Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

1. Introduction

It's no secret that the Unix operating system has emerged as a standard operating system. For programmers
who have been using Unix for many years now, this came as no surprise: The Unix system provides an
elegant and efficient environment for program development. After all, thisiswhat Dennis Ritchie and Ken
Thompson strived for when they developed Unix at Bell Laboratories in the late 1960s.

One of the strongest features of the Unix system isits wide collection of programs. More than 200 basic
commands are distributed with the standard operating system. These commands (also known as tools) do
everything from counting the number of linesin afile, to sending electronic mail, to displaying a calendar
for any desired year.

But the real strength of the Unix system comes not entirely from this large collection of commands but also
from the elegance and ease with which these commands can be combined to perform far more sophisticated
functions.

To further this end, and aso to provide a consistent buffer between the user and the guts of the Unix system
(the kernel), the shell was developed. The shell is simply a program that reads in the commands you type
and converts them into aform more readily understood by the Unix system. It also includes some
fundamental programming constructs that let you make decisions, loop, and store valuesin variables.

The standard shell distributed with Unix and Linux systems derives from AT& T’ s distribution, which
evolved from aversion originally written by Stephen Bourne at Bell Labs. Since then, the |EEE created
standards based on the Bourne shell and the other more recent shells. The current version of this standard as
of thisrevision isthe Shell and Utilities volume of IEEE Std 1003.1-2001, also known as the POSI X
standard. This shell iswhat we propose to teach you about in this book.

The examplesin this book were tested on both SUnOS 5.7 running on a Sparcstation Ultra-30 and on
Silicon Graphics IRIX 6.5 running on an Octane; some examples were also run on Red Hat Linux 7.1 and
Cygwin. All examples, except some Bash examplesin Chapter 15, were run using the Korn shell, although
many were aso run with Bash.

Many Unix systems are still around that have Bourne shell derivatives and utilities not compliant with the
POSIX standard. We'll try to note this throughout the text wherever possible; however, there are so many
different versions of Unix from so many different vendorsthat it’s simply not possible to mention every
difference. If you do have an older Unix system that doesn’t supply a POSIX-compliant shell, there s still
hope. We'll list resources at the end of this book where you can obtain free copies of three different
POSIX-compliant shells.

Because the shell offers an interpreted programming language, programs can be written, modified, and
debugged quickly and easily. We turn to the shell as our first choice of programming language. After you
become adept at programming in the shell, you too may turn to it first.

This book assumes that you are familiar with the fundamentals of the Unix system; that is, that you know
how to log in; how to create files, edit them, and remove them; and how to work with directories. But in
case you haven't used the Unix system for awhile, we'll examine the basicsin Chapter 2, “A Quick
Review of the Basics.” Besides the basic file commands, filename substitution, I/O redirection, and pipes
are aso reviewed in Chapter 2.

Chapter 3, “What Isthe Shell?,” reveals what the shell really is. You'll learn about what happens every
time you log in to the system, how the shell program gets started, how it parses the command line, and how
it executes other programs for you. A key point made in Chapter 3 isthat the shell isjust a program;
nothing more, nothing less.

Chapter 4, “Tools of the Trade,” provides tutorials on tools useful in writing shell programs. Covered in
this chapter are cut , past e, sed, grep, sort, tr, and uni gq. Admittedly, the selection is subjective, but it
does set the stage for programs that we' || develop throughout the remainder of the book. Also in Chapter 4
isadetailed discussion of regular expressions, which are used by many Unix commands such as sed, gr ep,
and ed.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

20

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Chapters 5 through 10 teach you how to put the shell to work for writing programs. Y ou'll learn how to
write your own commands; use variables; write programs that accept arguments; make decisions; use the
shell’sfor, while,anduntil looping commands; and use the r ead command to read data from the
terminal or from afile. Chapter 6, “Can | Quote You on That?,” is devoted entirely to a discussion on one
of the most intriguing (and often confusing) aspects of the shell: the way it interprets quotes.

By this point in the book, all the basic programming constructs in the shell will have been covered, and you
will be able to write shell programsto solve your particular problems.

Chapter 11, “Y our Environment,” covers atopic of great importance for areal understanding of the way the
shell operates: the environment. Y ou'll learn about local and exported variables; subshells; special shell
variables such as HOVE, PATH, and CDPATH; and how to set up your . profi | e file.

Chapter 12, “Maore on Parameters,” and Chapter 13, “Loose Ends,” tie up some loose ends, and Chapter 14,
“Rolo Revisited,” presents afinal version of a phone directory program called r ol o that is devel oped
throughout the book.

Chapter 15, “Interactive and Nonstandard Shell Features,” discusses features of the shell that either are not
formally part of the IEEE POSIX standard shell (but are available in most Unix and Linux shells) or are
mainly used interactively instead of in programs.

Appendix A, “Shell Summary,” summarizes the features of the IEEE POSI X standard shell.

Appendix B, “For More Information,” lists references and resources, including the Web sites where
different shells can be downloaded.

The philosophy this book usesisto teach by example. Properly chosen examples do afar superior job at
illustrating how a particular feature is used than ten times as many words. The old “A picture isworth...”
adage seems to apply just as well to examples. Y ou are encouraged to type in each example and test it on
your system, for only by doing can you become adept at shell programming. Y ou also should not be afraid
to experiment. Try changing commands in the program examples to see the effect, or add different options
or features to make the programs more useful or robust.

At the end of most chapters you will find exercises. These can be used as assignmentsin a classroom
environment or by yourself to test your progress.

This book teaches the IEEE POSIX standard shell. Incompatibilities with earlier Bourne shell versions are
noted in the text, and these tend to be minor.

Acknowledgments from the first edition of this book: We'd like to thank Tony lannino and Dick Fritz for
editing the manuscript. We'd also like to thank Juliann Colvin for performing her usual wonders copy
editing this book. Finally, we' d like to thank Teri Zak, our acquisitions editor, and posthumously Maureen
Connelly, our production editor. These two were not only the best at what they did, but they also made
working with them areal pleasure.

For thefirst revised edition of this book, we' d like to acknowledge the contributions made by Steven Levy
and Ann Baker, and we'd like to also thank the following people from Sams:. Phil Kennedy, Wendy Ford,
and Scott Arant.

For the second revised edition of this book, we'd like to thank Kathryn Purdum, our acquisitions editor,
Charlotte Clapp, our project editor, and Geneil Breeze, our copy editor.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

21

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

2. A Quick Review of the Basics

In This Chapter
» Some Basic Commands
» Working with Files
» Working with Directories
« Filename Substitution
» Standard Input/Output and 1/0O Redirection
* Pipes
« Standard Error
* More on Commands
» Command Summary
 Exercises

This chapter provides areview of the Unix system, including the file system, basic commands, filename
substitution, I/O redirection, and pipes.

