
CSC209H Worksheet: Fork and Wait

Consider the program below that runs without errors. In the table on the

next page, indicate how many times the name of each fruit is printed.

int main() {

int i;

printf("Mangoes\n");

int r = fork();

printf("Apples\n");

if (r == 0) {

printf("Oranges\n");

int k = fork();

if (k >= 0) {

printf("Bananas\n");

}

} else if (r > 0) {

printf("Peaches\n");

for(i = 0; i < 3; i++) {

if ((r = fork()) == 0) {

printf("Pears\n");

exit(0);

printf("Nectarines\n");

} else if (r > 0) {

printf("Plums\n");

}

}

}

return 0;

}

CSC209H Worksheet: Fork and Wait

Fruit Name Times Printed

Mangoes

Apples

Oranges

Bananas

Peaches

Pears

Nectarines

Plums

CSC209H Worksheet: Fork and Wait

Several orderings of the fruit names are possible valid output. Some of

these orderings even have the unix prompt displaying before the final fruit

name (or names). Explain why this happens.

Not all of the fruit names could appear after the prompt in a valid output.

For example the word Mangoes will never appear after the prompt. List

all the fruit names that could occur after the prompt.

For this question you will write a program that forks one child for each com-

mand line argument. The child computes the length of the command line

argument and exits with that integer as the return value. The parent sums

these return codes and reports the total length of all the command line argu-

ments together. For example if your program is called spread_the_work

and is called as spread_the_work divide the load it prints

The length of the args is 13.

We have provided some parts of the code and you must work within this

framework and complete the missing pieces. You do not need to write

include statements.

int main(int argc, char **argv) {

// Declare any variables you need

// Loop over the command line arguments.

// (Remember to skip the executable name.)

for () {

// call fork

= fork();

if () {

// Handle the error

} else if () {

// Child does work here

}

}

// Parent process.

printf("The length of the args is %d\n", sum);

return 0;

}

