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SUMMARY

Test-Driven Development (TDD) is a software development practice that prescribes writing unit tests before
writing implementation code. Recent studies have shown that TDD practices can significantly reduce the
number of pre-release defects. However, most TDD research thus far has focused on new development. We
investigate the adaptation of TDD-like practices for already-implemented code, in particular legacy systems.
We call such an adaptation “Test-Driven Maintenance” (TDM).
In this paper, we present a TDM approach that assists software development and testing managers to use the
limited resources they have for testing legacy systems efficiently. The approach leverages the development
history of a project to generate a prioritized list of functions that managers should focus their unit test
writing resources on. The list is updated dynamically as the development of the legacy system progresses.
We evaluate our approach on two large software systems: a large commercial system and the Eclipse Open
Source Software system. For both systems, our findings suggest that heuristics based on the function size,
modification frequency and bug fixing frequency should be used to prioritize the unit test writing efforts for
legacy systems. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Test-Driven Development (TDD) is a software development practice where developers write and
run unit tests that would pass once the requirements are implemented. Then they implement the
requirements and re-run the unit tests to make sure they pass [1, 2]. The unit tests are generally
written at the granularity of the smallest separable module, which is a function in most cases [3].

Previous empirical studies have shown that TDD can reduce pre-release defect densities by as
much as 90%, compared to other similar projects that do not implement TDD [4]. In addition,
other studies show that TDD helps produce better quality code [5, 6], improve programmer
productivity [7] and strengthen the developer confidence in their code [8].

Most of the previous research to date studied the use of TDD for new software development.
However, prior studies show that more than 90% of the software development cost is spent on
maintenance and evolution activities [9, 10]. Other studies showed that an average Fortune 100
company maintains 35 million lines of code and that this amount of maintained code is expected
to double every 7 years [11]. For this reason, we believe it is extremely beneficial to study the
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adaptation of TDD-like practices for the maintenance of already implemented code, in particular
for legacy systems. In this paper we call this “Test-Driven Maintenance” (TDM).

Applying TDM to legacy systems is important because legacy systems are often instilled in the
heart of newer, larger systems and continue to evolve with new code [12]. In addition, due to their old
age, legacy systems lack proper documentation and become brittle and error-prone over time [13].
Therefore, TDM should be employed for these legacy systems to assure quality requirements are
met and to reduce the chance of failures due to evolutionary changes.

However, legacy systems are typically large and writing unit tests for an entire legacy system
at once is time consuming and practically infeasible. To mitigate this issue, TDM uses the same
divide-and-conquer idea of TDD. However, instead of focusing on a few tasks from the requirements
documents, developers that apply TDM isolate functions of the legacy system and individually unit
test them. Unit tests for the functions are incrementally written until a desired quality target is met.

The idea of incrementally writing unit tests is very practical and has three main advantages. First,
it gives resource-strapped managers some breathing room in terms of resource allocation (i.e., it
alleviates the need for long-term resource commitments). Second, developers can get more familiar
with the legacy code through the unit test writing efforts [14], which may ease future maintenance
efforts. Third, unit tests can be easily maintained and updated in the future to assure the high quality
of the legacy system [3].

The major challenge for TDM is determining how to prioritize the writing of unit tests to achieve
the best return on investment. Do we write unit tests for functions in a random order? Do we write
unit tests for the functions that we worked on most recently? Often, development and testing teams
end up using ad hoc practices, based on gut feelings, to prioritize the unit test writing efforts.
However, using the right prioritization strategy can save developers time, save the organization
money and increase the overall product quality [15, 16].

This paper extends an earlier conference paper [46], in which we presented an approach that
prioritizes the writing of unit tests for legacy software systems, based on different history-based
heuristics. We evaluated our approach on a commercial system, determined the most effective
heuristics and investigated the effect of various simulation parameters on our study results. In this
paper, we extend our previous work by conducting our study on an additional Open Source system.
Doing so reduces the threat to external validity and improves the generalizability of our findings
since both systems follow different development practices (i.e., commercial vs. open source), come
from different domains (i.e., communication system vs. integrated development environment) and
are written in different programming languages (i.e., C/C++ vs. Java). In addition, instead of only
considering heuristics individually, we combine them in two ways and compare the performance
using the combined heuristics and the individual heuristics.

For both systems, our results show that the proposed heuristics significantly improve the testing
efforts, in terms of potential bug detection, when compared to random test writing. Heuristics that
prioritize unit testing effort based on function size, modification frequency and bug fixing frequency
are the best performing for both systems. Combining the heuristics improves the performance of
some heuristics, but did not outperform our best performing heuristics.
Organization of Paper. Section 2 provides a motivating example for our work. Section 3 details our
approach. Section 4 describes the simulation-based case study. Section 5 presents the results of the
case study. Section 6 details two techniques used to combine the heuristics and presents their results.
Section 7 discusses the effects of the simulation parameters on our results. Section 8 presents the
list of threats to validity and Section 9 discusses the related work. Section 10 concludes the paper.

2. MOTIVATING EXAMPLE

In this section, we use an example to motivate our approach. Lindsay is a software development
manager for a large legacy system that continues to evolve with new code. To assure a high level
of quality for the legacy system, Lindsay’s team employs TDM practices. Using TDM, the team
isolates functions of the legacy system and writes unit tests for them. However, deciding which
functions to write unit tests for is a challenging problem that Lindsay and his team must face.
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Figure 1. Approach overview

Writing unit tests for all of the code base is nearly impossible. For example, if a team has enough
resources to write unit tests to assess the quality of 100 lines of code per day, then writing unit tests
for a 1 million lines of code (LOC) system would take over 27 years. At the same time, the majority
of the team is busy with new development and maintenance efforts. Therefore, Lindsay has to use
his resources effectively in order to obtain the best return on his resource investment.

A primitive approach that Lindsay tries is to randomly pick functions and write unit tests for
them or write tests for functions that have been recently worked on. However, he quickly realizes
that such an approach is not very effective. Some of the recently worked on functions are rarely used
later, while others are so simple that writing unit tests for them is not a priority. Lindsay needs an
approach that can more effectively assist him and his team prioritize the writing of unit tests for a
legacy system.

