
Device Fingerprinting for Augmenting Web Authentication:
Classification and Analysis of Methods

Furkan Alaca P.C. van Oorschot

School of Computer Science
Carleton University, Ottawa, Canada

ABSTRACT
Device fingerprinting is commonly used for tracking users.
We explore device fingerprinting but in the specific context
of use for augmenting authentication, providing a state-of-
the-art view and analysis. We summarize and classify 29
available methods and their properties; define attack models
relevant to augmenting passwords for user authentication;
and qualitatively compare them based on stability, repeata-
bility, resource use, client passiveness, difficulty of spoofing,
and distinguishability offered.

CCS Concepts
•Security and privacy→ Authentication; Web appli-
cation security;

Keywords
Device fingerprinting, multi-dimensional authentication, pass-
words, comparative analysis, comparative criteria

1. INTRODUCTION
We explore the state-of-the-art of device fingerprinting,

albeit with a special focus: to augment web authentication
mechanisms, and especially password-based methods. De-
spite usability and security drawbacks, the latter remains
the dominant form of authentication on the web—in part
because more secure alternatives have their own usability
and deployability issues [13].

Device fingerprinting involves techniques by which a server
collects information about a device’s software and/or hard-
ware configuration for the purpose of identification. Web
browsers reveal information to websites about the host sys-
tem both explicitly by exposing data such as screen reso-
lution, local time, or OS version, and implicitly by leaking
information about the device’s software or hardware config-
uration through observable differences in browser behaviour.
Web analytics and advertising services are known to employ
browser-based device fingerprinting to track users’ brows-

Version: Sept. 22, 2016. This is the authors’ version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record is to
appear in ACSAC 2016. Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991091

ing habits [21, 2]. In addition, a number of commercial
fraud detection services [38, 57] employ browser-based de-
vice fingerprinting to identify fraudulent transactions. Large
web services can mitigate insecure passwords in part by
using server-side intelligence in the authentication process
with “multidimensional” authentication [14], wherein con-
ventional passwords are augmented by multiple implicit sig-
nals collected from the user’s device without requiring user
intervention. We explore the applicability of various finger-
printing techniques to strengthening web authentication and
evaluate them based on the security benefits they provide.
We aim to identify techniques that can improve security,
while being ideally invisible to users and compatible with
existing web browsers, thereby imposing zero cost on us-
ability and deployability.

We identify and classify 29 available device fingerprint-
ing mechanisms, primarily browser-based and known, but
including several network-based methods and others not in
the literature; identify and assess their properties suitable
for application to augment user authentication; define a se-
ries of adversarial models within the context of fingerprint-
augmented authentication; and consider practical issues in
the implementation, deployment, and use of device finger-
printing within the context of user authentication.

While prior work has mostly presented specific device fin-
gerprinting mechanisms or their use by web trackers, we an-
alyze a broad range of such mechanisms within the context
of augmenting password-based web authentication.

2. BACKGROUND AND RELATED WORK
Eckersley [21] published the first research paper discussing

in detail the concept of browser-based device fingerprinting
and showed that websites could identify users and track their
browsing habits by collecting basic information such as de-
vice IP address, time zone, screen resolution, and a list of
supported fonts and plugins; such functionality was origi-
nally designed to help optimize web content for a wide vari-
ety of target devices. Mowery et al. [41, 42] later proposed
two more advanced fingerprinting methods; the first mea-
sures the performance signature of the browser’s JavaScript
engine, and the second renders text in an HTML5 canvas to
distinguish font-rendering techniques across different soft-
ware and hardware platforms. Nikiforakis et al. [48] discuss
the difficulties of thwarting fingerprinting techniques with
client-side privacy extensions; e.g., differences in JavaScript
implementations across browser vendors can reveal which
browser is being used even if the user-agent string is ob-
scured; web proxies can often be circumvented to reveal

1

http://dx.doi.org/10.1145/2991079.2991091

the user’s true IP address through external plugins such as
Flash or Java (cf. [44]); and user manipulation of the device
fingerprint may result in a less common fingerprint that is
even more useful for identifying the user. Bojinov et al. [11]
demonstrate how smartphones can be fingerprinted via a
multitude of onboard sensors; in particular, they use the de-
vice’s accelerometer calibration error and the frequency re-
sponse of the speakerphone-microphone system. Nikiforakis
et al. [47] developed PriVaricator, which reduces fingerprint-
ability by randomizing various browser parameters.

Empirical studies by Acar et al. [3, 2] and Nikiforakis et
al. [48] reveal extensive use of device fingerprinting by ad-
vertisers as a fallback mechanism to track users, should they
clear their browser cookies. Advertisers also save identifying
information via less conventional storage mechanisms, e.g.,
Flash cookies, which are more difficult for users to delete
[39]; this information may be used to reconstruct browser
cookies, should the user clear them [54, 6, 40, 2].

Some work has begun to explore using device fingerprint-
ing to enhance web security. Unger et al. [58] propose en-
hancing session security through server-side monitoring of
certain web browser attributes (e.g., user-agent string, sup-
ported CSS features) to help detect session hijacking. Preuve-
neers and Joosen [51] propose a protocol that monitors var-
ious parameters throughout an authenticated session, such
as user IP address and time of access; applies a similarity-
preserving hash function to enable privacy-preserving fin-
gerprint storage that allows similarity checks between stored
fingerprints and subsequently-collected fingerprints; and uses
a comparison algorithm that assigns a weight to each at-
tribute (based on its usefulness for identifying that partic-
ular client) to determine if the fingerprint has changed sig-
nificantly enough to ask the user to re-authenticate. Van
Goethem et al. [59] propose an accelerometer-based device
fingerprinting mechanism for multi-factor mobile authenti-
cation. Freeman et al. [27] propose a statistical framework
to detect suspicious login attempts using various browser
attributes and other parameters such as time of access.

Spooren et al. [55] argue that the relative lack of diversity
in mobile device fingerprints, compared to desktop comput-
ers, makes them less reliable for risk-based authentication.
However, the study did not include many of the more recent
and advanced fingerprinting mechanisms discussed herein.
Laperdrix et al. [36] collected and analyzed 119,000 finger-
prints, and found that while some mobile device attributes
are less diverse (e.g., limited browser plugin support), other
attributes (e.g., user-agent string and canvas fingerprinting)
are much more diverse than on desktops. Eisen [22, 23] is
the inventor on two patents relevant to device fingerprint-
ing: the first describes how a server may detect fraudulent
transactions by recording the difference between the server’s
local time and that of each client (to determine the client’s
time zone, observance of daylight saving time, and drift from
UTC); the second describes a generalized framework wherein
a server can obtain a fingerprint on each page that the client
requests from the server and signal a warning for a session-
tampering attempt when there is sufficient change in the
fingerprint. A patent by Varghese et al. [60] describes how a
client’s device fingerprint can be used as an index to retrieve
its associated risk of fraud from a central database of finger-
prints for devices suspected of participating in fraud, and
accordingly grant the client an appropriate level of access to
the account.

Implicit authentication [31] is a related technique that
aims to strengthen or replace existing authentication mech-
anisms by relying on user behaviour such as typing rhythms,
touchscreen input, sensor input (e.g., gyroscope, accelerome-
ter, nearby Bluetooth or WiFi devices), usage patterns (e.g.,
time of access, commonly accessed pages), etc. While some
of these techniques are also applicable to the web, our focus
herein is on leveraging device information rather than user
behaviour. However, in the broader context of “multidimen-
sional” authentication, user behaviour profiling can be used
alongside device fingerprinting (and potentially other im-
plicit signals) to achieve stronger authentication guarantees
without sacrificing usability.

3. FRAMEWORK AND THREAT MODEL
Base definitions, replay and spoofing. In device fin-

gerprinting, servers use one or more mechanisms (finger-
printing vectors or vectors) to extract and verify properties
related to the software and/or hardware configuration of a
device. “Pure” device fingerprinting is stateless, depositing
no new client-side information; alternatives are stateful. By
device fingerprint we mean the overall set of vectors a server
employs, or depending on context, the output corresponding
to such vectors. A base assumption is that attackers eventu-
ally learn the set of vectors composing a device fingerprint.
A server may use a collection of vectors and choose some
(random or other) subset in particular instances; if so, we
assume the attacker does not know the subset beforehand.

Many vectors require browsers to perform certain oper-
ations, e.g., via JavaScript, and return the output to the
server. If a vector response is static, i.e., constant regard-
less of circumstances, an attacker observing or intercepting
this can later replay it. If all vectors composing a device
fingerprint are static, so is the device fingerprint, and sim-
ple replay suffices. By spoofing we mean an attacker trying
to mimic the fingerprint of a target device; this is a form
of mimicry attack. If a server varies the vectors, or uses
individual vectors for which the response is dependent on
conditions or a variable challenge of some form, then spoof-
ing requires a more complex attack than simple capture and
replay—e.g., successfully spoofing some forms of geoloca-
tion (as discussed later) requires attacker access to a proxy
machine located near the victim. In the models below and
elsewhere, we typically use the more general term spoofing,
but often this requires only replay.

