
20

1. Introduction

It’s no secret that the Unix operating system has emerged as a standard operating system. For programmers
who have been using Unix for many years now, this came as no surprise: The Unix system provides an
elegant and efficient environment for program development. After all, this is what Dennis Ritchie and Ken
Thompson strived for when they developed Unix at Bell Laboratories in the late 1960s.

One of the strongest features of the Unix system is its wide collection of programs. More than 200 basic
commands are distributed with the standard operating system. These commands (also known as) dotools
everything from counting the number of lines in a file, to sending electronic mail, to displaying a calendar
for any desired year.

But the real strength of the Unix system comes not entirely from this large collection of commands but also
from the elegance and ease with which these commands can be combined to perform far more sophisticated
functions.

To further this end, and also to provide a consistent buffer between the user and the guts of the Unix system
(the), the shell was developed. The is simply a program that reads in the commands you typekernel shell
and converts them into a form more readily understood by the Unix system. It also includes some
fundamental programming constructs that let you make decisions, loop, and store values in variables.

The standard shell distributed with Unix and Linux systems derives from AT&T’s distribution, which
evolved from a version originally written by Stephen Bourne at Bell Labs. Since then, the IEEE created
standards based on the Bourne shell and the other more recent shells. The current version of this standard as
of this revision is the Shell and Utilities volume of IEEE Std 1003.1-2001, also known as the POSIX
standard. This shell is what we propose to teach you about in this book.

The examples in this book were tested on both SunOS 5.7 running on a Sparcstation Ultra-30 and on
Silicon Graphics IRIX 6.5 running on an Octane; some examples were also run on Red Hat Linux 7.1 and
Cygwin. All examples, except some Bash examples in , were run using the Korn shell, althoughChapter 15
many were also run with Bash.

Many Unix systems are still around that have Bourne shell derivatives and utilities not compliant with the
POSIX standard. We’ll try to note this throughout the text wherever possible; however, there are so many
different versions of Unix from so many different vendors that it’s simply not possible to mention every
difference. If you do have an older Unix system that doesn’t supply a POSIX-compliant shell, there’s still
hope. We’ll list resources at the end of this book where you can obtain free copies of three different
POSIX-compliant shells.

Because the shell offers an interpreted programming language, programs can be written, modified, and
debugged quickly and easily. We turn to the shell as our first choice of programming language. After you
become adept at programming in the shell, you too may turn to it first.

This book assumes that you are familiar with the fundamentals of the Unix system; that is, that you know
how to log in; how to create files, edit them, and remove them; and how to work with directories. But in
case you haven’t used the Unix system for a while, we’ll examine the basics in , “Chapter 2 A Quick

.” Besides the basic file commands, filename substitution, I/O redirection, and pipesReview of the Basics
are also reviewed in .Chapter 2

Chapter 3, “ ,” reveals what the shell really is. You’ll learn about what happens everyWhat Is the Shell?
time you log in to the system, how the shell program gets started, how it parses the command line, and how
it executes other programs for you. A key point made in is that the shell is just a program;Chapter 3
nothing more, nothing less.

Chapter 4, “ ,” provides tutorials on tools useful in writing shell programs. Covered inTools of the Trade
this chapter are , , , , , , and . Admittedly, the selection is subjective, but itcut paste sed grep sort tr uniq

does set the stage for programs that we’ll develop throughout the remainder of the book. Also in Chapter 4
is a detailed discussion of regular expressions, which are used by many Unix commands such as , ,sed grep

and .ed

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

21

Chapters 5 through teach you how to put the shell to work for writing programs. You’ll learn how to10
write your own commands; use variables; write programs that accept arguments; make decisions; use the
shell’s , , and looping commands; and use the command to read data from thefor while until read

terminal or from a file. , “ ,” is devoted entirely to a discussion on oneChapter 6 Can I Quote You on That?
of the most intriguing (and often confusing) aspects of the shell: the way it interprets quotes.

By this point in the book, all the basic programming constructs in the shell will have been covered, and you
will be able to write shell programs to solve your particular problems.

Chapter 11, “ ,” covers a topic of great importance for a real understanding of the way theYour Environment
shell operates: the . You’ll learn about local and exported variables; subshells; special shellenvironment
variables such as , , and ; and how to set up your file.HOME PATH CDPATH .profile

Chapter 12, “ ,” and , “ ,” tie up some loose ends, and ,More on Parameters Chapter 13 Loose Ends Chapter 14
“ ,” presents a final version of a phone directory program called that is developedRolo Revisited rolo

throughout the book.

Chapter 15, “ ,” discusses features of the shell that either are notInteractive and Nonstandard Shell Features
formally part of the IEEE POSIX standard shell (but are available in most Unix and Linux shells) or are
mainly used interactively instead of in programs.

Appendix A, “ ,” summarizes the features of the IEEE POSIX standard shell.Shell Summary

Appendix B, “ ,” lists references and resources, including the Web sites whereFor More Information
different shells can be downloaded.

The philosophy this book uses is to teach by example. Properly chosen examples do a far superior job at
illustrating how a particular feature is used than ten times as many words. The old “A picture is worth…”
adage seems to apply just as well to examples. You are encouraged to type in each example and test it on
your system, for only by doing can you become adept at shell programming. You also should not be afraid
to experiment. Try changing commands in the program examples to see the effect, or add different options
or features to make the programs more useful or robust.

At the end of most chapters you will find exercises. These can be used as assignments in a classroom
environment or by yourself to test your progress.

This book teaches the IEEE POSIX standard shell. Incompatibilities with earlier Bourne shell versions are
noted in the text, and these tend to be minor.

Acknowledgments from the first edition of this book: We’d like to thank Tony Iannino and Dick Fritz for
editing the manuscript. We’d also like to thank Juliann Colvin for performing her usual wonders copy
editing this book. Finally, we’d like to thank Teri Zak, our acquisitions editor, and posthumously Maureen
Connelly, our production editor. These two were not only the best at what they did, but they also made
working with them a real pleasure.

