On the Maintenance Complexity of Makefiles

Douglas H. Martin
School of Computing
Queen’s University
Kingston, ON, CA
doug@cs.queensu.ca

ABSTRACT

Build systems, the tools responsible for compiling, testing,
and packaging software systems, play a vital role in the soft-
ware development process. It is therefore important that
they be maintained and kept up-to-date, which has been
shown to be required for up to 27% of source code changes.
Make, one such build tool, uses a declarative language writ-
ten in Makefiles to interpret the build and so is not amenable
to traditional complexity metrics. Because of this, most re-
search into the complexity has focused on simple measures
like the number of lines, targets, or dependencies. In this
paper, we take a different approach and observe that a large
component of maintenance is about understanding. Since
that understanding is done by following links and searching
for related parts, we propose a new complexity metric based
on the number of indirections (i.e. any instance of a fea-
ture that requires the reader to look somewhere else). We
present an empirical study of the indirection complexity of a
set of almost 20k Makefiles from more than 150 open source
projects.

CCS Concepts

eGeneral and reference — Metrics; eSoftware and its
engineering — Software maintenance tools; eHuman-
centered computing — Open source software;

Keywords

build systems, software metrics, software maintenance

1. INTRODUCTION

Build automation tools, or simply build systems, are the
backbone of every software project. They compile the source
code submitted by developers into an executable program.
They run tests to assure that the code is correct. They com-
pile documentation for manuals. And they package every-
thing into a distributable application. Given the vital role

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

WETSoM’16, May 16 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4177-6/16/05. .. $15.00
DOL: http://dx.doi.org/10.1145/2897695.2897703

James R. Cordy
School of Computing
Queen’s University
Kingston, ON, CA
cordy@cs.queensu.ca

these systems play in the development process, maintain-
ing them is a high priority because without them the whole
project grinds to a halt. Moreover, even minor errors in the
build process can lead major difficulties in a software release.
They must also constantly evolve and adapt to changes and
additions to the source code, tests and target platform of
the software.

As the size and complexity of build systems grows, the
overhead of build system maintenance becomes an increas-
ingly large part of the overall software maintenance task. A
recent study by McIntosh et al. [17] shows that the build
system can account to up to 31% of code files in a project,
and that up to 27% source code changes in a C project re-
quire corresponding updates to build artifacts. Adams et
al. studied the Linux build system through its many refac-
torings since inception [3]|, showing that the build system
has grown to be a large and complex software system of its
own that has grown to represent a large part of the Linux
code base. Thus the maintenance of build systems is an in-
creasingly important and difficult part of the overall software
effort [4, 17].

Build languages such as Make [9] and Ant [7] have also
been shown to be notoriously difficult to understand and
modify [18, 22]. This is partly because they were designed
for much smaller systems [9], and partly because of their
lack of higher level abstraction features that are appropriate
for the million-line software systems they have grown to be
[17].

In this work, we propose a new theory of software com-
plexity based on program understanding effort, and a metric
to characterize it based on indirect references. We then ap-
ply this metric to a large set of Makefiles and compare it to
traditional measures of complexity.

2. COMPLEXITY OF SOFTWARE MAIN-
TENANCE

Existing measures of code complexity, such as McCabe’s
Cyclomatic Complexity [15], Halstead’s metrics [10], and
Function Point Analysis [6], are primarily aimed at devel-
opment effort and at traditional algorithmic code. While
they have been used to estimate predicated maintenance ef-
fort [5], they are not designed for that purpose and do not
apply well to declarative languages like those used in build
systems. When they have been modified to apply to build
systems, they have been found to be indistinguishable from
simply the number of lines [16]. As a result, efforts as es-
timating complexity of build systems have relied primarily
on simple metrics such as number of files, lines, targets, or

objs/comprul.o : UNIX/cinterface comprul.c
cc -c -0 comprul.c; mv comprul.o objs/comprul.o

objs/compdef.o : UNIX/cinterface compdef.c
cc -¢ -0 compdef.c; mv compdef.o objs/compdef.o