To facilitate analysis of device-fingerprinting-augmented
authentication, we define a continuum of five attack mod-
els, in order of increasing attacker power and skill. Table 1
summarizes and compares attacker capabilities across these
models. This modelling also serves to motivate and focus
later discussion of desirable defensive properties of finger-
printing vectors (see Section 5 and Table 2).

Model M1: Naive attack. We consider a naive attack
to be a conventional online password-guessing attack that
does not attempt to thwart any secondary authentication
mechanisms. This is the easiest attack to protect against:
if the attacker attempts to guess an account password while
making no effort to spoof the device fingerprint of the ac-
count owner, the server can determine based on historical
data that the authentication attempt is from a device that
the account owner has never used. Advanced attackers will
use the more sophisticated models below.

2

Attack models

O
p
ti

m
iz

ed
p

a
ss

w
o
rd

-g
u

es
si

n
g

O
p
ti

m
iz

ed
d
ev

ic
e

fi
n
g
er

p
ri

n
t

g
u

es
si

n
g

O
b
ta

in
p

a
rt

ia
l

o
r

fu
ll

ta
rg

et
d
ev

ic
e

d
et

a
il
s

P
h

is
h

v
ic

ti
m

p
a
ss

w
o
rd

a
n
d

d
ev

ic
e

fi
n

g
er

p
ri

n
t

S
p

o
o
f

d
ev

ic
e

fi
n
g
er

p
ri

n
t

S
te

a
l

se
ss

io
n

co
o
k
ie

M1: Naive attack
M2: Optimized password
and fingerprint guessing
M3: Targeted password
and fingerprint guessing
M4: Fingerprint phishing
and spoofing
M5: Session hijack with
fingerprint spoofing

Table 1: Attacker models (rows) and capabilities (columns).

Model M2: Optimized password and fingerprint
guessing attack. This attack follows an optimal guess-
ing strategy, i.e., guessing passwords in order of popularity
across many accounts [12] while iterating over device fin-
gerprint “guesses” expected to maximize the probability of
account break-in. The attacker may spoof or mimic several
fingerprints that match a set of popular devices, potentially
tailored to the target website audience; e.g., websites target-
ing users in particular countries are likely to have visitors
within certain time zones, or vendor-specific technical sup-
port sites will likely have visitors using that vendor’s devices.
The attacker can then, based on the popularity of each pass-
word and device fingerprint combination, mount an attack
by iterating through the list of password-fingerprint pairs in
order of decreasing popularity across all accounts. In special
cases, the attacker may reduce the search space by obtaining
a list of passwords (e.g., from a leaked password database
of another website, if users can be mapped between the two
websites through information such as e-mail addresses) or a
list of device fingerprints (e.g., by exploiting a XSS vulner-
ability to obtain the necesary data from a large subset of
users to spoof their device fingerprints).

Model M3: Targeted password and fingerprint
guessing attack. The attacker aims to break into a specific
account, and mounts a password guessing attack while also
attempting to spoof a fingerprint to match a target device.
This attack iterates over passwords and fingerprints in some
optimized order, as in M2. The attacker may significantly
reduce the search space by using known information (e.g., if
the user is known to use a particular type of device) or in
special cases may possess (e.g., due to a priori capture) the
user’s password or a fingerprint of the user’s device, thereby
reducing the attack to either fingerprint guessing or pass-
word guessing.

Model M4: Fingerprint phishing and spoofing.
Whereas classic phishing attacks steal passwords, a related
attack could target websites using device-fingerprinting-
augmented authentication to capture both the victim’s pass-
word and device fingerprint. The attacker will then spoof
the fingerprint and access the account with the captured
password. This attack is harder if the device fingerprint is
not easily spoofed.

Model M5: Session hijack with fingerprint spoof-
ing. The attacker aims to hijack an existing authenticated
session, vs. attackers M1-M4 which attempt account break-
in via password and fingerprint guessing or stealing. The M5
attacker is granted the power to steal session cookies and ex-
ecute client-side JavaScript by exploiting, e.g., improperly-
configured HTTPS [53, 35] or XSS vulnerabilities. This
enables the attacker to (1) capture device fingerprints sent
from the browser to the server, and (2) perform any addi-
tional fingerprinting that would facilitate spoofing the user’s
device and thereby resuming the session from the attacker’s
device. A device fingerprint useful under M5 must thus
be hard to spoof (beyond simply replaying a static string).
Server-side fingerprint checking has been proposed as a de-
fence against attacker reuse of stolen session cookies [58,
51].1

We now provide some simple comments on these models:

• Attacks under M1: Device fingerprinting completely
stops naive attacks, even if fingerprints are replayable.

• Attacks under M2: Device fingerprinting significantly
reduces the success probability of M2 attacks, even with
replayable fingerprints, if the guessing space of the fin-
gerprints is sufficiently large relative to the number of
guesses the attacker is capable or allowed to submit.

• Attacks under M3: These attacks are more difficult to
defend against, since the attacker targets a specific user
and is assumed to have device-specific information.

• Attacks under M4: These are the most difficult to pre-
vent among M1-M4, since the M4 attacker lures the
user by phishing to capture a password and device fin-
gerprint. If the fingerprint is replayable, this suffices for
spoofing.

• M5 is specific to session hijacking, with fingerprinting
used not simply to augment authentication at the start
of a session, but throughout one; this is pursued in Sec-
tion 6.2.

The above models and discussion help delineate properties
important in our later analysis and classification.

4. DEVICE FINGERPRINTING VECTORS:
CLASSIFICATION

We now identify, summarize, and classify fingerprinting
vectors based on a review of research literature, informal
sources (e.g., online sources, open-source fingerprinting li-
braries, online advertising and anti-fraud services), and other
fairly obvious vectors including some not formally docu-
mented elsewhere to our knowledge. In most cases, we clas-
sify these vectors based on the method used to obtain the
fingerprintable information from the client. Alternative clas-
sifications are possible, such as based on the type of infor-
mation collected: hardware features, network information,
user-defined preferences, and software installed (e.g., OS,
applications, device drivers, shared libraries).

1The motivation behind this use case is similar to that of
Channel ID (originally known as Origin-Bound Certificates
[20]), which uses self-signed, domain-specific SSL client cer-
tificates dynamically generated by the client. Session cook-
ies are cryptographically bound to the SSL session, thereby
requiring an attacker to possess both the client’s cookie and
domain-specific private key to hijack a session.

3

Category 1: Browser-provided information. Web
browsers explicitly provide (e.g., via JavaScript) a wide range
of system information that is of use to constructing a device
fingerprint. Known vectors are listed below.

(a) Major software and hardware details. The nav-
igator and window Browser Object Model (BOM) objects
expose attributes such as browser/OS vendor and version,
system language, platform, user-agent string (which includes
the prior three and sometimes others, e.g., device model
number), installed plugins, supported browser storage mech-
anisms (e.g., localStorage, indexedDB, sessionStorage, Web-
SQL via openDatabase), screen resolution, colour depth, and
pixel density.

(b) WebGL information. WebGL [43], a JavaScript
API for rendering graphics within web browsers, exposes
various attributes (e.g., GL version, max texture size or ren-
der buffer size, supported WebGL extensions, vendor/renderer
strings) of the underlying browser and hardware.

(c) System time and clock drift. The device’s system
time can be accessed via JavaScript and used to infer the
device’s time zone, observance of daylight saving time, and
clock drift from Coordinated Universal Time (UTC) [22].

(d) Battery information. The HTML5 battery status
API is suitable for fingerprinting when sufficiently precise
readouts are provided [50]. The battery’s charge level can
be used for short-term tracking of clients across different
websites; its capacity (which slowly degrades with battery
age, but changes very little over relatively short periods such
as days) can be estimated by monitoring the discharge rate
for about 30 seconds, and used to aid identification.

(e) Evercookies.2 An evercookie is a mechanism whereby
a client identifier (and/or other tracking information com-
monly stored in a browser cookie) is stored on the device
using a variety of techniques such as HTML5 local storage,
HTTP ETags, or Flash cookies, thereby allowing websites
to reconstruct user-deleted cookies [2].

(f) WebRTC. WebRTC is a set of W3C standards that
support native (plugin-free) browser-to-browser applications
such as voice and video chat [8]. Devices can be fingerprinted
by enumerating supported WebRTC features and potentially
connected media devices such as microphones and webcams;
browsers differ as to what types of devices can be enumer-
ated without user permission. WebRTC also exposes the
IP addresses assigned to all network interfaces present on
the device [52], including private IP addresses assigned by a
NAT router or VPN.

(g) Password autofill. JavaScript can be used to de-
tect if a password has been user-typed, or auto-filled by a
browser or password manager. Our tests show that this
is easily achieved using event listeners to detect whether
the user has typed any characters into the password field,
e.g., by assigning an event listener for the keydown event
(triggered when a key is pressed down) and keypress event
(triggered after a key has been pressed and subsequently
released). Since these events are triggered by physical key
presses, their absense indicates password entry via autofill

2Evercookies violate the stateless property of our “pure”
device fingerprinting definition, but are nonetheless con-
sidered a form of fingerprinting by, e.g., the W3C:
https://w3c.github.io/fingerprinting-guidance

(or other automated means, e.g., an automated password-
guessing attack).

