SOFT 437

Software Performance Analysis

Chapter 4: Software Execution Model

Software Execution Model

- Constructed early in the development process to ensure that the chosen software architecture can achieve the required performance objectives
- Captures essential performance characteristics of the software
- Provides a static analysis of the mean, best and worstcase response time
- Characterizes the resource requirements of the proposed software alone, in the absence of other workloads, multiple users or delays due to contention for resources

Software Execution Model (con't)

- Software execution models are generally sufficient for identifying serious performance problems at the architectural and early design phases
- We can refine software execution model in the critical areas

The absence of problems in the software model does not mean that there are none

The Execution Graphs

- Execution graphs are one type of software execution model
 - Visual representation that helps to communicate execution behavior
- An execution graph is constructed for each performance scenario
- The graphs consist of nodes and arcs
 - Nodes represent processing steps a collection of operation invocations and program statements that perform a <u>function</u> in the software system
 - Arcs represent the order of execution

Basic Nodes

- *Basic nodes* (representation symbols) represent processing steps at the <u>lowest level of detail</u> that is appropriate for the current development stage
- Software execution models elaborate details of <u>interest</u> <u>to performance</u>
- The *simple-model* principle recommends that details that are not pertinent to performance should be excluded

Expanded Nodes

- Expanded nodes represent processing steps elaborated in another subgraph
- Expanded nodes show additional processing details that are identified as the design evolves

Expanded Nodes

Figure 4-3: Execution Graph for General ATM Scenario Figure 4-4: Subgraph for processTransaction Expanded Node

Repetition Nodes

- *Repetition nodes* represent one or more nodes that are repeated
- *Repetition factor* associated with the node that specifies the number of times the processing steps repeat
- An arc connects the last node repeated with the repetition node

Case Nodes

- *Case nodes* represent conditional execution of processing steps
- *Attached nodes* represent the steps that may be executed
- A case node has more than one attached
- Each attached node has an execution probability

Figure 4-2: Abbreviated Graph

Figure 4-3: Execution Graph for General ATM Scenario

Pardo Node

A Pardo (as Parallel do)
node represents parallel
execution within a
scenario
Pa

Figure 4-5: Parallel Execution within a Scenario

Basic Execution Graph Notation

SOFT 437

Graph Restrictions

• Initial node restriction: graphs and subgraphs can have only one initial node

Graph Restrictions

• Loop restriction: all loops in the graph must be repetition loops Initiate

Software Execution Model

Software Execution Model Analysis

- Primary purposes of software execution model analysis are
 - Make a quick check of the best-case response time in order to ensure the architecture and design will lead to satisfactory performance
 - Assess the performance impact of alternatives
 - Identify critical parts of the system for performance management
 - Derive parameters for the system execution model
- The algorithms are formulated for evaluating graphs

Basic Solution Algorithms

- The algorithms are 'easy' to understand
 - Examine graphs and identify a basic structure
 - Compute the time of a basic structure and reduce the basic structure to a 'computed node'
 - Continue until only one node left
- Basic structures are
 - Sequences
 - Loops
 - Cases

Graph Reduction for Sequential Structures

Figure 4-9: Graph Reduction for Sequential Structures

Graph Reduction for Loop Structures

Figure 4-10: Graph Reduction for Loop Structures

Graph Reduction for Case Nodes

- The computation for case nodes differs for shortest path, longest path, and average analyses
 - Shortest path: the time for the case node is the minimum of the times for the conditionally executed nodes
 - Longest path: the time for the case node is the maximum of the times for the conditionally executed nodes
 - For the average analysis: the time is multiplying each node's time by its execution probability

Figure 4-11: Graph Reduction for Case Nodes

Example: ATM Scenario

Example 4-1: Best, Worst and Average Times for ATM Scenario To illustrate the basic path reductions, consider the ATM scenario in Figure 4-3 and the subgraph for processTransaction in Figure 4-4. Assume the node "times" in the following table.

Node	Time
getCardInfo	50
getPIN	20
getTransaction	30
processDeposit	500
processWithdrawal	200
processBalanceInquiry	50
terminateSession	100

Analysis Procedures

- Use both the best- and the worst-case estimates of resource requirements for each basic node
- Begin with a simplistic analysis of the best case and introduce more sophisticated analyses of realistic cases as more detailed information becomes available

Software Resource Requirements

• Each basic node has specified SW resource requirements A_i for each service unit j, e.g.

Figure 4-12: authorizeTransaction Software Resource Requirements

Processing Overhead Matrix

• A chart of the computer resource requirements for each of the software resource requests

			Horoword
1	1	1	D
KInstr.	Phys. I/O	Msgs.	Resources
1 Holes	the rotal of	The strength	
20	0	0	Mapping between
500	2	0	software resource
10	2	1	computer device usage
	1 KInstr. 20 500 10	1 1 KInstr. Phys. I/O 20 0 500 2 10 2	1 1 1 KInstr. Phys. I/O Msgs. 20 0 0 500 2 0 10 2 1

Table 4-1: Processing Overhead

Device	CPU	Disk
Quantity	1	1
Service Unit	KInstr.	Phys. I/O

WorkUnit	20	0
DB	500	2
Msgs	10	2

0.00001

Service time

1	Network
	1
-	Msgs.
	Segil.
	0
-	
	0

Software Resource Requirements

0.02

Computing the total execution time

• *STEP 1:* uses the processing overhead matrix to calculate the total computer resources required per software resource for each node in the graph