objs/boot.o : UNIX/cinterface boot.c
cc —c¢ -0 boot.c; mv boot.o objs/boot.o

objs/loadstor.o : UNIX/cinterface loadstor.c
cc -¢c -0 loadstor.c; mv loadstor.o objs/loadstorAO

objs/ident.o : UNIX/cinterface ident.c
cc -c -0 ident.c; mv ident.o objs/ident.o

objs/scan.o : UNIX/cinterface scan.c
cc -c¢ -0 scan.c; mv scan.o objs/scan.o

objs/parse.o : UNIX/cinterface parse.c
cc -c -0 parse.c; mv parse.o objs/parse.o

objs/parsepf.o : UNIX/cinterface parsepf.c
cc —c -0 parsepf.c; mv parsepf.o objs/parsepf.o

objs/trees.o : UNIX/cinterface trees.c
cc -c -0 trees.c; mv trees.o objs/trees.o

objs/xform.o : UNIX/cinterface xform.c
cc —¢ -0 xform.c; mv xform.o objs/xform.o

objs/xformpf.o : UNIX/cinterface xformpf.c
cc —c¢ -0 xformpf.c; mv xformpf.o objs/xformpf.o

(a)
all:

cp -r ../generic/* .

cp -r machdep/* .

make -f Makefile_Generic SYS=$(SYS) AS="cc -c -m32"

CC="cc -m32" LD="cc -m32"

clean:

make -f Makefile_Generic clean

rm -r -f TL* Makefile_Generic main.ch

(b)

Figure 1: These examples illustrate how current metrics
used to measure complexity in Makefiles, like number of lines
or dependencies, can be misleading. The example in a) has
more dependencies and lines, but the example in b) hides
its complexity in another Makefile that it calls recursively.

dependencies, and historical metrics such as build file churn
[17, 3, 16].

We propose a new approach, designed to predict mainte-
nance effort more directly. Studies of software maintenance
indicate that the majority of maintenance effort is spent
trying to understand the system [21]. While novices tend
to read code locally and linearly, experts are more likely to
follow links and related parts [11], and both kinds of main-
tainers spend most of their time navigating the software and
searching for related items [20, 19, 13]. Many tools and in-
terfaces have been designed to assist in these tasks, perhaps
most successfully Hipikat [8] and Mylar [12], which has been
adopted into Eclipse as Mylyn [23].

The bottom line is that software maintenance is all about
the effort of code exploration and understanding, not so
much about size or change. A very large Makefile can be
very easy to understand (Figure 1a), and a very small file can
be very difficult (Figure 1b). The difference between these
two files is that the first is repetitive and self-contained —

the programmer need look nowhere else to understand what
is being built and under what conditions. By contrast, the
build script in Figure 1b is dependent on a great deal of
external information — in order to understand what is being
built and when, the programmer must look into two different
parts of the file system, must look to see how the Makefile
is invoked elsewhere and with what parameters, must trace
a recursive Make invocation, and must find and substitute
overridden variables in the recursive call.

Each of these actions requires the programmer to look
elsewhere to understand the meaning of the section of code
at which they are looking. Every such reference disturbs the
process and increases the difficulty of understanding when
the script is being maintained. We call these references indi-
rections, and theorize that as the number of them increases
in a build script, the difficulty of understanding increases,
and thus maintenance effort increases. More generally, every
time a maintainer must look somewhere that is not where
they are currently focussed in order to understand what they
are doing, the cognitive overhead of understanding is in-
creased.

Based on these observations, we propose a new complex-
ity measure we call indirection complexity, which is calcu-
lated as the sum of all instances of such indirections. In a
maintained software artifact, such as a build script, this can
be approximated by identifying and counting occurrences
of language features that result in indirection (that is, that
require the programmer to look elsewhere in order to under-
stand what is in front of them).

To put it formally, indirection complexity,/C, can be com-
puted as

IC = i Waly
x=1

for n indirect features, where i, is the number of instance of
indirect feature x and w,, is a weight associated with indirect
feature n. For this work, we have kept all weights at 1.
Further discussion and analysis would be necessary to find
the ideal weights.

