
1

Consolidating WSDL Descriptions of Web Services

Douglas Martin James R. Cordy
School of Computing, Queen’s University

Kingston, Canada

Abstract

A challenge for the Smart Internet will be the
automated tagging of equivalent or similar serv-
ices, both in terms of domain semantics and serv-
ice protocols, in support of efficient discovery and
selection of relevant alternative services for the
current matters of concern. Code similarity detec-
tion is an established technique that can be
brought to bear on this problem if service descrip-
tions can be partitioned into appropriate units for
comparison. Unfortunately, specifications written
in Web Service Description Language (WSDL)
are poorly structured for this purpose, with rele-
vant information for each service operation scat-
tered widely over WSDL service descriptions. In
this work we describe a first step in leveraging
code similarity techniques to identify and tag
similarities in WSDL services. Using source
transformation techniques, we describe a method
for reorganizing WSDL descriptions such that
they are both more human readable and better
suited to analysis by similarity detection tools.

1 Introduction
An important part of the Smart Internet initiative
is the automated tagging and classification of web
services that are similar in domain or service pro-
tocol [1]. Code similarity tools, or clone detectors
[4] provide a mature, scalable similarity detection
technology that can be leveraged to assist in this
problem. Our aim is to leverage these existing
techniques to analyze WSDL service descriptions
for similarities that can then be more easily classi-
fied and tagged. However, WSDL service descrip-
tion files usually contain unified descriptions of
all of the operations that the web service has to
offer, with pieces of each operation scattered over
different parts of the file. This not only makes the

Copyright © 2009 Douglas Martin and James R. Cordy.
Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

operation descriptions difficult to read, but it also
presents a challenge for clone detection tools. In
this paper we address this problem by utilizing
source transformation in TXL [3] to restructure
WSDL service descriptions to consolidate and
separate complete standalone operation descrip-
tions, which can then be analyzed by clone detec-
tion techniques to cluster them into sets of
semantically and structurally similar operations.

2 Background
Some research has been done to find related serv-
ices in a repository of WSDL descriptions. Syeda-
Mahmood et al. [2] have explored the use of do-
main-independent and domain-specific ontologies
when comparing service descriptions. They found
that on a large service repository this allowed
them to obtain more relevant results. The method
outlined in this paper may provide even better
results when used in conjunction with theirs, be-
cause it allows the comparison of individual op-
erations as opposed to whole service descriptions,
supporting analysis of views of services rather
than only entire service descriptions.

3 Methodology

WSDL service description files contain several
sections: types, which define a schema with ele-
ments and type declarations (or complexTypes)
used later in the file; messages, which contain
parts associated with elements described in the
types section; portTypes, which contain opera-
tions with inputs/outputs associated with mes-
sages; bindings, which contain a protocol for the
messages associated with each portType; and
services, which contain a set of ports for commu-
nicating with the web service. Each of these con-
tains a part of the information necessary to
understand each service operation – to understand
any individual operation, it is necessary to chase
down all the relevant pieces from the other sec-
tions. In this first experiment we ignore bindings

2

and services, since they add no new information
and are unique to the particular web service.

Our tool uses the source transformation system
TXL [3] to construct a set of consolidated service
operations from a WSDL description. It works by
merging the pieces together to form a set of inde-
pendent consolidated operation descriptions that
clearly and directly identify inputs, outputs and
possible faults.

Phase 1: Extract Operations
The first step in the consolidation is to set up the
skeleton of each operation. This acts as a base in
which to put the elements found later in the types
section. We extract the operations from the port-
Types section, which contain the operation's input,
output, and faults. Figure 1 shows an example of
such an operation from a hotel reservation system.

Phase 2: Inject Messages
Each of the operation's inputs, outputs, and faults
refers to a message that appears elsewhere in the
description. The next step is to find that message
and inject it into each corresponding tag, giving
something like what is shown in Figure 2.

Phase 3: Inject Element into Parts
Each part of a message has a particular element
associated with it, described in the types section.
We find and inject this element into the part tag,
resulting in something like Figure 3.

Phase 4: Consolidate Elements
For each element in the newly constructed part,
we find the type declaration of its type, if one
exists. We then take the elements of that type and
insert them into the parent element. The same
process is repeated recursively for all the elements
of the type, until all elements in the part are native
XML types (eg. string, int, etc.). In the end, the
result looks something like Figure 4.

Phase 5: Clean Up
Some unnecessary tags (e.g. <complexType>,
<sequence>, and so on) remain after phases 1-4,
so next we remove these to make the operation
definitions cleaner and easier to read. The final
result for our hotel reservation example is shown
in Figure 5, and the entire process can be visual-
ized as illustrated in Figure 6. What we're left
with is a clear human-readable standalone repre-
sentation of each operation, its required input and
expected output. For example, we can see that
the ReserveRoom operation in Figure 5 takes a

Payment object and a Room object and returns an
acknowledgment. Further, from the composition
of the Payment and Room objects, we can easily
tell what information is required for this service.

4 Preliminary Results

Early results from similarity detection tools show
promise. When comparing operations from
WSDL descriptions with no consolidation, the
results were sparse and unusable. However, after
our restructuring many interesting groups of simi-
lar operations were identified (e.g., operations
related to employee information, shipping infor-
mation, customer information, and so on).

