
Software Performance Analysis

UML Tutorial

SOFT 437

SOFT 437 2

What is UML?

• Unified Modeling Language (UML) is a standard

language for specifying, visualizing, constructing, and

documenting the artifacts for software systems, as well

as for business modeling and other non-software

systems.

• The UML is a very important part of developing object

oriented software and the software development process

• The UML uses mostly graphical notations to express the

design of software projects

UML Tools

• Standalone tools

– Web-based tools (e.g., creatly.com)

– Packages (e.g., ArgoUML)

• Plugin tools

– Integrate with IDEs (e.g., UML2-SDK for Eclipse)

• Tutorials

– Many many tutorials online

SOFT 437 3

UML Building Blocks

SOFT 437 4

• Things
– Structural Behavioral

– Grouping Annotational

• Relationships

• Diagrams

UML Building Blocks

SOFT 437 5

• Things

– Structural Behavioral

– Grouping Annotational

Message

Use Case

Class

Attributes

Operations

Package note

Structural

Grouping

Behavioral

Annotational

UML Diagrams

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. Activity diagram

7. Statechart diagram

8. Deployment diagram

9. Component diagram
SOFT 437 6

SOFT 437 7

Class Diagrams

• Classes are composed of three components: a

name, attributes, and operations.

SOFT 437 8

Class Diagrams (con’t)

• Class diagrams also display relationships such as

containment, inheritance, and association

SOFT 437 9

Class Diagrams (con’t)

• Model class structure and contents

SOFT 437 11

Use Cases

• Use cases describe the behavior of a system or a

subsystem

– A set of actions that a system performs and yields an

observable result of value to an actor

– An actor is an entity outside the system (e.g., a user or

another system) and interacts directly with the system

• A use case does not reveal internal details of interactions

between actors and the system

SOFT 437 12

Example Use Cases

SOFT 437 13

Use Case Diagrams

• A use case diagram shows

– a set of use cases,

– the actors that interact with use
cases

– the relationships

• An actor can be represented by
stick figures or stereotyped icons

• A use case is represented by an
ellipse that contains the name of
the use case

System

Boundary

Use Case

Association

Actor

SOFT 437 14

Critical Use Cases

• Use cases are employed to

– model the context of the system: the system boundary indicates
which features are part of (inside) the system, which actors interact
with system, and the meaning of interaction

– specify the requirements for the system (i.e., what the system should
do from the point of view of actors)

• From a performance point of view, use case diagrams are used to
identify the critical functions of the system that are most
important to performance

• The critical use cases are considered, including

– are critical to the operation of the system

– influence users’ perception of responsiveness

– represent a risk that performance goals might not be met

SOFT 437 15

Use Cases and Scenarios

• The SPE process focuses on use cases and the scenarios

that describe them

• By examining the system’s use cases, you can identify

the functions of the system that are significant to

performance

• A scenario is an instance of a use case

• Performance scenario are the scenarios that have the

most impact on performance

SOFT 437 16

Scenarios

• A scenario is an instance of a use case

• It consists of a sequence of steps describing the

interactions between the objects involved in a particular

execution of the software

• The scenario shows

– objects that participate

– messages (e.g., event or method invocation) that flow

between them

SOFT 437 17

Scenarios (cont.)

• Scenarios are represented by either sequence diagrams

or collaboration diagrams

• Sequence diagrams emphasize the time-ordering of

message

• Collaboration diagrams emphasize the structural

organization of the collection of interacting objects

• Sequence diagrams are more natural to use for

constructing performance models

SOFT 437 18

Sequence Diagrams

• Sequence diagrams demonstrate the behaviour of

objects in a use case by describing the objects and the

messages they pass.

Lifeline

notation

Activation

SOFT 437 19

Sequence Diagrams (con’t)

Destroy Object

SOFT 437 20

Creation and Destruction

• An activation
indicates a period
of time when the
object is busy
performing some
action

• Object creation
and destruction are
indicated by the
stereotyped
messages

Activation:

focus of control

Object creation

Object

Destruction

SOFT 437 21

Basic

Sequence

Diagrams

&

Message

Control

Flow

• Figure 3-6

Object lifeline: represents the

existence of an object over time

Messages

SOFT 437 22

Activity Diagrams

• Show the flow of

activities through the

system

SOFT 437 23

Activity Diagrams (con’t)

Quick Quiz

SOFT 437 24

System

Boundary

Use Case

Association

Actor

1

2

3

4

Quick Quiz (cont.)

SOFT 437 25

Lifeline

notation

Activation

Class

Destroy Object

1

2

3

4

Software Performance Analysis

Chapter 3: SPE and the UML

SOFT 437

SOFT 437 27

Extending the UML

• UML provides built-in extension mechanisms that allow

you to tailor the notation for particular purposes.

