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Abstract

Processing large graphs provides invaluable insights for the industry and research

alike. The applications range from e-commerce, web, and social networking to an-

alyzing gene expressions and cellular signaling. While numerous graph processing

solutions have been developed with the capability to process graphs at the scale of a

trillion edges, the ability to maintain and process a real-time graph still far from being

handled. Processing data streams in real-time requires the graph to change over time

which introduces several new challenges. First, the graph needs to be updated from

the data stream efficiently. At the same time, applying these changes should not add

an unacceptable overhead to graph queries. In addition, these changes need to be

reflected in the new analytical insights, otherwise the value of the insights degrades

with time.

In this work, we investigated the problem of dynamic graph processing over data

streams. We started by studying the feasibility of maintaining a dynamic graph on

top of Apache Spark, a data processing engine. The chosen solutions included RDDs,

IndexedRDDs, and Redis. Results from our experiments indicated that Redis per-

formed the best, and thus we concluded that storing the graph in an external big

data store besides Spark is the best approach in terms of performance and practi-

cality. After that, we designed and developed Sprouter, a streaming data analytics
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framework which utilizes Spark for dynamic graph processing. The framework enables

storing enormous graph data, allows real-time graph updates, and supports efficient

complex analytics and OLTP queries. Experiments showed that the system is able

to support the above mentioned properties and update graphs with up to 100 million

edges in under 50 seconds in a moderate underlying cluster. Finally, we selected com-

munity detection as a case study of incremental graph analytics with Sprouter. We

proposed the Incremental Distributed Weighted Community Clustering (IDWCC), a

novel algorithm that optimizes the Weighted Community Clustering metric to detect

communities in unweighted undirected node-grained dynamic graphs. We validated

the algorithm against the static centralized and distributed versions of WCC opti-

mization. The experiments showed that the performance of IDWCC surpasses the

static distributed version by up to three times while maintaining the same accuracy

or better.
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Chapter 1

Introduction

Graph processing is one of the most important topics in big data processing [7, 22,

6, 24]. The graph structure has proved to be a good representation for a wide range

of problems including social networks [35], targeted advertising [5], knowledge bases

[4], mobile communications [39], and biological cell signaling [21]. The structure

is also a natural fit for distributed processing as its algorithms work in an iterative

manner allowing parallelism. This importance makes many advancements in machine

learning and data mining techniques bounded by the ability to process this data

structure efficiently and reliably [7, 22]. However, graph processing encounters many

challenges especially as graphs grow to have billions of edges.

In this chapter, we present the motivation and the research challenges we try to

solve in the area of graph processing.

1.1 Motivation

Due to the importance of graph data and the need to address big data challenges,

numerous systems were developed for distributed graph processing. Some of these

systems are Pregel [22], Giraph [7], and Spark’s GraphX [40]. These systems are
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capable of processing large-scale static graphs, some to the magnitude of a trillion

edges [7]. However, in the real world where the data is flowing and changing all the

time, graphs are not static. The inability to utilize incoming data in real-time means

that the analytical results are not up-to-date and hence inaccurate in frequently

changing environments. Still none of these systems support the ability to update and

process graphs in real-time. We refer to this problem as dynamic graph processing or

incremental graph processing [8, 43] interchangeably in this research. We demonstrate

the significance of this problem using two use case scenarios that are described below.

Recommendation Systems: Nowadays, there is nearly no e-commerce website

that does not give recommendations. Recommendation systems are based on the

fact that most people follow “social navigation” [11] which means that people with

common interests have high influence on each others’ activities. In this digital era,

the most powerful commercial companies such as Amazon and Netflix have high-

level industry-strength recommendation systems. Besides commerce, recommenda-

tion systems are used in search engines to enhance search results, social networks for

matchmaking, and software to show help tips that are relevant to user behaviour.

The number of web users has been growing rapidly over the past few years. This

growth is generating a massive amount of behavioural data. This requires recom-

mendation systems to have the ability to process all this data in real time to provide

high-quality recommendation service to the users. Since the graph structure is used

widely in recommendation systems [5, 12], the need to append graphs and process

them in real-time is crucial to avoid problems like the cold-start problem or giving

out-of-date recommendations.
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Internet of Things (IoT): We are rapidly approaching an era where we will be

interacting with and using hundreds and thousands of interconnected digital devices.

One time-sensitive example is patients in intensive care units which are often mon-

itored by a variety of digital health devices and sensors to collect real-time health

monitoring data. The collected data needs to be linked with patients’ historical data

and doctors’ reports to provide real-time analysis and notifications about patients’

health status. Short delays in such analytics and minor inaccuracies can have catas-

trophic consequences. Graph theory and online graph processing have proven to be

an effective approach to analyze and query IoT data [42].

1.2 Research Challenges

Most graph processing systems are designed to process static graphs efficiently. There-

fore, some of their design decisions do not suit evolving the graph with time. For

example, Giraph is designed to load the graph from disk each time the processing is

done [22]. This is not a approach solution when the graph is updated and processed

over data streams. Another example is the use of immutable data structure to hold

the graph as done in Spark [45]. This requires copying the graph with the added data

into a new structure on each update which is not efficient.

Another problem is reflecting the updates in the results of future OLTP queries

on the graph. At the same time, responses to these queries should be delivered

without long delays. Designing storage abstractions and/or systems that update the

graph in real-time while delivering these updates to subsequent queries efficiently is a

challenging problem.
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Producing analytical insights from a dynamic graph is another challenging prob-

lem. OLAP queries are generally time and resource intensive, and with data streams

the value of previous insights degrades rapidly. Innovating efficient analytical algo-

rithms that behave in an incremental fashion instead of processing the full data every

time1, is crucial for delivering valuable high-quality timely insights.

1.3 Hypothesis

Dynamic graph processing can be achieved with: a) a stream processing engine that

can ingest and process data in real time, b) graph storage abstraction(s) that support

updates and OLTP/OLAP queries efficiently, and c) the necessary dynamic graph

processing algorithms.