Some Basic Commands

Displaying the Date and Time: The date Command
The dat e command tells the system to print the date and time:

$ date
Sat Jul 20 14:42:56 EDT 2002
$

dat e printsthe day of the week, month, day, time (24-hour clock, the system’s time zone), and year.
Throughout this book, whenever we use bol df ace type |ike this, it’stoindicate what you, the user,
typesin. Normal face type |ike this isusedtoindicate what the Unix system prints. Italic type is used
for comments in interactive sequences.

Every Unix command is ended with the pressing of the Enter key. Enter says that you are finished typing
thingsin and are ready for the Unix system to do its thing.

Finding Out Who's Logged In: Thewo Command
Thewho command can be used to get information about all users currently logged in to the system:

Click hereto view codeimage

$ who

pat tty29 Jul 19 14: 40
ruth tty37 Jul 19 10: 54
steve tty25 Jul 19 15:52
$

Here, three users are logged in: pat , r ut h, and st eve. Along with each user id, the tty number of that user
and the day and time that user logged in islisted. The tty number is a unique identification number the Unix
system gives to each terminal or network device that a user has logged into.

The who command also can be used to get information about yourself:
EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO

AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming 22
Account: s3408573

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Click hereto view code image

$ who am i
pat tty29 Jul 19 14: 40
$

who andwho am i are actually the same command: who. In the latter case, theamand i are argumentsto the
who command.

Echoing Characters. The echo Command

The echo command prints (or echoes) at the terminal whatever else you happen to type on the line (there
are some exceptions to this that you'll learn about later):

Click hereto view code image

$ echo this is a test

this is a test

$ echo why not print out a longer line with echo?
why not print out a longer line with echo?

$ echo

A blank line is displayed
$ echo one t wo t hree f our five
one two three four five
$

Y ou will notice from the preceding example that echo squeezes out extra blanks between words. That's
because on a Unix system, the words are important; the blanks are merely there to separate the words.
Generaly, the Unix system ignores extra blanks (you'll learn more about this in the next chapter).

Working with Files

The Unix system recognizes only three basic types of files: ordinary files, directory files, and special files.
An ordinary fileisjust that: any file on the system that contains data, text, program instructions, or just
about anything else. Directories are described later in this chapter. Asits nameimplies, aspecia filehasa
special meaning to the Unix system and istypically associated with some form of 1/0.

A filename can be composed of just about any character directly available from the keyboard (and even
some that aren’t) provided that the total number of characters contained in the name is not greater than 255.

If more than 255 characters are specified, the Unix system simply ignores the extra characters.

IModern Unix and Microsoft Windows systems support long filenames; however, some older Unix and Windows
systems only allow much shorter filenames.

The Unix system provides many tools that make working with files easy. Here we'll review many basic file
mani pulation commands.

Listing Files: Theis Command
To see what files you have stored in your directory, you can type the | s command:

$1s
READ ME
nanes
tnp

$

This output indicates that three files called READ_ME, nanes, and t np are contained in the current directory.
(Note that the output of | s may vary from system to system. For example, on many Unix systemsi| s
produces multicolumn output when sending its output to aterminal; on others, different colors may be used

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

for different types of files. Y ou can always force single-column output with the —I option.)

Displaying the Contents of a File: Thecat Command

Y ou can examine the contents of afile by using the cat command. The argument to cat isthe name of the
file whose contents you want to examine.

$ cat namnes
Susan

Jef f

Henry

Al | an

Ken

$

Counting the Number of Wordsin a File: Thew Command

With the we command, you can get a count of the total number of lines, words, and characters of
information contained in afile. Once again, the name of the file is needed as the argument to this
command:

Click hereto view codeimage

$ we nanes
5 5 27 nanes
$

Thewe command lists three numbers followed by the filename. The first number represents the number of
lines contained in the file (5), the second the number of words contained in the file (in this case also 5), and
the third the number of characters contained in the file (27).

Command Options

Most Unix commands allow the specification of options at the time a command is executed. These options
generally follow the same format:

-letter

That is, acommand option is aminus sign followed immediately by asingle letter. For example, to count
just the number of lines contained in afile, the option -1 (that’ s the letter) is given to the we command:

$ wc -1 nanes
5 names
$

To count just the number of charactersin afile, the - ¢ option is specified:

$ wc -c nanes
27 nanes
$

Finally, the - w option can be used to count the number of words contained in thefile:

$ wc -w nanes
5 nanes
$

Some commands require that the options be listed before the filename arguments. For example, sor t
names -r iSacceptable, whereaswe nanes -1 isnot. Let’s generalize by saying that command options
should precede filenames on the command line.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

24

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Making a Copy of a File: The cp Command

To make acopy of afile, the cp command is used. The first argument to the command is the name of the
file to be copied (known as the source file), and the second argument is the name of the file to place the
copy into (known as the destination file). Y ou can make a copy of the file names and call it saved_names as
follows:

$ cp nanmes saved_nanes
$

Execution of this command causes the file named nanes to be copied into afile named saved_nanes. As
with many Unix commands, the fact that a command prompt was displayed after the cp command was
typed indicates that the command executed successfully.

Renaming a File: Them Command

A file can be renamed with the mv command. The arguments to the mv command follow the same format as
the cp command. The first argument is the name of the file to be renamed, and the second argument is the
new name. So, to change the name of the file saved_nanes to hol d_i t , for example, the following
command would do the trick:

$ nv saved nanes hold it
$

When executing an nv or cp command, the Unix system does not care whether the file specified as the

second argument already exists. If it does, the contents of the file will be lost.2 For example, if afile called
ol d_nanes exists, executing the command

2Assuming that you have the proper permission to write to thefile.

cp nanes ol d_nanes

would copy the file nanes to ol d_nanes, destroying the previous contents of ol d_nanes in the process.
Similarly, the command

mvy names ol d_names

would rename nanes t0 ol d_nanes, even if thefile ol d_names existed prior to execution of the command.

Removing a File: ThermCommand

To remove afile from the system, you use the r mcommand. The argument to r mis sSimply the name of the
file to be removed:

$rmhold it
$

Y ou can remove more than one file at a time with the r mcommand by simply specifying al such files on
the command line. For example, the following would remove the three fileswb, col | ect , and non:

$ rmwb collect non
$

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

25

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Working with Directories

Suppose that you had a set of files consisting of various memos, proposals, and letters. Further suppose that
you had a set of files that were computer programs. It would seem logical to group thisfirst set of filesinto
adirectory called docunent s, for example, and the latter set of filesinto adirectory called pr ogr ans.
Figure 2.1 illustrates such a directory organization.

|

documents programs
|

plan dact sys.A new.hire no.JSK AMG.reply wb collect mon
FIGURE 2.1 Example directory structure.