To assist development and testing teams like Lindsay’s, we present an approach that uses the
history of the project to prioritize the writing of unit tests. The approach uses heuristics extracted
from the project history to recommend a prioritized list of functions to write unit tests for. The size
of the list can be customized based on the amount of available resources at any specific time. The
approach updates its recommended list of functions as the project progresses.

3. APPROACH

In this section, we detail our approach, which is outlined in Figure 1. In a nutshell, the approach
extracts a project’s historical data from its code and bug repositories, calculates various heuristics
and recommends a prioritized list of functions to write unit tests for. Once the unit tests are written,
we remove the recommended functions, re-extracts new data from the software repositories to
consider new development activity and repeats the process of calculating heuristics and generating
a list of functions. In the next four subsections, we describe each phase in more detail.

3.1. Extracting Historical Data

The first step of the approach is to extract historical data from the project’s development history. In
particular, we combine source code modification information from the source code control system
(e.g., SVN [17] and CVS [18]) with bug data stored in the bug tracking system (e.g., Bugzilla [19]).
Each modification record contains the time of the modification (day, month, year and local time),
the author, the changed files, the version of the files, the changed line numbers and a modification
record log that describes the change.

In order to determine whether a modification is a bug fix, we used a lexical technique to
automatically classify modifications [20–22]. The technique searches the modification record logs,
which are stored in the source code repository, for keywords, such as “bug” or “bugfix”, and bug
identifiers (used to search the bug database) to do the classification. If a modification record contains
a bug identifier or one of the keywords associated with a bug, then it is classified as a bug fixing
modification. In some cases, the modification record logs contain a bug identifier only. In this case,
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we automatically fetch the bug report’s type and classify the modification accordingly. We check
the bug report’s type, because in certain cases bug reports are used to submit feature enhancements
instead of reporting actual bugs. Eventually, our technique groups modification records into two
main categories: bug fixing modifications and general maintenance modifications.

The next step involves mapping the modification types to the actual source code functions that
changed. To achieve this goal, we identify the files that changed and their file version numbers (this
information is readily available in the historical modification log). Then, we extract the source code
versions of the files that changed and their previous version, parse them to identify the individual
functions, and compare the two consecutive versions of the files to identify which functions changed.
Since we know which files and file versions were changed by a modification, we can pinpoint
the functions modified by each modification. We annotate each of the changed functions with the
modification type.

To better illustrate this step, we use the example shown in Figure 2. Initially, change 1 commits
the first version of files X and Y. There are 3 bugs (italicized) in the committed files, one in each
of the functions add, subtract and divide. Change 2 fixes these bugs. We would determine
that change 2 is a bug fix from the change log message and comparing versions 1 and 2 of files X
and Y would tell us that functions add, divide and subtract changed. Therefore, we would
record 1 bug fix change to each of these functions. Thus far, function multiply did not change,
therefore it will not have anything recorded against it. In change 3, comments are added to functions
subtract and multiply. By the end of change 3, function addwould have 1 bug fixing change,
function subtract will have 1 bug fix change and 1 enhancement change, function divide will
have 1 bug fix change, and function multiply will have 1 enhancement change.

Although the use of software repositories (i.e., source code control systems and bug tracking
systems) is becoming increasingly popular in software projects, there still exist some issues with
using data from such repositories. For example, developer may forget to mention the bug number
that a change fixes. And even if they do include the bug numbers, in certain cases, the bug mentioned
in the change description could refer to a bug that was created after the change itself or the bug
mentioned is missing from the bug database altogether [49]. These issues may introduce bias in the
data [50], however, recent work showed that the effect of such bias does not significantly affect the
outcome of our findings [51].

3.2. Calculating Heuristics

We use the extracted historical data to calculate various heuristics. The heuristics are used to
generate the prioritized list of functions for testing. We choose to use heuristics that can be extracted
from a project’s history for two main reasons: 1) legacy systems ought to have a very rich history
that we can use to our advantage and 2) previous work in fault prediction showed that history based
heuristics are good indicators of future bugs (e.g., [23, 24]). We conjecture that heuristics used for
fault prediction will perform well, since ideally we want to write unit tests for the functions that
have bugs in them.

The heuristics fall under four main categories: modification based heuristics, bug fix based
heuristics, size based heuristics and risk based heuristics. The heuristics are listed in Table I. We
also include a random heuristic that we use as a baseline heuristic to compare the aforementioned
heuristics to. For each heuristic, we provide a description, our intuition for using the heuristic and
related work that influenced our decision to study the heuristics.

The heuristics listed in Table I are a small sample of the heuristics that can be used to generate
the list of functions. We chose to use these heuristics since previous work on fault prediction has
proven their ability to perform well. However, any metric that captures the characteristics of the
legacy system and can be linked to functions may be used to generate the list of functions.

3.3. Generating a List of Functions

Following the heuristic calculation phase, we use the heuristics to generate a prioritized list of
functions that are recommended to have unit tests written for. Each heuristic generates a different
prioritized list of functions. For example, one of the heuristics we use (i.e., MFM) recommends that
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Figure 2. Linking changes to functions

we write tests for functions that have been modified the most since the beginning of the project.
Another heuristic recommends that we write tests for functions that are fixed the most (i.e., MFF).

Then, we loop back to the historical data extraction phase, to include any new development
activity and run through the heuristic calculation and list generation phases. Each time, a new list of
functions is generated for which unit tests should be written.

3.4. Removing Recommended Functions

Once a function is recommended to have a test written for it, we remove it from the pool of functions
that we use to generate future lists. In other words, we assume that once a function has had a unit
test written for it, it will not need to have any additional new test written for it in the future; at
most the test may need to be updated. We make this assumption for the following reason: once the
function is recommended and the initial unit test is written, then this initial unit test will make sure
all of the function’s current code is tested. Also, since the team adopts TDM practices any future
additions/changes to the function will be accompanied with changes to the associated unit tests.