This measure has several advantages: it can be applied to
any kind of programming artifact, including requirements,
design documents, build systems, and source code; it is in-
dependent of programming language and paradigm; and it is
focussed directly on estimating software maintenance effort
rather than logical content.

In the remainder of this paper, we explore the application
of the indirection complexity measure to Makefiles. We be-
gin with a short reminder of the features of the Make-based
build systems.

3. A BRIEF OVERVIEW OF MAKE

Make is one of the oldest and most commonly used build
automation tools. There have been many implementations
since Feldman'’s original proposal in 1979 [9], each with their
own unique features and improvements, but our work fo-
cusses on GNU Make [2] because it is the most widely used.

Make processes what are known as Makefiles, which con-
tain rules that tell Make what should be made (targets),
when they should be made (dependencies), and how to make
them (recipes). They take the form:

targets : dependencies
[TAB] recipe

#This is an example of a Makefile

VPATH=/usr/1lib/
vpath *.c /usr/src/

DEBUG=yes
OBJS := \
bin/main.o \
bin/foo.o \
bin/bar.o

=P
NP O W0 Uld WN

ifeq ($(DEBUG),yes)

include build/flags debug.mk
else

include build/flags.mk

endif

e
<o 0w

.PHONY: all
all: $(OBJS)
cc -o $(OBJS)

foo.o: foo.c foo.h
cc -c foo.c

DN NDDNDDND R
S wWw N e O w

: %.c
+echo "Compiling... " $(basename $Q)
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

NN
- o Ul
o

(¢}

(ee]

N
Nej

.PHONY: clean
30 clean:
31 rm bin/*

Figure 2: An example Makefile.

Each target may refer to a file or, alternatively, may be
simply an identifier such as all, clean, or debug. When a
target is an identifier like this, it is called a phony target, and
may be referred to elsewhere in the Makefile as a dependency
of some other target. Targets are followed by an optional set
of dependencies, which are other targets or files on which the
target depends. If any of the dependencies has been updated
since the target was last made, or if the target does not exist,
then it must be remade. If there are no dependencies, the
target is never out of date and therefore only made when
called explicitly. Following the target and dependencies is
a list of commands to update the target. The commands
may be simple calls to a compiler, other shell commands, or
external scripts.

As a more concrete example, we present the Makefile in
Figure 2. It contains six rules on lines 18, 19, 22, 25, 29,
and 30. The rule on line 22 builds foo.o if foo.c or foo.h
change (i.e. if one of their timestamps is newer than foo.0).
The shell command on line 23 is the recipe that is used
to build foo.o The rules on lines 18 and 29 are special rule
that inform Make that all and clean are phony targets and
should not be considered as object files.

By default, Make will pick the first target in the Makefile
to build automatically, if it is not explicitly given one. This
target, usually a target called all as in Figure 2, becomes
the default goal. To make the default goal, Make must first
resolve its dependencies by searching for the rule associated
with each. If the dependency is up-to-date, then it can pro-
ceed; but if it is not, it must resolve this new target first. It
proceeds in this manner until the default goal can be built.

Make provides a number of other features like variables,
functions, and conditionals to give developers more flexibil-
ity to write rules. We will look at some of those in more
detail in the next section.

4. INDIRECT FEATURES OF GNU MAKE

Before we can calculate the indirection complexity of Make-
files, we must first determine which features should be con-
sidered indirections. In this section, we describe the features
we consider to be indirections and how we arrived at that
conclusion.

4.1 Dependencies

The number of dependencies is a common metric for mea-
suring build complexity, and we include it in our metric as
well. This is because each dependency specified in a rule
represents another rule that must be found and, therefore,
an indirection. Since we include this in our metric, it can
dominate the complexity score and appear to be no different
than only counting the dependencies. However, as we will
see later, our metric provides more nuance, especially for
Makefiles with no dependencies at all.

4.2 vpath, directory change (cd), paths

Makefiles depend on knowing the state the of the filesys-
tem, or at least the portions of the filesystem relevant to
the software project being built, in order to know when files
exist or when they are out of date (i.e. their timestamp is
older than that of the files on which they depend). When
a user is reading a Makefile and trying to understand it, or
why it does not work, they must be aware of where Make is
looking for these target files.