Category 2: Inference based on device behaviour.
Information about the device can be gleaned not only by
querying the browser (as in Category 1), but also by exe-
cuting specially-crafted JavaScript code on the browser and
observing the effect, e.g., measuring execution time or ana-
lyzing generated output. The following fall in this category.

(a) HTML5 canvas fingerprinting. JavaScript can be
used client-side to render a variety of text and graphics in an
HTML5 canvas, and send the server a hash of the resulting
bitmap image [42]. Subtly different images are generated
by devices with different software/hardware configurations,
e.g., fonts and font rendering (e.g., anti-aliasing) vary with
OS and video driver, and emojis vary with OS and smart-
phone vendor [36]. Rendering text using a list of predefined
fonts allows font detection [24]. Rendering complex graphics
using WebGL provides further fingerprint diversity by a wide
range of rendered hardware-dependent graphics output.

(b) System performance. Client-side JavaScript can be
used to run JavaScript engine benchmarks over a range of
computationally-intensive operations. The elapsed times are
measured to infer device performance characteristics [41].

(c) Hardware sensors. Mobile device sensors can be fin-
gerprinted based on variations in manufacturing and factory
calibration, e.g., measuring calibration error of smartphone
accelerometers (accessible via JavaScript) or the frequency
response of speakerphone-microphone systems [11, 19].

(d) Scroll wheel fingerprinting. Various aspects of user
pointing devices can be inferred via JavaScript by listening
for the WheelEvent event, triggered whenever the user scrolls
using a mouse wheel or touchpad [49]. For example, a mouse
wheel scrolls the page by fixed increments when triggered;
a touchpad can scroll by varying increments. Measuring
the rate at which a document is scrolled reveals information
both about user scrolling behaviour and the value of the OS
user-configurable scrolling speed.

(e) CSS feature detection. The browser vendor and
version can be inferred by testing CSS features that are not
uniformly supported across browsers [58], e.g., by setting the
desired CSS property on a target element and subsequently
querying the element to determine if the change was applied.
This vector (and vectors 2f and 2g, below) yields a subset
of the information obtained from the user-agent string (via
1a or 4e). If a device fingerprint already extracts user-agent
string information by another vector, then 2e here can also
be used to test if that information has been manipulated.

(f) JavaScript standards conformance. Browsers dif-
fer in conformance to the JavaScript standard, allowing fin-
gerprinting based on behaviour in corner cases. Various
JavaScript conformance tests run thousands of test cases
that can collectively take over 30 minutes. Mulazzani et al.
[45] developed a technique that leverages the fact that mod-
ern browsers fail very few of these tests. This technique can
be used to verify the browser vendor and version reported
in the user-agent string by using a decision tree to select a
very small subset of tests that run in negligible time.

(g) URL scheme handlers. Some browsers implement
non-standard schemes to access local resources; e.g., res://
in Microsoft IE exposes images stored in DLL files in the
Windows system directory, and moz-icon://, jar:resource://

4

https://w3c.github.io/fingerprinting-guidance

and resource:// in Mozilla Firefox expose various built-in
browser and OS resources. Although recent browser versions
disallow websites from accessing local files via file:// (to pre-
vent leakage of user private data), this restriction does not
extend to the aforementioned schemes. Websites can thus
create HTML image tags with the source address set to a
local resource and use the onerror event handler to detect
if the image was loaded. By iterating through a list of re-
sources preloaded with various browser or OS versions, this
vector can enumerate the non-standard schemes supported
and the resources successfully loaded [30]. This offers an
alternative (to 2e, 2f, and 1a) to infer browser vendor and
version.

(h) Video RAM detection. The amount of Video RAM
(VRAM) available to the GPU, while not explicitly available
via the WebGL API, can be inferred by repeatedly allocat-
ing textures until VRAM is full, after which textures start
being swapped into system main memory. By observing the
elapsed time for each texture allocation and recording the
step at which a large spike in elapsed time is observed,3 it
can be inferred that GPU VRAM is at full utilization. After
this point, the browser can continue allocating textures until
an OUT OF MEMORY4 error is returned.

(i) Font detection. While installed fonts cannot be enu-
merated via JavaScript, text can be formatted with fonts
from a predefined list; the dimensions of the resulting text
can distinguish different font rendering settings and allow
the presence of each font (and even versions of the same
font) to be inferred [48, 25].

(j) Audio processing. The HTML5 AudioContext API
allows the creation of audio visualizations by providing an
interface for real-time frequency- and time-domain analy-
sis of audio playback. As with 2(a) HTML5 canvas fin-
gerprinting, audio processing varies by browser and soft-
ware/hardware configuration [24].

Category 3: Browser extensions and plugins. Browser
plugins and extensions can be leveraged for fingerprinting in
a manner similar to Categories 1, 2, and 4 (i.e., by directly
querying for information, by inference, and/or by protocol-
level analysis). The following are such methods.

(a) Browser plugin fingerprinting. Browser plugins
such as Java, Flash, and Silverlight can be queried (via plu-
gin objects embedded in a webpage) to reveal system infor-
mation, often in more detail than available via JavaScript.
For example, Flash provides the full OS kernel version; both
Flash and Java plugins allow all system fonts to be enumer-
ated; even the order in which system fonts are enumerated
can vary across systems, increasing the distinguishability of
fingerprints [48, 21].

(b) Browser extension fingerprinting. If the NoScript
extension is installed (disabling JavaScript by default for all
websites, except those whitelisted by the user), a website

3For example, on a system we tested, about 1ms elapsed
while allocating each 16MB texture. This spiked to 10-40ms
after the GPU VRAM reached full capacity.
4This error does not necessarily indicate all system memory
is depleted, but that WebGL can no longer allocate memory.
It is undesirable to continue allocating until this error trig-
gers, as the user may be presented an error message (in our
testing, desktop Google Chrome does not produce an error;
Chrome for Android does).

can attempt to load scripts from a large set of websites (e.g.,
Alexa Top 1000) to detect which are on the user whitelist
[41]. Similarly, ad blockers can be detected by embedding a
“fake”ad such as a hidden image or iframe with a source URL
containing words commonly blacklisted by ad blockers (e.g.,
“ads”); JavaScript can then detect if the fake ad has been
loaded, and return the result to the server. Other extensions
may be fingerprinted by other methods, e.g., some browser
extensions add custom HTTP headers [36].

(c) System-fingerprinting plugins. Websites may in-
stall specialized plugins (e.g., by bundling them with other
software available for download) to provide more powerful
fingerprinting information such as hardware identifiers, OS
installation date, and installed driver versions [48]. Such
plugins are generally considered spyware.

Category 4: Network- and protocol-level techniques.
The prior categories involve accessing application-level APIs
on client devices. Network- and protocol-level techniques
can also be used to fingerprint devices as follows.

(a) IP address. A client IP address can be used as
an identifier, or to query regional Internet registries (via
the WHOIS protocol) to obtain further information such as
the Autonomous System (AS) it resides in and organization
name it is registered to. While IP address is a more precise
identifier than AS number, the latter is a more stable ID for
hosts with dynamic IP addresses and is useful as a poten-
tial cross-check when verifying client location (see further
comment regarding this in Section 5.6).

(b) Geolocation. The client’s geographical location may
be determined via several mechanisms. Modern web browsers
typically expose APIs (e.g., via the navigator BOM object,
cf. vector 1a) by which a website may request user permis-
sion to obtain current location (via, e.g., onboard GPS hard-
ware, cellular triangulation, WiFi access point information,
or user-supplied information). Network-based mechanisms
[44] include WHOIS lookups based on IP address, infer-
ence based on routing data, and geolocation involving delay-
based measurements [1].

(c) Active TCP/IP stack fingerprinting. Differences
across network links and OS TCP/IP implementations allow
devices to be fingerprinted by sending them carefully-crafted
TCP/IP probes and analyzing response packet header fields
(e.g., RTT, TCP initial window size) or link characteristics
(e.g., MTU, round-trip delay). This method is browser-
independent, and can be used on any Internet-accessible
host. Nmap [37] is a popular scanning tool that includes
host discovery, port scanning, and an OS detection feature
that sends various probe packets and applies heuristics from
its built-in database to differentiate thousands of systems.
As this sends special probe packets to the client, i.e., is ac-
tive fingerprinting, it can trigger firewall and IDS alerts due
to its common reconnaissance use by attackers.

(d) Passive TCP/IP stack fingerprinting. A less in-
trusive (less powerful) technique, passive fingerprinting, sniffs
existing network communication but uses heuristics similar
to active fingerprinting to identify hosts; p0f [62] is an exam-
ple of such a tool. Passive approaches are more suitable fin-
gerprinting vectors, as header analysis of existing web traffic
requires no new packets that may be flagged as intrusive.