For the first revised edition of this book, we’d like to acknowledge the contributions made by Steven Levy
and Ann Baker, and we’d like to also thank the following people from Sams: Phil Kennedy, Wendy Ford,
and Scott Arant.

For the second revised edition of this book, we’d like to thank Kathryn Purdum, our acquisitions editor,
Charlotte Clapp, our project editor, and Geneil Breeze, our copy editor.

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

22

2. A Quick Review of the Basics

In This Chapter

• Some Basic Commands

• Working with Files

• Working with Directories

• Filename Substitution

• Standard Input/Output and I/O Redirection

• Pipes

• Standard Error

• More on Commands

• Command Summary

• Exercises

This chapter provides a review of the Unix system, including the file system, basic commands, filename
substitution, I/O redirection, and pipes.

Some Basic Commands

Displaying the Date and Time: The Commanddate

The command tells the system to print the date and time:date

$ date
Sat Jul 20 14:42:56 EDT 2002
$

date prints the day of the week, month, day, time (24-hour clock, the system’s time zone), and year.
Throughout this book, whenever we use , it’s to indicate what you, the user,boldface type like this

types in. is used to indicate what the Unix system prints. is usedNormal face type like this Italic type
for comments in interactive sequences.

Every Unix command is ended with the pressing of the Enter key. Enter says that you are finished typing
things in and are ready for the Unix system to do its thing.

Finding Out Who’s Logged In: The Commandwho

The command can be used to get information about all users currently logged in to the system:who

Click here to view code image

$ who
pat tty29 Jul 19 14:40
ruth tty37 Jul 19 10:54
steve tty25 Jul 19 15:52
$

Here, three users are logged in: , , and . Along with each user id, the number of that userpat ruth steve tty
and the day and time that user logged in is listed. The tty number is a unique identification number the Unix
system gives to each terminal or network device that a user has logged into.

The command also can be used to get information about yourself:whoCo
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

23

Click here to view code image

$ who am i
pat tty29 Jul 19 14:40
$

who and are actually the same command: . In the latter case, the and are to thewho am i who am i arguments
 command.who

Echoing Characters: The Commandecho

The command prints (or) at the terminal whatever else you happen to type on the line (thereecho echoes
are some exceptions to this that you’ll learn about later):

Click here to view code image

$ echo this is a test
this is a test
$ echo why not print out a longer line with echo?
why not print out a longer line with echo?
$ echo
 A blank line is displayed
$ echo one two three four five
one two three four five
$

You will notice from the preceding example that squeezes out extra blanks between words. That’secho

because on a Unix system, the words are important; the blanks are merely there to separate the words.
Generally, the Unix system ignores extra blanks (you’ll learn more about this in the next chapter).

Working with Files
The Unix system recognizes only three basic types of files: files, files, and files.ordinary directory special
An ordinary file is just that: any file on the system that contains data, text, program instructions, or just
about anything else. Directories are described later in this chapter. As its name implies, a special file has a
special meaning to the Unix system and is typically associated with some form of I/O.

A filename can be composed of just about any character directly available from the keyboard (and even
some that aren’t) provided that the total number of characters contained in the name is not greater than 255.
If more than 255 characters are specified, the Unix system simply ignores the extra characters.1

Modern Unix and Microsoft Windows systems support long filenames; however, some older Unix and Windows1

systems only allow much shorter filenames.

The Unix system provides many tools that make working with files easy. Here we’ll review many basic file
manipulation commands.

Listing Files: The Commandls

To see what files you have stored in your directory, you can type the command:ls

$ ls
READ_ME
names
tmp
$

This output indicates that three files called , , and are contained in the current directory.READ_ME names tmp

(Note that the output of may vary from system to system. For example, on many Unix systems ls ls

produces multicolumn output when sending its output to a terminal; on others, different colors may be usedCo
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

24

for different types of files. You can always force single-column output with the option.)–l

Displaying the Contents of a File: The Commandcat

You can examine the of a file by using the command. The argument to is the name of thecontents cat cat

file whose contents you want to examine.

$ cat names
Susan
Jeff
Henry
Allan
Ken
$

Counting the Number of Words in a File: The Commandwc

With the command, you can get a count of the total number of lines, words, and characters ofwc

information contained in a file. Once again, the name of the file is needed as the argument to this
command:

Click here to view code image

$ wc names
 5 5 27 names
$

The command lists three numbers followed by the filename. The first number represents the number ofwc

lines contained in the file (5), the second the number of words contained in the file (in this case also 5), and
the third the number of characters contained in the file (27).

Command Options
Most Unix commands allow the specification of at the time a command is executed. These optionsoptions
generally follow the same format:

-letter

That is, a command option is a minus sign followed immediately by a single letter. For example, to count
just the number of lines contained in a file, the option (that’s the letter l) is given to the command:-l wc

$ wc -l names
 5 names
$

To count just the number of characters in a file, the option is specified:-c

$ wc -c names
 27 names
$

Finally, the option can be used to count the number of words contained in the file:-w

$ wc -w names
 5 names
$

Some commands require that the options be listed before the filename arguments. For example, sort
 is acceptable, whereas is not. Let’s generalize by saying that command optionsnames -r wc names -l

should filenames on the command line.precedeCo
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

25

Making a Copy of a File: The Commandcp

To make a copy of a file, the command is used. The first argument to the command is the name of thecp

file to be copied (known as the), and the second argument is the name of the file to place thesource file
copy into (known as the). You can make a copy of the file and call it asdestination file names saved_names

follows:

$ cp names saved_names
$

Execution of this command causes the file named to be copied into a file named . Asnames saved_names

with many Unix commands, the fact that a command prompt was displayed after the command wascp

typed indicates that the command executed successfully.

