
Shadi Khalifa
Database Systems Laboratory (DSL)
khalifa@cs.queensu.ca

Elastic Map Reduce



The Amazon Web Services Universe 

2

Infrastructure
Services

Platform Services

Cross Service
Features

Management
Interface



Infrastructure Services

3

http://aws.amazon.com/s3/

http://aws.amazon.com/ec2/

http://aws.amazon.com/ebs/

Infrastructure
Services http://aws.amazon.com/vpc/

EC2

S3

EBS

VPC

http://aws.amazon.com/s3/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ebs/
http://aws.amazon.com/vpc/


Amazon Simple Storage Service (S3)
▪ Amazon S3 provides a simple web services interface that can be used to store and

retrieve any amount of data, at any time, from anywhere on the web.

▪ Write, read, and delete objects containing from 1 byte to 5 terabytes of data each. 
The number of objects you can store is unlimited.

▪ Each object is stored in a bucket and retrieved via a unique, developer-assigned key.
– A bucket can be stored in one of several Regions. 
– You can choose a Region to optimize for latency, minimize costs, or address regulatory 

requirements. 
– Objects stored in a Region never leave the Region unless you transfer them out. 

▪ Authentication mechanisms are provided to ensure that data is kept secure from 
unauthorized access. 
– Objects can be made private or public, and rights can be granted to specific users.

▪ S3 charges based on per GB-month AND per I/O requests AND per data 
modification requests.

4



5



Platform Services

6

http://aws.amazon.com/dynamodb/

http://aws.amazon.com/elasticmapreduce/

http://aws.amazon.com/elasticbeanstalk/

http://aws.amazon.com/rds/

EMR

DynamoDB

Beanstalk

RDSPlatform Services

http://aws.amazon.com/dynamodb/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/rds/


Amazon Elastic MapReduce (EMR)
▪ Amazon EMR is a web service that makes it easy to quickly and cost-effectively

process vast amounts of data using Hadoop.

▪ Amazon EMR distribute the data and processing across a resizable cluster of
Amazon EC2 instances.

▪ With Amazon EMR you can launch a persistent cluster that stays up indefinitely or a
temporary cluster that terminates after the analysis is complete.

▪ Amazon EMR supports a variety of Amazon EC2 instance types and Amazon EC2
pricing options (On-Demand, Reserved, and Spot).

▪ When launching an Amazon EMR cluster (also called a "job flow"), you choose how
many and what type of Amazon EC2 Instances to provision.

▪ The Amazon EMR price is in addition to the Amazon EC2 price.

▪ Amazon EMR is used in a variety of applications, including log analysis, web indexing,
data warehousing, machine learning, financial analysis, scientific simulation, and
bioinformatics.

7



8



What is Hadoop?

9



Example: Word Count

▪ Objective: Count the number of occurrences of 
each word in the provided input files.

▪ How it works
– In the Map phase the text is tokenized into words 

then we form a key value pair with these words 
where the key being the word itself and value is set 
to ‘1’. 

– In the reduce phase the keys are grouped together 
and the values for the same key are added.

10



11



Example 2: Joins with MapReduce

▪ A retailer has a customer data base and he needs to do some
promotions.

▪ He chooses bulk sms as the choice of his promotion which is done
by a third party.

▪ Once the SMS is sent, the SMS provider returns the delivery
status back to the retailer.

▪ We have 2 input files as follows:
– UserDetails.txt : Every record is of the format ‘mobile number , consumer 

name’.
– DeliveryDetails.txt: Every record is of the format ‘mobile number, delivery 

status’.

▪ Objective: Associate the customer name with the delivery status.

12http://kickstarthadoop.blogspot.ca/2011/09/joins-with-plain-map-reduce.html

UserDetails.txt
123 456, Jim
456 123, Tom

789 123, Harry
789 456, Richa

DeliveryDetails.txt
123 456, Delivered
456 123, Pending

789 123, Failed
789 456, Resend

Expected Output
Jim, Delivered
Tom, Pending
Harry, Failed

Richa, Resend

http://kickstarthadoop.blogspot.ca/2011/09/joins-with-plain-map-reduce.html


Formulating as a MapReduce
▪ Since we have 2 input files, we need 2 Map functions (one for each input file)

– UserDetails.txt
▪ Key: mobile number
▪ Value: ‘CD’ for the customer details file + Customer Name

– DeliveryDetails.txt
▪ Key: mobile number
▪ Value: ‘DR’ for the delivery report file + Status

▪ On the reducer, every key would be having two values (for simplicity) one with prefix 
‘CD’ and other ‘DR’. 

▪ From CD get the customer name corresponding to the cell number (input key) and 
from DR get the status. 

▪ The output Key values from the reducer would be as follows
– Key : Customer Name
– Value : Status Message

13

UserDetails.txt
<123 456, CD~Jim>

<456 123, CD~Tom>
<789 123, CD~Harry>
<789 456, CD~Richa>

DeliveryDetails.txt
<123 456, DR~Delivered>
<456 123, DR~Pending>

<789 123, DR~Failed>
<789 456, DR~Resend>

Reduce Input
<123 456, CD~Jim>

<123 456, DR~Delivered>

<456 123, CD~Tom>
<456 123, DR~Pending>

Reduce Output
<Jim, Delivered>

<Tom, Pending>



Tools you will need

▪ Eclipse IDE for Java EE Developers
– http://www.eclipse.org/downloads/packages/eclipse-

ide-java-ee-developers/keplersr1

▪ hadoop-core-1.2.1.jar
– http://mvnrepository.com/artifact/org.apache.hadoop/h

adoop-core/1.2.1

▪ Amazon Web Services Account
– https://console.aws.amazon.com/elasticmapreduce/ho

me?region=us-east-1

14

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr1
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1
https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1


Create a new Java Project

15



Add Hadoop jar to the project
▪ Create a ‘lib’ folder in the project.

