
Software Performance Analysis

Chapter 4: Software Execution Model

SOFT 437

SOFT 437 2

Software Execution Model

• Constructed early in the development process to ensure
that the chosen software architecture can achieve the
required performance objectives

• Captures essential performance characteristics of the
software

• Provides a static analysis of the mean, best and worst-
case response time

• Characterizes the resource requirements of the proposed
software alone, in the absence of other workloads,
multiple users or delays due to contention for resources

SOFT 437 3

Software Execution Model (con’t)

• Software execution models are generally sufficient for

identifying serious performance problems at the

architectural and early design phases

• We can refine software execution model in the critical

areas

The absence of problems in the software model does not

mean that there are none

SOFT 437 4

The Execution Graphs

• Execution graphs are one type of software execution
model

– Visual representation that helps to communicate
execution behavior

• An execution graph is constructed for each performance
scenario

• The graphs consist of nodes and arcs

– Nodes represent processing steps – a collection of
operation invocations and program statements that
perform a function in the software system

– Arcs represent the order of execution

SOFT 437 5

SOFT 437 6

Figure 4-2: Abbreviated Graph

SOFT 437 7

Basic Nodes

• Basic nodes (representation symbols) represent

processing steps at the lowest level of detail that is

appropriate for the current development stage

• Software execution models elaborate details of interest

to performance

• The simple-model principle recommends that details

that are not pertinent to performance should be excluded

SOFT 437 8

Expanded Nodes

• Expanded nodes represent processing steps elaborated in

another subgraph

• Expanded nodes show additional processing details that

are identified as the design evolves

Expanded Nodes

SOFT 437 9

SOFT 437 10

Repetition Nodes

• Repetition nodes represent one or more nodes that are

repeated

• Repetition factor associated with the node that specifies

the number of times the processing steps repeat

• An arc connects the last node repeated with the

repetition node

Repetition

Node

Repetition

Factor

SOFT 437 11

Case Nodes

• Case nodes represent conditional execution of

processing steps

• Attached nodes represent the steps that may be executed

• A case node has more than one attached

• Each attached node has an execution probability

Case

Node

Attached

Nodes

SOFT 437 12

Figure 4-2: Abbreviated Graph

SOFT 437 13

Pardo Node

• A Pardo (as Parallel do)

node represents parallel

execution within a

scenario Pardo

Node

SOFT 437 14

Basic Execution Graph Notation

SOFT 437 15

Graph Restrictions

• Initial node restriction: graphs and subgraphs can have

only one initial node

Process

Deposit

Process

WithdrawalUpdate

Balance

Process

Deposit

Process

Withdrawal

Update

Balance

SOFT 437 16

Graph Restrictions

• Loop restriction: all loops in the graph must be

repetition loops

N

Initiate

State

Terminate

Session

getRequest

Process

Request

Initiate

State

Terminate

Session

getRequest

Process

Request

SOFT 437 17

User (UI): Client: Server:

getEmails()

authenticateUser()

response

•Authentication Failed

•Server Unreachable

•Authentication Succeeded
response

queryNumberEmails()

numberEmails

getMessage()

message

filterMessage

addMessageToFolder

sortMessageFolders

[messages left > 0]loop

displayResponse

Receive E-mail

Sequence Diagram

Receive E-mail

Sequence Diagram

displayNewMessageFolders()

SOFT 437 18

queryNumberEmails

processEmails

authenticateUser

sortMessageFolders

displayMessageFolders

getMessage

filterMessage

addMessageFolder

numberMessages

Receive E-mail

Software Execution Model

Receive E-mail

Software Execution Model

SOFT 437 21

Software Execution Model Analysis

• Primary purposes of software execution model analysis

are

– Make a quick check of the best-case response time in

order to ensure the architecture and design will lead to

satisfactory performance

– Assess the performance impact of alternatives

– Identify critical parts of the system for performance

management

– Derive parameters for the system execution model

• The algorithms are formulated for evaluating graphs

SOFT 437 22

Basic Solution Algorithms

• The algorithms are ‘easy’ to understand

– Examine graphs and identify a basic structure

– Compute the time of a basic structure and reduce the

basic structure to a ‘computed node’

– Continue until only one node left

• Basic structures are

– Sequences

– Loops

– Cases

SOFT 437 23

Graph Reduction for Sequential

Structures

SOFT 437 24

Graph Reduction for Loop Structures

SOFT 437 25

Graph Reduction for Case Nodes

• The computation for case nodes differs for shortest path,

longest path, and average analyses

– Shortest path: the time for the case node is the minimum

of the times for the conditionally executed nodes

– Longest path: the time for the case node is the maximum

of the times for the conditionally executed nodes

– For the average analysis: the time is multiplying each

node’s time by its execution probability

SOFT 437 26

SOFT 437 27

Example: ATM Scenario
Example 4-1: Best, Worst and Average Times for ATM Scenario

To illustrate the basic path reductions, consider the ATM scenario in Figure 4-

3 and the subgraph for processTransaction in Figure 4-4. Assume the node

“times” in the following table.