1.4 Research Objectives and Scope

To validate the hypothesis, in this research we will:

1. Explore:

(a) Cutting-edge stream data processing systems, big data storage systems,

and in-memory graph structures to select the right tools for building the

framework.

(b) Data sets that can be used to demonstrate our research prototypes.

(c) Interesting graph analytic problems to demonstrate real-time graph ana-

lytics.

1If it is possible for the problem in hand. Some problems cannot be programmed dynamically by
nature. An example of that is an the longest path in a graph.
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2. Design and implement:

(a) A streaming data processing framework with a big data persistent stor-

age system and an in-memory graph storage. The persistent storage will

serve OLTP and pinpoint queries with the help of indexes, while the graph

structure will serve OLAP queries and allow efficient graph analytics.

(b) An incremental graph processing algorithm for the community detection

problem to demonstrate the effectiveness of our framework in finding com-

munities with continuously changing data.

1.5 Contributions

The research has contributed to two conference papers (one published, one accepted)

and three co-authored journal papers (one submitted, two in-preparation) as listed

in the beginning of this dissertation. The technical contributions of our research can

be summarized as follows.

The first contribution is conducting a comprehensive study of incremental graph

processing over high volume and velocity streaming data. Our study identifies the

feasible approaches, including a variety of proprietary and open source data processing

engines and big data storage systems.

The second contribution is designing and implementing Sprouter, an end-to-end

framework for dynamic graph processing. The framework combines different open-

source tools including Spark, Spark Streaming, Cassandra, and NiFi, and can be

extended to suit other streaming data analytics applications. It supports OLTP

queries as well as complex analytics in a timely manner on a dynamically updated

graph.
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The third contribution is a novel incremental graph algorithm we call the Incre-

mental Distributed Weighted Community Clustering (IDWCC), which we developed,

validated, and incorporated in Sprouter to demonstrate a real-life application scenario.

The use case scenario is delivering real-time recommendations through community

detection in a large dynamic graph. The IDWCC algorithm works for unweighted

undirected node-grained dynamic graphs. The experiments show that the perfor-

mance of our new algorithm surpasses the existing distributed algorithm by up to

three orders of magnitude while maintaining an accuracy that is slightly less than

that of the static centralized algorithm (less than %5), and same or better than the

static distributed algorithm.

1.6 Organization of Thesis

We proceed by introducing background knowledge and related work in the next chap-

ter. We present and evaluate approaches to implement incremental processing of

graphs with Apache Spark in Chapter 3. Chapter 4 describes the design and imple-

mentation of Sprouter, our proposed framework with experiments to validate its effec-

tiveness in processing dynamic graphs. Our novel incremental community detection

algorithm, as well as its implementation in Sprouter to demonstrate its capabilities,

are presented in Chapter 5. Chapter 6 concludes the thesis and outlines the future

work.
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Chapter 2

Background

This chapter presents the background concepts relevant to stream data processing,

graph databases, incremental graph processing, incremental graph algorithms, and

the community detection problem in graphs.

2.1 Stream Processing Engines

Batch processing systems can serve the purpose when dealing with bounded data

[10]. However, when the data is unbounded i.e. it comes as an infinite stream, those

systems start to fail to follow up with the data flow [36]. At that point, it becomes

necessary to have a system capable of analyzing data in real-time.

To be able to process unbounded data, there are several requirements the process-

ing engine must satisfy. These requirements were discussed by Stonebraker at el. [36]

and they are summarized below.

1. Low Latency: Latency is the time the system takes to perform message pro-

cessing. Lower latency can be better achieved by avoiding storing data into the

disk and using an active processing model.
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2. High-level Query Capabilities: The engine should have APIs to support

high-level queries on structured data whether it is script based, SQL based, or

with graph traversal languages.

3. Data Correctness and Consistency: The engine should provide resiliency

by handling stream defects such as missing, out-of-order, or delayed tuples.

4. Integrating Stored Data with Stream Data: The engine should provide

data integration tools with scalable distributed storage systems such as HDFS

and NoSQL databases.

5. Fault Tolerance and High Availability: The engine should support good

fault tolerance techniques against crashes with minimum overhead. Reprocess-

ing the data from the start of the working workflow after failures is not practical

in real-time applications so the system should be able to recover the data pro-

duced by the latest step possible before the fault.

Also when the system becomes incapable of handling the volume of the incoming

data, it should be able to continue without failure. Some techniques can be used

when this problem occurs:

• The Fail-fast mechanism: Dropping the data that causes the overflow.

However, correctness cannot be guaranteed in this approach [37].

• The Back-pressure mechanism: Keeping the overflowing data stored to

process it when the system overcomes the problem [19].

6. High Scalability and Data Partitioning: Scalability is becoming essential

for achieving high performance. That can be done by supporting multi-threaded
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operations to take advantage of multi-processor architectures, distributing the

processing across multiple machines instead of centralized processing, and hav-

ing the ability to add and remove machines on the fly. Distributed processing

requires implementing techniques to distribute the data among the cluster i.e.

“data partitioning”.

Many big data processing systems are designed to satisfy the mentioned require-

ments such as Apache Storm [37], Twitter Heron [19], IBM Streams, and Apache

Samza [26]. However, Apache Spark [45] is one of the most used systems for stream

processing in recent years. Some of the reasons are its big development and support

community, an in-memory processing paradigm, having simple APIs that support

development in different programming languages, and the ability to support a wide

range of processing workloads including batch, streaming, and iterative processing.

Apache Spark was first introduced as an in-memory processing engine to support

iterative processing with good performance. Spark uses Resilient Distributed Datasets

(RDDs) [45] as a distributed memory abstraction for large-scale computations. The

programming interface provided by Spark allows the programmer to describe the data

processing steps with known functional programming operations e.g. “map”, “join”,

“filter”, “reduceByKey”. To make fault-tolerance possible without introducing the

overhead faced with Hadoop, Spark logs the transformations only instead of the whole

data. Recovery is less expensive as well because when an RDD partition is lost,

Spark is able to recover by calculating that exact partition alone instead of the whole

RDD as it has enough information to redo only its corresponding transformations.

