
definitions

types

message

portType

operation

input

output

binding

service

port

A
b

st
ra

ct
 S

ec
ti

o
n

C

o
n

cr
et

e

Se
ct

io
n

Operation

Service

Input
(message)

Output
(message)

Fault
(message)

Type Element

provides

contains

hasA

hasParameter

hasInput
hasOutput

hasFault

Model of WSDL used to construct facts for Grok
(the arrows form the binary relations)

Name

hasName

Web Service Description Language (WSDL) is the language used to specify web
service interfaces, but they are often generated and read automatically and thus
are not always easy to read or understand. In this project, we attempt to use TXL
and Grok to extract facts from WSDL files and query those facts to answer
questions about WSDL descriptions.

In our previous work, we used TXL (a source transformation system) to
restructure WSDL operations into self-contained units that inserted the referred
elements into the elements that refer to them. This made it possible to perform
analysis on them using clone detection and Latent Dirichlet Allocation (LDA) to
find meaningful relationships between service operations. The problem is that it
is very tedious to look up the results to see what they have in common, and
difficult to find similar operations before analysis in order to calculate the
recall of these approaches.

A WSDL description starts with a service, which
provides one or more operations. Each of these
operations contains inputs, outputs and faults.
These have “message” attributes associated with
them that refer to message elements. Message
elements contain parts, which can behave in one of
two ways. First, it may have an “element” attribute,
which refers to an element in an XML Schema at
the beginning of the description. Second, it may
have a “type” attribute that refers to a type that
may be defined in the XML Schema. Either way, the
elements in the XML Schema can contain other
elements that have types defined elsewhere, and so
on. The disjointedness of WSDL descriptions make
them difficult to understand, which makes it even
more difficult to ask questions about them when
you have many in a repository.

The goal of this project is to provide a means of answering the common
questions that arise when working with WSDL. Some example questions
include:

• “What types do these operations have in common?”

• “What is the difference between these operations (i.e. what parameters are
different)?”

• “Which operations use this type?”

Grok is a system for manipulating factbases of binary relations (e.g. “relation X
Y”) with its own language to do so. It is similar to a relational database, but
optimized to handle large numbers of facts (hundreds of thousands) and perform
transitive closure operations.

Some common Grok operators are:

• Union (+) Combines two sets (e.g. {A, B} + {C, D} = {A, B, C, D})

• Intersection (^) Returns the elements two sets have in common
 (e.g. {A, B, C} ^ {B, D, E} = {B})

• Composition (o) Joins two sets of relations
 (e.g. R1 = {(A, B), (C, D)}, R2 = {(B, E)}, R1 o R2 = {(A, E)})

• Projection (.) Separates a set from a relation
 (e.g. Right: {(A, B), (B, C), (A, C)} . {“C”} = {B, A})
 (e.g. Left: {A} . {(A, B), (B, C), (A, C)} = {B, C})

• Transitive Closure (+) Computes all inferred facts in a relation
 (e.g. R = {(A, B), (B, C), (C, D)},
 R+ = {(A, B), (A, C) (A, D), (B, C), (B, D), (C, D)})

First, we created a middle model of
WSDL that focuses on the parts in which
we’re most interested and removes some
unnecessary layers (e.g. inputs/outputs
and message elements are combined
into one unit). Then, to construct the
facts, we used TXL to extract the names
of each entity in the service (the boxes in
the diagram) and create the relations
between them (the arrows). We were
able to re-use most of the work we had
done previously.

Now that the facts are constructed, all
we have to do is load them into Grok
and it is ready for querying.

Using Grok and the facts that we extract from a repository of WSDL files, we are
able to answer all of the question we set out to ask (and more):

• “What types do these operations have in common?”
 params := hasInput + hasOutput

 types := (params o hasParameter o hasA o hasName)

 Op1_types := {”<Op1>"} . types

 Op2_types := {”<Op2>"} . types

 Op1_types ^ Op2_types

• “What is the difference between these operations (i.e. what parameters are
different)?”
 (Op1_types - Op2_types) + (Op2_types – Op1_types)

• “Which operations use this type?”
 types . {”<type>”}