Make’s wvpath directive (and less versatile VPATH wvari-
able) allow the Makefile author to select directories where
Make should look for target files or dependencies. For exam-
ple, they may specify where third party library files can be
found on the user’s system, or they may specify a folder in
the project directory with common files so as to avoid hav-
ing to use paths. In any case, the reader must be aware of
these directories and redirect their attention to them when
they are referenced. The example in Figure 2 uses both the
VPATH variable (on line 3) and the vpath directive on line 4).

A similar argument can be made for directory changes and
paths in filenames. When the working directory is changed,
the reader must be aware of the files in the new directory.
And when a path is specified with a target or dependency,
the reader must redirect to this directory to check the state
of the file. We also count paths in variable assignments be-
cause they are often referenced in target and dependency
lists. The example in Figure 2 does not change directories
in any of its recipes, but it does contain paths in the defini-
tion of the 0BJS variable on line 7. This means the reader
must add the “bin” directory to the list of places that must
be monitored in addition to the “lib” and “src” directories
specified in the vpath variable and directive.

4.3 Includes

Include statements provide a way for the author to break
a Makefile into logical units (or illogical ones, depending on
the author) and include them in other Makefiles, essentially
inserting it at the point of the include statement. This cre-
ates a level of indirection where the reader must switch their
attention to the included file. At worst, they must switch

back and forth between files when searching for rules that
update and outdated target. The example in Figure 2 con-
tains two include statements on lines 13 and 15.

4.4 Conditionals (ifdef/ifeq)

Like most programming languages, Make provides a con-
ditional construct to apply a portion of the code to be in-
cluded or ignored based on some criteria (e.g. if a variable
is defined, or if a variable has a particular value). Condi-
tional statements are evaluated during a pre-processing step,
which simplifies them to an extent. However, when reading
them, the reader may still have to redirect their attention
to somewhere else in the Makefile to continue reading. This
could be the next line, or it could be halfway down the file.
The example in Figure 2 contains a condition on line 12 that
checks if the value of $DEBUG is “yes” and includes a different
external Makefile depending on the outcome.

4.5 Variable References

In large software systems, files tend to have a large num-
ber of dependencies that need to be explicitly defined in
the Makefile. One way for an author to manage this is
to use wariables that list common dependencies and refer-
ence those. This is a classic case of indirection because a
reader must search for where the referenced variable was
last assigned to decipher the meaning of the rule in which
it appears. The rule on line 19 of the example in Figure
2 depends on a list of files defined in $0BJS. When reading
that rule, the reader must either have remembered the list
from earlier or go back and read it again. Either way this
adds complexity to understanding the build.

Make also includes a set of built-in automatically assigned
variables, or simply automatic variables. These variable
change based on the context in which they are used. For
example, the $@ variable will always refer to the filename of
the target currently being considered, the $< will always re-
fer to the name of the first dependency, and the $7 variable
refers to the dependencies that are newer than the current
target. An example of some of these can be seen in the
rule on line 25 of Figure 2. These variables are different in
that they are not assigned explicitly, and therefore do not
require the reader to search for the line where they were as-
signed, but we still count them because they may require the
reader to look at the rule header to remind them of what
is currently being considered, and possible process lists of
objects in their head (e.g. keep track of the current target
or dependency being considered).

4.6 Function Calls

Function calls are another classic case of indirection. When
a reader encounters a function call, they will likely have to
search for the location of the function definition to continue
tracing the code. While Make allows the author to write
simple custom functions, most of the common operations
have their own built-in function. For example, string func-
tions (e.g. findstring, patsubst, filter) provide facilities
for manipulating strings (including lists), and filename func-
tions (e.g. dir, addsuffix, wildcard) provide facilities to
manipulate filenames or query the file system. The example
in Figure 2 contains a call to the basename function on line
26, which returns the name of the file it is given, without
any extension.