4. SIMULATION-BASED CASE STUDY

To evaluate the performance of our approach, we conduct a simulation-based case study on two large
software systems: a commercial system and the Eclipse OSS system. The commercial software
system is a legacy system, written in C and C++, which contains tens of thousands of functions
totalling hundreds of thousands of lines of code. We used 5.5 years of the system’s history to conduct
our simulation, in which over 50,000 modifications were analyzed. We cannot disclose any more
details about the studied system for confidentiality reasons.
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Table I. List of all heuristics used for prioritizing the test writing efforts for legacy systems

Category Heuristic Order Description Intuition Related Work

Modifications

Most
Frequently
Modified
(MFM)

Highest to
lowest

Functions that were
modified the most
since the start of the
project.

Functions that are modified fre-
quently tend to decay over time,
leading to more bugs.

The number of
prior modifications
to a file is a good
predictor of its future
bugs [23, 25–27].

Most
Recently
Modified
(MRM)

Latest to
oldest

Functions that were
most recently modi-
fied.

Functions that were modified
most recently are the ones most
likely to have a bug in them (due
to the recent changes).

More recent changes
contribute more
bugs than older
changes [25].

Bug Fixes

Most
Frequently
Fixed
(MFF)

Highest to
lowest

Functions that were
fixed the most since
the start of the
project.

Functions that are frequently
fixed in the past are likely to be
fixed in the future.

Prior bugs are a good
indicator of future
bugs [28].

Most
Recently
Fixed
(MRF)

Latest to
oldest

Functions that were
most recently fixed.

Functions that were fixed most
recently are more likely to have
a bug in them in the future.

The recently fixed
heuristic has been
used to prioritize
buggy subsystems
[22], files and
functions [45].

Size
Largest
Modified
(LM)

Largest to
smallest

The largest modified
functions, in terms
of total lines of
code (i.e, source,
comment and blank
lines of code).

Large functions are more likely
to have bugs than smaller func-
tions.

The simple lines
of code metric
correlates well with
most complexity
metrics (e.g.,
McCabe complex-
ity) [25, 27, 29, 30].

Largest
Fixed (LF)

Largest to
smallest

The largest fixed
functions, in terms
of total lines of
code (i.e, source,
comment and blank
lines of code).

Large functions that need to be
fixed are more likely to have
more bugs than smaller functions
that are fixed less.

The simple lines
of code metric
correlates well with
most complexity
metrics (e.g.,
McCabe complex-
ity) [25, 27, 29, 30].

Risk
Size Risk
(SR)

Highest to
lowest

Riskiest functions,
defined as the
number of bug fixing
changes divided
by the size of the
function in lines of
code.

Since larger functions may natu-
rally need to be fixed more than
smaller functions, we normalize
the number of bug fixing changes
by the size of the function. This
heuristic will mostly point out
relatively small functions that are
fixed a lot (i.e., have high defect
density).

Using relative churn
metrics performs bet-
ter than using abso-
lute values when pre-
dicting defect den-
sity [31].

Change Risk
(CR)

Highest to
lowest

Riskiest functions,
defined as the
number of bug fixing
changes divided by
the total number of
changes.

The number of bug fixing
changes normalized by the
total number of changes. For
example, a function that changes
10 times in total and out of those
10 times 9 of them were to fix a
bug should have a higher priority
to be tested than a function that
changes 10 times where only
1 of those ten is a bug fixing
change.

Using relative churn
metrics performs bet-
ter than using abso-
lute values when pre-
dicting defect den-
sity [31].

Random Random Random
Randomly selects
functions to write
unit tests for.

Randomly selecting functions to
test can be thought of as a
base line scenario. Therefore,
we use the random heuristic’s
performance as a base line to
compare the performance of the
other heuristics to.

Previous studies on
test prioritization use
a random heuristic to
compare their perfor-
mance [15, 16, 32].

On the other hand, the Eclipse OSS system is an Integrated Development Environment (IDE),
written in Java. We analyzed a total of 48,718 files, which contained 314,910 functions over their
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history. Again, we used 5.5 years of the system’s history to conduct our simulation, in which 81,208
modifications were analyzed, of which 12,332 were buggy changes.

In this section, we detail the steps of our case study and introduce our evaluation metrics.

4.1. Simulation study

The simulation ran in iterations. For each iteration we: 1) extract the historical data, 2) calculate
the heuristics, 3) generate a prioritized list of functions, 4) measure the time it takes to write tests
for the recommended list of functions and 5) remove the list of functions that were recommended.
Then, we advance the time (i.e., we account for the time it took to write the unit tests) and do all of
the aforementioned steps over again.

Step 1. We used 5.5 years of historical data from the commercial and OSS systems to conduct
our simulation. The first 6 months of the project were used to calculate the initial set of heuristics
and the remaining 5 years are used to run the simulation.

Step 2. To calculate the heuristics, we initially look at the first 6 months of the project. If, for
example, we are calculating the MFM heuristic, we would look at all functions in the first 6 months
of the project and rank them in descending order based on the number of times they were modified
during that 6 month period. The amount of history that we consider to calculate the heuristics
increases as we advance in the simulation. For example, an iteration 2 years into the simulation
will use 2.5 years (i.e., the initial 6 months and 2 years of simulation time) of history when it
calculates the heuristics.

Step 3. Next, we recommend a prioritized list of 10 functions that should have unit tests written
for them. One list is generated for each of the heuristics. The list size of 10 functions is an arbitrary
choice we made. If two functions have the same score, we randomly choose between them. We
study the effect of varying the list size on our results in detail in Section 7. Furthermore, in our
simulation, we assume that once a list of 10 functions is generated, tests will be written for all 10
functions before a new list is generated.

Step 4. Then, we estimate the time it takes to write tests for these 10 functions. To do so, we
use the size of the recommended functions and divide by the available resources. The size of the
functions is used as a measure for the amount of effort required to write unit tests for those 10
functions [33, 34]. Since complexity is highly correlated with size [25], larger functions will take
more effort/time to write unit tests for.