Thefile directory docunent s containsthe files pl an, dact , sys. A, new. hi re, no. JSK, and AMG. repl y. The
directory pr ogr ams containsthe fileswb, col | ect, and non. At some point, you may decide to further
categorize the filesin adirectory. This can be done by creating subdirectories and then placing each file
into the appropriate subdirectory. For example, you might want to create subdirectories called nens,
proposal s, and | et t er s inside your docunent s directory, as shown in Figure 2.2.

documents programs

memos proposals letters wb collect mon

T o

plan dact sys.A new.hire no.JSK AMG.reply
FIGURE 2.2 Directories containing subdirectories.

docunent s contains the subdirectories nenos, proposal s, and | et t er s. Each of these directoriesin turn
contains two files. menos contains pl an and dact ; proposal s containSsys. Aandnew. hire; andl etters
containsno. JSK and AMG. repl y.

Although each file in agiven directory must have a unique name, files contained in different directories do
not. So, for example, you could have afile in your pr ogr ams directory called dact , even though afile by
that name also exists in the menos subdirectory.

The Home Directory and Pathnames

The Unix system always associates each user of the system with a particular directory. When you log in to
the system, you are placed automatically into a directory called your home directory.

Although the location of users' home directories can vary from one Unix version to the next, and even one
user to the next, let’s assume that your home directory is called st eve and that this directory is actually a
subdirectory of adirectory called user s. Therefore, if you had the directories docurent s and pr ogr ans, the
overall directory structure would actually look something like Figure 2.3. A special directory known as/
(pronounced slash) is shown at the top of the directory tree. This directory is known as the root.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

users
pat steve rL!th. a

documents programs
merlnns proposals Iett!ars u.lrb collect m!:-n

plan dact sys.A new.hire no.JSK AMG.reply
FIGURE 2.3 Hierarchical directory structure.

Whenever you are “inside” a particular directory (called your current working directory), the files
contained within that directory are immediately accessible. If you want to access afile from another
directory, you can either first issue acommand to “change’ to the appropriate directory and then access the
particular file, or you can specify the particular file by its pathname.

A pathname enables you to uniquely identify a particular file to the Unix system. In the specification of a
pathname, successive directories along the path are separated by the slash character /. A pathname that

begins with a dlash character is known as a full pathname because it specifies a complete path from the root.

So, for example, the pathname / user s/ st eve identifies the directory st eve contained under the directory
user s. Similarly, the pathname / user s/ st eve/ docunent s references the directory docunent s as contained
in the directory st eve under user s. Asafina example, the pathname/ user s/ st eve/ docunents/ |l etters
| AMG. r epl y identifiesthe file AMG. r epl y contained aong the appropriate directory path.

To help reduce some of the typing that would otherwise be required, Unix provides certain notational
conveniences. Pathnames that do not begin with a slash character are known as relative pathnames. The
path is relative to your current working directory. For example, if you just logged in to the system and were
placed into your home directory / user s/ st eve, you could directly reference the directory docunent s
simply by typing docurment s. Similarly, the relative pathname pr ogr ams/ non could be typed to access the
file mon contained inside your pr ogr ans directory.

By convention, the directory name . . always references the directory that is one level higher. For example,
after logging in and being placed into your home directory / user s/ st eve, the pathname . . would
reference the directory users. And if you had issued the appropriate command to change your working
directory to docunent s/l et t er s, the pathname . . would reference the docunent s directory, .. /.. would
reference the directory st eve, and . . / pr oposal s/ new. hi r e would reference the file new. hi r e contained
in the pr oposal s directory. Note that in this case, asin most cases, there is usually more than one way to
specify a path to a particular file.

Another notational convention isthe single period . , which always refersto the current directory.
Now it’ s time to examine commands designed for working with directories.

Displaying Your Working Directory: The psa Command

The pwd command is used to help you “get your bearings’ by telling you the name of your current working
directory.

Recall the directory structure from Figure 2.3. The directory that you are placed in after you log in to the
EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO

AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

27

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

system is called your home directory. Y ou can assume from Figure 2.3 that the home directory for the user
steve iS/ user s/ st eve. Therefore, whenever st eve logsin to the system, he will automatically be placed
inside this directory. To verify that thisis the case, the pwd (print working directory) command can be
issued:

$ pwd

/users/steve
$

The output from the command verifiesthat st eve’s current working directory is/ user s/ st eve.

Changing Directories: Thecd Command

Y ou can change your current working directory by using the cd command. This command takes as its
argument the name of the directory you want to change to.

Let’s assume that you just logged in to the system and were placed inside your home directory, / users
I steve. Thisis depicted by the arrow in Figure 2.4.

/
uslers
pat —>steve I'L!th. a
documents programs
merlnns proposals Iett!ers u.lfb collect m!:-n

plan dact sys.A new.hire no.JSK AMG.reply
FIGURE 2.4 Current working directory isst eve.

Y ou know that two directories are directly “below” st eve’s home directory: docunent s and pr ogr ans. In
fact, this can be verified at the terminal by issuing the | s command:

$1s
document s
progr ans
$

Thel s command lists the two directories docunent s and pr ogr ams the same way it listed other ordinary
filesin previous examples.

To change your current working directory, issue the cd command, followed by the name of the directory to
change to:

$ cd docunents
$

After executing this command, you will be placed inside the documents directory, as depicted in Figure 2.5.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

users
pat steve rL!th. N

—>documents programs
merlnns proposals Iett!ers wlrb collect m!:-n

plan dact sys.A new.hire no.JSK AMG.reply
FIGURE 2.5cd docunents.

Y ou can verify at the terminal that the working directory has been changed by issuing the pwd command:

$ pwd
/ user s/ st eve/ docunent s
$

The easiest way to get one level up in adirectory isto issue the command
cd ..

because by convention . . always refersto the directory one level up (known as the parent directory; see

Figure 2.6).
/
users
pat —>steve ruth
documents programs
memos proposals letters wb collect mon

plan dact sys.A new.hire no.JSK AMG.reply
FIGURE 2.6 cd ..

$ cd ..

$ pwd
/users/ steve
$

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

29

Copyright @ 2003. Sams Publishing.

A1l rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law.

If you wanted to changeto thel et t er s directory, you could get there with asingle cd command by
specifying the relative path docunent s/ 1 et t er s (See Figure 2.7):

/
us!ers
pat steve rL!th. N
documents programs
merlnns proposals Iett!ers o u.lrb collect m!:-n

plan dact sys.A new.hire no.JSK AMG.reply
FIGURE 2.7 cd docunents/letters.

