SOFT 437

Performance Analysis

Chapter 2: SPE Overview

- Ch2
—Chl

http://www.perfeng.com/papers/perfsol2.pdf
http://www.informit.com/articles/article.aspx?p=24009

Quick Highlights

What 1s Performance?
— Response time

— Throughput
Responsiveness
Scalability
Why Performance?

— Damage of customer relation - Business failure

— Loss of competency - Bad reputation

How to manage performance

— Reactive x Proactive

Why do we need SPE?

— Build models to tradeoff between Resources and Demands

SOFT 437

Is SPE Necessary?

Computer
capacity

Workload +
New SW

Resource Requirements Capacity

SPE detect problems early in developments
and use qualitative methods to support cost-
effective analysis

SOFT 437

It’s too Expensive to Build Responsive
Software?

e Primary motivation for fix-it-later:

— 1mprove development and maintenance productivity

* Today:
— newer methods, models, and tools actually increase
productivity

 preventing problems that delay delivery

* preventing tricky-code maintenance problems

SOFT 437 4

You Can Tune Software Later?

* Tuning may improve performance, but not as much
as design can

e Problems are usually caused by fundamental
architectural or design problems rather than
inefficient code

* Very expensive (often infeasible) to change
fundamental design choices

SOFT 437

Efficiency Implies ‘Tricky Code’?

* Tuning may introduce tricky code to resolve
problems that could have been prevented

* Tricky code may the only option for achieving goals
late 1n the lifecycle

« Acceptable performance 1s required, and can be
designed 1n early

SOFT 437 6

Reactive

How should you mange

performam

Let’s build thas a
what it ca - ce engineer (PE)

We’ll tune n the project
We cannot name of the PE

until we h procedure in-
measure ow to 1dentify

Don’t worty,
safe hands

Problems? We don’t have

problems

appeared first in the old days

SOFT 437 7

Software Development Life Cycle —
Waterfall Model

functional &

R\.‘q uirement rerformance regs.
Analysis

System
Desion

Program
Desion

Program
Coding

System

Testine

SOFT 437 8

SDLC - lterative Model

b1 Design & Testi Implementation
Development et 3
ild 2 i
Requirements Bui DasiEn & Testing Implementation
Development

Build 3 Design & . - -
Development Testing mplementation

SOFT 437 9

SDLC - Spiral Model

1.Determine
objectives

Review

plan

Requirgmenis

A Cumulative cost

Progress

,.‘—-"""-F-_—____i

2. Identify and
resolve risks

Operational
Prototype 1 Frototype 2| prototype

4. Plan the
next iteration

http://www.tutorialspoint.com/sdlc/sdlc _tutorial.pdf

Development
plan

Test plan

Release

Concapt of
aperaticn

Coancept of
reguiremenis.

Detailed
design

Reguirements

Verification
& Validation

Verification
& Valitation

Implementation

3. Development

and Test

SOFT 437

10

Traditional Software Development
Life Cycle

« Common approaches:

— Consider Functional Requirements only during
development and check Performance Requirements at
the end

— Fix the system if performance 1s not good!

e Problems:

— It 1s very costly and time consuming to fix problems
after the system 1s ready!

— Fixing problems may imply major code refactoring

SOFT 437 11

Traditional Software Development Life
Cycle — Waterfall Model

Junctional &

Fequirement erformance regs.
Analysis

f System

1 :
{ Program

Desion

Program
Coding

Bvstem
Testing

N LR 1

SOFT 437 12

Why Performance Is Not Addressed
Early

* No established discipline for assessing the
performance characteristics of a design quickly and
easily

 Insufficient time 1s budgeted for integrating
performance analysis into the design process

* Pressing deadlines

 Emphasis 1s placed on implementing a system
quickly and improving it later

SOFT 437 13

Systems with High Performance
Requirements?

* End-user related functions

— Reservation systems, merchandise-checkout systems
* Real-time, mission critical systems

— Such as flight-control systems
 Employee support systems

— Inventory control systems, computer-aided design
systems

SOFT 437 14

Software Performance Engineering

* Software Performance Engineering (SPE) 1s a
systematic, quantitative approach to constructing
software systems to meet performance objectives

— Begins early 1n the software lifecycle
— Uses quantitative methods

— Identifies problems before developers invest
significant time 1n 1implementation

— Used through detailed design, coding, and testing

SOFT 437 15

Integrating SPE Into the Software
Development Life Cycle

Requirement
Analysis feedback path

I
I System
I Desion
I
[! -
performance I'f Program
Fequirements ! Desion
I r
. - }
r] ' r] f
L.'-..".'I?..'n.fuf#,.. _ Program U
service — e — .
- —— Coding

demands

|
|
|
|
¥

measured
= service TT T

demands

System

Performance Model Testing

SOFT 437

SPE Begins in the Requirements
Analysis

* Benefits of early lifecycle steps:

— Increased productivity — don’t need to throw bad
designs

— Improved quality and usefulness of the resulting
software product — selecting suitable design choices

— Controlled costs of the supporting hardware and
software — 1dentifying necessary equipment

— Enhanced productivity during the implementation,
testing, and early operational stages — ensuring that
sufficient computing power 1s available

SOFT 437 17

Address Questions in Early Stages

Will your users be able to complete tasks in the
allotted time?