(e) Protocol fingerprinting. Protocol-level fingerprint-
ing can be applied to higher-level protocols to differentiate

5

versions or configurations of browser software or libraries.
For example, the server may record HTTP header fields
sent by clients, e.g., user-agent string, list of acceptable lan-
guages and character encodings, and the user-configurable
DoNotTrack parameter. Moreover, the browser’s TLS li-
brary can be fingerprinted using its ClientHello packet from
the handshake sequence that negotiates protocol parame-
ters [15]; information of relevance includes client TLS ver-
sion, supported ciphersuites (and their order of presenta-
tion), compression options, and list of extensions (and asso-
ciated parameters such as elliptic curve parameters).

(f) DNS resolver. A web server may determine which
DNS resolver a client is using—for many clients, the default
DNS resolver is configured by the user’s ISP (which typ-
ically should not respond to queries originating from out-
side the ISP’s network), but a minority of users may switch
to other DNS resolvers, e.g., run by Google or OpenDNS.
One approach involves a server sending the client browser
a document containing a reference to a randomly-generated
subdomain under a domain for which the authoritative DNS
server is under control of the website owner [56]. When the
client attempts to resolve the subdomain, the website’s DNS
server receives the request from the client’s DNS resolver and
can associate the randomly-generated subdomain with the
client for which it was originally generated.

(g) Clock skew. TCP timestamps can be passively ana-
lyzed to measure client clock skew—a measure (e.g., in mi-
croseconds per second) of the rate at which the client’s clock
deviates from the true time [34].

(h) Counting hosts behind NAT. For clients behind a
NAT, the number of hosts behind the NAT contributes to a
device fingerprint. Bellovin [7] first proposed counting hosts
behind a NAT by passively analyzing the IPv4 ID field (used
for fragment reassembly); Kohno et al. [34] proposed the use
of clock skew measurements to differentiate hosts behind a
NAT. These techniques may be augmented with upper layer
information, e.g., by including in the fingerprint the IDs of
other users who access accounts from the same IP address.

(i) Ad blocker detection. While ad blocker detection
can be done client-side with JavaScript as in vector 3(c), it
can also be done server-side by monitoring incoming HTTP
requests to detect if the client has requested the fake ad.

5. DEVICE FINGERPRINTING VECTORS:
DESIRABLE PROPERTIES

Augmenting authentication with device fingerprinting re-
quires considering various characteristics, which we now ex-
plore through a comparative analysis. While some charac-
teristics may raise issues for behavioral advertising applica-
tions that use fingerprinting to track user browsing habits
(not our focus), these may have less demanding requirements
of device distinguishability; 80% or 90% accuracy in tracking
user habits may suffice, but is rarely acceptable in authen-
tication contexts (our focus). We discuss these properties
below, with a comparative summary in Table 2.

To increase accuracy, device fingerprints employ multiple
fingerprinting vectors. All vectors in Section 4 can be freely
combined, limited by possible impact on device/user experi-
ence (only a few vectors, as noted below, have non-negligible
resource costs), and server cost for fingerprint verification.
Vectors from Categories 1 to 3 involve client-side JavaScript

(and thus incur non-zero, but typically small, client over-
head). To help compare vectors, and provide information of
use in combining them, estimates of the distinguishability
provided by each vector are included below and in Table 2.

5.1 Stability
Virtually all components of a device fingerprint are sub-

ject to change, but some (e.g., time zone for desktop ma-
chines or for mobile devices of users who rarely travel) may
change much less frequently than others (e.g., browser ver-
sion). A significant change in device fingerprint may require
server authentication of the user to temporarily fall back
to a less convenient but more reliable mechanism, such as a
one-time passcode sent over SMS or e-mail. Thus it is prefer-
able from a usability perspective to combine methods that
provide fingerprints that are stable over time, i.e., with a suf-
ficient number of component vectors stable at a given time.
Overall fingerprint stability can be improved by combining
multiple vectors and implementing a scoring mechanism that
allows a subset of vectors to change. In the empirical study
by Eckersley [21], an algorithm correctly linked a device’s old
fingerprint with the updated fingerprint in 65% of devices
with 99.1% accuracy. If such an algorithm were used in the
context of authentication, a high-security application might
minimize false accepts at the expense of a higher false re-
ject rate. This trade-off may be different in a context where
security is less important than user convenience.

The majority of individual vectors from Categories 1 to 3
are relatively stable, with some exceptions:

• 1(a) Major software and hardware details may occa-
sionally change if the user upgrades their OS, switches
browsers, installs or removes browser plugins, etc.

• 1(d) Battery information will change, e.g., as battery
capacity degrades with age.

• 2(a) HTML5 canvas rendering details may change with
browser, OS, or graphics driver updates.

• 2(e) CSS feature detection and 2(f) JavaScript stan-
dards conformance may change with browser updates.

In contrast, vectors from Category 4 are generally less stable:

• 4(a) IP address, 4(b) Geolocation (depending on gran-
ularity), and 4(f) DNS resolver (unless manually con-
figured) change as users log in from different locations.
These vectors are more stable for desktop than mobile
devices.

• 4(c, d) TCP/IP stack fingerprinting varies with routing
changes that affect, e.g., round-trip delay and number
of hops between client and server. If a user logs in from
a different network location, additional changes would
be observable in, e.g., the MTU of the network link,
or responses to probe packets due to different firewall
rules.

• 4(e) Protocol fingerprinting will vary with updates to
the browser or shared (e.g., SSL/TLS) libraries.

• 4(h) Counting hosts behind a NAT is unstable over
time, as devices may enter and leave a network.

Exceptions are 4(i) Ad blocker detection and 4(g) Clock skew
(TCP timestamps reflect CPU clock skew, which is relatively
stable [34]). Even vectors unstable over longer periods may
remain useful for applications requiring identification across
short periods, e.g., throughout one day, hour, or session.

6

Cita
tio

n

Stabilit
y

Rep
ea

tabilit
y

Low
Reso

urce
Use

Spoofing Resi
sta

nce

Clie
nt Passi

ven
ess

Dist
inguish

ing In
fo.

Overl
aps W

ith

Category 1:

Browser-
provided
information

1a) Major software and hardware details [21] 1d; 2e,f,g; 3a,c; 4b,e
1b) WebGL information [61] † 2a
1c) System time and clock drift [22] †
1d) Battery information [50] † 1a
1e) Evercookies [2]
1f) WebRTC [16] †
1g) Password autofill *

Category 2:

Inference
based
on device
behaviour

2a) HTML5 canvas fingerprinting [42] 1b
2b) System performance [41] †
2c) Hardware sensors [11, 19]
2d) Scroll wheel fingerprinting [49] †
2e) CSS feature detection [58] 1a
2f) JavaScript standards conformance [45] 1a
2g) URL scheme handlers [30] 1a
2h) Video RAM detection * †
2i) Font detection [48]
2j) Audio processing [24] †

Category 3:
Extensions
and plugins

3a) Browser plugin fingerprinting [21, 36] 1a
3b) Browser extension fingerprinting [41] 4i
3c) System-fingerprinting plugins [48] 1a

Category 4:

Network-
and
protocol-
level
techniques

4a) IP address –
4b) Geolocation [44] 1a
4c) Active TCP/IP stack fingerprinting – † 4d
4d) Passive TCP/IP stack fingerprinting – 4c
4e) Protocol fingerprinting [15] † 1a
4f) DNS resolver [16]
4g) Clock skew [34]
4h) Counting hosts behind NAT [7]
4i) Ad blocker detection – 3b

Table 2: Classification and comparative summary of device fingerprinting vectors. Citation sources provide discussion or original

proposal; asterisk denotes unawareness of previous literature proposing the vector; dash indicates vector commonly known. Filled circle

indicates that vector (row) provides benefit (column); half or empty circle indicates that benefit is partially provided or not provided,

respectively. Distinguishing Info. uses a 5-dot scale: (VeryLow, Low, Medium, High, VeryHigh) with coarse mapping to bit-ranges (0-2,

3-6, 7-14, 15-30, ≥31); † denotes Requires Further Study (RFS). The final column notes vectors that overlap in the information that

they provide.

5.2 Repeatability
We define repeatability as the property whereby a vector

generates the same result if the software, hardware, and net-
work configurations of a device are unchanged (whereas sta-
bility primarily concerns changes in device configuration).
Repeatability is challenging for vectors measuring device
performance, e.g., CPU, GPU, or network throughput, since
performance varies if clients simultaneously perform other
tasks. Most vectors discussed are repeatable, with these ex-
ceptions:

• 2(b) System performance may vary based on whether
the device is burdened with other tasks. For mobile
devices, it can also depend on temperature, as mobile
chipsets scale back clockspeeds at high temperature.

• 2(c), 4(g) Temperature can affect hardware sensor data
[19] and clock skew [46].

• 2(d) Scroll wheel fingerprinting requires that the user
uses their scroll wheel. If the user does not do so on
every visit to a web page, the vector is not repeatable.

• 2(h) Available VRAM will vary based on how much is
currently in use by the device.

• 4(f) The DNS resolver used may vary due to load bal-
ancing of DNS resolvers.

• 4(h) Vectors counting hosts behind a NAT may vary
depending on the presence of other devices on the net-
work.

Fingerprinting vectors that are not reliably repeatable (but
repeat often enough) may still be useful, if many vectors
are used in the overall device fingerprint and an appropriate
scoring mechanism is used as per Section 5.1, where a subset
of vectors are allowed to change.