The number of available resources is a simulation parameter, expressed as the number of lines of
code that testers can write unit tests for in one day. For example, if one tester is available to write
unit tests for the legacy system and that tester can write unit tests for 50 lines of code per day, then
a list of functions that is 500 lines will take him 10 days. In our simulation, we set the total test
writing capacity of the available resources to 100 lines per day. We study the effect of varying the
resources available to write unit tests in more detail in Section 7.

After we calculate the time it takes to write unit tests for the functions that we recommend, we
update the heuristics with the new historical information. We do this to account for the continuous
change these software systems undergo. For example, if we initially use six months to calculate the
heuristics and the first list of recommended functions takes one month to write unit tests for, then
we update the heuristics for the next iteration to use seven months of historical information. We use
the updated heuristics to calculate the next set of functions to write tests for and so on.

Step 5. Once a function is recommended to have a test written for it, we remove it from the pool
of functions that we use to generate future lists. In other words, we assume that once a function has
had a unit test written for it, it will not need to have a new test written for it from scratch in the
future; at most the test may need to be updated.

Once the parameters are set, the simulation is entirely automated. Any of the parameters can be
modified at any time, however, there is no need for any manual work after the initial setup is done.

We repeat the 5-step process mentioned above for a period of 5 years. To evaluate the performance
of the different heuristics, we periodically (every 3 months) measure the performance using two
metrics: Usefulness and Percentage of Optimal Performance (POP), which we describe next.
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(a) Usefulness evaluation example

(b) POP example

Figure 3. Performance evaluation example

4.2. Performance Evaluation Metrics

Usefulness: The first question that comes up after we write unit tests for a set of functions is -
was writing the tests for these functions worth the effort? For example, if we write unit tests for
functions that rarely change and/or have no bugs after the tests are written, then our effort may be
wasted. Ideally, we would like to write unit tests for the functions that end up having bugs in them.

We define the usefulness metric as the percentage of functions for which we write unit tests that
catch at least one bug after the tests are written. The usefulness metric indicates how much of our
effort on writing unit tests is actually worth the effort. This metric is similar to the hit rate metric
used by earlier dynamic defect prediction studies [22, 45].

We use the example in Figure 3(a) to illustrate how we calculate the usefulness. Functions A and
B have more than 1 bug fix after the unit tests were written for them (after point 2 in Figure 3(a)).
Function C did not have any bug fix after we wrote the unit test for it. Therefore, for this list of
three functions, we calculate the usefulness as 2

3 = 0.666 or 66.6%.
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Percentage of Optimal Performance (POP): In addition to calculating the usefulness, we would
like to measure how well a heuristic performs compared to the optimal (i.e., the best we can ever
do). Optimally, one would have perfect knowledge of the future and write unit tests for functions
that are the most buggy. This would yield the best return on investment.

To measure how close we are to the optimal performance, we define a metric called Percentage of
Optimal Performance (POP). To calculate the POP, we generate two lists: one is the list of functions
generated by a heuristic and the second is the optimal list of functions. The optimal list contains the
functions with the most bugs from the time the unit tests were written till the end of the simulation.
Assuming that the list size is 10 functions, we calculate the POP as the number of bugs in the top
10 functions (generated by the heuristics), divided by the number of bugs contained in the top 10
optimal functions. Simply put, the POP is the percentage of bugs we can avoid using a heuristic
compared to the best we can do if we had perfect knowledge of the future.

We illustrate the POP calculation using the example shown in Figure 3(b). At first, we generate
a list of functions that we write unit tests for using a specific heuristic (e.g., MFM or MFF). Then,
based on the size of these functions, we calculate the amount of time it takes to write unit tests for
these functions (point 2 in Figure 3(b)). From that point on, we calculate the number of bugs for all
of the functions and rank them in descending order. For the sake of this example, let us assume we
are considering the top 3 functions. Assuming our heuristic identifies functions A, B and C as the
functions for which we need to write unit tests, however, these functions may not be the ones with
the most bugs. Assuming that the functions with the most bugs are functions A, D and E (i.e., they
are the top 3 on the optimal list). From Figure 3(a) , we can see that functions A, B and C had 8 bug
fixes in total after the unit tests were written for them. At the same time, Figure 3(b) shows that the
optimal functions (i.e., functions A, D and E) had 13 bug fixes in them. Therefore, the best we could
have done is to remove 13 bugs. We were able to remove 8 bugs using our heuristic, hence our POP
is 8

13 = 0.62 or 62%.
It is important to note that the key difference between the usefulness and the POP values is that

usefulness is the percentage of functions that we found useful to write unit tests for. On the other
hand, POP measures the percentage of bugs that we could have avoided using a specific heuristic.

5. CASE STUDY RESULTS

In this section, we present the results of the usefulness and POP metrics for the proposed heuristics.
Ideally, we would like to have high usefulness and POP values. To evaluate the performance of each
of the heuristics, we use the random heuristic as our baseline [15, 16, 32]. If we cannot do better
than just randomly picking functions to add to the list, then the heuristic is not that effective. Since
the random heuristic can give a different ordering each time, we use the average of 5 runs, each of
which uses different randomly generated seeds.

5.1. Usefulness

We calculate the usefulness for the heuristics listed in Table I and plot it over time for the commercial
system and the Eclipse OSS system in Figures 4 and 5, respectively. The dashed black line in each
of the figures depicts the results of the random heuristic. From the figures, we can observe that in
the majority of the cases, the proposed heuristics outperform the random heuristic. However, our
top performing heuristics (e.g., LF and LM) substantially outperform the random heuristic, in both
projects.