Renaming a File: The Commandmv

A file can be renamed with the command. The arguments to the command follow the same format asmv mv

the command. The first argument is the name of the file to be renamed, and the second argument is thecp

new name. So, to change the name of the file to , for example, the followingsaved_names hold_it

command would do the trick:

$ mv saved_names hold_it
$

When executing an or command, the Unix system does not care whether the file specified as themv cp

second argument already exists. If it does, the contents of the file will be lost. For example, if a file called 2

 exists, executing the commandold_names

Assuming that you have the proper permission to write to the file.2

cp names old_names

would copy the file to , destroying the previous contents of in the process.names old_names old_names

Similarly, the command

mv names old_names

would rename to , even if the file existed prior to execution of the command.names old_names old_names

Removing a File: The Commandrm

To remove a file from the system, you use the command. The argument to is simply the name of therm rm

file to be removed:

$ rm hold_it
$

You can remove more than one file at a time with the command by simply specifying all such files onrm

the command line. For example, the following would remove the three files , , and :wb collect mon

$ rm wb collect mon
$

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

26

Working with Directories
Suppose that you had a set of files consisting of various memos, proposals, and letters. Further suppose that
you had a set of files that were computer programs. It would seem logical to group this first set of files into
a directory called , for example, and the latter set of files into a directory called . documents programs

 illustrates such a directory organization.Figure 2.1

FIGURE 2.1 Example directory structure.

The file directory the files , , , , , and . Thedocuments contains plan dact sys.A new.hire no.JSK AMG.reply

directory contains the files , , and . At some point, you may decide to furtherprograms wb collect mon

categorize the files in a directory. This can be done by creating subdirectories and then placing each file
into the appropriate subdirectory. For example, you might want to create subdirectories called , memos

, and inside your directory, as shown in .proposals letters documents Figure 2.2

FIGURE 2.2 Directories containing subdirectories.

documents contains the subdirectories , , and . Each of these directories in turnmemos proposals letters

contains two files: contains and ; contains and ; and memos plan dact proposals sys.A new.hire letters

contains and .no.JSK AMG.reply

Although each file in a given directory must have a unique name, files contained in different directories do
not. So, for example, you could have a file in your directory called , even though a file byprograms dact

that name also exists in the subdirectory.memos

The Home Directory and Pathnames
The Unix system always associates each user of the system with a particular directory. When you log in to
the system, you are placed automatically into a directory called your directory.home

Although the location of users’ home directories can vary from one Unix version to the next, and even one
user to the next, let’s assume that your home directory is called and that this directory is actually asteve

subdirectory of a directory called . Therefore, if you had the directories and , theusers documents programs

overall directory structure would actually look something like . A special directory known as Figure 2.3 /

(pronounced) is shown at the top of the directory tree. This directory is known as the .slash root

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

27

FIGURE 2.3 Hierarchical directory structure.

Whenever you are “inside” a particular directory (called your directory), the filescurrent working
contained within that directory are immediately accessible. If you want to access a file from another
directory, you can either first issue a command to “change” to the appropriate directory and then access the
particular file, or you can specify the particular file by its pathname.

A pathname enables you to uniquely identify a particular file to the Unix system. In the specification of a
pathname, successive directories along the path are separated by the slash character . A pathname that /

 with a slash character is known as a pathname because it specifies a complete path from the root.begins full
So, for example, the pathname identifies the directory contained under the directory /users/steve steve

. Similarly, the pathname references the directory as containedusers /users/steve/documents documents

in the directory under . As a final example, the pathname steve users /users/steve/documents/letters

 identifies the file contained along the appropriate directory path./AMG.reply AMG.reply

To help reduce some of the typing that would otherwise be required, Unix provides certain notational
conveniences. Pathnames that do not begin with a slash character are known as pathnames. Therelative
path is relative to your current working directory. For example, if you just logged in to the system and were
placed into your home directory , you could directly reference the directory /users/steve documents

simply by typing . Similarly, the relative pathname could be typed to access thedocuments programs/mon

file contained inside your directory.mon programs

By convention, the directory name always references the directory that is one level higher. For example,..

after logging in and being placed into your home directory , the pathname would/users/steve ..

reference the directory . And if you had issued the appropriate command to change your workingusers

directory to , the pathname would reference the directory, woulddocuments/letters .. documents ../..

reference the directory , and would reference the file containedsteve ../proposals/new.hire new.hire

in the directory. Note that in this case, as in most cases, there is usually more than one way toproposals

specify a path to a particular file.

Another notational convention is the single period , which always refers to the current directory..

Now it’s time to examine commands designed for working with directories.

Displaying Your Working Directory: The Commandpwd

The command is used to help you “get your bearings” by telling you the name of your current workingpwd

directory.

Recall the directory structure from . The directory that you are placed in after you log in to theFigure 2.3Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

28

system is called your home directory. You can assume from that the home directory for the user Figure 2.3
 is . Therefore, whenever logs in to the system, he will automatically be placedsteve /users/steve steve

inside this directory. To verify that this is the case, the (print working directory) command can bepwd

issued:

$ pwd
/users/steve
$

The output from the command verifies that ’s current working directory is .steve /users/steve

Changing Directories: The Commandcd

You can change your current working directory by using the command. This command takes as itscd

argument the name of the directory you want to change to.

Let’s assume that you just logged in to the system and were placed inside your home directory, /users
. This is depicted by the arrow in ./steve Figure 2.4

FIGURE 2.4 Current working directory is .steve

You know that two directories are directly “below” ’s home directory: and . Insteve documents programs

fact, this can be verified at the terminal by issuing the command:ls

$ ls
documents
programs
$

The command lists the two directories and the same way it listed other ordinaryls documents programs

files in previous examples.

To change your current working directory, issue the command, followed by the name of the directory tocd

change to:

$ cd documents
$

After executing this command, you will be placed inside the documents directory, as depicted in .Figure 2.5

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

29

FIGURE 2.5 .cd documents

You can verify at the terminal that the working directory has been changed by issuing the command:pwd

$ pwd
/users/steve/documents

$

The easiest way to get one level up in a directory is to issue the command

cd ..

because by convention always refers to the directory one level up (known as the directory; see .. parent
).Figure 2.6

FIGURE 2.6 cd ..

