
1

WSCells for the Personal Web
Douglas Martin James R. Cordy

School of Computing, Queen’s University, Kingston, Ontario

Abstract

In our previous work [1], we developed WSRD –
a tool that analyzes WSDL service descriptions to
gather related pieces of operations into self-
contained units and put them into a standalone
description we call a Web Service Cell, or
WSCell (pronounced “wizzle”). WSCells are
complete, self-contained single service operations
that can be analyzed, compared and (in theory)
used independently of their original services. In
this paper we explore the role that WSCells may
be able to play in the vision of the Personal Web.

1 Introduction
Web services described using the Web Service
Description Language (WSDL) contain descrip-
tions of multiple operations that are co-mingled
throughout the service description. The interpreta-
tion of an individual operation depends on both its
context in the description and the many remote
pieces, such as types, portTypes and bindings, on
which it depends. Isolating a particular operation
description for analysis or service composition
can be a tedious task.

In our previous work [1], we developed a
tool we call WSRD (Web Service Restructuring
of Descriptions) that collects and consolidates the
information in a WSDL file related to each opera-
tion and packages them into concise self-
contained descriptions that we call Web Service
Cells, or WSCells (pronounced “wizzles”) for
short. WSCells provide a finer granularity view of
services by separating operation descriptions from
the description of the entire web service.

Copyright © 2010 Douglas Martin, James R. Cordy.
Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

WSCells were originally designed to aid in
the analysis of web service similarity and support
web service tagging automation. However, in the
context of the Personal Web, we now believe that
they may have a more interesting role in aiding
the selection and composition of personalized web
services. WSRD can be used to separate WSDL
descriptions into their constituent operation
WSCells, and then users or advanced algorithms
can pick and choose the operations that work best
for any given situation, environment or current
matter of concern, and compose them with each
other to form a custom, personalized new service
(Figure 1).

In this paper, we provide a brief background
of our work on WSRD (Section 2), as well as
some new ways that we envision WSCells being
used to compose personal services (Section 3).

2 Background

In our previous work, our original plan was to
modify WSDL descriptions to be better suited for
processing using clone detection methods, with

Figure 1
Separation of WSDL services into WSCells, and re-

combination of WSCells into Personal Services

2

the goal of being able to identify and tag similar
web service operations [1]. In this section, we
briefly describe this technique using an illustrative
example.

2.1 The Problem
Each WSDL file contains a description of one or
more operations provided by a web service. Each
of these descriptions is context-dependent and
broken into several parts throughout the file, mak-
ing it difficult to pick out and understand the en-
tire description of a particular operation.

The complete description of an operation
begins in the portTypes section of the WSDL file,
where its inputs, outputs and possible faults are
declared. Each of these refers to a message ele-
ment, which in turn contains parts referring to
elements in the types section. The types section
contains an XML Schema that defines structured
data types used for passing operation parameters.
An element may have a type defined in the types
section that contains elements of other types also
defined there, and so on.

Thus the complete set of relevant pieces of
the WSDL service description describing a par-
ticular operation are scattered throughout the
WSDL file, and mixed in with irrelevant pieces of
other operation descriptions. This makes it diffi-
cult to perform any sort of analysis of individual
operations, or even of the service itself. This is
where WSRD comes in.

2.2 WSRD
Using TXL [3], a source transformation language,
we constructed a set of rules that transform the
WSDL description of a web service into a set of
self contained operation descriptions for the op-
erations provided by the service. We call these
self-contained operation descriptions Web Service
Cells, or WSCells (pronounced “wizzles”) for
short, because they are the like the cells that to-
gether form a web service. An example of one
such WSCell is shown in Figure 2. Here we see
an operation called ReserveRoom that takes a
Payment object and a Room object as input and
outputs an acknowledgement, with a fault in the
case the room is unavailable.

WSRD includes a set of scripts that auto-
mates the generation of the complete set of
WSCells for all WSDL files in a directory. Ex-

tracted WSCells can either be represented in a
single file, or separated into individual files.

3 WSCells for the Personal
Web

While the original intention of WSRD was to
make clone detection of WSDL descriptions pos-
sible, WSCells can be useful in other applications
as well. The self contained nature of WSCells
make them great for analyzing, comparing and
mix-and-matching operations, and for storing all
information necessary to understand and use an
operation separately from the entire service.

There are 3 main ways in which we envi-
sion WSCells being used in composing personal
services: imperative composition is driven entirely
by the user; declarative composition is driven by
the user’s goals; and self-driven composition is
driven entirely by the system as a cellular automa-
ton. Each of these three possibilities is illustrated
in Figure 3.