The median usefulness values for each of the heuristics in the commercial system and the Eclipse
OSS system are listed in Tables II and III, respectively. Since the usefulness values change over
the course of the simulation, we chose to present the median values to avoid any sharp fluctuations.
The last row of the table shows the usefulness achieved by the random heuristic. The heuristics are
ranked from 1 to 9, with 1 indicating the best performing heuristic and 9 the worst.
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(a) Usefulness of modification heuristics (b) Usefulness of fix heuristics

(c) Usefulness of size heuristics (d) Usefulness of risk heuristics

Figure 4. Usefulness of heuristics compared to the random heuristic for the commercial system

(a) Usefulness of modification heuristics (b) Usefulness of fix heuristics

(c) Usefulness of size heuristics (d) Usefulness of risk heuristics

Figure 5. Usefulness of heuristics compared to the random heuristic for the Eclipse OSS system
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Table II. Usefulness Results of the commercial system

Heuristic Median Usefulness Improvement over random Rank

LF 87.0% 3.1 X 1
LM 84.7% 3.1 X 2

MFF 83.8% 3.0 X 3
MFM 80.0% 2.9 X 4
MRF 56.9% 2.1 X 5
CR 55.0% 2.0 X 6
SR 48.8% 1.8 X 7

MRM 43.1% 1.6 X 8

Random 27.7% - 9

Table III. Usefulness Results of the Eclipse OSS system

Heuristic Median Usefulness Improvement over random Rank

LF 44.7% 5.3 X 1
LM 32.9% 3.9 X 2

MFF 32.3% 3.8 X 3
MFM 28.1% 3.3 X 4

CR 17.4% 2.0 X 5
MRF 16.0% 1.9 X 6
SR 12.6% 1.5 X 7

MRM 9.9% 1.2 X 8

Random 8.5% - 9

Commercial system: Table II shows that the LF, LM, MFF and MFM are the top performing
heuristics, having median values in the range of 80% to 87%. The third column in Table II shows
that these heuristics perform approximately 3 times better than the random heuristic.

A strategy that developers may be inclined to apply is to write tests for functions that they worked
most recently on. The performance of such a strategy is represented by the recency heuristics (i.e.,
MRM and MRF). We can observe from Figures 4(a) and 4(b) that the recency heuristics (i.e., MRM
and MRF) perform poorly compared to their frequency counterparts (i.e., MFM and MFF) and the
size heuristics.

Eclipse OSS system: Similar to the commercial system, Table III shows that the LF, LM, MFF
and MFM heuristics are the top performing heuristics. These heuristics achieve median values in
the range of 28% to 44%. Although these usefulness values are lower than those achieved in the
commercial system, they perform 3 to 5 times better than the random heuristic. The 3 to 5 times
improvement is consistent with the results achieved in the commercial system.

Again, we can see that the frequency based heuristics (i.e., MFM and MFF) substantially
outperform their recency counterparts (i.e., MRM and MRF). Examining the median values
in Tables II and III, we can see that for MFM we were able to achieve approximately 30%
median usefulness for the Eclipse OSS system (80% for the commercial system). This means that
approximately 3 (8 for the commercial system) out of the 10 functions we wrote unit tests for had
one or more bugs in the future. Therefore, writing the unit tests for these functions was useful. On
the contrary, for the random heuristic, approximately 1 (3 for the commercial system) out of every
10 functions we wrote unit tests for had 1 or more bugs after the unit tests were written.
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(a) POP of modification heuristics (b) POP of fix heuristics

(c) POP of size heuristics (d) POP of risk heuristics

Figure 6. POP of heuristics compared to the random heuristic for the commercial system

�




�

	
Size, modification frequency and fix frequency heuristics should be used to prioritize

the writing of unit tests for software systems. These heuristics achieve median usefulness
values between 80–87% for the commercial system and between 28–44% for the Eclipse
OSS system.

5.2. Percentage of Optimal Performance (POP)

In addition to calculating the usefulness of the proposed heuristics, we would like to know how
close we are to the optimal list of functions that we should write unit tests for if we have perfect
knowledge of the future. We present the POP values for each of the heuristics in Figures 6 and 7.
The performance of the random heuristic is depicted using the dashed black line. The figures show
that in all cases, and for both the commercial and the Eclipse OSS system, the proposed heuristics
outperform the random heuristic.

Commercial system: The median POP values are shown in Table IV. The POP values for the
heuristics are lower than the usefulness values. The reason is that usefulness gives the percentage of
functions that have one or more bugs. However, POP measures the percentage of bugs the heuristics
can potentially avoid in comparison to the best we can do, if we have perfect knowledge of the
future.

Although the absolute POP percentages are lower compared to the usefulness measure, the
ranking of the heuristics remains quite stable (except for the SR and MRM, which exchanged 7th
and 8th spot). Once again, the best performing heuristics are LF, LM, MFF and MFM. The median
values for these top performing heuristics are in the 20% to 32.4% range. These values are 12 to 19
times better than the 1.7% that can be achieved using the random heuristic.

Eclipse OSS system: The median POP values are shown in Table V. The LM, LF, MFM and
MFF are also the top performing heuristics for the Eclipse OSS system. Their median values are
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(a) POP of modification heuristics (b) POP of fix heuristics

(c) POP of size heuristics (d) POP of risk heuristics

Figure 7. POP of heuristics compared to the random heuristic for the Eclipse OSS system

Table IV. Percentage of Optimal Performance Results of the commercial system

Heuristic Median POP Improvement over random Rank

LF 32.4% 19.1 X 1
LM 32.2% 18.9 X 2

MFF 22.2% 13.1 X 3
MFM 21.8% 12.8 X 4
MRF 7.0% 4.1 X 5
CR 5.5% 3.2 X 6

MRM 4.9% 2.9 X 7
SR 4.3% 2.5 X 8

Random 1.7% - 9

between 2.76% to 5.31%. Although these values are low, they are much higher than the value of the
random heuristic.