While it is unlikely that the reader will need to consult
the definition of any of these built-in functions to obtain the
result, their attention may still be redirected. For exam-
ple, the result of a string function like strip, which removes
whitespace from a string, is trivial and does not affect the
meaning of the Makefile. However, a function like wildcard,
which can be used to search a directory for a list of files
that match a pattern, can be unpredictable and require the
reader to consult the file system. Despite this, we count
all function calls as indirection in our complexity measure
because it is difficult to determine whether or not some do
cause indirection in every context. Also, as we have previ-
ously shown [14], functions are not used in many Makefiles
anyway.

4.7 Recursive Make

One common, but discouraged, practice when writing Make-
files is to invoke Make with another Makefile from inside a
rule. This allows the author to split the system into multiple
smaller Makefiles for each subsystem and call them individ-
ually. Similar to include statements, this requires the reader
to redirect their attention to a different file. As we have also
seen in Figure 1, this can also be used to hide complexity.

S. DATASET AND METHODOLOGY

To see how our new complexity metric performs on Make-
files, we used the same analysis framework and dataset that
we used in our previous study of Makefile features [14].
More details are available in that paper, but we provide
an overview here.

Our dataset consists of almost 20k Makefiles spanning 270
different projects. These projects consist of the GNU library
of applications modified between 2010 and 2015, the KDE
library of applications, the Linux kernel, the Qt bindings
for Ruby, and some other smaller systems. These projects
were chosen based on how they generate Makefiles. Some
systems, like the Linux kernel and some GNU projects, use
Makefiles that were written manually by hand. Other GNU
projects use Automake to automatically resolve dependen-
cies and generate Makefiles using a template. KDE and oth-
ers use the popular CMake tool to generate and configure
build artifacts of any kind (in our case, we are only inter-
ested in how it generates Makefiles). Finally, the Qt project
uses its own generator, QMake, to generate Makefiles, hence
why we use the Qt Ruby bindings.

An overview of the dataset can be seen in Table 1. In-
dividual Makefiles were sorted into generator categories by
automatically detecting the comments added to the begin-
ning of every generated Makefile (e.g. “# generated auto-
matically by automake from Makefile.am...”) or based on
previous knowledge (e.g. we had to generate Makefiles our-
selves for CMake and QMake), otherwise, we considered it
to be hand-written. It should be noted that Automake tem-
plates allow hand-written Make commands to be included
in them, meaning a project could have both kinds of Make-
files and we must rely on comments to tell us which is which.
This also means that hand-written and Automake generated
Makefiles share many similarities, as we saw in our previous
study and will see in the following sections.

The core of our complexity analysis is a TXL grammar for
GNU Makefiles. TXL is a source transformation language
that allows us to define a grammar for any language, parse it,
and manipulate that parsed data. This allows us to perform

Table 1: An overview of our dataset.

Generator || Projects | Makefiles | Avg Lines
Automake 147 1704 1153
CMake 80 8672 135
QMake 2 2460 2031
Hand 129 6683 49
All 270 19519 433
E 000
3000 7 ’ Hand-written
’ : ® Automake
» CMake
2000 QMake

of lines = complexity

1000

W

s ool d (3 LN

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
of lines

Figure 3: The indirection complexity of our dataset coloured
by generator.

a static analysis of Makefiles — something not many others
have done. The grammar is based on one from Tamrawi et
al.[22] but yields a much more precise parse that allows us
to do more.

After we parse the input Makefile, we extract and count
the desired features then collect them in a spreadsheet. From
there we add the feature counts together to get the complex-
ity score. We present the results in the next section.

6. ANALYSIS

Since other complexity metrics for Makefiles have been
shown to correlate with size, we graphed our results against
the number of lines. This also gives us a way to normalize
the data and lets us compare the complexity of files of dif-
ferent sizes (i.e. by dividing the total number of indirections
by the number of lines, we get the average complexity per
line, which we can see visually by plotting complexity vs the
number of lines). Figure 3 shows the indirection complexity
of our dataset with Makefiles less than 10k lines, coloured
based on the generator used to create them.