Are your hardware and network capable of
supporting the load?

What response time 1s expected for key tasks?

Will the system scale up to meet your future needs?

SOFT 437 18

SPE for Object Oriented Systems

Object oriented systems present special problems for SPE
— Functionality 1s decentralized
— Collaborations are required to perform a given function
— The mteractions are difficult to trace

— UML (Unified Modeling Language) helps to reduce the impact of these
problems.

SPE 1s tightly integrated with object-oriented notation, such as
the UML

Use object oriented analysis or design models to derive a
performance model

Use cases provides a starting point for constructing
performance models

SOFT 437 19

Performance Analysis

Use object-oriented analysis or design model to
derive a performance model

Solving the model gives you feedback on
performance to revise the object-oriented design

SPE 1s also language independent

SPE can be easily integrated into the software
development processes, such as waterfall model,
spiral model and rational unified process

SOFT 437 20

R e e e

Frodhict
Drelivarahbla

—» Derelopment

Waterfall Model

Fig. 1.2 - Schematic illostrating the Waterfall Model

21

SOFT 437

SPE Process for Object-Oriented Systems

?

[fszess Performance]

Rizk

Idertify Critical
Use Cases

[Salect Key Peformance]

Scenarios

Objectives

‘Jirify and ‘alidate
hiodel= \l’
Construct Performance

[Establizh Performance J

L

[hadel(=)

Fequirements
" hodify/ Create
Add Computer Resource Scenarios
Requirements

[Evaluate Performance]

#dd Software Resource]

fbadify Product
Concept

hadel(=)

[feasible

infeasible]

[performance acceptable] Objectives

Revise Performance]

22

1. Assess Performance Risk

« Assessing the performance risk at the outset of the project
tells you how much effort to put into SPE activities

— The SPE effort can be minimal, if the project
* Is similar to other projects that you have built before
e Has minimal computer and network usage
* Is not mission critical or economic survival
« Example:
— The performance risk in constructing the ATM 1s small

— The host software must deal with a number of concurrent ATM
users, and response time

SOFT 437 23

?

[Fezazs Performance]

Risk

Identify Critical
Use Cases

[Select Key Peformance }

Scenarios

Establish Performance
Objecti
“Warify and Walidate ectives
hadels \lr
Construct Performance

L

[hadeli=])

b

Add Software Fesource]

Fequirements

) Wodity/ Create
Add Computer Resource Scenarios
Requirements

Evaluate Performance
hdadal(=z]) hdodify Product
Concept

[feasible

infeasible]

[performance acceptable] Objectives

Revize Perfommance]

Figure 2-1: The SPE Process for Object-Oriented Systems @

SOFT 437

2. ldentify Critical Use Cases

The critical use cases are those that are important to
the operation of the system, or are important to
responsiveness as seen by the user

The selection of use cases 1s risk driven

— arisk (e.g. if performance goals are not met, the system will fail
or be less than successful)

Example, ATM use cases include:

— reloading a currency cassette %
— customer transaction (e.g., withdraw, deposit) (‘/)
— going off-line %

SOFT 437 25

ATM

operator

transaction

customer

Customer

transaction

command

Operator

N

functions

HostBank

SOFT 437

26

?

Fezazs Performance
Rizk

“warify and “alidate
hodels

Identify Critical
Use Cases

elent key Peformance
Scenanos

Establish Performance
Objectives

'}

Construct Performance
hadeli=])

L

b

Add Software Fesource
Fequirements

o

Add Computer Resource
Requirements

hdodifys Create
Scenaros

Evaluate Performance
hdodeli=)

hdodify Product
Concept

[performance acceptable]

[feasible

e

infeasible]

Objectives

Revize Perfommance]

Figure 2-1: The SPE Process for Object-Oriented Systems @

SOFT 437

27

3. Select Key Performance Scenarios

It 1s unlikely that all of the scenarios for each critical use case
will be important from a performance perspective

* The key performance scenarios are
— Executed frequently
— Critical to the perceived performance of a system
» Each performance scenario corresponds to a workload

* Workload intensity specifies the level of usage for the
scenario (arrival rate)
« Example:

— Specify the workload intensity of a customer transaction, that is
the number of customer transactions or their arrival rate
during the peak period

SOFT 437 28

Example of Key Performance Scenarios

getTransaction

Process

Deposit

Process

Withdrawal

process
Balancelnquiry

SOFT 437

29

?

