursive make considered harmful,” AUUGN Journal of
AUUG Inc, vol. 19, no. 1, pp. 14–25, 1998.

[9] “GNU make.” [Online]. Available: http://www.gnu.org/
savannah-checkouts/gnu/make/manual/make.html

[10] R. Mecklenburg, Managing Projects with GNU Make. O’Reilly
Media, 2004. [Online]. Available: http://shop.oreilly.com/product/
9780596006105.do

[11] P. S. PhD and P. Smith, Software Build Systems: Principles and
Experience, 1st ed., Upper Saddle River, NJ, Mar. 2011.

[12] “Why the KDE project switched to CMake – and how (continued)
[LWN.net].” [Online]. Available: http://lwn.net/Articles/188693/

[13] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. Nguyen, “Build
code analysis with symbolic evaluation,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012, pp. 650–660.

[14] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider, “Agile
parsing in TXL,” Automated Software Engg., vol. 10, no. 4, pp. 311–
336, Oct. 2003.

[15] J. R. Cordy, “Excerpts from the TXL cookbook,” Lecture Notes in
Computer Science, vol. 6491, pp. 27–91, 2011.

[16] “CMake FAQ.” [Online]. Available: http://www.cmake.org/Wiki/
CMake FAQ

[17] E. Zadok, “Overhauling amd for the ’00s: A case study of GNU auto-
tools,” in FREENIX Track: 2002 USENIX Annual Technical Conference,
Berkeley, CA, USA, 2002, pp. 287–297.

[18] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen,
“SYMake: a build code analysis and refactoring tool for makefiles,”
in 27th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2012, New York, NY, USA, 2012, pp. 366–369.

[19] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in IEEE International
Conference on Software Maintenance, 2007. ICSM 2007, 2007, pp. 114–
123.

[20] B. Adams, “Co-evolution of source code and the build system: Impacton
the introduction of AOSD in legacy systems,” PhD dissertation, Ghent
University, Belgium, May 2008.

[21] M. Shridhar, B. Adams, and F. Khomh, “A qualitative analysis of
software build system changes and build ownership styles,” in 8th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’14, 2014, pp. 29:1–29:10.

http://www.gnu.org/savannah-checkouts/gnu/make/manual/make.html
http://www.gnu.org/savannah-checkouts/gnu/make/manual/make.html
http://shop.oreilly.com/product/9780596006105.do
http://shop.oreilly.com/product/9780596006105.do
http://lwn.net/Articles/188693/
http://www.cmake.org/Wiki/CMake_FAQ
http://www.cmake.org/Wiki/CMake_FAQ

	Introduction
	How frequently are Makefile features used?
	Are features used differently in generated Makefiles?
	To what extent are bad practices, specifically obsolete features and recursion, still in use?

	The GNU Make Language
	Readability
	Comments
	Continuations

	Rules
	Targets
	Prerequisites
	Recipe
	Special Targets
	Recipe Flags
	Single vs. Double Colon
	Pattern Rules
	Static Pattern Rules
	Suffix Rules
	Recursive Make

	Variables
	Assignments
	Variable References
	Multi-line Variables (Macros)
	Automatic Variables

	Statements
	VPATH Variable and vpath Directive
	Includes
	Conditionals

	Functions
	String Functions
	Filename Functions
	Conditional Functions
	Control Functions
	Variable Functions
	Other Functions
	Custom Functions (The Call Function)

	Approach – Tools and Dataset
	Subject Systems
	Measuring Feature Usage

	Analysis
	Discussion
	Related Work
	Conclusion and Future Work
	References