Software Resource Requests		Processing Overhead			
Name	Service Units	CPU Kinstr	Physical I/O	Network Messages	
WorkUnit	2	20	0	0	
DB	1	500	2	0	
Msgs	1	10	2	1	
Total: sendResult		550	4	1	

Computing the total execution time

SOFT 437

• *STEP 2:* computes the total computer resource requirements for the graph

Processing Step	CPU	Physical	Network
	Kinstr	I/O	Messages
validateUser	1,020	4	0
validateTransaction	1,540	6	0
sendResult	550	4	1
Total: authorizeTransaction	3,110	14	1

Table 4-2: Total Computer Resource Requirements for authorizeTransaction

Computing the total execution time Table 4-1: Processing Overhead

• *STEP 3:* compute the best-case elapsed time

Device	CPU	Disk	Networ
Quantity	1	1	1
Service Unit	KInstr.	Phys. I/O	Msgs.
WorkUnit	20		0
DB	500	2	0
Msgs	10	2	1
and company	in contractor		
Service time	0.00001	0.02	0.01

Processing Step	CPU	Physical	Network
	Kinstr	I/O	Messages
validateUser	1,020	4	0
validateTransaction	1,540	6	0
sendResult	550	4	1
Total: authorizeTransaction	3,110	14	1

Types of Software Resource

Software Resource Types	Description
CPU usage	specified in work units, estimated number of instructions executed, or CPU time (when measure- ments of similar systems are available)
SQL	specified as the number and type of SQL state- ments (read, write, update, etc.) executed when the software accesses a database
File I/O	specified as the number of logical or physical I/Os
Messages	specified as the number or size in Kbytes of mes- sages sent via a local LAN or other type of network, and the number or size of those sent via an exter- nal network such as a WAN, Internet connection, and so on

Types of Software Resource (con't)

Software Resource Types	Description
Logging to files or data- bases	specified as the number of log events that execute
Calls to middleware functions	specified as the number and type of call (e.g., con- nectionOpen, queueGet, requestSend, and so on) when applicable
Calls to software in a different process, thread, or processor	specified as the number, type, and target of the call. (Note that some software interactions may be mod- eled explicitly when the interacting software is also under study, as in the examples in Chapter 5.)
Delay for remote processing	specified as the estimated elapsed time for each request

Software Resource Estimation

- One of the most difficult resources to estimate is CPU usage
 - We use work units that focus on the relative amount of work performed in a processing step
- Early in development, models typically will use two to five types of software resource specifications
- Later, you may include more software resource types, such as synchronization and lock requests

Another Example of Processing Overhead Matrix

Table 7-2: Sample Processing Overhead Matrix

Devices	CPU	Disk	Delay
Quantity	6	3	1
Service units	Sec.	Physl/O	Sec.

Γ	GINet	
	1	
	Msgs	

WorkUnits	0.01	23		
I/O	0.0005	1		
Msgs	0.0005	1		1
Delay			1	

Service time	1	0.003	1	0.05

Case Study: ICAD (Interactive CAD)

- Engineers will use the application to construct and view drawings that model structures, such as aircraft wings
- The system also allows users to store a model in a database, and interactively assess the design's correctness, feasibility, and suitability
- The model is stored in a relational data, and several versions of the model may exist within the database
- An ICAD drawing consists of nodes and elements (e.g., beans, triangles, or plates)

Figure 4-16: ICAD Processes

Use Cases

- Use Case: **Draw** (draw a model), **Solve** (solve a model)
- Scenario: **DrawMod** (Draw models)
- A typical model contains only *nodes* and *beams* and consists of <u>2,000 beams</u>.
- Performance goal is to draw (show on screen) a typical model in <u>10 seconds or less</u>

SOFT 437

Architecture 1

Figure 4-14: Class Diagram for ICAD Design

Software Resource Requirements

- DBMS the number of calls to the ICAD Database process
- CPU an estimate of the number of instructions executed
- I/O the number of disk accesses to obtain data from the database
- Allocate/Free the number of calls to the memory management
- Screen the number of times graphics operations "draw" to the screen

Processing Step	EDMS	CPU	I/O	Get/ Free	Screen
createModel	0	2	0	0	0
drawMod	0	1	3	2	2
openDB	1	2.3	6	1	0
findBeams	1	346	7.08	0	0
sortBeams	1	339	42.28	2	0
finish	1	1.5	2	1	0
retrieveBeam	1	2	4.03	0	0
createBeam	0	2	0	0	0
findNodes	1	4.5	4.1	0	0
setupNode	1	4	4.02	0	0
drawNode	0	0.55	0	0	1

Table 4-3: Values for DrawMod Software Resource Requirements

Table 4-4: Processing Overhead

Devices	CPU	Disk	Display	
Quantity	1	2	1	
Service Units	K instr.	Phys. I/O	Units	

EDMS	0.253	0.002	in a star
CPU	1		
I/O	0.1	1	
Get/Free	0.1	an estilee ha	in not u
Screen	0.05	as well as di	1

Service Time	0.000005	0.03	0.001
--------------	----------	------	-------

SOFT 437

Architecture 1

Figure 4-14: Class Diagram for ICAD Design

Architecture 2

Resource demand:

Resource demand:

Winning Architecture 3

Figure 4-24: Execution Graph and Results for Architecture 3

Modeling Hints

- It is not necessary to include all of the details of the software's processing flow in the performance model
- Use hierarchy to help make your models easier to understand and modify
- Use best- and worst-case estimates of resource requirements to help compensate for uncertainty early in the process
- Study the sensitivity of the performance results to the input parameters