5.3 Resource Use (Overhead)
Fingerprinting vectors that require more system resources

(e.g., CPU cycles, system memory, or I/O) bring perfor-
mance and battery life costs. This is of less concern for
websites that fingerprint devices only once per authentica-
tion process, and more for websites aiming to detect session
hijacking by fingerprinting repeatedly throughout a session.

Most Table 2 vectors have low overhead, requiring pro-
cessing time in the milliseconds range, but a few may require
time on the order of seconds: 1(d) Battery information, 2(b)
System performance, 2(c) Hardware sensors, and 2(h) Video
RAM detection. While 2(b) consumes CPU cycles and 2(h)
GPU memory, 1(d) and 2(c) only require time to collect
sufficient data and thus rate half circles.

7

5.4 Spoofing Resistance
As per Section 3, attackers will try to spoof a device finger-

print that resembles the target. For vectors from Categories
1 to 3, the browser runs client-side JavaScript and returns
output to the server; this makes it easy for attackers to spoof
a (guessed or intercepted) response,5 with three exceptions:

• 1(e) Evercookies are stateful (violating our pure finger-
printing definition), and can store global identifiers us-
ing, e.g., Flash cookies and HTML5 local storage, which
are protected by Same-Origin Policy (SOP). Rather than
spoofing, evercookies may be stolen and replayed by M5
attackers; but since this requires exploiting a vulnera-
bility, we grant a filled circle.

• 2(c) While hardware sensors can be spoofed by obtain-
ing a copy of the sensor data from the client and re-
playing it, obtaining such data in the first place may
require user cooperation. For example, the web browser
may ask for the user’s permission before accessing the
microphone.

• 3(c) Information available only through specialized plu-
gins, e.g., hardware identifiers, may require more ef-
fort for attackers to obtain if the plugin is designed to
communicate only with the website by which it was in-
stalled.

In comparison, Category 4 vectors are more resistant to
spoofing (but none are completely immune). The following
vectors are rated spoofing-resistant:

• 4(a) IP source address spoofing is possible due to insuffi-
cient deployment of source address validation across the
Internet [10], and is often used to mount DoS attacks.
However, using a spoofed source address to establish
two-way communication with a host is difficult, as the
host will always send response packets to the spoofed
address.

• 4(g) Clock skew fingerprinting has been proposed for
identifying wireless sensors in mesh networks [29] and
access points in 802.11 wireless LANs [32]; both tech-
niques rely on timestamps used in the respective MAC
protocols. Arackaparambil et al. [4] showed that clock
skew can be spoofed, but doing so introduces irregu-
larities detectable through analysis, and that using a
smaller 801.11 beacon frame transmission interval (typ-
ically 100ms) causes the irregularlities to be more pro-
nounced and thus more easily detectable. Clock skew
measurements derived from TCP timestamps would be
more coarse-grained compared to MAC-protocol-level
timestamps, but may nonetheless be difficult to spoof
undetectably.

With the exception of 4(i) Ad blocker detection and 4(e)
Protocol fingerprinting, which can be spoofed fairly easily
by using the same browser and library versions as the tar-
get device, the remaining Category 4 vectors are graded as
partially resistant to spoofing in Table 2:

• 4(b) Techniques like delay-based location verification [1]
require attacker access to a proxy situated close to the

5For example, credit card fraudsters use the FraudFox
toolkit [26, 33], using a heavily modified Mozilla Firefox and
Adobe Flash, to spoof various fingerprintable attributes such
as OS version, screen resolution, and list of fonts. It includes
a feature for capturing device fingerprints of phished users.

victim to spoof the victim’s location. Geolocation rely-
ing on information reported by a browser location API
is more easily spoofed (but falls in Category 1).

• 4(c,d) Spoofing an OS TCP/IP stack can be done by
manipulating TCP/IP behaviour with various off-the-
shelf tools [9]. Network- or link-dependent measure-
ments such as number of hops between client and server,
round-trip delay, and MTU appear to require compar-
atively more effort to spoof.

• 4(f) If the client uses its ISP’s DNS resolver (which typ-
ically responds only to DNS requests originating within
the ISP’s network), a successful attack requires access
to a machine within that ISP’s network.

• 4(h) The difficulty of spoofing the number of hosts be-
hind a NAT varies based on the technique used; a sim-
pler technique based on the IPv4 ID field [7] would be
easier to spoof, whereas a clock skew based technique
[34] would be more difficult (as discussed previously).

Resistance to spoofing may be increased by certain strate-
gies. For example, with 2(a) HTML5 canvas fingerprinting,
when a device is first associated with an account, the server
may send multiple challenges (i.e., different sets of text and
graphics to render), with the client returning corresponding
results. The server may then randomly select a subset of
stored challenges on each authentication attempt. Improv-
ing resistance of a vector to simple replay improves spoofing
resistance, but a highly resourceful attacker might be able
to configure attack software to mimic a target device for
any given challenge, including for 2(a) as just noted. Differ-
ent strategies may enhance the spoofing resistance of other
vectors—e.g., for 2(b) System performance, a client puzzle
[5] approach might be used, whereby the server sends crypto-
graphic puzzles to the client and measures the time taken to
receive a correct result. While more powerful devices might
still spoof slower devices, such techniques raise the bar for
attackers.

5.5 Client Passiveness
We classify a vector as client-passive if it can be used by

the server without explicit cooperation or knowledge of the
device. All vectors from Categories 1 to 3 require browsers
to execute client-side JavaScript and return output to the
server; these are not client-passive. All Category 4 vectors
are client-passive to some degree, as none require explicit
client cooperation. We elaborate in further comments.

• 4(b) Geolocation can be client-passive depending on
mechanism, e.g., IP-based geolocation with table look-
up is client-passive, but not vectors that require client-
side JavaScript.

• 4(c) Active TCP/IP stack fingerprinting requires send-
ing extra probe packets to the client to observe the re-
sponse (or lack thereof). While sending probe packets
does not require client cooperation, such packets may
be detectable by client firewalls; probes crafted to ap-
pear part of regular HTTP traffic may be considered
client-passive.

• 4(f) DNS resolver fingerprinting does not require client-
side JavaScript, but on carefully inspecting webpage
source code a client might suspect that the random-
appearing domain name string was injected to learn the
client’s DNS resolver. Thus, we grade this vector par-
tially client-passive.

8

All others in Category 4 are graded client-passive; a device
fingerprint can be constructed with these solely by inspect-
ing existing HTTP traffic between server and client.

5.6 Distinguishing Information
To describe the granularity at which fingerprinting vectors

can identify a device, we use the term distinguishing infor-
mation; a related term is personalization measurement [24].
We prefer here to avoid directly using the term entropy,
since, e.g., Shannon (and other) entropy is relative to an es-
tablished probability distribution, which we are not in posi-
tion to describe for device fingerprinting. In what follows we
give only relative, qualitative estimates of distinguishability—
informed in part by external studies. Distinguishability de-
pends on the size of the (user) device space in question, and
diversity of the underlying properties fingerprinted. A vec-
tor’s distinguishability may depend on a site’s target user
distribution; e.g., for sites targeting a given country, vectors
1(c) System time and 4(b) Geolocation give less separation.

Given our informal definition of distinguishability, to help
in comparing and selecting vectors to combine, we provide
a qualitative analysis of each vector’s distinguishability. Ta-
ble 2 summarizes the ratings, and its caption gives the scale
and coarse mapping for the estimates below; RFS denotes
Requires Further Study.

• 1(a) Major software and hardware details is graded High,
as it includes attributes such as user-agent string, list of
plugins, screen resolution, and presence of localStorage
and sessionStorage (˜10 bits, ˜15 bits, ˜4.83 bits, and
˜2.12 bits respectively as per [21]), in addition to other
attributes.

• 1(b) WebGL information is estimated Low (RFS), based
on our preliminary experimentation.

• 1(c) System time depends on time zone and daylight
saving time; 24 possible values would yield a maximum
of ˜4.65 bits, but in practice the distribution of users
across time zones will be skewed, e.g., ˜3 bits as per
[21]. Clock skew can also be measured, but this RFS,
so we grade this vector overall as Low (RFS).

• 1(d) Battery information (RFS, but) is estimated Low
for battery life, assuming that web-connected devices
largely have battery life in the range of 4-10 hours of ac-
tive use; using current charge level would provide more
distinguishability for within-session fingerprinting.

• 1(e) Evercookies are graded VeryHigh; the server can
save a globally unique identifier on the device.

• 1(f) WebRTC is graded Medium (RFS), as most con-
sumer routers assign IP addresses in the 192.168.0.x
range, thus these have upper bound ˜8 bits.

• 1(g) Password autofill and 4(i) Ad blocker detection are
graded VeryLow; each are binary values.

• 2(a) HTML5 canvas fingerprinting is graded Medium, as
it gives ˜8.6 bits of distinguishing information, per [36].

• 2(b) System performance (RFS, but) is estimated Low
due to limited granularity at which system performance
can be measured within the constraint of a few seconds.