The median Eclipse POP values are considerably lower than the median POP values of the
commercial system. A preliminary examination into this issue shows that the distribution of changes
and bugs in the Eclipse OSS system is quite sparse. For example, in a certain year a set of files
changed and then those files do not change for a while. This sort of behavior affects our simulation
results, since we use the history of the functions to prioritize. One possible solution is to restrict
how far into the future the simulator looks at when calculating the POP values, however, since our
goal is to compare the heuristics, our current simulation suffices. In the future, we plan to investigate
different strategies to improve the performance of the proposed heuristics.
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Table V. Percentage of Optimal Performance Results in the Eclipse OSS system

Heuristic Median POP Improvement over random Rank

LM 5.31% 15.2 X 1
LF 4.68% 13.4 X 2

MFM 3.18% 9.1 X 3
MFF 2.76% 7.9 X 4
CR 0.97% 2.8 X 5

MRF 0.85% 2.4 X 6
SR 0.66% 1.9 X 7

MRM 0.46% 1.3 X 8

Random 0.35% - 9

Regardless, our top performing heuristics performed approximately 8 to 15 times better than the
random heuristic. The 8 to 15 times improvement is consistent with the finding in the commercial
system.

Finally, we can observe a decline in the usefulness and POP values at the beginning of the
simulation, shown in Figures 4, 5 , 6 and 7. This decline can be attributed to the fact that initially,
there are many buggy functions for the heuristics to choose from. Then, after these buggy functions
have been recommended, we remove them from the pool of functions that we can recommend.
Therefore, the heuristics begin to recommend some functions that are not or less buggy. Previous
studies by Ostrand et al. [29] showed that the majority of the bugs (approximately 80%) are
contained in a small percentage of the code files (approximately 20%). These studies support our
findings.�




�

	
Size, modification frequency and fix frequency heuristics should be used to prioritize the
writing of unit tests for software systems. These heuristics achieve median POP values
between 21.8–32.4% for the commercial system and 2.76–5.31% for the Eclipse OSS
system.

6. COMBINING HEURISTICS

Thus far, we have investigated the effectiveness of prioritizing the unit test creation using each
heuristic individually. Previous work by Kim et al. showed that combining heuristics yields
favorable results [45]. Therefore, we investigate whether or not combining the heuristics can further
enhance the performance.

To achieve this goal, we use two combining strategies which we call COMBO and WEIGHTED
COMBO. With COMBO, we generate a list of functions for each heuristic. Then, we take the top
ranked function from each heuristic and write a test for them. The WEIGHTED COMBO heuristic
on the other hand gives higher weight to functions put forward by higher ranked heuristics.

To illustrate, consider the example in Table VI. In this example, we have 3 heuristics: HA, HB
and HC ranked 1, 2 and 3, respectively. Each of the heuristics lists 3 functions: f1, f2 and f3 ranked
1, 2 and 3, respectively.

In this case, the COMBO heuristics would recommend f1A from HA, f1B from HB and f1C from
HC. The WEIGHTED COMBO heuristic uses the weights assigned to each function to calculate the
list of recommended functions. The weight for each function is based on the rank of the heuristic
relative to other heuristics and the rank of that function relative to other functions within its heuristic.
Mathematically, the weight is defined as:

Function Weight =
1

Heuristic rank
∗ 1

Function rank
(1)
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Table VI. Combining heuristics example

Heuristic A (HA) Heuristic B (HB) Heuristic C (HC)
Rank 1 Rank 2 Rank 3

1. f1A f1B f1C
2. f2A f2B f2C
3. f3A f3B f3C

Table VII. Median Usefulness of combined heuristics

Commercial system Eclipse OSS system
LF COMBO WEIGHTED

COMBO
MRM LF COMBO WEIGHTED

COMBO
MRM

Usefulness (%) 87.0 67.5 64.5 43.1 44.7 32.8 34.1 9.9

Table VIII. Median POP of combined heuristics

Commercial system Eclipse OSS system
LF COMBO WEIGHTED

COMBO
SR LF COMBO WEIGHTED

COMBO
MRM

POP (%) 32.4 18.9 14.7 4.3 5.31 5.03 3.75 0.46

For example, in Table VI HA has rank 1. Therefore, f1A would have weight 1 (i.e. 1
1 ∗ 1

1 ), f2A
would have weight 0.5 (i.e., 1

1 ∗ 1
2 ) and f3A would have weight 0.33 (i.e., 1

1 ∗ 1
3 ). Heuristic HB on

the other hand has rank 2. Therefore, the weight for f1B is 0.5 (i.e., 1
2 ∗ 1

1 ), for f2B is 0.25 (i.e.,
1
2 ∗ 1

2 ) and for f3B is 0.17 (i.e. 1
2 ∗ 1

3 ). Following the same method, the weight for f1C is 0.33, for
f2C is 0.17 and for f3C is 0.11. In this case, if we were to recommend the top 5 functions, then we
would recommend f1A, f2A, f1B, f3A, and f1C. In the case of a tie in the function weights (e.g.,
f2A and f1B), we choose the function with the higher ranked heuristic first (i.e., f2A).

We obtain the heuristic rankings from Tables II , III , IV, V and run the simulation using the
combined heuristics. The Usefulness and the POP metrics were used to evaluate the performance of
the COMBO and WEIGHTED COMBO metrics. Tables VII and VIII present the Usefulness and
POP results, respectively. The best performing heuristics (i.e., LF and LM) outperform the COMBO
and WEIGHTED COMBO heuristics in all cases. However, the COMBO and WEIGHTED
COMBO heuristics provide a significant improvement over the worst performing heuristic (i.e.,
MRM and SR). The COMBO heuristic outperforms the WEIGHTED COMBO heuristic in most
cases (except for Usefulness of the Eclipse OSS system). Taking into consideration the amount of
time and effort required to gather and combine all of the different heuristics, and the performance
of the combined heuristics, we suggest using only the top performing heuristic.