Click hereto view codeimage

$ cd docunents/letters

$ pwd

[user s/ steve/ docunments/letters
$

Y ou can get back up to the home directory by using asingle cd command to go up two directories as
shown:

$cd../..

$ pwd

[user s/ steve
$

Or you can get back to the home directory using a full pathname rather than a relative one:

$ cd /users/steve
$ pwd

[user s/ steve

$

Finally, thereis athird way to get back to the home directory that is also the easiest. Typing the command
cd without an argument always places you back into your home directory, no matter where you are in your
directory path:

$ cd

$ pwd
/users/steve
$

Moreon thei s Command

When you type the | s command, the files contained in the current working directory are listed. But you can
also usel s to obtain alist of filesin other directories by supplying an argument to the command. First let’s
get back to your home directory:

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:13 PM via UNIV OF TORONTO

AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming 30
Account: s3408573.main.ehost

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

$ cd

$ pwd

/[users/steve
$

Now let’stake alook at the filesin the current working directory:

$1s
docunent s
pr ogr ans
$

If you supply the name of one of these directoriesto thel s command, you can get alist of the contents of
that directory. So, you can find out what’s contained in the docunent s directory smply by typing the
command | s docunents:

$ |'s docunents
letters

MeENDS

proposal s

$

To take alook at the subdirectory nenos, you follow asimilar procedure:

$ | s docunent s/ nmenos
dact

pl an

$

If you specify anondirectory file argument to the | s command, you simply get that filename echoed back
at the terminal:

$ |'s docunent s/ nmenos/ pl an
docunent s/ menos/ pl an
$

An option to thel s command enables you to determine whether a particular file is a directory, among other
things. The -1 option (the letter I) provides a more detailed description of the filesin adirectory. If you
were currently in st eve’s home directory asindicated in Figure 2.6, the following would illustrate the
effect of supplying the -1 option to thel s command:

Click hereto view codeimage

$1s -l

total 2

dr wxr - Xr - X 5 steve DP3725 80 Jun 25 13:27 documents
dr wxr - Xr - x 2 steve DP3725 96 Jun 25 13:31 prograns
$

Thefirst line of the display is acount of the total number of blocks (1,024 bytes) of storage that the listed
files use. Each successive line displayed by thel's -1 command contains detailed information about afile
in the directory. The first character on each line tells whether the file isa directory. If the character is d, it is
adirectory; if itis-, itisan ordinary file; findly, if itisb, c, 1, or p, itisaspecial file.

The next nine characters on the line tell how every user on the system can access the particular file. These
access modes apply to the file's owner (the first three characters), other usersin the same group asthefile's
owner (the next three characters), and finally to all other users on the system (the last three characters).
They tell whether the user can read from the file, write to the file, or execute the contents of thefile.

Thel's -1 command lists the link count (see “Linking Files: Thel n Command,” later in this chapter), the
owner of thefile, the group owner of the file, how large thefileis (that is, how many characters are

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

31

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

contained in it), and when the file was last modified. The information displayed last on the lineisthe
filename itself.

Click hereto view codeimage

$ Is -1 prograns

total 4

- FWXT - XTI - X 1 steve DP3725 358 Jun 25 13:31 collect
- FWXT - XTI - X 1 steve DP3725 1219 Jun 25 13: 31 non

- T WXT - XT - X 1 steve DP3725 89 Jun 25 13:30 wb

$

The dash in the first column of each line indicates that the three files col | ect , mon, and wob are ordinary
files and not directories.

Creating a Directory: Thenkdir Command

To create adirectory, the nkdi r command must be used. The argument to this command is simply the name
of the directory you want to make. For example, assume that you are still working with the directory
structure depicted in Figure 2.7 and that you want to create a new directory called ni sc on the same level as
the directories document s and pr ogr ams. If you were currently in your home directory, typing the
command nkdi r mi sc would achieve the desired effect:

$ nkdir msc
$

Now if you execute an | s command, you should get the new directory listed:

$1s

docunent s

m sc

pr ogr ans

$
The directory structure now appears as shown in Figure 2.8.

steive
documents programs misc
memos proposals letters wb collect mon

plan dact sys.A new.hire noJSK AMG.reply
FIGURE 2.8 Directory structure with newly created ni sc directory.

Copying a Filefrom One Directory to Another

The cp command can be used to copy afile from one directory into another. For example, you can copy the
filewb from the pr ogr ans directory into afile called wbx inthe mi sc directory as follows:

$ cp prograns/wb m sc/wbx
$

Because the two files are contained in different directories, it is not even necessary that they be given

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

32

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

different names:

$ cp prograns/wb m sc/wb
$

When the destination file has the same name as the source file (in adifferent directory, of course), itis
necessary to specify only the destination directory as the second argument:

$ cp prograns/wb m sc
$

When this command gets executed, the Unix system recognizes that the second argument is the name of a
directory and copies the source file into that directory. The new file is given the same name as the source
file. You can copy more than one file into adirectory by listing the files to be copied before the name of the
destination directory. If you were currently in the pr ogr ams directory, the command

$ cp wb collect non ../ msc
$

would copy the threefileswb, col | ect, and non into the ni sc directory, under the same names.
To copy afile from another directory into your current one and give it the same name, use the fact that the
current directory can always be referenced as”. ':

$ pwd
/users/stevel/ m sc
$ cp ../prograns/collect

The preceding command copiesthefilecol | ect from the directory . ./ pr ogr ams into the current directory
(/ users/ steve/ m sc).

Moving Files Between Directories

Y ou recall that the mv command can be used to rename afile. However, when the two arguments to this
command reference different directories, thefile is actually moved from the first directory into the second
directory. For example, first change from the home directory to the docunent s directory:

$ cd docunents
$

Suppose that now you decide that the file pl an contained in the nenos directory is really aproposal and not
amemo. So you want to move it from the menos directory into the pr oposal s directory. The following
would do the trick:

Click hereto view codeimage

$ nmv nmenos/ pl an proposal s/ pl an
$

Aswith the cp command, if the source file and destination file have the same name, only the name of the
destination directory need be supplied.

$ nmv nmenos/ pl an proposal s
$

Also like the cp command, a group of files can be smultaneously moved into adirectory by ssmply listing
all files to be moved before the name of the destination directory:

$ pwd
[user s/ st eve/ prograns

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

33

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

$ mv wb collect nobn ../ msc
$

Thiswould move the three fileswb, col | ect , and non into the directory ni sc. You can also use the nv
command to change the name of a directory. For example, the following renames the directory pr ogr ams to
bi n.