The recalculation is also deterministic due to two important properties of RDDs:

immutability and reproducibility.
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Later, Spark Streaming [46] was developed as a library on top of Apache Spark that

allows passing micro batches of data to the processing engine to effectively simulate

the behaviour of real-time processing engines.

2.2 Graph Frameworks

2.2.1 Graph Storage Systems

There are many graph-specific storage systems such as Neo4j1, Sparksee2, and Tiger-

Graph3, but many of them have questionable scalability. Neo4j, for example, still does

not support sharding4. On the other hand, there are many solutions where NoSQL

systems are used to store graph structure. One of these solutions is JanusGraph5

which is a scalable graph database that enables storing and querying large data sets

composed of billions of vertices and edges in a structure that is distributed across

multiple machines.

JanusGraph stores the data in an external storage system. It has support for

many storage backends such as Cassandra, Berkeley DB, and HBase. Internally, it

stores the graph as a collection of vertices with their adjacency list. An adjacency

list of a vertex in graph theory is a list of all the incident edges of that vertex. This

storage format, which is demonstrated also in Fig. 2.1, ensures that each vertex and

its adjacent edges are stored compactly in the storage backend to speed up traversals.

The disadvantage is that each edge is stored twice: once for each end vertex. In

addition to that, JanusGraph keeps the vertex list ordered by a sort key and each

1https://neo4j.com
2http://www.sparsity-technologies.com
3https://www.tigergraph.com/
4distributing data across multiple machines
5http://janusgraph.org/
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Column Family: default
RowKey < edge1key > < edge2key > ... < property1name > < property2name > ...

< vertexId > < edge1properties > < edge2properties > ... < property1value > < property2value > ...

Figure 2.1: Table Scheme in Adjacency List Graph

Column Family: default
RowKey fromVertex toVertex < property1name > < property2name > ...

< vertexId > < vertexId > < vertexId > < property1value > < property2value > ...

(a) Edge Table

Column Family: default
RowKey < property1name > < property2name > ...

< vertexId > < property1value > < property2value > ...

(b) Vertex Table

Figure 2.2: Table Scheme in HGraphDB

adjacency list ordered by edge labels. This order allows faster retrieval of a subset of

an adjacency list.

Another example is HGraphDB6 which is a client layer built directly on top of

HBase to use the latter as a graph data store. Unlike JanusGraph, HGraphDB

represents the graph as two separate tables: one for the vertices and one for the

edges. The argument for this choice is that it scales better for huge graphs. However,

additional indexes must be used to provide efficient access to the incident edges of a

vertex. This structure is explained in Fig. 2.2.

2.2.2 Static Graph Processing Systems

The increasing importance of processing graph data encouraged the development of

many specialized distributed graph processing systems. These systems expose graph

abstractions and naturally support executing iterative graph algorithms and many

6https://github.com/rayokota/hgraphdb
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graph-specific optimizations to provide the required efficiency. As a result, these sys-

tems are undoubtedly superior for graph processing compared to the general purpose

data processing systems in terms of performance.

A vertex-centric approach is used in implementing Pregel [22], a distributed graph

processing library written in C++ by Google. This library is designed to be efficient,

scalable, and fault tolerant. The processing is done in a series of “super-steps”. In

each step of the processing S, every vertex v that receives a message or more from the

previous super-step S−1: (a) reads the received messages, (b) executes computations

that typically make changes to v and its outgoing edges, and (c) sends messages to

other vertices that will be received in super-step S + 1. The execution is terminated

at a super-step S∗ in which all vertices are idle (no vertex receives messages).

This design is heavily influenced by the Bulk Synchronous Parallel model [38],

where the parallelization happens during each step S where parallel computations

can occur at all the vertices which receive messages from the previous step S − 1.

The synchronization is assured at the beginning of each step S due to the fact that

the processing at that step is blocked until all messages from the previous step S − 1

are received.

The graph in Pregel is divided into partitions that are distributed on the under-

lying servers. The data, which consists of the vertices and edges, is typically never

moved between machines, and only the messages are transferred. This pure message

passing model allows good performance and offers exactly-one delivery but does not

guarantee the order which is not a real concern.

Pregel remained as a closed source library used by Google, but its design descrip-

tion in Malewicz et al. [22] inspired Facebook to build Giraph [7] which was donated
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later to the Apache Foundation. Apache Giraph is not just an open source version of

Pregel, but has many extensions to the original model to elevate its usability, and im-

plements performance and scalability improvements to accommodate a social graph

of Facebook scale.

Giraph is implemented to work within the Hadoop ecosystem as it reads data

from HDFS and Hive tables and depends on YARN for cluster management, but it

does not depend solely on MapReduce task level parallelism. In order to increase the

performance, it creates multiple workers per machine and supports multi-threading

to exploit multiple CPU cores.

Twitter had a different philosophy regarding graph processing. Sharma et al. [35]

assumed that the entire graph can be held in the memory of a single server. They

estimated that their graphs cannot exceed 80 GB in size and hence they depended

on expanding the resources vertically rather than horizontally. This assumption sim-

plifies the system as it drops the need for graph partitioning and data movement.

They developed many centralized graph processing systems starting with WTF (Who

To Follow) [17] and Cassovary7 until their graph systems evolved into real-time pro-

cessing with GraphJet [35]. GraphJet is a graph-based system for generating content

recommendations. It is an in-memory graph processing engine that maintains real-

time user-tweet relations as a graph and works on a single machine.

Although the above-mentioned systems enable high-performance graph process-

ing, they have some disadvantages. Since analytic processes generally require other

data structures such as collections with graph processing, using multiple systems

adds complexity and data movement overhead. Another problem is that these graph

systems have fairly more complicated APIs compared to the basic data processing

7https://blog.twitter.com/2012/cassovary-a-big-graph-processing-library



2.2. GRAPH FRAMEWORKS 14

operators such as map, join, and group by. Also, they generally lack the advanced

fault tolerance techniques like in GraphJet or rely on snapshot recovery approach as

used in Pregel. These problems led to the trend of bringing back general-purpose data

processing systems with graph abstractions on top of them.