Node Time

getCardInfo 50

getPIN 20

getTransaction 30

processDeposit 500

processWithdrawal 200

processBalanceInquiry 50

terminateSession 100

500

200

50

50

100

20

= 2

30

Shortest

Longest

SOFT 437 28

Analysis Procedures

• Use both the best- and the worst-case estimates of

resource requirements for each basic node

• Begin with a simplistic analysis of the best case and

introduce more sophisticated analyses of realistic cases

as more detailed information becomes available

SOFT 437 29

Software Resource Requirements

• Each basic node has specified SW resource

requirements Aj for each service unit j, e.g.

Software Resource

Requirement Matrix
Node

SOFT 437 30

Processing Overhead Matrix

• A chart of the computer resource requirements for each

of the software resource requests

Hardware

Resources

Mapping between

software resource

requirements and

computer device usage

SOFT 437 31

1020 4 0validateUser

0.00001 0.02 0.01
X

Software Resource Requirements

SOFT 437 32

Computing the total execution time

• STEP 1: uses the processing overhead matrix to

calculate the total computer resources required per

software resource for each node in the graph

SOFT 437 33

Computing the total execution time

• STEP 2: computes the total computer resource

requirements for the graph

Processing Step CPU

Kinstr

Physical

I/O

Network

Messages

validateUser 1,020 4 0

validateTransaction 1,540 6 0

sendResult 550 4 1

Total: authorizeTransaction 3,110 14 1

Table 4-2: Total Computer Resource Requirements for authorizeTransaction

SOFT 437 34

Computing the total execution time

• STEP 3: compute the best-

case elapsed time

Processing Step CPU

Kinstr

Physical

I/O

Network

Messages

validateUser 1,020 4 0

validateTransaction 1,540 6 0

sendResult 550 4 1

Total: authorizeTransaction 3,110 14 1

SOFT 437 35

Types of Software Resource

SOFT 437 36

Types of Software Resource (con’t)

SOFT 437 37

Software Resource Estimation

• One of the most difficult resources to estimate is CPU
usage

– We use work units that focus on the relative amount of
work performed in a processing step

• Early in development, models typically will use two to
five types of software resource specifications

• Later, you may include more software resource types,
such as synchronization and lock requests

SOFT 437 38

Another Example of Processing Overhead

Matrix

SOFT 437 39

Case Study: ICAD (Interactive CAD)

• Engineers will use the application to construct and view

drawings that model structures, such as aircraft wings

• The system also allows users to store a model in a

database, and interactively assess the design’s

correctness, feasibility, and suitability

• The model is stored in a relational data, and several

versions of the model may exist within the database

• An ICAD drawing consists of nodes and elements (e.g.,

beans, triangles, or plates)

SOFT 437 40

SOFT 437 41

(x1, y1, z1)

(x0, y0, z0)

(x0, y0, z0) (x1, y1, z1)

(x3, y3, z3) (x2, y2, z2)

(x0, y0, z0)

(x1, y1, z1)(x2, y2, z2)

SOFT 437 42

Use Cases

• Use Case: Draw (draw a model), Solve (solve a model)

• Scenario: DrawMod (Draw models)

• A typical model contains only nodes and beams and

consists of 2,000 beams.

• Performance goal is to draw (show on screen) a typical

model in 10 seconds or less

SOFT 437 43

SOFT 437 44

Architecture 1

SOFT 437 45

SOFT 437 46

SOFT 437 47

SOFT 437 48

SOFT 437 49

SOFT 437 50

SOFT 437 51

SOFT 437 52

SOFT 437 53

SOFT 437 54

Expansion

SOFT 437 55

Software Resource Requirements

• DBMS – the number of calls to the ICAD Database
process

• CPU – an estimate of the number of instructions
executed

• I/O – the number of disk accesses to obtain data from
the database

• Allocate/Free – the number of calls to the memory
management

• Screen – the number of times graphics operations
“draw” to the screen

SOFT 437 56

SOFT 437 57

SOFT 437 58

Architecture 1

SOFT 437 59

Architecture 2

SOFT 437 60

969.23969.29

SOFT 437 61

Winning Architecture 3

SOFT 437 62

SOFT 437 63

Resolving the bottleneck

SOFT 437 64

SOFT 437 65

Modeling Hints

• It is not necessary to include all of the details of the

software’s processing flow in the performance model

• Use hierarchy to help make your models easier to

understand and modify

• Use best- and worst-case estimates of resource

requirements to help compensate for uncertainty early in

the process

• Study the sensitivity of the performance results to the

input parameters