Although, combining heuristics did not yield a considerable improvement in our case, previous
work by Kim et al. [45] showed favorable improvements in performance when heuristics are
combined. We conjecture that these differences in performance are attributed to a few differences
between the two approaches: 1) we recommend 10 functions in each iteration, while Kim et al.’s [45]
the cache is made of 10% of the functions in the system; 2) in our approach, once a function is
recommended once, it is removed from the pool of functions to be recommended in the future. In
Kim et al.’s [45] the same function can be added and removed from the cache multiple times; 3) we
consider the effort required to write a test for a function (depending on its size), while in [45] the
effort is not considered.
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7. DISCUSSION

During our simulation study, we needed to decide on two simulation parameters: list size and
available resources. In this section, we discuss the effect of varying these simulation parameters on
our results. It is important to study the effect of these simulation parameters on our results because
it helps us better understand the results we obtain from the simulation. In addition, it provides some
insight into ways that could lead to more effective approaches.

7.1. Effect of List Size

In our simulations, each of the heuristics would recommend a list of functions that should have
unit tests. Throughout our study, we used a list size of 10 functions. However, this list size was an
arbitrary choice. We could have set this list size to 5, 20, 40 or even 100 functions. The size of the
list will affect the usefulness and POP values.

To analyze the effect of list size, we vary the list size and measure the corresponding POP values
at a one particular point in time. We measure the median POP, from the 5 year simulation, for each
list size and plot the results in Figure 8(a). The y-axis is the log of the median POP value and the
x-axis is the list size. We observe a common trend - an increase in the list size increases the POP
for all heuristics. Once again, our top performing heuristics are unchanged with LF, LM, MFF and
MFM scoring in the top for all list sizes. We performed the same analysis for usefulness and obtain
similar results.

This trend can be explained by the fact that a bigger list size will make sure that more functions
have unit tests written for them earlier on in the project. Since these functions are tested earlier on,
we are able to avoid more bugs and the POP increases.

The results for the Eclipse OSS system are consistent with the findings in Figure 8(a).

7.2. Effect of Available Resources

A second important simulation parameter that we needed to set in the simulations is the effort
available to write unit tests. This parameter determines how fast a unit test can be written. For
example, if a function is 100 lines of code, and a tester can write unit tests for 50 lines of code per
day, then she will be able to write unit tests for that function in 2 days.

Throughout our study, we set this value to 100 lines per day. If this value is increased, then testers
can write unit tests faster (due to an increase in man power or due to more efficient testers) and
write tests for more functions. On the other hand, if we decrease this value, then it will take longer
to write unit tests.

We varied this value from 50 to 200 lines per day (assuming the same effort is available each
day) and measured the median POP, from the entire 5 year simulation. The results are plotted in
Figure 8(b). We observe three different cases:

1. POP decreases as we increase the effort for heuristics LF, LM, MFF and MFM.
2. POP increases as we increase the effort for heuristics CR and SR.
3. POP either increases, then decreases or decreases, then increases as we increase the effort for

heuristics MRF, MRM and Random.

We examined the results in more depth to try and explain the observed behavior. We found that
in case 1, the POP decreases as we increase the effort because as we write tests for more functions
(i.e., increasing effort available to 200 lines per day), we were soon writing tests for functions
that did not have bugs after the tests were written. Or in other words, as we decrease the effort,
less functions have unit tests written for them, which reduces the chance of prioritizing functions
that do not have as many (or any) bugs in the future. In case 2, we found that the risk heuristics
by themselves mostly identified functions that had a small number of bugs. Since an increase in
effort means more functions can have unit tests written for them, therefore, we see an increase in
the POP as effort is increased. In case 3, the MRF and MRM heuristics identify functions that are
most recently modified or fixed. Any change in the effort will change the time it takes to write unit
tests. This change in time will change the list of functions that should have unit tests written for
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(a) Effect of varying list size on POP

(b) Effect of varying effort on POP

Figure 8. Effect of simulation parameters for the commercial system

them. Therefore, an increase or decrease in the effort randomly affects the POP. As for the random
heuristic, by definition, it picks random functions to write unit tests for.

The results for the Eclipse OSS system are consistent with the findings in Figure 8(b).

8. THREATS TO VALIDITY

This section discusses the threats to validity of our study.

Construct validity
We used the POP and Usefulness measures to compare the performance of the different heuristics.
Although POP and Usefulness provide effective means for use to evaluate the proposed heuristics,
they may not capture all of the costs associated with creating the unit tests, maintaining the test
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suites and managing the cost of different kinds of bugs (i.e., minor vs. major bugs).

Internal validity
In our simulations, we used 6 months to calculate the initial set of heuristics. Changing the length
of this ramp-up period may effect the results from some heuristics. In the future, we plan to study
the effect of varying this initial period in more detail.

Our approach assumes that each function has enough history such that the different heuristics can
be calculated. Although our approach is designed for legacy systems, in certain cases new functions
may be added, in which case little or no history can be found. In such cases, we ask practitioners to
carefully examine and monitor such functions manually until enough history is accumulated to use
our approach.

Throughout our simulation study, we assume that all bug fixes are treated equally. However,
some bugs have a higher severity and priority than others. In the future, we plan to consider the bug
severity and priority in our simulation study.

External validity
Performing our case studies on a large commercial software system and the Eclipse OSS system
with a rich history significantly improves the external validity of our study. However, our findings
may not generalize to all commercial or open source software systems since each project may have
its own specific circumstances.

Our approach uses the comments in the source control system to determine whether or not a
change is a bug fix. In some cases, these comments are not properly filled out or do not exist. In
this case, we assume that the change is a general maintenance change. We would like to note that at
least in the case of the commercial system, the comments were very well maintained.

When calculating the amount of time it takes to write a the unit test for a function in our
simulations, we make the assumption that all lines in the function will require the same effort.
This may not be true for all functions.

Additionally, our simulation assumes that if a function is recommended once, it needs not be
recommended again. This assumption is fueled by the fact that TDM practices are being used and
after the initial unit test, all future development will be accompanied by unit tests that test the new
functionality.

We assume that tests can be written for individual functions. In some cases, functions are closely
coupled with other functions. This may make it impossible to write unit tests for the individual
functions, since unit tests for these closely coupled functions need to be written simultaneously.