$ cd ..
$ pwd
/users/steve
$Co

py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:44 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

30

If you wanted to change to the directory, you could get there with a single command byletters cd

specifying the relative path (see):documents/letters Figure 2.7

FIGURE 2.7 .cd documents/letters

Click here to view code image

$ cd documents/letters
$ pwd
/users/steve/documents/letters
$

You can get back up to the home directory by using a single command to go up two directories ascd

shown:

$ cd ../..
$ pwd
/users/steve
$

Or you can get back to the home directory using a full pathname rather than a relative one:

$ cd /users/steve
$ pwd
/users/steve
$

Finally, there is a third way to get back to the home directory that is also the easiest. Typing the command
 an argument places you back into your home directory, no matter where you are in yourcd without always

directory path:

$ cd
$ pwd
/users/steve
$

More on the Commandls

When you type the command, the files contained in the current working directory are listed. But you canls

also use to obtain a list of files in other directories by supplying an argument to the command. First let’sls

get back to your home directory:

Co
py
ri
gh
t
@
20
03
.
Sa
ms
 P
ub
li
sh
in
g.

Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e
co
py
ri
gh
t
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:13 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573.main.ehost

31

$ cd
$ pwd
/users/steve
$

Now let’s take a look at the files in the current working directory:

$ ls
documents
programs
$

If you supply the name of one of these directories to the command, you can get a list of the contents ofls

that directory. So, you can find out what’s contained in the directory simply by typing thedocuments

command :ls documents

$ ls documents
letters
memos
proposals
$

To take a look at the subdirectory , you follow a similar procedure:memos

$ ls documents/memos
dact
plan
$

If you specify a nondirectory file argument to the command, you simply get that filename echoed backls

at the terminal:

$ ls documents/memos/plan
documents/memos/plan
$

An option to the command enables you to determine whether a particular file is a directory, among otherls

things. The option (the letter l) provides a more detailed description of the files in a directory. If you-l

were currently in ’s home directory as indicated in , the following would illustrate thesteve Figure 2.6
effect of supplying the option to the command:-l ls

Click here to view code image

$ ls –l
total 2
drwxr-xr-x 5 steve DP3725 80 Jun 25 13:27 documents
drwxr-xr-x 2 steve DP3725 96 Jun 25 13:31 programs
$

The first line of the display is a count of the total number of (1,024 bytes) of storage that the listedblocks
files use. Each successive line displayed by the command contains detailed information about a filels -l

in the directory. The first character on each line tells whether the file is a directory. If the character is , it isd

a directory; if it is , it is an ordinary file; finally, if it is , , , or , it is a special file.- b c l p

The next nine characters on the line tell how every user on the system can access the file. These particular
 apply to the file’s owner (the first three characters), other users in the same as the file’saccess modes group

owner (the next three characters), and finally to all other users on the system (the last three characters).
They tell whether the user can read from the file, write to the file, or execute the contents of the file.

The command lists the count (see “Linking Files: The Command,” later in this chapter), thels -l link ln

owner of the file, the group owner of the file, how large the file is (that is, how many characters are

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

32

contained in it), and when the file was last modified. The information displayed last on the line is the
filename itself.

Click here to view code image

$ ls -l programs
total 4
-rwxr-xr-x 1 steve DP3725 358 Jun 25 13:31 collect
-rwxr-xr-x 1 steve DP3725 1219 Jun 25 13:31 mon
-rwxr-xr-x 1 steve DP3725 89 Jun 25 13:30 wb
$

The dash in the first column of each line indicates that the three files , , and are ordinarycollect mon wb

files and not directories.

Creating a Directory: The Commandmkdir

To create a directory, the command must be used. The argument to this command is simply the namemkdir

of the directory you want to make. For example, assume that you are still working with the directory
structure depicted in and that you want to create a new directory called asFigure 2.7 misc on the same level
the directories and . If you were currently in your home directory, typing thedocuments programs

command would achieve the desired effect:mkdir misc

$ mkdir misc
$

Now if you execute an command, you should get the new directory listed:ls

$ ls
documents
misc
programs
$

The directory structure now appears as shown in .Figure 2.8

FIGURE 2.8 Directory structure with newly created directory.misc

Copying a File from One Directory to Another
The command can be used to copy a file from one directory into another. For example, you can copy thecp

file from the directory into a file called in the directory as follows:wb programs wbx misc

$ cp programs/wb misc/wbx
$

Because the two files are contained in different directories, it is not even necessary that they be givenCo
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

33

different names:

$ cp programs/wb misc/wb
$

When the destination file has the same name as the source file (in a different directory, of course), it is
necessary to specify only the destination directory as the second argument:

$ cp programs/wb misc
$

When this command gets executed, the Unix system recognizes that the second argument is the name of a
directory and copies the source file into that directory. The new file is given the same name as the source
file. You can copy more than one file into a directory by listing the files to be copied before the name of the
destination directory. If you were currently in the directory, the commandprograms

$ cp wb collect mon ../misc
$

would copy the three files , , and into the directory, under the same names.wb collect mon misc

To copy a file from another directory into your current one and give it the same name, use the fact that the
current directory can always be referenced as ‘ ’:.

$ pwd
/users/steve/misc
$ cp ../programs/collect .
$

The preceding command copies the file from the directory into the current directorycollect ../programs

()./users/steve/misc

Moving Files Between Directories
You recall that the command can be used to rename a file. However, when the two arguments to thismv

command reference different directories, the file is actually moved from the first directory into the second
directory. For example, first change from the home directory to the directory:documents

$ cd documents
$

Suppose that now you decide that the file contained in the directory is really a proposal and notplan memos

a memo. So you want to move it from the directory into the directory. The followingmemos proposals

would do the trick:

Click here to view code image

$ mv memos/plan proposals/plan
$

As with the command, if the source file and destination file have the same name, only the name of thecp

destination directory need be supplied.