In doing this, we can see that CMake and QMake Make-
files tend to be more complex, while Automake (Figure 4b)
and hand-written (Figure 4a) Makefiles tend to be less com-
plex. This observation is interesting when considering that
we found that CMake and QMake use only the core fea-
tures of Make (rules and variables) in our previous feature
study. Only Makefiles written by hand or with Automake

used some of Make’s more advanced, complex features.

CMake and QMake also seemed to be more highly lin-
early correlated with the number of lines (R-squared of 0.87
and 0.99, respectively) than hand-written and Automake-
generated Makefiles (both wirh an R-squared of 0.55), which
makes sense since these generators use a limited set of tem-
plates that get duplicated as the size of the system grows.
When we look closer, we can see bands of data points that
roughly correspond to the 3 levels of Makefiles that CMake
generates to recursively call one another [1]. QMake is less
documented, but a similar design is likely responsible for the
bands in it as well.

Generators like CMake and QMake are less interesting be-
cause the Makefiles they create are never meant to be read
by developers. So the fact that their complexity can be ac-
curately predicted by the number of lines is less meaningful.
Our metric is better utilized on hand-written Makefiles that
need to be debugged directly, as we can see when we graph
their indirection complexity separately in Figure 4 where
spread of data points is much greater and less predictable.

But the utility of indirection complexity is likely best seen
through examples. Consider the Makefiles in Figure 5. Both
are roughly the same size, but the one on the right is twice as
complex (53 vs 23) according to the indirection complexity.
And this is what we would expect when we read them. Fig-
ure 5a is a straight-forward test harness that runs a series of
tests (i.e. $PROGS), while Figure 5b is a Makefile that is in-
cluded in another Makefile several times to iterate through
a list of items and output some variable assignments and
rules. Figure ba is quite easily understood. But, were it
not for the the comments at the beginning, it would likely
take a reader longer to fully understand Figure 5b due to all
the references to variables that are not even defined in the
same file. Note, however, that Figure 5a has more targets
and dependencies, which would make it seem more complex
under these measures.

Figure 5a also illustrates a potential weakness and threat
to the validity of our approach. Because we use a static
parse to count features, we would find that this Makefile
contains 11 dependencies. However, looking at the rule to
build all, you can see that it lists ${PROGS} as a dependency
and ${PROGS} expands to include 22 files. So the Makefile
actually contains 31 dependencies, not 11. In this way, we
find that variables can be used to hide complexity from our
analysis.

Another example of this can be seen in Figure 4a in the
horizontal line of data points with a complexity of just over
200 and lines ranging from about 500 to 750. These Make-
files appear in a number of different GNU projects as part
of building GNU gettext — a translation toolset for local-
izing software. Each of these Makefiles is configured from
a seemingly hand-written template that add continuations
(i.e. new lines) to some variable assignments. These as-
signments specify object files that become dependencies of
the rules, but the build logic stays the same, as does the
complexity.

It is unclear what the appropriate course of action is in
this situation. One possibility is to weigh any dependencies
containing variables against the length of the variable assign-
ment or its complexity, thus making it more dynamic. This
creates a whole new set of challenges around resolving vari-
able references, which can be difficult to impossible. They
may be assigned in multiple places, where they are overwrit-

2000 10000

1600 8000

1400 7000

6000

1000

Complexity
Complexity

800 4000

400 2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
#of lines #of lines

(a) Hand (b) Automake

Figure 4: The indirection complexity of hand-written and Automake-generated Makefiles.

noarg:
$(MAKE) -C ../../

This file is included several times in a row,

once for each element of $(iter-items).