$ nmv prograns bin

Linking Files: Thein Command

In simplest terms, the | n command provides an easy way for you to give more than one name to afile. The
genera form of the command is

I n fromto
Thislinks the file from to the file to.

Recall the structure of st eve’spr ogr ans directory from Figure 2.8. In that directory, he has stored a
program called wb. Suppose that he decides that he'd also like to call the program wr i t eback. The most
obvious thing to do would be to simply create a copy of wb called wr i t eback:

$ cp wb witeback
$

The drawback with this approach is that now twice as much disk space is being consumed by the program.
Furthermore, if st eve ever changes wb, he may forget to make a new copy of wri t eback, resulting in two
different copies of what he thinks is the same program.

By linking the file wo to the new name, these problems are avoided:

$In wh witeback
$

Now instead of two copies of the file existing, only one exists with two different names: wo and wr i t eback.
The two files have been logically linked by the Unix system. Asfar as you’ re concerned, it appears as
though you have two different files. Executing an| s command shows the two files separately:

$1s
col | ect
non

wb
writeback
$

Look what happens when you executean|'s -1 :

Click hereto view codeimage

$1s -l

total 5

- T WXT - XTI - X 1 steve DP3725 358 Jun 25 13:31 coll ect

- FWXT - XTI - X 1 steve DP3725 1219 Jun 25 13: 31 non

- T WXT - XT - X 2 steve DP3725 89 Jun 25 13:30 wb

- FWXT - XTI - X 2 steve DP3725 89 Jun 25 13:30 witeback
$

The number right before st eve is1for col | ect and non and 2 for wo and wr i t eback. This number isthe
number of linksto afile, normally 1 for nonlinked, nondirectory files. Because wo and wr i t eback are
linked, this number is 2 for these files. Thisimplies that you can link to a file more than once.

Y ou can remove either of the two linked files at any time, and the other will not be removed:
EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO

AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

34

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Click hereto view code image

$ rmwiteback

$1s -l

total 4

- T WXT - XT - X 1 steve DP3725 358 Jun 25 13:31 collect
- FWXT - XTI - X 1 steve DP3725 1219 Jun 25 13: 31 non

- T WXT - XT - X 1 steve DP3725 89 Jun 25 13:30 wb

$

Note that the number of links on wo went from 2 to 1 because one of its links was removed.

Most often, | n is used to link files between directories. For example, suppose that pat wanted to have
access to st eve’ swb program. Instead of making a copy for himself (subject to the same problems
described previoudly) or including st eve’ s pr ogr ans directory in his PATH (described in detail in Chapter
11, “Your Environment”), he can simply link to the file from his own program directory; for example:

Click hereto view codeimage

$ pwd

[users/pat/bin pat's program directory
$1s -1

total 4

- FWXT - XTI - X 1 pat DP3822 1358 Jan 15 11:01 Icat
- I WXT - XTI - X 1 pat DP3822 504 Apr 21 18:30 xtr
$ In /users/steve/wh . link wo to pat's bin
$1s -1

total 5

- F WX - XTI - X 1 pat DP3822 1358 Jan 15 11:01 Icat
- I WXT - XT - X 2 steve DP3725 89 Jun 25 13:30 wb
- I WXT - XTI - X 1 pat DP3822 504 Apr 21 18:30 xtr
$

Note that st eve is still listed as the owner of wo, even though the listing came from pat ’s directory. This
makes sense, because really only one copy of the file exists—and it’s owned by st eve.

The only stipulation on linking filesisthat for ordinary links, the files to be linked together must reside on
the same file system. If they don’t, you'll get an error from I n when you try to link them. (To determine the
different file systems on your system, execute the df command. The first field on each line of output is the
name of afile system.)

To create linksto files on different file systems (or perhaps on different networked systems), you can use
the - s option to the | n command. This creates a symbolic link. Symbolic links behave alot like regular
links, except that the symbolic link points to the origina file; if the origina file is removed, the symbolic
link no longer works. Let’s see how symbolic links work with the previous example:

Click hereto view codeimage

$ rmwb

$1s -1

total 4

- I WXT - XT - X 1 pat DP3822 1358 Jan 15 11:01 I cat

- I WXT - XTI - X 1 pat DP3822 504 Apr 21 18:30 xtr
$In -s /users/steve/wb ./symb Symboliclinkto wh
$1s -1

total 5

- I WX - XTI - X 1 pat DP3822 1358 Jan 15 11:01 Icat

I rwxr-Xxr-x 1 pat DP3822 15 Jul 20 15:22 symab -> /users/steve/ wb
- I WXT - XTI - X 1 pat DP3822 504 Apr 21 18:30 xtr

$

Note that pat islisted asthe owner of symwb, and the file typeis| , which indicates a symbolic link. The

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

35

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

size of the symbolic link is 15 (the file actually containsthe string / user s/ st eve/ wb), but if we attempt to
access the contents of the file, we are presented with the contents of its symbolic link, / user s/ st eve/ wb:

Click hereto view codeimage

$ wec symab
5 9 89 symwb
$

The - L option to thel s command can be used with the -1 option to get adetailed list of information on the
file the symbolic link points to:

Click hereto view codeimage

$1s -LI

total 5

- I WXT - XT - X 1 pat DP3822 1358 Jan 15 11:01 I cat
- FWXT - XTI - X 2 steve DP3725 89 Jun 25 13:30 wb

- I WXT - XTI - X 1 pat DP3822 504 Apr 21 18:30 xtr
$

Removing the file that a symbolic link points to invalidates the symbolic link (because symbolic links are
maintained as filenames), athough the symbolic link continues to stick around:

Click hereto view codeimage

$ rm/users/steve/wb Assume pat canremove thisfile

$1s -1

total 5

- I WXT - XTI - X 1 pat DP3822 1358 Jan 15 11:01 Icat

I rwxr-Xxr-x 1 pat DP3822 15 Jul 20 15:22 wb -> /users/steve/wb
- I WXT - XTI - X 1 pat DP3822 504 Apr 21 18:30 xtr

$ wc wb

Cannot open wh: No such file or directory

$

Thistype of fileis called a dangling symbolic link and should be removed unless you have a specific reason
to keep it around (for example, if you intend to replace the removed file).