$ mv memos/plan proposals
$

Also like the command, a group of files can be simultaneously moved into a directory by simply listingcp

all files to be moved before the name of the destination directory:

$ pwd
/users/steve/programsCo

py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

34

$ mv wb collect mon ../misc
$

This would move the three files , , and into the directory . You can also use the wb collect mon misc mv

command to change the name of a directory. For example, the following renames the directory toprograms

.bin

$ mv programs bin
$

Linking Files: The Commandln

In simplest terms, the command provides an easy way for you to give more than one name to a file. Theln

general form of the command is

ln from to

This links the file to the file .from to

Recall the structure of ’s directory from . In that directory, he has stored asteve programs Figure 2.8
program called . Suppose that he decides that he’d also like to call the program . The mostwb writeback

obvious thing to do would be to simply create a copy of called :wb writeback

$ cp wb writeback
$

The drawback with this approach is that now twice as much disk space is being consumed by the program.
Furthermore, if ever changes , he may forget to make a new copy of , resulting in twosteve wb writeback

different copies of what he thinks is the same program.

By linking the file to the new name, these problems are avoided:wb

$ ln wb writeback
$

Now instead of two copies of the file existing, only one exists with two different names: and .wb writeback

The two files have been logically linked by the Unix system. As far as you’re concerned, it appears as
though you have two files. Executing an command shows the two files separately:different ls

$ ls
collect
mon
wb
writeback
$

Look what happens when you execute an :ls -l

Click here to view code image

$ ls -l
total 5
-rwxr-xr-x 1 steve DP3725 358 Jun 25 13:31 collect
-rwxr-xr-x 1 steve DP3725 1219 Jun 25 13:31 mon
-rwxr-xr-x 2 steve DP3725 89 Jun 25 13:30 wb
-rwxr-xr-x 2 steve DP3725 89 Jun 25 13:30 writeback
$

The number right before is 1 for and and 2 for and . This number is thesteve collect mon wb writeback

number of links to a file, normally 1 for nonlinked, nondirectory files. Because and arewb writeback

linked, this number is 2 for these files. This implies that you can link to a file more than once.

You can remove either of the two linked files at any time, and the other will not be removed:Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

35

Click here to view code image

$ rm writeback
$ ls -l
total 4
-rwxr-xr-x 1 steve DP3725 358 Jun 25 13:31 collect
-rwxr-xr-x 1 steve DP3725 1219 Jun 25 13:31 mon
-rwxr-xr-x 1 steve DP3725 89 Jun 25 13:30 wb
$

Note that the number of links on went from 2 to 1 because one of its links was removed.wb

Most often, is used to link files between directories. For example, suppose that wanted to haveln pat

access to ’s program. Instead of making a copy for himself (subject to the same problemssteve wb

described previously) or including ’s directory in his (described in detail in steve programs PATH Chapter
, “ ”), he can simply link to the file from his own program directory; for example:11 Your Environment

Click here to view code image

$ pwd
/users/pat/bin pat's program directory
$ ls -l
total 4
-rwxr-xr-x 1 pat DP3822 1358 Jan 15 11:01 lcat
-rwxr-xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$ wb pat's binln /users/steve/wb . link to
$ ls -l
total 5
-rwxr-xr-x 1 pat DP3822 1358 Jan 15 11:01 lcat
-rwxr-xr-x 2 steve DP3725 89 Jun 25 13:30 wb
-rwxr-xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$

Note that is still listed as the owner of , even though the listing came from ’s directory. Thissteve wb pat

makes sense, because really only one copy of the file exists—and it’s owned by .steve

The only stipulation on linking files is that for ordinary links, the files to be linked together must reside on
the same . If they don’t, you’ll get an error from when you try to link them. (To determine thefile system ln

different file systems on your system, execute the command. The first field on each line of output is thedf

name of a file system.)

To create links to files on different file systems (or perhaps on different networked systems), you can use
the option to the command. This creates a link. Symbolic links behave a lot like regular-s ln symbolic
links, except that the symbolic link points to the original file; if the original file is removed, the symbolic
link no longer works. Let’s see how symbolic links work with the previous example:

Click here to view code image

$ rm wb
$ ls -l
total 4
-rwxr-xr-x 1 pat DP3822 1358 Jan 15 11:01 lcat
-rwxr-xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$ wbln -s /users/steve/wb ./symwb Symbolic link to
$ ls -l
total 5
-rwxr-xr-x 1 pat DP3822 1358 Jan 15 11:01 lcat
lrwxr-xr-x 1 pat DP3822 15 Jul 20 15:22 symwb -> /users/steve/wb
-rwxr-xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$

Note that is listed as the owner of , and the file type is , which indicates a symbolic link. Thepat symwb l

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

36

size of the symbolic link is 15 (the file actually contains the string), but if we attempt to/users/steve/wb

access the contents of the file, we are presented with the contents of its symbolic link, :/users/steve/wb

Click here to view code image

$ wc symwb
 5 9 89 symwb
$

The option to the command can be used with the option to get a detailed list of information on the-L ls -l

file the symbolic link points to:

Click here to view code image

$ ls -Ll
total 5
-rwxr-xr-x 1 pat DP3822 1358 Jan 15 11:01 lcat
-rwxr-xr-x 2 steve DP3725 89 Jun 25 13:30 wb
-rwxr-xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$

Removing the file that a symbolic link points to invalidates the symbolic link (because symbolic links are
maintained as filenames), although the symbolic link continues to stick around:

Click here to view code image

$ pat rm /users/steve/wb Assume can remove this file
$ ls -l
total 5
-rwxr-xr-x 1 pat DP3822 1358 Jan 15 11:01 lcat
lrwxr-xr-x 1 pat DP3822 15 Jul 20 15:22 wb -> /users/steve/wb
-rwxr-xr-x 1 pat DP3822 504 Apr 21 18:30 xtr
$ wc wb
Cannot open wb: No such file or directory
$

This type of file is called a and should be removed unless you have a specific reasondangling symbolic link
to keep it around (for example, if you intend to replace the removed file).