Apache Spark was the leader in this direction by introducing an embedded graph

framework called GraphX [14]. Since Spark is an iterative processing system by na-

ture, GraphX was developed as a graph abstraction library that sufficiently expresses

graph APIs using basic data flow operators such as reduce, join, and map. The graph

in GraphX is represented as distributed partitions and is highly fault tolerant like

RDDs. This representation is based on the fact that graphs can be logically repre-

sented as a pair of vertex and edge collections where each vertex has to be identified

with a unique key. The vertex collection contains a list of vertex properties associ-

ated with the mentioned key, and the edge collection contains pairs of source and

destination vertices keys.

During the past few years, Spark started shifting focus to structured data by

adding higher-level APIs such as Spark SQL. Spark SQL introduced DataFrames

which are collections of structured records that can be manipulated using Spark’s

original procedural API, or using new relational APIs. As a part of this shift in Spark,

GraphFrames [9] was introduced by moving to use DataFrames instead of RDDs for

graph processing. This change allowed to generalize the idea behind GraphX from

just executing iterative algorithms to supporting pattern matching and relational

queries.
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2.2.3 Dynamic Graph Processing

Most real-world graphs are dynamic as they change over time with new data producing

new vertices and edges that need to be merged into the graphs. These frequent up-

dates usually come as streams of data requiring dynamic graph processing. Dynamic

graph processing typically requires merging the new data to the graph efficiently,

serving online user queries, and supporting real-time analytics.

Twitter tried to solve the problem of incremental graph processing over data

streams with the assumption that the entire graph can be held in the memory of a

single server. This assumption simplified the system as it dropped the need for graph

partitioning and data movement. Based on that, they developed their centralized

real-time dynamic graph processing system GraphJet which we explained earlier.

Iyer et al. [18] presented GraphTau, a graph processing framework built on top of

GraphX to process dynamic graphs. However, the framework is not open-sourced and

is built on the RADIX trees similar to IndexedRDDs, which do not serve pinpoint

lookups on graph streams as we show in Chapter 3.

Choudhury et al. [8] designed a framework with Spark to process dynamic knowl-

edge graphs. The authors implemented many applications. However, none of the

implemented applications require evolving the graph in real-time. Pattern discovery

is done over data streams but it uses stream of edges passed to Spark to find patterns

and thus incrementing the graph in real-time is not needed. Another application,

question answering, is done with graph search but over a static graph which is loaded

from HDFS and no streaming is done. Our focus is to find a solution that enables

real-time incremental graph processing.

Spark has a library called Spark Streaming [46] that allows passing micro batches



2.3. DYNAMIC GRAPH ALGORITHMS 16

of data to the processing engine instead of big batches and thus serves as a near real-

time processing engine. Although this allows Spark to support stream processing,

evolving the graph over data streams is not presented as a feature in GraphX or

GraphFrames.

2.3 Dynamic Graph algorithms

Dynamic graph scenarios require real-time solutions since applying the traditional

static analytical algorithms to the whole graph each time the graph is updated is

computationally expensive and impractical. Instead, dynamic graph algorithms typ-

ically process only the newly added data and propagate changes to the parts of the

graph that are connected to the newly added data if needed. This optimization

reduces the processing time significantly.

We can consider two different scenarios for time-evolving graphs when developing

dynamic graph algorithms [43]. In the first scenario, the new nodes are added to

the graph with all their incident edges simultaneously. These graphs are referred

to in the literature as node-grained dynamic graphs. An example of such graphs is

a graph of scientific papers and their references. Once a paper is published all the

papers that it references are known as well and no new references (connections) are

added later. In the other scenario, new edges can be added or removed at a later

point of time for already existing vertices. Such graphs are known as edge-grained

dynamic graphs. Social networks are a good example of these graphs as people add

new friends and “un-friend” old ones all the time. Thus, the assumption of knowing

all the connections of a person once we add them to the graph is not viable. In

these networks, the sequence of adding new edges should be taken into consideration.
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Dynamic graph algorithms can support one of these scenarios or both.

In the next section, we will introduce the graph community detection problem

and discuss some of the existing solutions for static and dynamic graphs.

2.3.1 Community Detection

Community detection in graphs is the process of identifying groups of nodes that are

highly connected among themselves and sparsely connected to the rest of the graph.

Such groups are referred to in the literature as “communities” and occur in various

types of graphs.

Detecting communities within large-scale graphs has become a very important

topic [30, 43, 29]. First, it helps to discover new structural properties about the

graph that cannot be found otherwise [3] such as the high-influence nodes also known

as “community centroids”. Second, the generated communities indicates special rela-

tionships between the nodes that can be hidden among the complex structure of the

original graph. That unveils, for example, the tightly connected entities in business

[39]. Third, these communities reveal the least connected parts of the graph. Thus,

they can be utilized to implement optimized graph partitioning strategies to distribute

the graph storage on multiple machines. This helps to increase the performance of

distributed graph algorithms.

Community detection is an expensive problem since most existing solutions are

based on expensive computations that are hard to scale. Therefore, the scalability

and efficiency are critical aspects of any solution. In dynamic graphs, the problem

becomes more complex as exploring the communities for the whole graph again on

each new micro-batch of streaming data becomes unfeasible.
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One of the most popular community detection methods is Label Propagation

[48, 31], which is already implemented as a part of the GraphX library. This algo-

rithm chooses the community of the current node using the labels of neighbor nodes.

However, it only helps in finding overlapping communities.

A variety of community detection algorithms were developed in the past few years

to detect disjoint communities. Modularity is considered the most prominent qual-

ity measure for community detection [2]. It prioritizes communities based on their

internal edge density. One of the most popular algorithms based on modularity opti-

mization is the Louvain Algorithm which is presented in detail by Blondel et al. [2].