5 Conclusion

WSDL descriptions of web services pose prob-
lems for finding similarities. We have developed a
way to make descriptions both more human read-
able and amenable to code similarity techniques.

<operation name="ReserveRoom">
 <input message="tns1:ReserveRoomRequest"/>
 <output message="tns1:ReserveRoomResponse"/>
 <fault message="tns1:RoomNotAvailableException"/>
</operation>

Figure 1 Phase 1

<operation name="ReserveRoom" >
 <input message="tns1:ReserveRoomRequest">
 <message name="ReserveRoomRequest">
 <part name="body"
 element="xsd1:ReserveRoomRequest">
 <element name="ReserveRoomRequest">
 <complexType>
 <sequence>
 <element name="payment"
 type="tns1:Payment"/>
 <element name="room"
 type="tns1:Room"/>
 </sequence>
 </complexType>
 </element>
 </part>
 </message>
 </input>
 . . .
</operation>

Figure 3 Phase 3

<operation name="ReserveRoom" >
 <input message="tns1:ReserveRoomRequest">
 <message name="ReserveRoomRequest">
 <part name="body"
 element="xsd1:ReserveRoomRequest"/>
 </message>
 </input>
 <output message="tns1:ReserveRoomResponse">
 <message name="ReserveRoomResponse">
 <part name="body"
 element="xsd1:ReserveRoomResponse"/>
 </message>
 </output>
 <fault message="tns1:RoomNotAvailableException">
 <message name="RoomNotAvailableException">
 <part name="body"
 element="xsd1:RoomNotAvailableException"/>
 </message>
 </fault>
</operation>

Figure 2 Phase 2

3

Acknowledgements

The authors thank Scott Grant for the inspiration
behind this idea. This work was supported in part
by an IBM Faculty Award, and by NSERC.
About the Authors

Douglas Martin is a first year M.Sc. student and
James R. Cordy is a professor in the School of
Computing at Queen’s University. They can be
reached by email at {doug,cordy}@cs.queensu.ca .

References

[1] J.W. Ng, M. Chignell, J.R. Cordy, “The Smart
Internet: Transforming the Web to Fit User Needs”,
Proc. CASCON 2009, Nov. 2009 (to appear).

[2] T. Syeda-Mahmood, G. Shah, R. Akkiraju, A. Ivan,
R. Goodwin, “Searching Service Repositories by
Combining Semantic and Ontological Matching”,
Proc. ICWS 2005, July 2005, pp. 13-20.

[3] J.R. Cordy, “The TXL Source Transformation
Language”, Sci. Comput. Program. 61(3), 2006,
pp. 190-210.

[4] C.K. Roy, J.R. Cordy and R. Koschke, "Compari-
son and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach",
Sci. Comput. Program. 74(7), 2009, pp. 470-495.

<operation name="ReserveRoom" >
 <input message="tns1:ReserveRoomRequest">
 <message name="ReserveRoomRequest">
 <part name="body"
 element="xsd1:ReserveRoomRequest">
 <element name="ReserveRoomRequest">
 <element name="payment"
 type="tns1:Payment">
 <element name="ccNumber"
 type="xsd:int"/>
 <element name="cardHolder"
 type="xsd:string"/>
 <element name="expiryDate"
 type="xsd:date"/>
 <element name="PIN"
 nillable="true"
 type="xsd:int"/>
 </element>
 <element name="room"
 type="tns1:Room">
 <element name="roomID"
 type="xsd:int"/>
 <element name="numBeds"
 type="xsd:int"/>
 <element name="isSmoking"
 type="xsd:boolean"/>
 </element>
 </element>
 </part>
 </message>
 </input>
 <output message="tns1:ReserveRoomResponse">
 <message name="ReserveRoomResponse">
 <part name="body"
 element="xsd1:ReserveRoomResponse">
 <element name="ReserveRoomResponse"/>
 </part>
 </message>
 </output>
 <fault message="tns1:RoomNotAvailableException">
 <message name="RoomNotAvailableException">
 <part name="body"
 element="xsd1:RoomNotAvailableException">
 <element name="RoomNotAvailableException"/>
 </part>
 </message>
 </fault>
</operation>

Figure 5 Phase 5

<operation name="ReserveRoom" >
 <input message="tns1:ReserveRoomRequest">
 <message name="ReserveRoomRequest">
 <part name="body"
 element="xsd1:ReserveRoomRequest">
 <element name="ReserveRoomRequest">
 <complexType>
 <sequence>
 <element name="payment"
 type="tns1:Payment">>
 <element name="ccNumber"
 type="xsd:int"/>
 <element name="cardHolder"
 type="xsd:string"/>
 <element name="expiryDate"
 type="xsd:date"/>
 <element name="PIN"
 nillable="true"
 type="xsd:int"/>
 </element>
 <element name="room"
 type="tns1:Room">
 <element name="roomID"
 type="xsd:int"/>
 <element name="numBeds"
 type="xsd:int"/>
 <element name="isSmoking"
 type="xsd:boolen"/>
 </element>
 </sequence>
 </complexType>
 </element>
 </part>
 </message>
 </input>
 . . .
</operation>

Figure 4 Phase 4

Figure 6 Visualization of the Restructuring