One last note before leaving this discussion: The command follows the same general format as and ln cp

, meaning that you can link a bunch of files at once into a directory using the formatmv

ln files directory

Removing a Directory: The Commandrmdir

You can remove a directory with the command. The stipulation involved in removing a directory isrmdir

that no files be contained in the directory. If there files in the directory when is executed, youare rmdir

will not be allowed to remove the directory. To remove the directory that you created earlier, themisc

following could be used:

$ rmdir /users/steve/misc
$

Once again, the preceding command works only if no files are contained in the directory; otherwise,misc

the following happens:

Click here to view code image

$ rmdir /users/steve/misc
rmdir: /users/steve/misc not empty
$

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

37

If this happens and you still want to remove the directory, you would first have to remove all the filesmisc

contained in that directory before reissuing the command.rmdir

As an alternate method for removing a directory and the files contained in it, you can use the option to-r

the command. The format is simple:rm

rm -r dir

where is the name of the directory that you want to remove. removes the indicated directory and dir rm all
files (including directories) in it.

Filename Substitution

The Asterisk
One powerful feature of the Unix system that is actually handled by the shell is . Let’sfilename substitution
say that your current directory has these files in it:

$ ls
chapt1
chapt2
chapt3
chapt4
$

Suppose that you want to print their contents at the terminal. Well, you could take advantage of the fact that
the command allows you to specify more than one filename at a time. When this is done, the contentscat

of the files are displayed one after the other:

Click here to view code image

$ cat chapt1 chapt2 chapt3 chapt4
 ...
$

But you can also type in

$ cat *
 ...
$

and get the same results. The shell automatically the names of all the files in the currentsubstitutes
directory for the . The same substitution occurs if you use with the command:* * echo

$ echo *
chapt1 chapt2 chapt3 chapt4
$

Here the is again replaced with the names of all the files contained in the current directory, and the * echo

command simply displays them at the terminal.

Any place that appears on the command line, the shell performs its substitution:*

Click here to view code image

$ echo * : *
chapt1 chapt2 chapt3 chapt4 : chapt1 chapt2 chapt3 chapt4
$

The can also be used in combination with other characters to limit the filenames that are substituted. For*

example, let’s say that in your current directory you have not only through but also files , chapt1 chapt4 a

, and :b cCo
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

38

$ ls
a
b
c
chapt1
chapt2
chapt3
chapt4
$

To display the contents of just the files beginning with , you can type inchapt

$ cat chapt*
 .
 .
 .
$

The matches any filename that with . All such filenames matched are substituted onchapt* begins chapt

the command line.

The is not limited to the end of a filename; it can be used at the beginning or in the middle as well:*

$ echo *t1
chapt1
$ echo *t*
chapt1 chapt2 chapt3 chapt4
$ echo *x
*x
$

In the first , the specifies all filenames that end in the characters . In the second , the first echo *t1 t1 echo *

matches everything up to a and the second everything after; thus, all filenames containing a are printed.t t

Because there are no files ending with , no substitution occurs in the last case. Therefore, the x echo

command simply displays .*x

Matching Single Characters
The asterisk () matches or more characters, meaning that matches the file as well as , , * zero x* x x1 x2 xabc

, and so on. The question mark () matches exactly one character. So prints all files with? cat ?

one-character names, just as prints all files with two-character names beginning with .cat x? x

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

39

Click here to view code image

$ ls
a
aa
aax
alice
b
bb
c
cc
report1
report2
report3
$ echo ?
a b c
$ echo a?
aa
$ echo ??
aa bb cc
$ echo ??*
aa aax alice bb cc report1 report2 report3
$

In the preceding example, the matches two characters, and the matches zero or more up to the end. The?? *

net effect is to match all filenames of two or more characters.

Another way to match a single character is to give a list of the characters to use in the match inside square
brackets . For example, matches letter , , or . It’s similar to the , but it allows you to[] [abc] one a b c ?

choose the characters that will be matched. The specification matches the characters 0 9.[0-9] through
The only restriction in specifying a of characters is that the first character must be alphabetically lessrange
than the last character, so that is not a valid range specification.[z-f]

By mixing and matching ranges and characters in the list, you can perform some complicated substitutions.
For example, matches all files that start with the letters through through (or more[a-np-z]* a n or p z

simply stated, any lowercase letter but).o

If the first character following the is a , the sense of the match is inverted. That is, any character is[!

matched those enclosed in the brackets. Soexcept

[!a-z]

matches any character except a lowercase letter, and

*[!o]

matches any file that doesn’t end with the lowercase letter .o

Table 2.1 gives a few more examples of filename substitution.

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

40

TABLE 2.1 Filename Substitution Examples

Standard Input/Output and I/O Redirection

Standard Input and Standard Output
Most Unix system commands take input from your terminal and send the resulting output back to your
terminal. A command normally reads its input from a place called , which happens to bestandard input
your terminal by default. Similarly, a command normally writes its output to , which is alsostandard output
your terminal by default. This concept is depicted in .Figure 2.9

FIGURE 2.9 Typical Unix command.

Recall that executing the command results in the display of the currently logged-in users. Morewho

formally, the command writes a list of the logged-in users to standard output. This is depicted in who Figure
.2.10

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 1:48 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

41

FIGURE 2.10 command.who

If a command is executed a filename argument, the command takes its input from standardsort without
input. As with standard output, this is your terminal by default.

When entering data to a command from the terminal, the and keys (denoted in this text) mustCtrl d Ctrl+d
be simultaneously pressed after the last data item has been entered. This tells the command that you have
finished entering data. As an example, let’s use the command to sort the following four names: Tony, sort

Barbara, Harry, Dick. Instead of first entering the names into a file, we’ll enter them directly from the
terminal:

$ sort
Tony
Barbara
Harry
Dick
Ctrl+d
Barbara
Dick
Harry
Tony
$

Because no filename was specified to the command, the input was taken from standard input, thesort

terminal. After the fourth name was typed in, the and keys were pressed to signal the end of the data.Ctrl d
At that point, the command sorted the four names and displayed the results on the standard outputsort

device, which is also the terminal. This is depicted in .Figure 2.11

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

42

FIGURE 2.11 command.sort

The command is another example of a command that takes its input from standard input if no filename iswc

specified on the command line. So the following shows an example of this command used to count the
number of lines of text entered from the terminal:

$ wc -l
This is text that
is typed on the
standard input device.
Ctrl+d
 3
$

Note that the that is used to terminate the input is not counted as a separate line by the command.Ctrl+d wc

Furthermore, because no filename was specified to the command, only the count of the number of lineswc

(3) is listed as the output of the command. (Recall that this command normally prints the name of the file
directly after the count.)