[Fezazs Performance]

Risk

Identify Critical
Use Cases

[Select Key Peformance }

Scenarios

Establish Performance
ity and validate Cbjectives
hadels \1{
Construct Performance

[hadeli=])

L

Fequirements

) Wodity/ Create
Add Computer Resource Scenarios
Requirements

Add Software Fesource]

Evaluate Performance
hdadal(=z]) hdodify Product
Concept

[feasible

infeasible]

[performance acceptable] Objectives

Figure 2-1: The SPE Process for Object-Oriented Systems @

Revize Perfommance]

SOFT 437

4. Establish Performance Objectives

« Performance objectives specify quantitative criteria
for evaluating performance characteristics of a
system under development

* They are expressed by

— response time, throughput, or constraints on resource
usage

« Example:

— performance objectives: 30 seconds or less to
complete an end-to-end ATM transaction

SOFT 437 31

?

[Fezazs Performance]

Risk

Identify Critical
Use Cases

elent key Peformance
Scenanos

Establish Performance
Objectives

“warify and “alidate

hadels

'}

Construct Performance
hadeli=])

Add Software Fesource
Fequirements

o

Add Computer Resource
Requirements

Evaluate Performance
hdodeli=)

[performance acceptable]

[feasible

e

infeasible]

] hdodify Product

hdodifys Create
Scenaros

Concept

Revize Perfommance
Objectives

Figure 2-1: The SPE Process for Object-Oriented Systems @

SOFT 437

32

5. Construct Performance Models

* We use execution graphs to represent software
processing steps 1n a performance model

: User : ATM : HostBank ’
T T
| cardinserted | i getCardinfo
I | |
requestPIN | :
| | |
TR e > | PIN
| _ requestTransaction | i get
| |
I response I |
r—————i—:I —————— 2 | "
| | |
Lo requestAccount : |
I | |
|____account |
L‘ requestAmount | |
| |
|' amount | |
i e e 2 | process
| I transactionRequest l-: Transaction
| |
: \ransactionAuthorization|
| I
' : ‘ terminate
Session
SOFT 437

Sequence Diagram Execution Graph

Make sure your sequence
diagram 1s a reflection of the

real process!

ATTENTION!

User

ATM

card

< reqPin

\'

enterPin

==

<processing

option

[

withdraw

—

<

reqgAmou ntf

SOFT 437

34

?

Fezazs Performance
Rizk

“warify and “alidate
hodels

Identify Critical
Use Cases

elent key Peformance
Scenanos

Establish Performance
Objectives

'}

Construct Performance
hadeli=])

—

)

b

Add Software Fesource
Fequirements

o

Add Computer Resource
Requirements

hdodifys Create
Scenaros

Evaluate Performance
hdodeli=)

hdodify Product
Concept

[performance acceptable]

[feasible

e

infeasible]

Objectives

Revize Perfommance]

Figure 2-1: The SPE Process for Object-Oriented Systems @

SOFT 437

35

6. Determine Software Resource Requirements

» Software resource requirements capture
computational needs that are meaningful from a

software perspective

« Example software resources that are important for an
ATM:

— Screens — the number of screens displayed the ATM Customer
— Host— the number of interactions with the host bank
— Log — the number of log entries on the ATM machine

— Delay — the relative delay in time for other ATM device
processing, such as the cash dispenser or receipt printer

SOFT 437 36

getAccount

Screen

Host

Log

Delay

getAmount

Screen

Host

Log

Delay

request
Authorization

Screen

Host

Log

Delay

dispenseCash

Screen

Host

Log

Delay

waitFor
Customer

Screen

Host

Log

Delay

confirm
Transaction

Screen

Host

Delay

O o0 -

O =|=0 |00 0—

O|==0 O000o O=0O=

?

[Fezazs Performance]

Risk

Identify Critical
Use Cases

[Select Key Peformance }

Scenarios

Establish Performance
Objecti
“Warify and Walidate ectives
hadels \lr
Construct Performance

L

[hadeli=])

Fequirements

) [Wodify? Create
Add Computer Resource Scenarios
Requirements

Add Software Fesource]

Evaluate Performance
hdadal(=z]) hdodify Product
Concept

[feasible

infeasible]

[performance acceptable] Objectives

Revize Perfommance]

Figure 2-1: The SPE Process for Object-Oriented Systems @

SOFT 437

7. Add Computer Resource Requirements

e Computer resource requirements map the software
resource requirements onto the amount of service key
devices 1n the execution environment

« Example computer resources at an ATM.:

— The types of processor/devices (CPU, Disk, Display,
Delay), quantity, speed

SOFT 437 39

Evaluation parameters

Table 2-1: Example Overhead Matrix

Net

Msgs.