One last note before leaving this discussion: The | n command follows the same general format as cp and
mv, meaning that you can link a bunch of files at once into a directory using the format

Infiles directory

Removing a Directory: Thermir Command

Y ou can remove a directory with the r ndi r command. The stipulation involved in removing adirectory is
that no files be contained in the directory. If there are filesin the directory when r ndi r is executed, you
will not be allowed to remove the directory. To remove the directory mi sc that you created earlier, the
following could be used:

$ rmdir /users/stevel/msc
$

Once again, the preceding command works only if no files are contained in the mi sc directory; otherwise,
the following happens:

Click hereto view codeimage

$ rodir /users/steve/nisc
romdir: /users/steve/m sc not enpty
$

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

36

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

If this happens and you still want to remove the mi sc directory, you would first have to remove all the files
contained in that directory before reissuing the r ndi r command.

As an alternate method for removing a directory and the files contained in it, you can use the - r option to
the r mcommand. The format is simple:

rm-r dir

where dir isthe name of the directory that you want to remove. r mremoves the indicated directory and all
files (including directories) init.

Filename Substitution

The Asterisk

One powerful feature of the Unix system that is actually handled by the shell is filename substitution. Let’s
say that your current directory hasthesefilesinit:

$1s
chapt 1
chapt 2
chapt 3
chapt 4
$

Suppose that you want to print their contents at the terminal. Well, you could take advantage of the fact that
the cat command allows you to specify more than one filename at atime. When thisis done, the contents
of the files are displayed one after the other:

Click hereto view codeimage

$ cat chaptl chapt2 chapt3 chapt4
. -

But you can also typein

$ cat *
$

and get the same results. The shell automatically substitutes the names of all the filesin the current
directory for the *. The same substitution occurs if you use * with the echo command:

$ echo *
chaptl chapt2 chapt3 chapt4
$

Here the * is again replaced with the names of all the files contained in the current directory, and the echo
command simply displays them at the terminal.
Any place that * appears on the command line, the shell performs its substitution:

Click hereto view codeimage

$ echo * : *
chaptl chapt2 chapt3 chapt4 : chaptl chapt2 chapt3 chapt4
$

The * can also be used in combination with other characters to limit the filenames that are substituted. For
example, let’s say that in your current directory you have not only chapt 1 through chapt 4 but aso files a,
b, and c:

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming 37
Account: s3408573

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

$1Is

a

b

c
chapt 1
chapt 2
chapt 3
chapt 4
$

To display the contents of just the files beginning with chapt , you can typein

$ cat chapt*

$

The chapt * matches any filename that begins with chapt . All such filenames matched are substituted on
the command line.

The* isnot limited to the end of afilename; it can be used at the beginning or in the middle as well:

$ echo *t1

chapt 1

$ echo *t~*

chapt1l chapt2 chapt3 chapt4
$ echo *x

*X

$

In the first echo, the*t 1 specifies all filenames that end in the characterst 1. In the second echo, the first *
matches everything up to at and the second everything after; thus, all filenames containing at are printed.
Because there are no files ending with x, no substitution occursin the last case. Therefore, the echo
command simply displays * x.

Matching Single Characters

The asterisk (*) matches zero or more characters, meaning that x* matchesthe file x aswell asx1, x2, xabc
, and so on. The question mark (?) matches exactly one character. So cat ? printsall fileswith
one-character names, just ascat x? printsall files with two-character names beginning with x.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

38

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Click hereto view code image

$1s

a

aa

aax

alice

b

bb

c

cc
reportl
report2
report3

$ echo ?
abec

$ echo a?
aa

$ echo ??
aa bb cc
$ echo ?7*
aa aax alice bb cc reportl report2 report3
$

In the preceding example, the ?? matches two characters, and the * matches zero or more up to the end. The
net effect is to match all filenames of two or more characters.

Another way to match a single character isto give alist of the characters to use in the match inside square
brackets|].For example, [abc] matches one letter a, b, or c. It'ssimilar to the 2, but it allows you to
choose the characters that will be matched. The specification [0- 9] matches the characters O through 9.
The only restriction in specifying arange of charactersisthat the first character must be alphabetically less
than the last character, so that [z- f] isnot avalid range specification.

By mixing and matching ranges and charactersin the list, you can perform some complicated substitutions.
For example, [a- np- z] * matches all files that start with the letters a through n or p through z (or more
simply stated, any lowercase letter but o).

If the first character following the[isa!, the sense of the match isinverted. That is, any character is
matched except those enclosed in the brackets. So

[!'a-2z]

matches any character except alowercase letter, and

“[10]

matches any file that doesn’t end with the lowercase |etter o.
Table 2.1 gives afew more examples of filename substitution.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

39

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Command

Description

echo a*
cat *.c
rm *.*
1s x*

rm *
echo a*b

cp ../programs/* .

1s [a-z]*[!@-9]

Print the names of the files beginning with a

Print all files ending in .c

Remove all files containing a period

List the names of all files beginning with x

Remove all files in the current directory (Note: Be careful when you use this.)
Print the names of all files beginning with a and ending with b

Copy all files from ../programs into the current directory

List files that begin with a lowercase letter and don't end with a digit

TABLE 2.1 Filename Substitution Examples

Standard I nput/Output and 1/0O Redirection

Standard Input and Standard Output

Most Unix system commands take input from your terminal and send the resulting output back to your
terminal. A command normally reads its input from a place called standard input, which happens to be
your terminal by default. Similarly, acommand normally writes its output to standard output, which is also
your terminal by default. This concept is depicted in Figure 2.9.

standard input
L command == | Fem===="=- >

standard oulput

FIGURE 2.9 Typical Unix command.

Recall that executing the who command results in the display of the currently logged-in users. More

formally, the who command writes alist of the logged-in users to standard output. Thisis depicted in Figure

2.10.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming

Account: s3408573

40

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

ai tty01 Sep 12 07:30
oko tty36 Sep 12 13:32
who pat tty21 Sep 12 10:10
ruth tty24 Sep 12 13:07
steve tty25 Sep 12 13:03

FIGURE 2.10 who command.

If asort command is executed without a filename argument, the command takes its input from standard
input. As with standard output, thisis your terminal by default.

When entering data to a command from the terminal, the Ctrl and d keys (denoted Ctrl+d in this text) must
be simultaneously pressed after the last data item has been entered. This tells the command that you have
finished entering data. As an example, let’ s use the sort command to sort the following four names: Tony,
Barbara, Harry, Dick. Instead of first entering the namesinto afile, we'll enter them directly from the
terminal:

$ sort
Tony
Bar bar a
Harry
Di ck
Ctrl+d
Bar bar a
D ck
Harry
Tony

$

Because no filename was specified to the sort command, the input was taken from standard input, the
terminal. After the fourth name was typed in, the Ctrl and d keys were pressed to signal the end of the data.
At that point, the sort command sorted the four names and displayed the results on the standard output
device, whichisaso theterminal. Thisisdepicted in Figure 2.11.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

41

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

Tony
Barbara
Harry
Dick

sort

FIGURE 2.11 sort command.