Output Redirection
The output from a command normally intended for standard output can be easily diverted to a file instead.
This capability is known as .output redirection

If the notation is appended to command that normally writes its output to standard output, the> file any
output of that command will be written to instead of your terminal:file

$ who > users
$

This command line causes the command to be executed and its output to be written into the file .who users

Notice that no output appears at the terminal. This is because the output has been from theredirected
default standard output device (the terminal) into the specified file:

$ cat users
oko tty01 Sep 12 07:30
ai tty15 Sep 12 13:32
ruth tty21 Sep 12 10:10
pat tty24 Sep 12 13:07
steve tty25 Sep 12 13:03
$

If a command has its output redirected to a file and the file already contains some data, that data will be
lost. Consider this example:Co

py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

43

$ echo line 1 > users
$ cat users
line 1
$ echo line 2 >> users
$ cat users
line 1
line 2
$

The second command uses a different type of output redirection indicated by the characters . Thisecho >>

character pair causes the standard output from the command to be to the specified file. Therefore,appended
the previous contents of the file are not lost, and the new output simply gets added onto the end.

By using the redirection append characters , you can use to append the contents of one file onto the>> cat

end of another:

Click here to view code image

$ cat file1
This is in file1.
$ cat file2
This is in file2.
$ file1 file2cat file1 >> file2 Append to
$ cat file2
This is in file2.
This is in file1.
$

Recall that specifying more than one filename to results in the display of the first file followedcat

immediately by the second file, and so on:

Click here to view code image

$ cat file1
This is in file1.
$ cat file2
This is in file2.
$ cat file1 file2
This is in file1.
This is in file2.
$ cat file1 file2 > file3 Redirect it instead
$ cat file3
This is in file1.
This is in file2.
$

Now you can see where the command gets its name: When used with more than one file, its effect is to cat

 the files together.catenate

Incidentally, the shell recognizes a special format of output redirection. If you type

> file

not preceded by a command, the shell creates an empty (that is, zero character length) for you. If file file
previously exists, its contents will be lost.

Input Redirection
Just as the output of a command can be redirected to a file, so can the input of a command be redirected
from a file. And as the greater-than character is used for output redirection, the less-than character is> <

used to redirect the input of a command. Of course, only commands that normally take their input from
standard input can have their input redirected from a file in this manner.

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

44

To redirect the input of a command, you type the character followed by the name of the file that the input<

is to be read from. So, for example, to count the number of lines in the file , you know that you canusers

execute the command :wc -l users

$ wc -l users
 2 users
$

Or, you can count the number of lines in the file by redirecting the standard input of the command fromwc

the file :users

$ wc -l < users
 2
$

Note that there is a difference in the output produced by the two forms of the command. In the first case,wc

the name of the file is listed with the line count; in the second case, it is not. This points out theusers

subtle distinction between the execution of the two commands. In the first case, knows that it is readingwc

its input from the file . In the second case, it only knows that it is reading its input from standardusers

input. The shell redirects the input so that it comes from the file and not the terminal (more aboutusers

this in the next chapter). As far as is concerned, it doesn’t know whether its input is coming from thewc

terminal or from a file!

Pipes
As you will recall, the file that was created previously contains a list of all the users currently loggedusers

in to the system. Because you know that there will be one line in the file for each user logged in to the
system, you can easily determine the of users logged in by simply counting the number of lines innumber
the file:users

$ who > users
$ wc -l < users
 5
$

This output would indicate that currently five users were logged in. Now you have a command sequence
you can use whenever you want to know how many users are logged in.

Another approach to determine the number of logged-in users bypasses the use of a file. The Unix system
allows you to effectively connect two commands together. This connection is known as a , and itpipe
enables you to take the output from one command and feed it directly into the input of another command. A
pipe is effected by the character , which is placed between the two commands. So to make a pipe between|

the and commands, you simply type :who wc -l who | wc -l

$ who | wc -l
 5
$

The pipe that is effected between these two commands is depicted in .Figure 2.12

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

45

FIGURE 2.12 Pipeline process: .who | wc -l

When a pipe is set up between two commands, the standard output from the first command is connected
directly to the standard input of the second command. You know that the command writes its list ofwho

logged-in users to standard output. Furthermore, you know that if no filename argument is specified to the
 command, it takes its input from standard input. Therefore, the list of logged-in users that is output fromwc

the command automatically becomes the input to the command. Note that you never see the outputwho wc

of the command at the terminal because it is piped directly into the command. This is depicted in who wc

.Figure 2.13

FIGURE 2.13 Pipeline process.

A pipe can be made between two programs, provided that the first program writes its output to standardany
output, and the second program reads its input from standard input.Co

py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

46

As another example of a pipe, suppose that you wanted to count the number of files contained in your
directory. Knowledge of the fact that the command displays one line of output per file enables you tols

use the same type of approach as before:

$ ls | wc -l
 10
$

The output indicates that the current directory contains 10 files.

It is also possible to form a pipeline consisting of more than two programs, with the output of one program
feeding into the input of the next.

Filters
The term is often used in Unix terminology to refer to any program that can take input from standardfilter
input, perform some operation on that input, and write the results to standard output. More succinctly, a
filter is any program that can be used between two other programs in a pipeline. So in the previous pipeline,

 is considered a filter. is not because it does not read its input from standard input. As other examples, wc ls

 and are filters, whereas , , , , , , , and are not.cat sort who date cd pwd echo rm mv cp

Standard Error
In addition to standard input and standard output, there is another place known as . This isstandard error
where most Unix commands write their error messages. And as with the other two “standard” places,
standard error is associated with your terminal by default. In most cases, you never know the difference
between standard output and standard error:

Click here to view code image

$ nls n* List all files beginning with
n* not found
$

Here the “not found” message is actually being written to standard error and not standard output by the ls
command. You can verify that this message is not being written to standard output by redirecting the ls
command’s output:

$ ls n* > foo
n* not found
$

So, you still get the message printed out at the terminal, even though you redirected standard output to the
file .foo

The preceding example shows the for standard error: so that error messages will still getraison d’être
displayed at the terminal even if standard output is redirected to a file or piped to another command.