• 2(c) Hardware sensors is graded Medium; Bojinov [11]
collected accelerometer data from over 3000 devices, cal-
culating the entropy of the distribution to be ˜7.5 bits.

• 2(d) Scroll wheel fingerprinting yields a binary value
to distinguish scroll wheel from touchpad, but can also
potentially detect differences in OS scroll speed settings;
VeryLow (RFS).

• Vectors 2(e), 2(f), 2(g) are yet to be reported in em-
pirical studies, but we estimate VeryLow; these vectors
serve to distinguish between different browser vendors
and versions, for which the distribution is likely skewed
towards the most recent versions.

• 2(h) Video RAM is estimated VeryLow to Low (RFS).
Many common configurations offer limited (say 2-3 bits
of) choice, e.g., 1GB, 2GB, 4GB. (However this is com-
plicated by many devices having shared system/video
memory.)

• 2(i) Font detection is graded Low to Medium. Enumer-
ating all fonts via the Flash plugin yields 7-14 bits [21,
36], with the spread largely attributable to substantially
lower diversity of fonts on mobile devices. JavaScript
font detection is unordered and cannot do a full enu-
meration (it tests using a list of known fonts).

• 2(j) Audio processing (RFS, but) is estimated Medium,
since it is conceptually analogous to 2(a) [24].

• 3(a) Browser plugin fingerprinting includes full system
font enumeration in addition to leakage of more granu-
lar system information (e.g., kernel version). However,
mobile devices do not support plugins, and desktop web
browsers are moving instead to the extension model [36],
so we grade this Low to Medium.

• 3(b) Browser extension fingerprinting is graded Very-
Low to Low, based on the expectation that few users
install many browser extensions, aside from highly tech-
nical users. This may be too conservative, as some ex-
tensions (if installed) provide more distinguishing infor-
mation, e.g., a NoScript whitelist.6

• 3(c) System-fingerprinting plugins can contribute con-
siderable distinguishing information, since they have
less restricted access to the underlying OS and hard-
ware (see Section 4), compared to JavaScript. We grade
it High.

• 4(a) IP addresses can often serve as global identifiers
(but not always [17], e.g., due to NAT, proxying, and
in some cases rapid address changes). We grade this
vector High.

• 4(b) Geolocation can give considerable distinguishabil-
ity, depending on the granularity of the specific geolo-
cation mechanism. We grade this Low to High (high
variability).

• 4(c,d) Based on the p0f [62] MTU and TCP flag sig-
nature lists, we estimate Low for 4(d) Passive TCP/IP
stack fingerprinting, and Low to Medium for 4(c) Active
TCP/IP stack fingerprinting; active probing is more
powerful (RFS).

• 4(e) Protocol fingerprinting includes the list of HTTP
headers (˜4.36 bits [36]), the values corresponding to
certain headers such as user-agent string, HTTP accept
headers (resp. ˜10 bits and ˜6 bits [21]), and DoNot-
Track (up to 1 bit). It can also be inferred whether

6Published studies [21, 36], while skewed to technical users,
did not specifically look at extensions beyond ad blockers.
Technical users might improve privacy by, e.g., disabling
Flash; using many browser extensions counters this.

9

cookies are enabled or disabled. SSL fingerprinting RFS.
Thus we give an overall grade of High (RFS).

• 4(f) DNS resolver is analogous to geolocation, but less
granular. We grade this Low to Medium.

• 4(g) Clock skew is graded Medium, as Kohno et al. [34]
collected clock skew data for several thousand devices,
calculating the entropy of the distribution to be ˜6 bits.

• 4(h) Counting hosts behind a NAT is graded Low; for
household users, there is likely little variation in the
number of hosts behind the NAT that will communicate
with the web server, e.g., 1 to 16 devices (it would be
higher for enterprise devices).

6. ROLE OF DEVICE FINGERPRINTING
IN AUGMENTING AUTHENTICATION

To determine the most appropriate role for device finger-
printing in web authentication, we first discuss why it is un-
suitable as a sole authentication mechanism. An idealized7

form of device fingerprinting within the context of authen-
tication might have the following properties:

P1: Each device has a unique fingerprint that can be asso-
ciated with a user’s account.

P2: Fingerprints obtained at different times from the same
device are either identical; or linkable, i.e., can be de-
termined with high confidence to be from the same
device; or if changed to the extent of being unlinkable
(e.g., due to major changes in software or hardware
configuration), a backup mechanism such as e-mail or
SMS-based recovery is in place to allow the user to
re-associate a device with the target account.

P3: One of the following two properties is present:

i) Fingerprints are released only to legitimate web-
sites to which the user intends to authenticate.

ii) It is difficult for an attacker, even with full knowl-
edge of the device’s hardware and software con-
figuration, to spoof that device.

If the above requirements could be met, device fingerprint-
ing alone could be used for account authentication. How-
ever, from Section 5, these requirements appear unreach-
able at present. It nonetheless remains possible to use de-
vice fingerprinting to strengthen authentication via an addi-
tional dimension (see Section 2), and importantly, without
increasing the user burden—as opposed to, e.g., trying to
improve password strength by forcing a heavier burden on
users through a more complex password policy.

Device fingerprinting in this context has two use cases,
pursued in subsections below: a) augmenting start-of-session
authentication (cf. models M1-M4 of Section 3); and b)
maintaining authentication throughout a session, to stop hi-
jacking of authenticated sessions (related to model M5).

6.1 Authentication at Start of Session
When used as an added authentication dimension along-

side passwords (or another primary authentication method),
to authorize a session the server requires both the correct
primary response and matching client fingerprint data. The
server must thus have persistent access to data sufficient to

7This characterization is impractical, but represents a highly
favourable scenario for a web application wishing to accu-
rately identify devices by fingerprints.

verify the fingerprint on later authentication requests. The
relevant time frame over which a fingerprint must be stable
thus spans multiple sessions. This increases the importance
of property P2 above—if the device configuration changes
to the extent that an evolved fingerprint is no longer veri-
fiable, a backup mechanism is needed to re-associate device
and account.8

While resource use is relevant in the scenario of start-of-
session authentication, a fingerprint need only be collected
once at the start of the session; thus resource use is not a
major barrier to arbitrary combinations of Table 2 vectors.

Augmenting two-factor authentication. Client fin-
gerprinting can augment two-factor authentication (“factors”
typically involve user actions; “dimensions” like device fin-
gerprinting ideally do not). Consider Google two-step veri-
fication [28], which requires users to log in with a username
and password, followed by a six-digit SMS code sent in real-
time to a mobile device. If the user chooses to “trust” the
computer on which they have logged in, a cookie is saved by
the browser to relieve the user of entering a verification code
on subsequent authentication attempts from that computer
for the next 30 days. This is a security trade-off made in
favour of usability, since an attacker obtaining the cookie
bypasses the second factor. Device fingerprinting can be
integrated into this scheme in at least three ways:

(a) When users submit a password, the server can validate
the device fingerprint before sending the SMS code. If
fingerprint verification fails, the server may require ad-
ditional authentication tasks and/or send the user an
alert—improving security in the event that the device
used for receiving the SMS codes is stolen.

(b) When users submit a password, the server can require
both a matching device fingerprint and a “trusted”
cookie to bypass the second authentication factor (e.g.,
6-digit SMS code)—improving security in case of cookie
theft.

(c) Advertisers use device fingerprinting to restore track-
ing cookies after users clear them. This suggests a
third application: if a user clears browser cookies and
later attempts to re-authenticate, the server may rec-
ognize, by a device fingerprint, that the user previ-
ously designated the device as“trusted”, and allow it to
skip the second factor (i.e., authenticate by username-
password alone). However, this approach appears to
be a bad idea: users may clear their cookies precisely
so that the server “forgets” their device for security
reasons, e.g., on a device shared by multiple users.

6.2 Authentication Throughout a Session
In typical password-based web authentication (Section 6.1),

upon receiving a username and password the server returns
a browser session cookie, allowing the client to maintain its
authenticated state by including the cookie in subsequent
HTTP requests; the cookie, as a bearer token, replaces the
password. Thus, an adversary obtaining the cookie (e.g.,
by device theft, cross-site scripting, interception due to a
MITM attack or improperly configured HTTPS [35]) can
submit authenticated requests without password knowledge.

Some websites record the user IP address when initiat-
ing an authenticated session, and check that any incom-
ing HTTP requests containing a session cookie originate

8Likewise if the user logs in from a different device.

10

from the same address [18]. Such address binding of ses-
sion cookies enhances session security—if the address cross-
check fails, the server can terminate the session, and op-
tionally alert the user and lock down the account pending
additional authentication steps. Since the client sends the
session cookie alongside each HTTP request, the server ide-
ally validates the source IP address on each request. This
may impact usability, e.g., user IP addresses often change
in mobile environments; here it may help to use multiple
fingerprinting vectors.

Since modern webpages contain many resources, visit-
ing a single page generates many HTTP requests; thus in
this use case, client-passive vectors are critical. For fully
client-passive vectors (including those in 4(b) that are client-
passive, e.g., IP-based geolocation), the server can extract
relevant fingerprint data from existing traffic flow, and can
thus validate them on each HTTP request; this is not so
for partially client-passive 4(c) or 4(f), which require extra
network traffic.