This algorithm is a greedy optimization that can be used for weighted graphs. The

algorithm starts with each vertex as its own community. Then, it progresses in an it-

erative manner where each iteration consists of two phases. The first phase calculates

the gain in modularity from adding each vertex to a neighboring community and adds

the vertex to a community which produces the highest gain. This gain in modularity

∆Q when a node i is moved into a community C is calculated using equation 2.1.∑
in is the sum of the weights of the links inside C,

∑
tot is the sum of the weights of

the links incident to nodes in C, ki is the sum of the weights of the links incident to

node i, ki,in is the sum of the weights of the links from i to nodes in C and m is the

sum of the weights of all the links in the network.

∆Q =
[

Σin+ki,in
2m

−
(

Σtot+ki
2m

)2
]
−
[

Σin

2m
−
(

Σtot

2m

)2 −
(

ki
2m

)2
]

(2.1)

In the second phase, a new graph is built consisting of the generated communities

as its nodes. Then, the first phase is applied again to the generated graph until

further changes fail to improve the modularity anymore.
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The Louavain algorithm proved to have a good scalability as it successfully pro-

cesses graphs up to the size of 118M Nodes/1B edges [2]. However, the modularity

value can become a bottleneck when the implementation is in a distributed comput-

ing environment since the value has to be calculated each time a vertex changes its

community. In addition, many studies reported that the algorithm maintains good

performance as the graph grows in size, but it degrades in quality [13, 1].

There are several other community detection algorithms that are based on random

walks. When a random walk is performed in the graph, there is a high probability that

close-knit communities are explored first, since the density of internal connections is

high. One of the most famous methods based on random walks is Infomap [32].

More recently another measure was introduced called the Weighted Community

Clustering (WCC) metric [28]. This measure defines the quality of communities based

on how dense they are in terms of triangles. Later, it was used to propose the Scalable

Community Detection (SCD) algorithm [30] which can be used to detect communities

in undirected unweighted graphs. Experiments showed that the algorithm has better

result quality than the Louvain algorithm while keeping a good performance. A

distributed version of the algorithm based on the vertex-centric paradigm produced

by the Pregel platform [23] was developed and introduced later by Saltz et al. [33].

In the area of incremental community detection, many modularity-based solu-

tions exist. Shang et al. [34] introduced an algorithm that depends on the Louvain

algorithm to find an initial community structure. After that, it starts detecting com-

munities for new vertices. Thus, its results depend tightly on the Louvain algorithm.

Pan et al. [27] designed a method for edge-grained graphs. The problem with this

method is it assumes that the edges are added in a certain order. As a result, they
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cannot handle node-grained graphs properly as the edges are added simultaneously

resulting in poor performance [43].

Very few solutions exist for incremental community detection on node-grained

graphs. A recent one called the Node-Grained Incremental community detection

(NGI) is proposed by Yin et al. [43]. The algorithm is developed for node-grained

dynamic graphs based on modularity optimization. However, it was implemented for

centralized processing only.

2.4 Summary

In this chapter, we discussed stream data processing and Apache Spark. Then we

talked about graph processing including graph storage systems, processing engines,

and incremental graph algorithms. The next chapter presents our work on studying

incremental graph processing over streaming data.
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Chapter 3

Incremental Graph Processing with Spark

Streaming

The first challenge in implementing dynamic graph processing is being able to main-

tain a dynamic graph while delivering the updates in any subsequent queries in a

timely manner. In this chapter, we present our study towards implementing an on-

line graph structure that can be updated from a data stream while, at the same time,

respond to OLTP queries. An acceptable solution should provide both abilities effi-

ciently.

As a first step, we decided on using Apache Spark, a popular in-memory processing

engine as it supports stream and graph processing. After that, we studied the possible

solutions to implement incremental graph with OLTP queries abilities with Spark.

We chose two data stores that comply with the basic requirements namely, good fault

tolerance, fast writes, and fast reads. These data stores are: IndexedRDDs, a new

library for Spark based on Spark’s original RDD structures to enable fine-grained

updates as a key-value store, and Redis, a popular distributed in-memory key-value

store.
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This chapter discusses incremental processing in Spark and explains IndexedRDD

and Redis in the background section. Then, the detailed research and experiments

conducted to select the suitable in-memory graph structure are presented in the im-

plementation and validation sections respectively.

3.1 Background

3.1.1 Incremental processing in Spark

One of the key points in the design of RDDs is immutability, which allows task replay-

ability to ensure two features: fault tolerance by replaying failed tasks and straggler

mitigation by replicating slow tasks. The lack of data mutability does not form a

problem for Spark as it is mainly a computational engine, not a data store.

However, most real-life applications do not only require performing computations

on data streams. Instead, the steam processing comes as a step in a larger application.

In Zaharia et al. [44] such applications were called ”continuous applications”. The

article mentioned many examples of these applications, but we are interested in a

specific subset in which the data changes with time, and thus the immutability can

be a challenge. We will call this specific set of applications ”incremental continuous

applications”. Here are some of these scenarios:

1. Modifying data that will be served in real-time. These cases require

aggregations over streaming data, such as the number of followers a user has or

the number of likes on a certain post.

2. Evolving data that will be served in real-time. The data in these systems

evolve with time. An example would be online graphs. The data store should
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handle both updates from the streaming engine and the queries coming from

the front-end system.

3. Online machine learning. These continuous applications often combine large

static datasets with real-time data for online predictive analytics.

There are three feasible solutions for such applications with Spark as the stream

processing engine:

1. A separate data store. Saving batches of the data in a transactional data

store like Cassandra or Redis. This can add efficiency problems by adding the

serializing/deserializing cost and complicate parallel recovery.

2. The RDD abstraction. Making new RDDs for each update. However, RDDs

were designed for coarse-grained transformations, and can be inefficient for fine-

grained updates over streaming data.

3. A different dataset abstraction in Spark. Designing a new dataset ab-

straction other than RDDs that can perform efficient fine-grained updates and

still guarantee good fault tolerance.