3.1 Imperative Composition
Because WSCells contain all the information
needed to use a web service operation, they can be
thought of as beads or blocks that can be piled or
strung together like a child’s blocks. A user can

<operation name="ReserveRoom" >
 <input message="tns1:ReserveRoomRequest">
 <message name="ReserveRoomRequest">
 <part name="body"
 element="xsd1:ReserveRoomRequest">
 <element name="ReserveRoomRequest">
 <element name="payment" type="tns1:Payment">
 <element name="ccNumber" type="xsd:int"/>
 <element name="cardHolder" type="xsd:string"/>
 <element name="expiryDate" type="xsd:date"/>
 <element name="PIN" nillable="true" type="xsd:int"/>
 </element>
 <element name="room" type="tns1:Room">
 <element name="roomID" type="xsd:int"/>
 <element name="numBeds" type="xsd:int"/>
 <element name="isSmoking" type="xsd:boolean"/>
 </element>
 </element>
 </part>
 </message>
 </input>
 <output message="tns1:ReserveRoomResponse">
 <message name="ReserveRoomResponse">
 <part name="body" element="xsd1:ReserveRoomResponse">
 <element name="ReserveRoomResponse"/>
 </part>
 </message>
 </output>
 <fault message="tns1:RoomNotAvailableException">
 <message name="RoomNotAvailableException">
 <part name="body" element="xsd1:RoomNotAvailableException">
 <element name="RoomNotAvailableException"/>
 </part>
 </message>
 </fault>
</operation>

Figure 2
Sample Web Service Cell (WSCell) generated by WSRD

3

easily, given the right tools, pick and choose
WSCells and hand compose them in a way that
suits their particular needs to form a personalized
service. Repetition, forking and joining structures
can be imagined to form more complex combina-
tions of operations. This is similar to the idea of
“scripting” service composition in a higher-level
notation.

As a concrete example, consider a gener-
alization of Yahoo Pipes [2] where, instead of
boxes that transform data streams like RSS or
Atom, the boxes represent web service operations
(WSCells) from a variety of web services. Users
can connect the outputs of one operation to the
inputs of another or, for a constant value, connect
a text box with a value to an input. An example of
this can be seen in Figure 4. In the figure,
WSCells are represented using a combination of
block notation from Yahoo Pipes and classes from
a UML class diagram.

3.2 Declarative Composition
WSCells could also be automatically combined
according to a user’s goals, using a declarative
approach to personal service composition that
would iterate through the set of available WSCells
looking for a path from the currently known in-
formation to the user’s desired goal information.
The implementation would be much like that of
Prolog [4] – using unification and backtracking
technology to “solve” the problem, without the
necessity of the user explicitly specifying how to
do so.

WSCells work well in this situation, be-
cause they give a concise, self-contained repre-
sentation of the structure of a web service
operation that can easily be matched or connected

to others. More specifically, they give a clear rep-
resentation of the operation’s inputs and outputs
complete with their types and constraints. This
makes it easy to match and explore whether or not
two operations can be composed, in a way similar
to the way Prolog unifies terms. All information
about input and output for a particular operation is
contained directly in its WSCell, meaning there is
no need to search the entire WSDL description,
and potential combinations can be discovered and
explored efficiently.

3.3 Self-Driven Composition
While imperative and declarative composition
rely on user input for composing services, self-
driven composition relies on a cellular automaton
model to discover new and interesting composi-
tions to offer to the user. In this model, WSCells
become active participants, looking for “partners”
that they can combine with in meaningful ways to
form new, higher-level “molecular” WSCells
which can in turn look for others to combine with,
and so on, gradually discovering the set of com-
bined services that they can offer the user.
 When combined with constraints to iden-
tify “interesting” combinations and reject uninter-
esting ones, this model of “emergent” service
combination discovery could be interesting for the
future.

4 Conclusion and Future
Work

We have shown how our tool WSRD, or more
specifically the self-contained WSCells that it
produces, could prove to be a useful new concept
in the discovery and composition of personalized
services for the Personal Web. Their self-
contained nature make WSCells ideal for select-
ing and combining operations from range of serv-
ices, either imperatively by direct user selection,
or automatically using either declarative or emer-
gent programming to achieve user goals.
 We have stated that WSCells contain all of
the information that is needed to use a web serv-

Figure 3
Three kinds of personal service composition

Figure 4
Example interface for imperative composition

4

ice operation; however this is only partially true,
and more work remains to be done if our idealistic
vision is to be achieved. For example, it can be
seen from Figure 2 that WSCells do not contain
the address of the web service to which they be-
long. The reason is that this information was
deemed unnecessary for the original purpose of
finding similarities and was purposely left out.
Future work will be put into packaging elements
of the description that were ignored in our original
work to make it possible to call the web service
using only the operation’s WSCell.

Acknowledgements

This research was made possible by an IBM CAS
Fellowship and is partially supported by NSERC.

About the Authors

Douglas Martin is a second year M.Sc. student
and James R. Cordy is a professor in the School
of Computing at Queen’s University. They can be
reached by email at {doug,cordy}@cs.queensu.ca .

References

[1] D. Martin and J.R. Cordy, Chapter 12. “To-
wards Web Services Tagging by Similarity
Detection” in M. Chignell et al. (eds.), The
Smart Internet: Current Research and Future
Applications, Lecture Notes in Computer
Science 6400, Springer Verlag, October 2010,
pp. 222-240.

[2] Yahoo Inc., “Pipes: Rewire the Web.”
Yahoo Pipes. http://pipes.yahoo.com/pipes/.

[3] J.R. Cordy, “The TXL Source Transforma-
tion Language”, Science of Computer Pro-
gramming 61,3 (August 2006), pp. 190-210.

[4] P. Deransart, L. Cervoni, and A. Ed-Dbali,
Prolog: the Standard: Reference Manual,
Springer Verlag 1996.