Devices CPU Disk Display Delay
Quantity 1 1 1 1
Service Units Sec. Phys. I/O | Screens Units
Screen 0.001 1

Host 0.005 3
Log 0.001 1

Delay 1
Service Time 1 0.02 1 1

SOFT 437

40

?

[Fezazs Performance]

Risk

Identify Critical
Use Cases

[Select Key Peformance }

Scenarios

Establish Performance
Objecti
“Warify and Walidate ectives
hadels \lr
Construct Performance

L

[hadeli=])
)

Add Software Fesource]

Fequirements

) Wodity/ Create
Add Computer Resource Scenarios
Requirements
!
Evaluate Parfarmanc: |
Concept

[feasible

infeasible]

Objectives

Revize Perfommance
[performance acceptable]

Figure 2-1: The SPE Process for Object-Oriented Systems @

SOFT 437

3. Evaluate the Models

If the model indicates that there are problems, there
are two alternatives:

— Modify the product concept: looking for feasible cost-
effective alternatives for satisfying the use case
instance

— Revise performance objectives: no feasible alterative
exists, we modify performance goals to reflect this
reality

SOFT 437

‘u' H.rn__.h. N

?

[Fezazs Performance]

Risk

Identify Critical
Use Cases

[Select Key Peformance }

Scenarios

Objectives

“warify and “alidate
hadels \1{
Construct Performance

[hadeli=])

|'- Establish Performance]

L

Fequirements

) Wodity/ Create
Add Computer Resource Scenarios
Requirements

Add Software Fesource]

Evaluate Performance
hdadal(=z]) hdodify Product
Concept

[feasible

infeasible]

[performance acceptable] Objectives

Figure 2-1: The SPE Process for Object-Oriented Systems @

Revize Perfommance]

SOFT 437

9. Verify and Validate the Models

* Model verification and validation are ongoing
activities that proceed 1n parallel with the
construction and evaluation of the models

* Model verification 1s aimed at determining whether
the model predictions are an accurate reflection of
the software’s performance

e Model validation 1s concerned with determining
whether the model accurately reflects the execution
characteristics of the software

SOFT 437 44

SPE Modeling

SOFT 437

45

SPE Modeling Strategies

1. Simple-Model Strategy
2. Best- and Worst Strategy
3. Adapt-to-Precision Strategy

SOFT 437

46

1. Simple-Model Strategy

e Leverages the SPE effort to provide rapid feedback
on the performance of the proposed software.

Start with the simplest possible model that identifies
problems with the system architecture, design, or
implementation plans

SOFT 437 47

2. Best- and Worst-Case Strategy

e The models rely upon estimates of resource
requirements for the software execution

* The precision of the models depends on the quality
of these estimates

e It is difficult to precisely estimate resource
requirements early in the software process

Use best- and worst-case estimates of resource
requirements to establish bounds on expected
performance and manage uncertainty in estimates

SOFT 437 48

3. Adapt-to-Precision Strategy

e The simple-model strategy 1s appropriate for early
life cycle studies.

* The adapt-to-precision strategy is used later in the
development process

Match the details represented in the models to your
knowledge of the software processing details

SOFT 437 49

Conventional Modeling Procedure

Study the exiting computer system
Construct a system execution model
Measure current execution patterns
Characterize workloads

Develop input parameters to calculate performance
metrics

Validate the model by solving the performance
metrics

Calibrate the model

SOFT 437

50

Conventional vs. SPE Models

l__,q"ﬂ r x.i""'r”.-‘-. _‘_;' Y N
A Existing '\ A Existing -+,
Work T Waork

h -F{"- A -{_--"':'--_.'-'"-':_"L-f e {'-. o -{_.d-"h-__...-"'l'—"'l.“'

Existing

nd -“} | #_"xl
=,

Software
Execution
Model

[]

",

A A S

Il----..ll--I
A

System
Execution
Model

Performance
Metrics

e,

L o~ ~

. ——

Conventional Models

SOFT 437

System
Execution
Model

FParformance
Metrics

S

s
SPE Models

51

References

* Course Notes for Performance of Computer Systems by Hakan Grahn,
Department of Software Engineering and Computer Science, Blekinge
Institute of Technology Sweden

* Course Notes for CS 672 by Daniel A. Menasce, Department of Computer
Science, George Mason University

SOFT 437 52