Thewe command is another example of acommand that takes its input from standard input if no filenameis
specified on the command line. So the following shows an example of this command used to count the
number of lines of text entered from the terminal:

$ we -1
This is text that
is typed on the
standard i nput devi ce.
Ctrl+d

3
$

Note that the Ctrl+d that is used to terminate the input is not counted as a separate line by the we command.
Furthermore, because no filename was specified to the we command, only the count of the number of lines
(3) islisted as the output of the command. (Recall that this command normally prints the name of the file
directly after the count.)

Output Redirection

The output from a command normally intended for standard output can be easily diverted to afile instead.
This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output to standard output, the
output of that command will be written to file instead of your terminal:

$ who > users
$

This command line causes the wno command to be executed and its output to be written into the file users.
Notice that no output appears at the terminal. This is because the output has been redirected from the
default standard output device (the terminal) into the specified file:

$ cat users

oko tty0l Sep 12 07: 30
ai ttyl5 Sep 12 13:32
ruth tty2l Sep 12 10:10
pat tty24 Sep 12 13:07
steve tty25 Sep 12 13:03
$

If acommand hasits output redirected to afile and the file aready contains some data, that data will be
lost. Consider this example:

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

42

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

$ echo line 1 > users
$ cat users

line 1

$ echo line 2 >> users
$ cat users

line 1

line 2

$

The second echo command uses a different type of output redirection indicated by the characters >>. This
character pair causes the standard output from the command to be appended to the specified file. Therefore,
the previous contents of the file are not lost, and the new output simply gets added onto the end.

By using the redirection append characters >>, you can use cat to append the contents of one file onto the
end of another:

Click hereto view codeimage

$ cat filel

This is in filel.

$ cat file2

This is in file2.

$ cat filel >> file2 Append filel to file2
$ cat file2

This is in file2.
This is in filel.
$

Recall that specifying more than one filenameto cat resultsin the display of thefirst file followed
immediately by the second file, and so on:

Click hereto view codeimage

$ cat filel
This is in filel.
$ cat file2

This is in file2.

$ cat filel file2

This is in filel.

This is in file2.

$ cat filel file2 > file3 Redirect it instead
$ cat file3

This is in filel.

This is in file2.

$

Now you can see where the cat command gets its name: When used with more than onefile, its effect isto
catenate the files together.

Incidentally, the shell recognizes a specia format of output redirection. If you type
> file

not preceded by a command, the shell creates an empty (that is, zero character length) file for you. If file
previously exists, its contents will be lost.

Input Redirection

Just as the output of a command can be redirected to afile, so can the input of acommand be redirected
from afile. And as the greater-than character > is used for output redirection, the less-than character < is
used to redirect the input of acommand. Of course, only commands that normally take their input from
standard input can have their input redirected from afile in this manner.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

43

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

To redirect the input of acommand, you type the < character followed by the name of the file that the input
isto be read from. So, for example, to count the number of linesin the file user s, you know that you can
execute the commandwe -1 users:

$ wec -1 users
2 users
$

Or, you can count the number of linesin the file by redirecting the standard input of the we command from
thefileusers:

$ w -1 < users
2

$
Note that there is a difference in the output produced by the two forms of the we command. In the first case,
the name of the file user s islisted with the line count; in the second case, it is hot. This points out the
subtle distinction between the execution of the two commands. In the first case, we knowsthat it isreading
itsinput from the file user s. In the second case, it only knows that it is reading its input from standard
input. The shell redirects the input so that it comes from the file user s and not the terminal (more about

thisin the next chapter). Asfar aswc is concerned, it doesn’t know whether itsinput is coming from the
terminal or from afilel

Pipes
Asyou will recall, thefile user s that was created previously contains alist of all the users currently logged
in to the system. Because you know that there will be one line in the file for each user logged in to the

system, you can easily determine the number of userslogged in by simply counting the number of linesin
theusers file:

$ who > users

$ w -1 < users
5

$

This output would indicate that currently five users were logged in. Now you have a command sequence
you can use whenever you want to know how many users are logged in.

Another approach to determine the number of logged-in users bypasses the use of afile. The Unix system
allowsyou to effectively connect two commands together. This connection is known as a pipe, and it
enables you to take the output from one command and feed it directly into the input of another command. A
pipeis effected by the character | , which is placed between the two commands. So to make a pipe between
thewho andwe -1 commands, you smply typewho | we -1I:

$ who | we -1
5
$
The pipe that is effected between these two commands is depicted in Figure 2.12.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

44

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

A A
’ \
4 N
’ Y
hY
'y . =
hY
./ir 1\4\
4 |
ai tty01 Sep 12 07:30
oko tty36 Sep 12 13:32
who pat tty21 Sep 12 10:10 we -l
ruth tty24 Sep 12 13:07
steve tty25 Sep 12 13:03
b N
Y ’ \
Y 4 Y
N ’ N
Y ’ \
LY F \
\ ’ .
\ / .
A% "-/ \“h
q,)

FIGURE 2.12 Pipeline process: who | wc -1 .

When apipeis set up between two commands, the standard output from the first command is connected
directly to the standard input of the second command. Y ou know that the who command writesitslist of
logged-in users to standard output. Furthermore, you know that if no filename argument is specified to the
we command, it takesits input from standard input. Therefore, the list of logged-in users that is output from
the who command automatically becomes the input to the we command. Note that you never see the output
of the who command at the terminal because it is piped directly into the we command. Thisisdepicted in

Figure 2.13.

who wc -l 5

FIGURE 2.13 Pipeline process.

A pipe can be made between any two programs, provided that the first program writes its output to standard
output, and the second program reads its input from standard input.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

As another example of a pipe, suppose that you wanted to count the number of files contained in your
directory. Knowledge of the fact that the | s command displays one line of output per file enables you to
use the same type of approach as before:

$1s | w -l
10
$

The output indicates that the current directory contains 10 files.

It is also possible to form a pipeline consisting of more than two programs, with the output of one program
feeding into the input of the next.

Filters

The term filter is often used in Unix terminology to refer to any program that can take input from standard
input, perform some operation on that input, and write the results to standard output. More succinctly, a
filter is any program that can be used between two other programs in a pipeline. So in the previous pipeline,
we isconsidered afilter. | s isnot because it does not read its input from standard input. As other examples,
cat andsort arefilters, whereaswho, dat e, cd, pwd, echo, rm mv, and cp are not.