You can also redirect standard error to a file by using the notation

command 2> file

No space is permitted between the and the . Any error messages normally intended for standard error2 >

will be diverted into the specified , similar to the way standard output gets redirected.file

$ ls n* 2> errors
$ cat errors
n* not found
$

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

47

More on Commands

Typing More Than One Command on a Line
You can type more than one command on a line provided that you separate each command with a
semicolon. For example, you can find out the current time and also your current working directory by
typing in the and commands on the same line:date pwd

$ date; pwd
Sat Jul 20 14:43:25 EDT 2002
/users/pat/bin
$

You can string out as many commands as you want on the line, as long as each command is delimited by a
semicolon.

Sending a Command to the Background
Normally, you type in a command and then wait for the results of the command to be displayed at the
terminal. For all the examples you have seen thus far, this waiting time is typically short—maybe a second
or two. However, you may have to run commands that require many seconds or even minutes to execute. In
those cases, you’ll have to wait for the command to finish executing before you can proceed further unless

.you execute the command in the background

If you type in a command followed by the ampersand character , that command will be sent to the&

background for execution. This means that the command will no longer tie up your terminal, and you can
then proceed with other work. The standard output from the command will still be directed to your
terminal; however, in most cases the standard input will be dissociated from your terminal. If the command
does try to read any input from standard input, it will be stopped and will wait for you to bring it to the
foreground (we’ll discuss this in more detail in , “ ”).Chapter 15 Interactive and Nonstandard Shell Features 3

Note that the capability to stop a command when it reads from standard input may be missing on non-Unix3

implementations of the shell or on older shells that do not conform to the POSIX standard. On these
implementations, any read from standard input will get an end-of-file condition as if Ctrl+d were typed.

Click here to view code image

$ sort sort data > out & Send the to the background
[1] 1258 Process id
$ date Your terminal is immediately available to do other work
Sat Jul 20 14:45:09 EDT 2002
$

When a command is sent to the background, the Unix system automatically displays two numbers. The first
is called the command’s and the second the . In the preceding example, 1 was the jobjob number process id
number and 1258 the process id. The job number is used by some shell commands that you’ll learn more
about in . The process id uniquely identifies the command that you sent to the background andChapter 15
can be used to obtain status information about the command. This is done with the command.ps

The Commandps

The command gives you information about the processes running on the system. without any optionsps ps

prints the status of just your processes. If you type in at your terminal, you’ll get a few lines backps

describing the processes you have running:

Co
py
ri
gh
t
©
 2
00
3.
 S
am

s
Pu
bl
is
hi
ng
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:03 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573

48

Click here to view code image

$ ps
 PID TTY TIME COMMAND
 195 01 0:21 sh The shell
 1353 01 0:00 ps ps This command
 1258 01 0:10 sort The previous sort
$

The command prints out four columns of information: , the process id; , the terminal number thatps PID TTY

the process was run from; , the amount of computer time in minutes and seconds that process has used;TIME

and , the name of the process. (The process in the preceding example is the shell that wasCOMMAND sh

started when you logged in, and it has used 21 seconds of computer time.) Until the command is finished, it
shows up in the output of the command as a running process. Process number 1353 in the precedingps

example is the command that was typed in, and 1258 is the from the preceding example.ps sort

When used with the option, prints out more information about your processes, including the -f ps parent
process id (), the time the processes started (), and the command arguments:PPID STIME

Click here to view code image

$ ps -f
 UID PID PPID C STIME TTY TIME COMMAND
 steve 195 1 0 10:58:29 tty01 0:21 -sh
 steve 1360 195 43 14:54:48 tty01 0:01 ps -f
 steve 1258 195 0 14:45:04 tty01 3:17 sort data
$

Command Summary
Table 2.2 summarizes the commands reviewed in this chapter. In this table, refers to a file, to onefile file(s)
or more files, to a directory, and to one or more directories.dir dir(s)

Co
py
ri
gh
t
@
20
03
.
Sa
ms
 P
ub
li
sh
in
g.

Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e
co
py
ri
gh
t
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:05 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573.main.ehost

49

TABLE 2.2 Command Summary

Exercises
1. Given the following files in your current directory:

$ ls
feb96
jan12.02
jan19.02
jan26.02
jan5.02
jan95
jan96
jan97
jan98
mar98
memo1
memo10
memo2
memo2.sv
$

What would be the output from the following commands?

Co
py
ri
gh
t
@
20
03
.
Sa
ms
 P
ub
li
sh
in
g.

Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e
co
py
ri
gh
t
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:05 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573.main.ehost

50

Click here to view code image

echo * echo *[!0-9]

echo em[a-df-z]* echo [A-Z]*

echo jan* echo *.*

echo ????? echo *02

echo jan?? feb?? mar?? echo [fjm][ae][bnr]*

2. What is the effect of the following command sequences?

Click here to view code image

ls | wc -l rm ???

who | wc -l mv progs/* /users/steve/backup

ls *.c | wc -l rm *.o

who | sort cd; pwd

cp memo1 .. plotdata 2>errors &

Co
py
ri
gh
t
@
20
03
.
Sa
ms
 P
ub
li
sh
in
g.

Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e
co
py
ri
gh
t
la
w.

EBSCO : eBook Collection (EBSCOhost) - printed on 1/8/2019 2:05 PM via UNIV OF TORONTO
AN: 128913 ; Kochan, Stephen G., Wood, Patrick H..; Unix Shell Programming
Account: s3408573.main.ehost