On each inclusion, we advance $o to the next element.
The EBB handler is 64-bit code and everything
links against it
CFLAGS += -m64

$(iter-labels) and $(iter-from) and
$(iter-to) are also advanced.

o := $(firstword $(iter-items))
PROGS := reg_access_test event_attributes_test \ iter-items := $(filter-out $o,$(iter-items))
cycles_test cycles_with_freeze_test \
pmc56_overflow_test ebb_vs_cpu_event_test \ $o-label := $(firstword $(iter-labels))
cpu_event_vs_ebb_test \ iter-labels := $(wordlist 2, \
cpu_event_pinned_vs_ebb_test \ $(words $(iter-labels)),$(iter-labels))
task_event_vs_ebb_test \
task_event_pinned_vs_ebb_test \ $o-from := $(firstword $(iter-from))
multi_ebb_procs_test multi_counter_test \ iter-from := $(wordlist 2,$(words $(iter-from)),$(iter-from))
pmae_handling_test close_clears_pmcc_test \
instruction_count_test fork_cleanup_test \ $o-to := $(firstword $(iter-to))
ebb_on_child_test ebb_on_willing_child_test \ iter-to := $(wordlist 2,$(words $(iter-to)),$(iter-to))
back_to_back_ebbs_test lost_exception_test \
no_handler_test cycles_with_mmcr2_test ifeq ($($o-from),$($o-to))
$o-opt := -D$($o-from)_MODE
all: $(PROGS) else
$o-opt := -DFROM_$($o-from) -DTO_$($o-to)
$(PROGS): ../../harness.c ../event.c ../lib.c \ endif
ebb.c ebb_handler.S trace.c \
busy_loop.S #$(info o(objext): -DL$($o-label) $($o-opt))
instruction_count_test: ../loop.S ifneq ($o0,$(filter $o,$(LIB2FUNCS_EXCLUDE)))
o(objext): %$(objext): $(srcdir)/fixed-bit.c
lost_exception_test: ../lib.c $(gcc_compile) -DL$($*-label) $($x-opt) -c \

$(srcdir)/fixed-bit.c $(vis_hide)
run_tests: all

-for PROG in $(PROGS); do \ ifeq ($(enable_shared),yes)
./$$PROG; \ $(o)_s$(objext): %_s$(objext): $(srcdir)/fixed-bit.c
done; $(gcc_s_compile) -DL$($*-label) $($*-opt) \
-c $(srcdir)/fixed-bit.c
clean: endif
m -f $(PROGS) endif
(a) (b)

Figure 5: These examples from our dataset illustrate the advantages of indirection complexity over traditional metric like
number of lines or dependencies. The Makefile in a) has more dependencies than the one in b) but is arguably less complex.

ten, conditionally assigned, or appended. Then there is the
problem that arises from variables being assigned in other
Makefiles, as is the case in Figure 5b.

7. CONCLUSION

Software maintenance is all about understanding code.
Expert developers do this by following the indirections, which
adds to the amount of information that they must keep track
of and makes the code complex. We have measured this ef-
fort in Makefiles by calculating indirection complexity and
have shown the advantages it has over other metrics that
have been used, such as the number of lines and dependen-
cies.

Our analysis was static, but a dynamic approach would
be able to evaluate variables, functions, and other features
of Make that would give a more accurate count of dependen-
cies. It would also allow entire systems of Makefiles to be
evaluated as a whole because it could resolve include state-
ments that link them together. Another possibility to be
explored is to assign weights to each indirect feature based
on the amount of cognitive overhead. For example, a fea-
ture that requires the reader to look in a separate file may
be weighted more than a feature that makes the reader look
somewhere in the same file. This possibility was explored
to some extent, but further work is needed to find the ideal
weights.

We believe indirection complexity can be applied to other
languages, but this remains to be seen. Even for Make-
files, user studies are needed to determine if our theory of
indirection can actually predict maintenance effort or even
perceived complexity.

8. REFERENCES
[1] CMake FAQ), http://www.cmake.org/wiki/cmake_faq.

[2] GNU make,
www.gnu.org/software/make/manual /make.html.

[3] ApAMS, B., DE SCHUTTER, K., TROMP, H., AND
DE MEUTER, W. The evolution of the linux build
system. Electronic Communications of the EASST 8, 0
(Oct. 2008).

[4] Apawms, B., TrRoMP, H., DE SCHUTTER, K., AND
DE MEUTER, W. Design recovery and maintenance of
build systems. In IEEE International Conference on
Software Maintenance, 2007. ICSM 2007 (2007),
pp.- 114-123.

