
CSC209H Worksheet: Inspecting Executables

Programs are simply binary files whose contents can be interpreted as a set

of machine instructions. Since they are necessarily in a known (specified)

format, we can write programs that inspect and modify them.

For instance the Unix program objdump1 displays sections of executable

files in human readable form. Given a compiled “hello world” program and

specifying the “read-only data section”, objdump produces:

$ objdump -s -j .rodata hello

hello: file format elf64-x86-64

Contents of section .rodata:

0700 01000200 48656c6c 6f20776f 726c6421Hello world!

0710 00

The read-only section of the executable is where string literals (among

other things) are stored, and objdump lets us see them. The output above

is formatted as follows:

• The first column contains memory addresses. In the example, the

.rodata section starts at address 0700.

• The next 4 columns contain the hexadecimal representations of the

memory contents at those addresses. Recall that two hexadecimal

digits together represent one byte, so one line represents 16 bytes.

There are 17 bytes in the .rodata section of our example.

• The last column also displays the memory contents, but in ASCII

representation. Some of the bytes are printable as valid ASCII char-

acters, whereas other bytes are not (and are thus represented by a .

1Objdump comes included in the GNU Binary Utilities. You may be interested in some of the
other included tools, as well: https://www.gnu.org/software/binutils/

CSC209H Worksheet: Inspecting Executables

instead), since the .rodata section can contain data besides string

literals.

objdump behaves slightly differently on different platforms – and with

different executable formats. For example, on OS X, files don’t have a

.rodata section, so you would need to omit the “-j” flag to look at all of

the sections. You might also run into a situation where the offset reported

is not the same as the offset in the file. In that case, you can add the

“–file-offsets” flag. If you’re not running on the lab machines and get odd

behaviour from objdump, flag down a TA or instructor for help.

We’re going to use the information from objdump to write a program that

extracts data from a binary file. This will be particularly useful for as-

signment 2. As in that assignment, we’re going to use fseek and binary

IO, and we’ll be reading header data into structs. We’ve provided some

starter code, including the example program above and a Makefile, on

the course website.

Exercise 1

Write a program literals.c that prints all of the string literals stored

in the .rodata section, one per line. The program should take three

command-line arguments:

1. address in hexadecimal of the first byte in the .rodata section,

2. size (number of bytes) in decimal of the .rodata section, and

3. name of an executable file

Notice in the sample output below that there are two lines before “Hello

world!”, since there is some non-string data that is stored before the literal

in the .rodata section, as can be seen in the objdump output above):

CSC209H Worksheet: Inspecting Executables

$./literals 0x700 17 hello

Hello world!

Helpful tips:

• Use base-16 strtol to parse hexadecimal numbers that lead with

0x.

• Use fseek to jump to the part of the exectutable file that you want

to read.

• Use fread to read in the entire .rodata section first. Then think

about how to print out individual strings on new lines. Remember

that there could be many null-terminated strings in the section. (And

as above, it’s okay if you print some garbage because there is non-

string data stored.)

Use hello.c to test – you should get exactly the same output as in

our example. Then, grab your A1 code or lab code and see if you can

extract the literals from that source file. Finally, try your code out on

copied_hello.c. What do you think is happening? Do you get a differ-

ent result if you replace the strcpy with strncpy?

Exercise 2

For literals to be useful we need a program to determine the location

and size of the .rodata section of a given executable. It should not be

surprising that this data is encoded in the executable itself. Here is the

relevant information for basic programs compiled using gcc on

the lab machines:

CSC209H Worksheet: Inspecting Executables

• The four bytes at addresses 0x28 to 0x2b contain the starting address

for all the section headers.

• The file rodata.h contains a struct that matches the format of a

ELF-64 section header. If you read data from the file into a struct,

then the data will fill in the fields correctly. The sh_addr and

sh_size members will contain the address and size of the header

being described.

• The .rodata section is the 17th header. You can either seek directly

to it and then read just that header, or you can read at least 17

headers (into an array of header structs) and then get the data you

need from the 17th header in the array.

Create a program rodata.c which takes the filename of an executable

and prints the address of the .rodata section (in hex) and the size of the

section (in decimal).

$./rodata hello

0x00000700 17

Exercise 3

Modify literal to accept the output from rodata through a pipe, rather

than requiring those values as command line arguments.

$./rodata hello | ./literals hello

Hello world!