Non-client-passive vectors require the browser to perform
certain operations and generate fingerprint output for inclu-
sion in each HTTP request. If the server uses fixed vec-
tors, and which do not involve time-varying challenges, and
the device configuration does not change, this fingerprint
remains static for the duration of the user viewing a sin-
gle webpage. Thus recomputing this fingerprint prior to
each HTTP request is redundant for legitimate clients (and
might impact user experience if vectors are high overhead);
but, static fingerprints allow replay attacks by M5 attackers.

The SmartAuth framework [51] addresses replay attacks
by hashing the device fingerprint at the client with a counter
before sending to the server. This is ineffective against M5
attackers employing XSS to steal session cookies, as XSS
can also steal the plaintext device fingerprint and counter.
Such attackers can resume the session on their own machine
and continue generating valid device fingerprints, e.g., incre-
menting the counter and recomputing the hash. An attack
script may collect additional information about the target
device to allow device spoofing in the event that the server
dynamically adjusts its fingerprinting by, e.g., following the
strategy employed by Unger et al. [58] of collecting a differ-
ent subset of attributes each time the device is fingerprinted.
M5, our most powerful attack model, grants session hijack-
ing ability, and is more difficult to defend against.

In summary, for throughout-session fingerprinting:

1. Device fingerprints should be validated by the server
for every HTTP request.

2. Advantages of client-passive vectors include (i) obscur-
ing the server’s fingerprinting strategy to the attacker;9

and (ii) eliminating client resource burdens.

3. Periodically varying the fingerprinting challenge (see
Section 3) improves spoofing resistance against attack-
ers that intercept client-generated device fingerprints.
However, forcing clients to regularly recompute device
fingerprints increases resource usage costs.

4. Spoofing-resistance strategies that involve varying the
format of client-generated device fingerprints (e.g., us-
ing counters and hashes, or varying the fingerprinted
attributes used) can improve security but may be of
limited effectiveness against advanced M5 attackers.

9While this temporarily increases spoofing resistance, recall
our base assumption that this ultimately becomes known.

5. Vectors with higher spoofing resistance (see Table 2)
provide stronger authentication assurances.

7. CONCLUDING REMARKS
Our classification and analysis is informed by previous

studies as cited, and our own experimentation with 19 fin-
gerprinting vectors. One conclusion from these is that com-
bining essentially any subset of vectors in Table 2 appears
feasible. Combining multiple vectors into a device finger-
print of course affects the properties discussed (see Sections
5.1 and 5.2). Distinguishability is expected to increase, but
does not in all cases—e.g., if a smartphone’s model number
is in the user-agent string, screen resolution adds no further
distinction, as all smartphones of one model have a given
resolution. While an attacker may try to statistically guess
some components of a device fingerprint—e.g., spoofing the
most common screen resolutions—components such as hard-
ware sensor calibration may be completely random and thus
difficult to guess efficiently. While we cannot give precise
quantitative guidance, combining more vectors tends to im-
prove spoofing resistance, or at least raise the bar. Further
exploration may involve a more advanced quantitative anal-
ysis of overall device fingerprint diversity and mechanisms
for enabling users to associate multiple devices with their
account.

We again emphasize that the fingerprinting mechanisms
discussed herein require no new user interaction and thus
impose no additional usability burdens on users; given in-
creasing attention to usability, this strongly motivates the
use of device fingerprinting to augment user authentication.

8. ACKNOWLEDGEMENTS
We thank Gunes Acar, Arvind Narayanan, Markus Duer-

muth, AbdelRahman Abdou, David Barrera, Daniel McCar-
ney, and anonymous referees for helpful comments. The sec-
ond author acknowledges NSERC funding under a Discovery
Grant and as Canada Research Chair in Authentication and
Computer Security.

9. REFERENCES
[1] AbdelRahman Abdou, Ashraf Matrawy, and P.C. van

Oorschot. CPV: Delay-based location verification for
the Internet. IEEE Trans. Dependable Secure
Comput., 2016. http://doi.ieeecomputersociety.org/
10.1109/TDSC.2015.2451614.

[2] Gunes Acar, Christian Eubank, Steven Englehardt,
Marc Juarez, Arvind Narayanan, and Claudia Diaz.
The web never forgets: Persistent tracking mechanisms
in the wild. In Proc. ACM CCS, pages 674–689, 2014.

[3] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia
Diaz, Seda Gürses, Frank Piessens, and Bart Preneel.
FPDetective: Dusting the web for fingerprinters. In
Proc. ACM CCS, pages 1129–1140, 2013.

[4] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina,
and David Kotz. On the reliability of wireless
fingerprinting using clock skews. In Proc. ACM WiSec,
2010.

[5] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo.
DOS-resistant authentication with client puzzles. In
Security Protocols Workshop, pages 170–177. Springer,
2000.

11

http://doi.ieeecomputersociety.org/10.1109/TDSC.2015.2451614
http://doi.ieeecomputersociety.org/10.1109/TDSC.2015.2451614

[6] Mika D. Ayenson, Dietrich James Wambach, Ashkan
Soltani, Nathan Good, and Chris Jay Hoofnagle.
Flash cookies and privacy II: Now with HTML5 and
ETag respawning. World Wide Web Internet and Web
Information Systems, 2011.

[7] Steven M. Bellovin. A technique for counting NATted
hosts. In Proc. ACM SIGCOMM Workshop on
Internet Measurement, pages 267–272. ACM, 2002.

[8] Adam Bergkvist, David C. Burnett, Cullen Jennings,
Anant Narayanan, and Bernard Aboba. WebRTC 1.0:
Real-time communication between browsers.
https://www.w3.org/TR/webrtc/, 2016. Accessed:
2016-04-25.

[9] David Barroso Berrueta. A practical approach for
defeating nmap OS-fingerprinting.
https://nmap.org/misc/defeat-nmap-osdetect.html,
2003. Accessed: 2016-09-01.

[10] Robert Beverly, Ryan Koga, and K.C. Claffy. Initial
longitudinal analysis of IP source spoofing capability
on the Internet. ISOC whitepaper, 2013.

[11] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and
Dan Boneh. Mobile device identification via sensor
fingerprinting. In arXiv preprint arXiv:1408.1416
[cs.CR], 2014.

[12] Joseph Bonneau. The science of guessing: Analyzing
an anonymized corpus of 70 million passwords. In
Proc. IEEE Symp. Security & Privacy, pages 538–552.
IEEE, 2012.

[13] Joseph Bonneau, Cormac Herley, P.C. van Oorschot,
and Frank Stajano. The quest to replace passwords: A
framework for comparative evaluation of web
authentication schemes. In Proc. IEEE Symp. Security
& Privacy, pages 553–567, 2012.

[14] Joseph Bonneau, Cormac Herley, P.C. van Oorschot,
and Frank Stajano. Passwords and the evolution of
imperfect authentication. Communications of the
ACM, pages 78–87, July 2015.

[15] Lee Brotherston. Stealthier attacks and smarter
defending with TLS fingerprinting.
https://n0where.net/tls-fingerprinting/, 2015.
Accessed: 2016-03-11.

[16] BrowserLeaks.com. https://www.browserleaks.com,
2011. Accessed: 2016-05-25.

[17] Martin Casado and Michael J. Freedman. Peering
through the shroud: The effect of edge opacity on
IP-based client identification. In NSDI, 2007.

[18] Gabriel Chen. Convenience over safety: How
authentication cookies compromise user account
security on the web. http://randomwalker.info/
advising/undergraduate/chen-independent-work.pdf,
2014. Accessed: 2016-05-01.

[19] Anupam Das, Nikita Borisov, and Matthew Caesar.
Tracking mobile users through motion sensors:
Attacks and defenses. In Proc. NDSS, 2016.

[20] Michael Dietz, Alexei Czeskis, Dirk Balfanz, and
Dan S. Wallach. Origin-bound certificates: A fresh
approach to strong client authentication for the web.
In Proc. USENIX Security Symp., 2012.

[21] Peter Eckersley. How unique is your web browser? In
Proc. 10th Int. Conf. Privacy Enhancing Technologies,
pages 1–18, 2010.

[22] Ori Eisen. Method and system for identifying users

and detecting fraud by use of the Internet. US Patent,
December 2010. US 7853533 B2.

[23] Ori Eisen. Systems and methods for detection of
session tampering and fraud prevention. US Patent,
April 2012. US 8151327 B2.

[24] Steven Englehardt and Arvind Narayanan. Online
tracking: A 1-million-site measurement and analysis.
http://randomwalker.info/publications/
OpenWPM 1 million site tracking measurement.pdf,
2016. Draft: May 18, 2016.

[25] David Fifield and Serge Egelman. Fingerprinting web
users through font metrics. In Financial Cryptography
and Data Security, volume 8975 of LNCS, pages
107–124. Springer, 2015.

[26] FraudFox.
http://www.wickybay.xyz/2016/01/fraudfox.html,
2016. Accessed: 2016-05-25.