[5] AHN, Y., SuH, J., KiM, S., AND KiM, H. The
software maintenance project effort estimation model
based on function points. Journal of Software
Maintenance and Evolution: Research and Practice
15, 2 (2003), 71-85.

[6] ALBRECHT, A. J. Measuring application development
productivity. In Proceedings of the Joint
SHARE/GUIDE/IBM Application Development
Symposium (1979), vol. 10, pp. 83-92.

[7] APACHE SOFTWARE FOUNDATION. Apache ant,
http://ant.apache.org, 2000.

[8] CuBrANIC, D., MURPHY, G. C., SINGER, J., AND
BoortH, K. S. Hipikat: A project memory for software
development. IEEE Trans. Software Eng. 31, 6 (2005),
446-465.

[9] FELDMAN, S. I. Make - a program for maintaining
computer programs. Software: Practice and

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

21]

(22]

23]

Ezxperience 9, 4 (1979), 255-265.

HALSTEAD, M. H. Elements of Software Science
(Operating and programming systems series). Elsevier
Science Inc., 1977.

Tio, K., FurRuvaMA, T., AND ARAI, Y. Experimental
analysis of the cognitive processes of program
maintainers during software maintenance. 2018 IEEE
International Conference on Software Maintenance 0
(1997), 242.

KERSTEN, M., AND MURPHY, G. C. Mylar: a
degree-of-interest model for ides. In Proceedings of the
4th International Conference on Aspect-Oriented
Software Development, AOSD 2005, Chicago, Illinois,
USA, March 14-18, 2005 (2005), pp. 159-168.

Ko, A. J., MYERs, B. A., COBLENZ, M. J., AND
AuNG, H. H. An exploratory study of how developers
seek, relate, and collect relevant information during
software maintenance tasks. IEEE Trans. Software
Eng. 82, 12 (2006), 971-987.

MARTIN, D., CorDY, J., ADAMS, B., AND ANTONIOL,
G. Make it simple - an empirical analysis of gnu make
feature use in open source projects. In Program
Comprehension (ICPC), 2015 IEEE 23rd
International Conference on (May 2015), pp. 207-217.
McCABE, T. A complexity measure. Software
Engineering, IEEE Transactions on SE-2, 4 (Dec
1976), 308-320.

McINTOSH, S., ADAMS, B., AND HASSAN, A. The
evolution of ANT build systems. In 2010 7th IEEE
Working Conference on Mining Software Repositories
(MSR) (2010), pp. 42-51.

McINTOSH, S., ApAMS, B., NGUYEN, T. H., KAMEI,
Y., AND HAssAaN, A. E. An empirical study of build
maintenance effort. In Proceedings of the 33rd
International Conference on Software Engineering
(New York, NY, USA, 2011), ICSE ’11, ACM,

pp. 141-150.

MILLER, P. Recursive make considered harmful.
AUUGN Journal of AUUG Inc 19,1 (1998), 14-25.
SINGER, J. Practices of software maintenance. In 1998
International Conference on Software Maintenance,
ICSM 1998, Bethesda, Maryland, USA, November
16-19, 1998 (1998), pp. 139-145.

SINGER, J., LETHBRIDGE, T. C., VINSON, N. G., AND
ANQUETIL, N. An examination of software engineering
work practices. In Proceedings of the 1997 conference
of the Centre for Advanced Studies on Collaborative
Research, November 10-13, 1997, Toronto, Ontario,
Canada (1997), p. 21.

SoH, Z., KHomH, F., GUEHENEUC, Y.-G., AND
ANTONIOL, G. Towards understanding how developers
spend their effort during maintenance activities. In
Reverse Engineering (WCRE), 2013 20th Working
Conference on (Oct 2013), pp. 152-161.

TamrAawI, A., NGUYEN, H. A., NGUYEN, H. V., AND
NGUYEN, T. Build code analysis with symbolic
evaluation. In 2012 34th International Conference on
Software Engineering (ICSE) (2012), pp. 650-660.
TAskTOP TECHNOLOGIES INC. Mylyn,
http://www.tasktop.com/mylyn, 2007.