Standard Error

In addition to standard input and standard output, there is another place known as standard error. Thisis
where most Unix commands write their error messages. And as with the other two “ standard” places,
standard error is associated with your terminal by default. In most cases, you never know the difference
between standard output and standard error:

Click hereto view code image

$1s n* List all files beginning with n
n* not found
$

Here the “not found” message is actually being written to standard error and not standard output by the s
command. Y ou can verify that this message is not being written to standard output by redirecting the | s
command’ s output:

$1s n* > foo
n* not found

$

So, you still get the message printed out at the terminal, even though you redirected standard output to the
filef oo.

The preceding example shows the raison d’ étre for standard error: so that error messages will still get
displayed at the terminal even if standard output is redirected to afile or piped to another command.

Y ou can aso redirect standard error to afile by using the notation
command 2> file

No space is permitted between the 2 and the >. Any error messages normally intended for standard error
will be diverted into the specified file, similar to the way standard output gets redirected.

$1s n* 2> errors
$ cat errors

n* not found

$

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

46

Copyright © 2003. Sams Publishing. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable

copyright law.

More on Commands

Typing More Than One Command on aLine

Y ou can type more than one command on aline provided that you separate each command with a
semicolon. For example, you can find out the current time and also your current working directory by
typing in the dat e and pwd commands on the same line:

$ date; pwd

Sat Jul 20 14:43:25 EDT 2002
[users/ pat/bin

$

Y ou can string out as many commands as you want on the line, as long as each command is delimited by a
semicolon.

Sending a Command to the Background

Normally, you type in acommand and then wait for the results of the command to be displayed at the
terminal. For all the examples you have seen thus far, thiswaiting timeis typically short—maybe a second
or two. However, you may have to run commands that require many seconds or even minutes to execute. In
those cases, you'll have to wait for the command to finish executing before you can proceed further unless
you execute the command in the background.

If you type in acommand followed by the ampersand character &, that command will be sent to the
background for execution. This means that the command will no longer tie up your terminal, and you can
then proceed with other work. The standard output from the command will still be directed to your
terminal; however, in most cases the standard input will be dissociated from your terminal. If the command
doestry to read any input from standard input, it will be stopped and will wait for you to bring it to the

foreground (we' Il discuss thisin more detail in Chapter 15, “Interactive and Nonstandard Shell Features’).2

3Note that the capability to stop a command when it reads from standard input may be missing on non-Unix
implementations of the shell or on older shells that do not conform to the POS X standard. On these
implementations, any read from standard input will get an end-of-file condition asif Ctrl+d were typed.

Click hereto view codeimage

$ sort data > out & Sendthe sort to the background

[1] 1258 Processid

$ date Your terminal isimmediately available to do other work
Sat Jul 20 14:45:09 EDT 2002

$

When a command is sent to the background, the Unix system automatically displays two numbers. The first
is called the command’ s job number and the second the processid. In the preceding example, 1 was the job
number and 1258 the process id. The job number is used by some shell commands that you' Il learn more
about in Chapter 15. The process id uniquely identifies the command that you sent to the background and
can be used to obtain status information about the command. This is done with the ps command.

The ps Command

The ps command gives you information about the processes running on the system. ps without any options
prints the status of just your processes. If you typein ps at your terminal, you’'ll get afew lines back
describing the processes you have running:

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

47

Copyright @ 2003. Sams Publishing.

A1l rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law.

Click hereto view code image

$ ps
PID TTY Tl ME COMVAND
195 01 0: 21 sh The shell
1353 01 0: 00 ps This ps command
1258 01 0:10 sort The previous sort
$

The ps command prints out four columns of information: PI D, the processid; TTY, the terminal number that
the process was run from; TI Mg, the amount of computer time in minutes and seconds that process has used,;
and coOMvaND, the name of the process. (The sh process in the preceding example is the shell that was
started when you logged in, and it has used 21 seconds of computer time.) Until the command isfinished, it
shows up in the output of the ps command as a running process. Process number 1353 in the preceding
exampleisthe ps command that wastyped in, and 1258 isthe sort from the preceding example.

When used with the - f option, ps prints out more information about your processes, including the parent
process id (PPI D), the time the processes started (STI ME), and the command arguments:

Click hereto view codeimage

$ ps -f
ub PD PPID C STI ME TTY TI ME COVIVAND
st eve 195 1 0 10:58:29 tty01 0:21 -sh

steve 1360 195 43 14:54:48 tty01l 0:01 ps -f
steve 1258 195 0 14:45:04 ttyO1 3:17 sort data
$

Command Summary

Table 2.2 summarizes the commands reviewed in this chapter. In thistable, filerefersto afile, file(s) to one
or morefiles, dir to adirectory, and dir(s) to one or more directories.

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:05 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573.main.ehost

48

Copyright @ 2003. Sams Publishing.

A1l rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law.

Command

Description

cat file(s)

cd dir

cp file, file,
cp filefs) dir
date

echo args

1n file, file,
In filefs) dir
1s file(s)

1s dir(s)
mkdir dir(s)
mv file file,
my filefs) dir
ps

pwd

rm file(s)
rmdir dir{s)
sort file(s)
we file(s)

who

Display contents of file(s) or standard input if not supplied
Change working directory to dir

Copy file to file,

Copy file(s) into dir

Display the date and time

Display args

Link file, to file,

Link file{s) into dir

List file(s)

List files in dir(s) or in current directory if dir(s) is not specified
Create directory dir(s)

Move file, to file, (simply rename it if both reference the same directory)
Move file(s) into directory dir

List information about active processes

Display current working directory path

Remove files(s)

Remove empty directory dir(s)

Sort lines of file(s) or standard input if not supplied

Count the number of lines, words, and characters in file(s) or standard
input if not supplied

Display who's logged in

Exercises

TABLE 2.2 Command Summary

1. Given thefollowing filesin your current directory:

$1s
feb96
janl2.02
j anl9. 02
jan26. 02
j an5. 02
j an95

j an96

j an97

j an98
mar 98
menol
menol0
nmeno2
nmeno2. sv
$

What would be the output from the following commands?

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:05 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming

Account: s3408573.main.ehost

49

Copyright @ 2003. Sams Publishing.

A1l rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted under U.S. or applicable copyright law.

Click hereto view code image

echo *
echo enfa-df-z]*
echo j an*

echo jan?? feb?? mar??

echo *[!0-9]
echo [A-Z] *
echo *.*
echo *02

echo [fjni[ae][bnr]*

2. What is the effect of the following command sequences?

Click hereto view codeimage

Is | w -1
who | we -1
Is *.c | w -1
who | sort

cp nenol

rm???
mv progs/* /users/steve/backup
rm*.o
cd; pwd

pl otdata 2>errors &

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:05 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming

Account: s3408573.main.ehost

50