To study incremental graph processing with Spark, we chose three data stores that

represents the mentioned solutions and capable of holding a graph structure. Next,

we will discuss and explain our choices.

3.1.2 Redis

Key-value stores are a category of NoSQL databases that follows a simple data model

based on associated map data structure. Each single data object is a pair of a key
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representing a unique identifier and a value that can be a string, an integer, an

array, a set, or other basic data structures, making this type of databases schema-less

[16]. Redis1 falls into this category of NoSQL databases that applies an in-memory

storage model making it perfect for use cases such as web sessions, shopping carts,

and data caching. This data store provides a fast querying interface and supports

data structures such as strings, hashes, lists, sets, and sorted sets.

To provide a more robust storage, Redis implements a master-slave replication

model with asynchronous replica reflection [16]. In master-slave replication, a single

node is assigned as the master and the rest as replicas. Writes are only allowed to the

master node and then they are propagated to the replicas, while reads are allowed

to any node. This way, replication increases the availability of reads without adding

extra latency on the writes since a write operation succeeds before the change is

propagated to the replica nodes.

Redis has also a cluster implementation that allowed it to act as a distributed

database. This implementation adds the ability to split data among multiple servers

which is known as sharding, and to tolerate network partitioning i.e. continuing to

operate in the case of server failures.

The reason behind choosing Redis over many other NoSQL options is that it is

a high-performance data store with simple structured data types which allows it to

work as a good solution for big data applications. For example, it was suggested as

a solution to store social graphs for real-time processing in Sharma et al. [35]. In

distributed environments with increasing availability and reliability requirements, it

becomes more fit for such a purpose. It is also the most popular in-memory key-value

store.

1https://redis.io/
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3.1.3 IndexedRDDs

To be able to update RDDs in real-time, IndexedRDDs were introduced as an efficient

fine-grain update key-value stores for Spark2. An indexedRDD is an RDD of key-value

tuples that ensures key uniqueness and still distributes storage and supports all the

operations of a normal RDD. The index is implemented using a data structure called

Persistent Adaptive Radix Tree (PART)3 [20]. The PART structure allows efficient

updates without changing the original data using a versioning mechanism where new

RDDs share most of the structure and the data with older RDDs, while only differing

on the parts that contain the new and updated keys. The distribution is done by

hash-partitioning on the keys and maintaining a radix tree for each partition.

Another problem that affects the performance of frequent updates to RDDs is the

check-pointing strategy. Spark performs check-pointing regularly for long RDD chains

by writing the current RDD data to disk to avoid very long fault tolerance operations.

In the case of faults, instead of depending solely on the lineages, Spark can recover

from the checkpoint and redo only the lineages from that point forward. However,

that can be expensive in the case of IndexedRDDs since they change very frequently.

To make checkpointing faster, IndexedRDDs implement a tree partitioning strategy

on the Radix tree to segregate the frequently-changed parts of the tree from the less

frequently-changed ones. This idea is based on the observation that the top nodes of

the tree have higher changing frequency than the lower ones. For example, the top

most partition of the tree changes on each update.

We chose IndexedRDD since it is a native library to Spark and because it was built,

as previously explained, to support fine-grain updates which matches our purpose.

2https://github.com/amplab/spark-indexedrdd
3https://github.com/ankurdave/part
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3.2 Experiments

To choose a suitable data store for incremental stream processing in spark, we compare

the performances of RDDs, IndexedRDDs, and Redis. We need a data store that

ensures the following properties:

1. Allows for very fast fine-grain updates on the data.

2. Supports fast data read operation.

3. Has good fault tolerance to overcome network partitions and crashes.

We used the Twitter public API to consume data representing popular tweets

and their corresponding authors. We chose to save the data in a graph structure

represented by two lists of vertices (users and tweets) and edges (a pair of ids of the

user and their tweet). In the experiments we performed the following operations for

each type of data store:

1. Inserting a micro-batch of vertices.

2. Inserting a micro-batch of edges.

3. Looking up a vertex by id.

4. Looking up an edge by id.

5. Multiple vertex lookups by ids.

6. Multiple edge lookups by ids.
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3.2.1 The Environment

To test our system, we used 5 identical machines each with 8 cores 2.10 GHz Intel Xeon

CPU, 64-bit architecture, 16 GB of RAM, and 300 GB of disk space. We installed the

Hortonworks Data Platform (HDP-2.6.1.0) with Apache Spark 2.1.1 and the Spark

Streaming library. We also installed Redis on one of the machines with two other

replicas.

3.2.2 Data Source

For the purpose of conducting our experiments, we needed to build a graph structure

that is big enough for the results to reflect the difference in performance among the

chosen data stores. We chose the Twitter Streaming API4 as a source to build the

graph first and then to do the insert in the testing phase. We chose to use the “public

streams” endpoint which gives the public data that flows through twitter for all users.

This was perfect for our purpose since we wanted to build a graph which has users

and tweets as its nodes and ”tweeted by” relations as its edges. The API returns an

array of Status objects which represent tweets and each one of these has as one of its

properties the User object as shown in Fig. 3.1. Both User and Tweet objects have

an id property which will serve as the index key for the nodes, while the edge key

will be a combination of the ids of its user id and tweet id. We should mention that

the figure includes only one Status object and that many of the irrelevant attributes

were truncated for a simpler view.

4https://dev.twitter.com/streaming/overview
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[{

"id": 3252356,

"text": "this is a sample tweet",

"user": {

"id": 78230235,

"name": "John Doe",

"screenName": "John Doe",

"followersCount": 22232,

"friendsCount": 1908

},

"isTruncated": false,

"isRetweeted": true,

"place": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"country": "US",

"postalCode": "10021-3100"

}

}]

Figure 3.1: An example of Twitter Streaming API response

3.2.3 Experimental Details

The experiment to benchmark the performance of our data stores included the fol-

lowing steps:

1. Loading the data from HDFS as a data stream of RDDs.

2. Constructing a graph from the data and saving the graph in an RDD, an In-

dexedRDD, and a Redis hash map.