▪ Copy and paste the Hadoop jar into the ‘lib’ folder.

▪ Add the jar to the project build path.

16



Map classes: 1) UserFileMapper

17

public class UserFileMapper extends MapReduceBase implements Mapper<LongWritable, Text, 
Text, Text>
{

//variables to process Consumer Details
private String cellNumber,customerName,fileTag="CD~";

/* map method that process ConsumerDetails.txt and frames the initial key value 
pairs

Key(Text) – mobile number
Value(Text) – An identifier to indicate the source of input(using ‘CD’ for the 

customer details file) + Customer Name
*/
public void map(LongWritable key, Text value, OutputCollector<Text, Text> output, 

Reporter reporter) throws IOException
{

//taking one line/record at a time and parsing them into key value pairs
String line = value.toString();
String splitarray[] = line.split(",");
cellNumber = splitarray[0].trim();
customerName = splitarray[1].trim();

//sending the key value pair out of mapper
output.collect(new Text(cellNumber), new Text(fileTag+customerName));

}
}

UserDetails.txt
123 456, Jim
456 123, Tom

789 123, Harry
789 456, Richa

UserDetails.txt
<123 456, CD~Jim>

<456 123, CD~Tom>
<789 123, CD~Harry>
<789 456, CD~Richa>



Map classes: 2) DeliveryFileMapper

18

public class DeliveryFileMapper extends MapReduceBase implements Mapper<LongWritable, 
Text, Text, Text>
{

//variables to process delivery report
private String cellNumber,deliveryCode,fileTag="DR~";

/* map method that process DeliveryReport.txt and frames the initial key value pairs
Key(Text) – mobile number
Value(Text) – An identifier to indicate the source of input(using ‘DR’ for the 

delivery report file) + Status Code*/

public void map(LongWritable key, Text value, OutputCollector<Text, Text> output, 
Reporter reporter) throws IOException

{
//taking one line/record at a time and parsing them into key value pairs
String line = value.toString();
String splitarray[] = line.split(",");
cellNumber = splitarray[0].trim();
deliveryCode = splitarray[1].trim();

//sending the key value pair out of mapper
output.collect(new Text(cellNumber), new Text(fileTag+deliveryCode));

}
}

DeliveryDetails.txt
<123 456, DR~Delivered>
<456 123, DR~Pending>

<789 123, DR~Failed>
<789 456, DR~Resend>

DeliveryDetails.txt
123 456, Delivered
456 123, Pending

789 123, Failed
789 456, Resend



Reduce Class

19

public class SmsReducer extends MapReduceBase implements Reducer<Text, Text, Text, Text> {

//Variables to aid the join process
private String customerName,deliveryReport;

public void reduce(Text key, Iterator<Text> values, OutputCollector<Text, Text> 
output, Reporter reporter) throws IOException

{
while (values.hasNext())
{

String currValue = values.next().toString();
String valueSplitted[] = currValue.split("~");
/*identifying the record source that corresponds to a cell number
and parses the values accordingly*/
if(valueSplitted[0].equals("CD"))
{
customerName=valueSplitted[1].trim();

}
else if(valueSplitted[0].equals("DR"))
{

deliveryReport = valueSplitted[1].trim();
}

}
output.collect(new Text(customerName), new Text(deliveryReport));

}
}

Reduce Input
<123 456, CD~Jim>

<123 456, DR~Delivered>

<456 123, CD~Tom>
<456 123, DR~Pending>

Reduce Output
<Jim, Delivered>

<Tom, Pending>



Driver Class

▪ Since we have 2 map functions and 2 input files, MulipleInputFormat is used to
specify which input to go into which mapper.

20

public class SmsDriver extends Configured implements Tool
{

public int run(String[] args) throws Exception {

//get the configuration parameters and assigns a job name
JobConf conf = new JobConf(getConf(), SmsDriver.class);
conf.setJobName("SMS Reports");

//setting key value types for mapper and reducer outputs
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);

//specifying the custom reducer class
conf.setReducerClass(SmsReducer.class);

// If only one Mapper exists
//   conf.setMapperClass(Mapper.class);
// FileInputFormat.addInputPath(conf, newPath(args[0]));

//Specifying the input directories(@ runtime) and Mappers independently for inputs from multiple sources
MultipleInputs.addInputPath(conf, new Path(args[0]), TextInputFormat.class, UserFileMapper.class);
MultipleInputs.addInputPath(conf, new Path(args[1]), TextInputFormat.class, DeliveryFileMapper.class);

//Specifying the output directory @ runtime
FileOutputFormat.setOutputPath(conf, new Path(args[2]));

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new SmsDriver(), args);
System.exit(res);

}
}



Export Project to Jar

21



Uploading Project Jar and Data to S3
▪ https://console.aws.amazon.com/s3/home?region=us-east-1

22

https://console.aws.amazon.com/s3/home?region=us-east-1


23

Hadoop Execution Overview



Using Amazon EMR

24

https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1

https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1


Using Amazon EMR

25

Make Sure that the output folder (3rd argument in our example) does NOT 
exists on S3 (MapReduce will create it) 



Using Amazon EMR

26

Set the number and type of the EC2 instances used to process your application



Using Amazon EMR

27

Remember to ENABLE the Debugging and provide the log Path



Performance

28

Using Amazon cloudWatch (Monitoring Tab) you can  check the performance of the 
job



Debugging the Job

29

For detailed information on the MapReduce progress, click on the syslog link



Accessing the Results on S3

30



Questions?

Elastic Map Reduce