• These mechanisms are

– stereotypes

– tagged values

– constraints

SOFT 437 28

Stereotypes

• A stereotype allows you to create new model elements

– derived from existing UML elements

– specific to a problem domain

• The stereotype is represented as

– a string enclosed in guillemets (<< >>), or

– a graphic elements, such as icon

<<processor>>

Pentium III

stereotypes
:Processor

SOFT 437 29

Tagged Values

• A tagged value allows you to include new properties for

model elements

• A tagged value is a pair of strings -- a tag and a value

– {name of a property = value of the property}

Client

{processorSpeed=500MHZ}

Tagged Values

SOFT 437 30

Constraints

• A constraint is a condition or restriction that defines

additional model semantics

• A constraint may be attached to an individual model

element or a collection of elements

• A constraint is written as a string enclosed in braces ({})

Constraints

SOFT 437 31

Stereotypes, Tagged Values,

Constraints

• We use stereotypes and tagged values to capture

information about the software execution environment

– e.g., processor type, processor speed, network speed

• We use constraints to specify performance objectives

– e.g., response time or throughput

SOFT 437 32

Extensions to Sequence Diagram

Notation
• Sequence diagram notation is extended to represent

– hierarchical structure (instance decomposition and

references)

– looping

– alternation

– concurrency

SOFT 437 33

SOFT 437 34

Instance Decomposition

• Uses instance decomposition to indicate the refinement

of sequence diagrams

• Makes it possible to attach another sequence diagram to

an object lifeline

• Allows expansion of a high-level sequence diagram to

show lower-level interactions

SOFT 437 35

SOFT 437 36

ATTENTION!

For the decomposition to be meaningful, the order of

messages on the decomposed instance must be preserved

SOFT 437 38

Benefits of Instance Decomposition

• Elaborate the sequence diagram as we learn more about

the system, without having to re-draw the diagram each

time

• Ensure the consistency with the scenario as it was

originally described

Use instance decomposition to elaborate high-level

objects as the design evolves

SOFT 437 39

Loop and Alternation

Repetition

Alternation

(choice)

SOFT 437 40

References

• References allows for

referring to other

sequence diagrams

• Use references to

reduce the complexity

of sequence diagrams.

SOFT 437 41

Loop and Alternation (con’t)

• Loop can be used when a sequence is repeated

• Alternation can be used when several possible

transitions will be executed

• A probability of execution can be attached to a given

sequence

while, loop, etc.

If-then, switch-case, etc.

Probability

SOFT 437 42

Example

• Once an order is made, a dispatch message is sent.

• The following algorithm describes the dispatch steps:
procedure dispatch

foreach (order.lineitem)

if (product.value > $10K)

careful.dispatch

else

regular.dispatch

endif

endfor

if (needsConfirmation) meesenger.confirm

end procedure

SOFT 437 43

SOFT 437 44

SOFT 437 45

Specifying Time

• The UML allows you to specify timing requirements

through the use of

– timing marks

– time expressions

– timing constraints

SOFT 437 46

Timing Marks

• Denote the time at which a message or an event occurs

• For example:

– message.sendTime() -- The time that the message is sent

– message.recieveTime() -- The time that the message is

received

– where message is the name of the message

SOFT 437 47

Time Expressions

• Evaluate to an absolute or relative value of time

• Express an elapsed time or the occurrence of some

particular time

• For example,

– after(500msec) -- time elapsed after a particular state is

entered

– when(t=08:00) -- the occurrence of an event at the time

08:00

SOFT 437 48

Time Constraints

• Express a constraint based on the absolute or relative

value of time

• For example

– {a.recieveTime() - b.sendTime() < 10 msec}

SOFT 437 49

SOFT 437 50

Time Constraints (con’t)

• Timeout conditions are not particularly useful from a

performance perspective

• When specifying performance, we are more interested in

response time

– responseTime(j.receiveTime() – i.sendTime())

– {responseTime(j.receiveTime() – i.sendTime()) < 5s} – a

time constraint example

Use time expressions that are meaningful from a

performance perspective, such as responseTime(), to

specify performance objectives

SOFT 437 51

Concurrency

• Modeling concurrency is important in the later stages of

SPE for evaluating contention effects

• Concurrency issues are expressed by UML notations

– Threads and Processes

– Coregions

– Parallel Composition

– Synchronization

SOFT 437 52

Threads and Processes

• A process represents a flow of control that executes in

parallel with other processes

– Each process has its own address space

– represented by a standard stereotype <<process>>

• A thread executes concurrently with other threads inside

a process

– all threads belonging to a process all share the same

address space

– represented by a standard stereotype <<thread>>

SOFT 437 53

SOFT 437 54

Coregions

• A sequence diagram are

strictly ordered in time

• Coregions allow an

exception to total ordering

whereby messages within a

coregion are unordered

• Coregions allow you to

show the interleaving of

messages that occur in

parallel processing

Coregion

Coregion

{represented by a solid line with horizontal dividers}

SOFT 437 55

Parallel Composition

• Indicates sections of the sequence diagram that are

executed in parallel

• Shows the interleaving of messages that occur in

parallel processing

• Allows more flexible representation of parallel

processing

SOFT 437 56

Parallel

composition

clause

?

SOFT 437 57

Synchronization

• UML provides different types of arrowheads to

represent communications among objects

Synchronous

message

Return

Asynchronous

message
Process is Idle

SOFT 437 58

Synchronization (con’t)

SOFT 437 59

Contention Effects

• Modeling concurrency is important in the later stages of

SPE for evaluating contention effects

• Early stages of the development process focus on

software model without contention

• Concurrency and synchronization properties of the

proposed software are considered later when your

knowledge of the software system increases

SOFT 437 60

References

• Lecture notes for CS399 by Bob Dugan at stonehill university