3. Starting a streaming context from the Twitter public API and pass the data to

Spark Streaming.

4. For each RDD read from the stream, executing: (a) a bulk insert operation

(which include inserting a user node, a tweet node, and a ”tweeted by” relation

for each item in the RDD), (b) a lookup for a random key chosen from the

previously inserted nodes and edges, and (c) a multi-lookup for 50 random keys
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chosen from the previously inserted nodes and edges. These three operations

were done for each data store (RDD, IndexedRDD, Redis).

Graph Operations with RDDs

The graph structure in RDDs consists of two RDDs. First, the vertex RDD which

consists of tuples of IDs and values. Each tuple represents a user or a tweet. Distin-

guishing between the two is irrelevant for the purpose of this experiment. Second, the

edge RDD, which is also a list of tuples of IDs and values of a ”tweetedBy” relation

between a user and a tweet. The ID is generated by concatenating the IDs of the

user and the tweet that represent the edge. We should mention that this structure is

very similar to the one in GraphX [14].

// 1. insert

// We use "reduceByKey" to remove duplicates

fullVertexRDD.union(vertexRDD).reduceByKey {

(value1, value2) => value2

}

fullEdgeRDD.union(edgeRDD).reduceByKey {

(value1, value2) => value2

}

// 2. lookup

fullVertexRDD.lookup(vertexKey)

fullEdgeRDD.lookup(edgeKey)

// 3. multi lookup

vertexKeyList.map(fullVertexRDD.lookup(_))

edgeKeyList.map(fullVertexRDD.lookup(_))

Listing 3.1: Operations with RDD (in Scala)

The bulk insert operation is done with the union transformation available through
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the RDD API which returns a union of two RDDs. After that a reduceByKey trans-

formation is needed to remove duplicates since RDDs does not ensure any key unique-

ness. The lookup operation can be done straightforward with the lookup transfor-

mation. However, the RDD API does not have a native support for multi-lookups,

so we do it by iterating on the keys while doing a single lookup in each iteration. In

Listing 3.1 we present the code for the above operations.

// 1. insert

indexedVertices.multiputRDD(vertexRDD)

indexedEdges.multiputRDD(edgeRDD)

// refresh the RDD to reflect the insertion

indexedVertices.cache().foreachPartition {_ =>}

indexedEdges.cache().foreachPartition {_ =>}

// 2. lookup

indexedVertices.get(vertexKey)

indexedEdges.get(edgeKey)

// 3. multi lookup

indexedVertices.multiget(vertexKeyList)

indexedEdges.multiget(edgeKeyList)

Listing 3.2: Operations with IndexedRDD (in Scala)

Graph Operations with IndexedRDDs

The graph structure here is identical to the one in RDDs. However, the structure

is indexed on the first element of the tuples (the ID) which should support faster

lookups.

We show the operations in Listing 3.2. The code shows that the bulk insert
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operation is done with the multiputRDD transformation available through the In-

dexedRDD API which returns a union of an IndexedRDD with an RDD (from the

stream). The lookup operation is available with the get operation, while the multi-

lookup operation is available with the multiget operation.

Graph Operations with Redis

We use two hash maps in Redis to create the graph data structure. The first one is

for the vertices, which contains the tweet/user id as a key and the related information

as the value. The second hash is for the edges and has the concatenated ID of the

corresponding user and tweet (as in the previous solutions) as the key, and the edge

information as the value.

// 1. insert

client.hmset("vertices", vertexRDD.map(mapper))

client.hmset("edges", edgeRDD.map(mapper))

// 2. lookup

client.hget("vertices", vertexKey)

client.hget("edges", edgeKey)

// 3. multi lookup

client.hmget("vertices", vertexKeyList)

client.hmget("edges", edgeKeyList)

Listing 3.3: Operations with Redis (in Scala)

As demonstrated in Listing 3.3, the bulk insert operation is done with the hmset

command available in Redis. The lookup and the multi-lookup operations are done

with the hget and hmget commands respectively.

The graph was constructed using Spark Streaming by reading the data from the
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twitter public streams and saving the RDDs into HDFS as object files. The con-

structed graph had 898,632 vertices and 449,316 edges.

We repeated the experiment for 80 consecutive windows from the stream where

each window was 10 seconds long. That means that the operations were executed 80

times for each data store as the graph grew with each window. For each operation,

we measured the time it took to be executed and we took the average. The results

are shown in Fig. 3.2.

3.2.4 Results

The performance of RDDs in our experiments was poor, which was expected since

they are not built for frequent changes and do not use indexing for lookups. The

bulk insertion took 28.33 ms for vertices and 35.83 ms for edges which is long for our

requirements. The lookups were far worse than other data stores: edge and vertex

lookups took 1,065.4 ms and 1,776.2 ms and multi-lookups took 21,375.8 ms and

42,700.2 ms respectively. This is due to the fact that RDD data is not indexed and

that multi-lookup is basically the same operation as doing the lookups sequentially.

The time for lookup increases with time as the data grows bigger since the operation

does a sequential scan of the RDD.

Next, we experimented with IndexedRDDs. 2.05 ms was required to perform

the bulk vertex insertion and 3.55 ms for the bulk edge insertion. Lookups were

good as well: 456.88 ms for vertex lookups, 824.18 ms for edge lookups, 286.35 ms

for vertex multi lookups, and 568.56 ms for edge multi lookups. The results were

impressive, but the store requires doing a refresh for the index after each insert. This

refresh operation was slow and increased the lookup cost (in case it was done on each
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Figure 3.2: Cost of Operations

lookup) to 1,136.59 ms.

Finally, we tried Redis. This key-value data store proved to be a very fast store for

lookups and insert operations. However, we wanted to prove that it performs as fast

with our large dataset. The results matched our expectations: bulk vertex insert took

98.84 ms, bulk edge insert took 177.28 ms, vertex lookup took 0.32 ms, edge lookup

took 0.66 ms. Multi lookups are built into Redis, and they were close in execution

time to normal lookups as expected; Vertex multi-lookups took: 0.46 ms and edge

multi-lookups took: 0.82 ms. Therefore, Redis can serve as a very good store on top

of Spark but the problem is that it does not support saving property graphs5. Also

using a hash structure to save graphs neglects the partitioning capabilities of Redis

which makes the scalability of this approach questionable.