[27] David Mandell Freeman, Markus Dürmuth, and
Battista Biggio. Who are you? A statistical approach
to measuring user authenticity. In Proc. NDSS, 2016.

[28] Eric Grosse and Mayank Upadhyay. Authentication at
scale. IEEE Security & Privacy, 11(1):15–22, January
2013.

[29] Ding-Jie Huang, Wei-Chung Teng, Chih-Yuan Wang,
Hsuan-Yu Huang, and Joseph M. Hellerstein. Clock
skew based node identification in wireless sensor
networks. In Proc. IEEE GLOBECOM, 2008.

[30] IT Security Solutions. Fingerprinting browsers using
protocol handlers.
http://itsecuritysolutions.org/2010-03-
29 fingerprinting browsers using protocol handlers/,
2010. Accessed: 2016-04-25.

[31] Markus Jakobsson, Elaine Shi, Philippe Golle, and
Richard Chow. Implicit authentication for mobile
devices. In Proc. USENIX HotSec, 2009.

[32] Suman Jana and Sneha K. Kasera. On fast and
accurate detection of unauthorized wireless access
points using clock skews. IEEE Trans. Mobile
Comput., 9(3):449–462, March 2010.

[33] Jeremy Kirk. This tool makes it easier for thieves to
empty bank accounts. PCWorld:
http://www.pcworld.com/article/2872372/this-tool-
may-make-it-easier-for-thieves-to-empty-bank-
accounts.html, 2015. Accessed: 2016-05-25.

[34] Tadayoshi Kohno, Andre Broido, and K.C. Claffy.
Remote physical device fingerprinting. IEEE Trans.
Dependable Secure Comput., 2(2):93–108, April 2005.

[35] Michael Kranch and Joseph Bonneau. Upgrading
HTTPS in mid-air: An empirical study of strict
transport security and key pinning. In Proc. NDSS,
2015.

[36] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In Proc.
IEEE Symp. Security & Privacy, 2016.

[37] Gordon Fyodor Lyon. Nmap Network Scanning: The
Official Nmap Project Guide to Network Discovery
and Security Scanning. Insecure, 2009.

[38] Maxmind Developer Site. Device tracking add-on for
minFraud and proxy detection services.
http://dev.maxmind.com/minfraud/device/.
Accessed: 2015-11-17.

12

https://www.w3.org/TR/webrtc/
https://nmap.org/misc/defeat-nmap-osdetect.html
https://n0where.net/tls-fingerprinting/
https://www.browserleaks.com
http://randomwalker.info/advising/undergraduate/chen-independent-work.pdf
http://randomwalker.info/advising/undergraduate/chen-independent-work.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://www.wickybay.xyz/2016/01/fraudfox.html
http://itsecuritysolutions.org/2010-03-29_fingerprinting_browsers_using_protocol_handlers/
http://itsecuritysolutions.org/2010-03-29_fingerprinting_browsers_using_protocol_handlers/
http://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
http://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
http://www.pcworld.com/article/2872372/this-tool-may-make-it-easier-for-thieves-to-empty-bank-accounts.html
http://dev.maxmind.com/minfraud/device/

[39] Jonathan R. Mayer and John C. Mitchell. Third-party
web tracking: Policy and technology. In Proc. IEEE
Symp. Security & Privacy, pages 413–427, 2012.

[40] Aleecia M. McDonald and Lorrie Faith Cranor. A
survey of the use of Adobe Flash local shared objects
to respawn HTTP cookies. ISJLP, 7:639–687, 2011.

[41] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and
Hovav Shacham. Fingerprinting information in
JavaScript implementations. In Proc. Web 2.0
Security & Privacy, 2011.

[42] Keaton Mowery and Hovav Shacham. Pixel perfect:
Fingerprinting canvas in HTML5. In Proc. Web 2.0
Security & Privacy, 2012.

[43] Mozilla Developer Network. WebGL.
https://developer.mozilla.org/en-US/docs/Web/API/
WebGL API. Accessed: 2015-11-23.

[44] James A. Muir and P.C. van Oorschot. Internet
geolocation: Evasion and counterevasion. ACM
Comput. Surv., 42(1):4:1–4:23, 2009.

[45] Martin Mulazzani, Philipp Reschl, Markus Huber,
Manuel Leithner, Sebastian Schrittwieser, and Edgar
Weippl. Fast and reliable browser identification with
JavaScript engine fingerprinting. In Proc. Web 2.0
Security & Privacy, 2013.

[46] Steven J. Murdoch. Hot or not: Revealing hidden
services by their clock skew. In Proc. ACM CCS,
pages 27–36, 2006.

[47] Nick Nikiforakis, Wouter Joosen, and Benjamin
Livshits. PriVaricator: Deceiving fingerprints with
little white lies. In Proc. WWW, 2015.

[48] Nick Nikiforakis, Alexandros Kapravelos, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In Proc.
IEEE Symp. Security Privacy, pages 541–555, 2013.

[49] Jose Carlos Norte. Advanced Tor browser
fingerprinting. http://jcarlosnorte.com/security/2016/
03/06/advanced-tor-browser-fingerprinting.html,
March 2016. Accessed: 2016-03-11.

[50] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and
Claudia Diaz. The leaking battery: A privacy analysis
of the HTML5 Battery Status API. IACR Cryptology
ePrint Archive, 2015.

[51] Davy Preuveneers and Wouter Joosen. SmartAuth:
Dynamic context fingerprinting for continuous user
authentication. In Proc. ACM SAC, pages 2185–2191,
2015.

[52] Daniel Roesler. STUN IP address requests for
WebRTC. https://github.com/diafygi/webrtc-ips,
2015. Accessed: 2016-04-25.

[53] Suphannee Sivakorn, Iasonas Polakis, and Angelos D.
Keromytis. The cracked cookie jar: HTTP cookie
hijacking and the exposure of private information. In
Proc. IEEE Symp. Security & Privacy, 2016.

[54] Ashkan Soltani, Shannon Canty, Quentin Mayo,
Lauren Thomas, and Chris Jay Hoofnagle. Flash
cookies and privacy. In AAAI Spring Symposium:
Intelligent Information Privacy Management, 2010.

[55] Jan Spooren, Davy Preuveneers, and Wouter Joosen.
Mobile device fingerprinting considered harmful for
risk-based authentication. In Proc. European
Workshop on System Security, 2015.

[56] Stack Overflow. Is it possible to detect visitor DNS
server? http://stackoverflow.com/questions/
10721731/is-it-possible-to-detect-visitor-dns-server.
Accessed: 2015-10-27.

[57] The 41st Parameter. The 41st parameter announces
new real-time product as world’s first standard for
online PC identification. http://www.the41.com/
buzz/announcements/41st-parameter-announces-new-
real-time-product-worlds-first-standard-online-pc-0,
July 2006. Accessed: 2015-11-17.

[58] Thomas Unger, Martin Mulazzani, Dominik Fruhwirt,
Markus Huber, Sebastian Schrittwieser, and Edgar
Weippl. SHPF: Enhancing HTTP(S) session security
with browser fingerprinting. In Proc. 8th Int. Conf.
Availability, Reliability and Security, pages 255–261,
September 2013.

[59] Tom Van Goethem, Wout Scheepers, Davy
Preuveneers, and Wouter Joosen. Accelerometer-based
device fingerprinting for multi-factor mobile
authentication. In Engineering Secure Software and
Systems, volume 9639 of LNCS, pages 106–121.
Springer, 2016.

[60] Thomas Emmanual Varghese, Jon Bryan Fisher,
Steven Lucas Harris, and Don Bosco Durai. System
and method for fraud monitoring, detection, and
tiered user authentication. US Patent, March 2011. US
7908645 B2.

[61] Valentin Vasilyev. fingerprintjs2.
https://github.com/Valve/fingerprintjs2, 2015.
Accessed: 2016-05-25.

[62] Michal Zalewski. p0f v3.
http://lcamtuf.coredump.cx/p0f3/. Accessed:
2015-10-26.

13

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
https://github.com/diafygi/webrtc-ips
http://stackoverflow.com/questions/10721731/is-it-possible-to-detect-visitor-dns-server
http://stackoverflow.com/questions/10721731/is-it-possible-to-detect-visitor-dns-server
http://www.the41.com/buzz/announcements/41st-parameter-announces-new-real-time-product-worlds-first-standard-online-pc-0
http://www.the41.com/buzz/announcements/41st-parameter-announces-new-real-time-product-worlds-first-standard-online-pc-0
http://www.the41.com/buzz/announcements/41st-parameter-announces-new-real-time-product-worlds-first-standard-online-pc-0
https://github.com/Valve/fingerprintjs2
http://lcamtuf.coredump.cx/p0f3/

	Introduction
	Background and Related Work
	Framework and Threat Model
	Device Fingerprinting Vectors: Classification
	Device Fingerprinting Vectors: Desirable Properties
	Stability
	Repeatability
	Resource Use (Overhead)
	Spoofing Resistance
	Client Passiveness
	Distinguishing Information

	Role of Device Fingerprinting in augmenting Authentication
	Authentication at Start of Session
	Authentication Throughout a Session

	Concluding Remarks
	Acknowledgements
	References