In our study of the effect of list size and available resources (Section 7), we set the time to a fixed
point and varied the parameters to study the effect on POP. Using a different time point may lead to
steeper/flatter curves. However, we believe that the trends will still be the same.

9. RELATED WORK

The related work can be categorized into two main categories: test case prioritization and fault
prediction using historical data.

Test Case Prioritization
The majority of the existing work on test case prioritization has looked at prioritizing the execution
of tests during regression testing to improve the fault detection rate [15, 32, 36–38].

Rothermel et al. [38] propose several techniques that use previous test execution information to
prioritize test cases for regression testing. Their techniques ordered tests based on the total coverage
of code components, the coverage of code components not previously covered and the estimated
ability to reveal faults in the code components that Rothermel et al. cover. They showed that all of
their techniques were able to outperform untreated and randomly ordered tests. Similarly, Aggrawal
et al. [37] proposed a model that optimizes regression testing while achieving 100% code coverage.
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Elbaum et al. [15] showed that test case prioritization techniques can improve the rate of fault
detection of test suites in regression testing. They also compared statement level and function
level techniques and showed that at both levels, the results were similar. In [32], the same authors
improved their test case prioritization by incorporating test costs and fault severities and validated
their findings using several empirical studies [32, 39, 40].

Kim et al. [41] used historical information from previous test suite runs to prioritize tests. Walcott
et al. [42] used genetic algorithms to prioritize test suites based on the testing time budget.

Our work differs from the aforementioned work in that we do not assume that tests are already
written, rather, we are trying to deal with the issue of which functions we should write tests for.
We are concerned with the prioritization of unit test writing, rather than the prioritization of unit
test execution. Due to the fact that we do not have already written tests, we have to use different
heuristics to prioritize which functions of the legacy systems we should write unit tests for. For
example, some of the previous studies (e.g., [41]) use historical information based on previous test
runs. However, we do not have such information, since the functions we are trying to prioritize
have never had tests written for them in the first place.

Fault Prediction using Historical Data
Another avenue of closely related work is the work done on fault prediction. Nagappan et al. [24,31]
showed that dependency and relative churn measures are good predictors of defect density and
post-release failures. Holschuh et al. [43] used complexity, dependency, code smell and change
metrics to build regression models that predict faults. They showed that these models are accurate
50-60% of the time, when predicting the 20% most defect-prone components. Additionally, studies
by Arisholm et al. [23], Graves et al. [25], Khoshgoftaar et al. [26] and Leszak et al. [27] have
shown that prior modifications are a good indicator of future bugs. Yu et al. [28], and Ostrand et
al. [29] showed that prior bugs are a good indicator of future bugs. In their follow-up work, Ostrand
et al. [47] showed that 20% of the files with the highest number of predicted faults contain between
71-92% of the faults, for different systems that may follow different development processes [48].
Hassan [44] showed that the complexity of changes is a good indicator of potential bugs.

Mende and Koschke [34] examined the use of various performance measures of bug prediction
models. They concluded that performance measures should always take into account the size of
source code predicted as defective, since the cost of unit testing and code reviews is proportional to
the size of a module.

Other work used the idea of having a cache that recommends buggy code. Hassan and Holt [22]
used change and fault metrics to generate a Top Ten list of subsystems (i.e., folders) that managers
need to focus their testing resources on. Kim et al. [45] extended Hassan and Holt’s work [22] and
use the idea of a cache that keeps track of locations that were recently added, recently changed and
where faults were fixed to predict where future faults may occur (i.e., faults within the vicinity of
a current fault occurrence). They performed their prediction at two levels of granularity: file- and
method/function-level.

There are some key differences between our work and the work on fault prediction:

1. Our work prioritizes functions at a finer granularity than most previous work on fault
prediction (except for Kim et al.’s approach [45] which predicts at the file and function/method
level). Instead of identifying buggy files or subsystems, we identify buggy functions. This
difference is critical since we are looking to write unit tests for the recommended functions.
Writing unit tests for entire subsystems or files may be wasteful, since one may not need to
test all of the functions in the file or subsystem.

2. Our work considers the effort required to write the unit tests for the function/method.
Furthermore, since our approach is concerned with the unit test creation, we removed
functions/methods after they are recommended once.

3. Fault prediction techniques provide a list of potentially faulty components (e.g., faulty
directories or files). Then it is left up to the manager to decide how to test this directory
or file. Our work puts forward a concrete approach to assist in the prioritization of unit test
writing, given the available resources and knowledge about the history of the functions.
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10. CONCLUSIONS AND FUTURE WORK

In this paper we present an approach to assist practitioners applying TDM, prioritize the writing of
unit tests for legacy systems. Different heuristics are used to generate lists of functions that should
have unit tests written for them. To evaluate the performance of each of the heuristics, we perform
a simulation-based case study on a large commercial legacy software system and the Eclipse OSS
system. We compared the performance of each of the heuristics to that of a random heuristic, which
we use as a base line comparison. All of the heuristics outperformed the random heuristic in terms of
usefulness and POP. Our results showed that, in both systems, heuristics based on the function size
(i.e., LF and LM), modification frequency (i.e., MFM) and bug fixing frequency (i.e., MFF) perform
the best for the purpose prioritization of unit test writing efforts. Furthermore, we studied whether
we can enhance the performance by combining the heuristics. The results showed that combining
the heuristics does not improve the performance when compared to the best performing heuristic
(i.e., LF). Finally, we examine the effect of varying list size and the resources available to write unit
tests on the simulation performance.

Although the approach presented in this paper assumed legacy systems that did not have any unit
tests written for them in the past, we would like to note that this is not the only use case for this
approach. In the future we plan to adapt our approach to work for legacy systems that may have
some unit tests written for them already (since this might be commonly encountered in practice).
In addition, we plan to extend the approach to leverage any other historical data (e.g., systems tests
or domain knowledge) when recommending functions to write unit tests for. Domain knowledge
information and existing system tests can help guide us toward specific parts of the legacy that
might be more (or less) important to test. In that case, we can use this information to know where
we should start our prioritization.
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