We summarize our conclusions from experimenting with different solutions for

incremental graph processing with Spark in Table 3.1.

5A property graph is a graph with vertices and edges that can be associated with properties
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Table 3.1: Incremental Graph Processing Approaches with Apache Spark

Approach Advantages Disadvantages Summary Examples

RDD

Abstraction

– Good fault tolerance.

– Native embedded store in

Spark.

– No support for multi-lookup.

– Very expensive lookups.

Does not work as a

fine-grain-updates store.

–

Different

Spark

Abstraction

– Good fault tolerance.

– Embedded in Spark.

– Built for fine-grained updates.

– The existing solution forces

rebuilding the index on each insert.

– Developing a solution is very

expensive as it requires drastic

changes to Spark’s APIs and libraries.

The only existing solution

has fast inserts but the

lookups are slow after

updates, and thus not

suitable for streaming data

where lookups are expected

all the time.

IndexedRDDs

External Big

Data store

– Replication and good fault

tolerance.

– Fast reads/writes.

– A plethora of options to choose

from.

– Adds a serialization/deserialization

cost.

– Might need to implement graph

abstraction.

– Might not have support for property

graphs.

– Might have limited support for

complex graph queries.

– Higher complexity with more

systems to manage.

Should investigate the

solution scalability,

performance, and

suitability for storing

complex graphs.

Redis,

HBase,

Neo4J,

Cassandra...

etc.

3.3 Summary

In this chapter, we conducted a study on incremental processing in Spark. We chose

graphs as the struture to increment and three data stores including RDDs, Indexe-

dRDDs, and Redis as possible candidates to store a graph data structure on top of

Spark Streaming. After that, we conducted a set of experiments to compare the per-

formances in terms of the ability to represent and manipulate graph data, and support
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fast fine-grain updates and acceptable read latency. The results of our experiments

showed good insertion times for IndexedRDDs but it had large lookup times as the

index has to be rebuilt on each insert to be able to look up for recent data, which

adds an extra time to each lookup that was preceded by an insert. Redis showed good

results for both inserts and lookups, but it lacks support for property graphs. We

concluded that the most practical and efficient solution is to have an external storage

next to Spark to support OLTP queries on a dynamic graph.
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Chapter 4

Sprouter: Dynamic Graph Processing over Data

Streams at Scale

We propose Sprouter1, a framework that supports dynamic graph processing. In order

to do so, the framework processes real-time data streams using Apache Spark, and

thereby, updates an associated large-scale dynamic in-memory graph. At the same

time, it maintains the graph in a big data store. The framework efficiently answers

OLTP queries using the persistent storage, and OLAP queries, which requires complex

analytics, using the in-memory graph.

In this chapter, we build on our conclusions from the previous chapter by using

an external storage next to Spark to hold the graph for fast writes and reads. We

explain the design of the framework and demonstrate its abilities by ingesting streams

of social data. Our experiments show that a graph with up to 100 million edges can be

updated in under 50 seconds in a moderate underlying cluster. The implementation

builds up for implementing community detection as an incremental graph processing

use case in the next chapter.

1https://github.com/TariqAbughofa/sprouter
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4.1 The Sprouter Framework

Based on our research objectives, the proposed system should support the following:

1. In contrast to most graph processing systems which are built to process static

graphs, the graph construction is viewed as an incremental process as the graph

evolves with time.

2. The system supports executing simple queries as well as complex algorithms on

the dynamically updated graph.

3. All components should scale to accommodate the huge growth of data.

To accomplish that, the framework requires the following components:

• Data Ingestion: The data is ingested from the source. The data ingestion can

be for historical data to be processed in bulk or for new data as a stream.

• Graph Storage: Data is stored as a graph structure in both a persistent storage

and an in-memory storage.

• Bulk Processing: Historical data is read from the data lake and processed. A

graph is constructed from this data.

• Stream Processing: Newest data is consumed as a stream. The graph is updated

with the new nodes and relations and then any required graph processing is

executed.

• Graph Search: The system supports entity and relationship queries (OLTP),

and analytical graph algorithms (OLAP).
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Figure 4.1: The Sprouter Framework Design

The design is shown in Fig. 4.1. The design decisions and the setup are explained

next.

4.1.1 Data Ingestion

We chose to use Apache NiFi2 as it supports building data flows through a web-based

drag-and-drop graphical interface without the need to write any code.

This component performs two tasks: First, it ingests the historical data and stores

it in HDFS for bulk processing. Second, it ingests the most recent data as a stream

for real-time processing.

2https://nifi.apache.org/
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4.1.2 Graph Bulk Processing and Stream Processing

We need to support bulk processing to be able to process historical data as well

as data left in the queue in the case of downtime. We chose Apache Spark as our

processing engine for many reasons. First, it is a unified engine that supports bulk and

stream processing which simplifies the framework design. Second, it has two graph

abstractions that allow efficient graph processing namely GraphX and GraphFrames.

Third, it is a reliable mature engine that has proven efficiency and scalability [47].

4.1.3 Persistent and In-memory Storage

We keep the graph stored in-memory for efficient graph analytics with Spark. Evolv-

ing the graph with GraphFrames, however, is not a straightforward operation. Listing

4.1 shows how to increment the graph using GraphFrames in Scala.

Listing 4.1: Graph Appending in GraphFrames

val fullVertices = oldGraph.vertices

. join(newVertices, Seq(”name”), ”outer”)

. select (”name”).withColumn(”id”, monotonically increasing id)

val fullEdges = graph.edges.union(newEdges)

val fullGraph = GraphFrame(fullVertices, fullEdges).cache()

RDDs are not efficient for pinpoint lookups especially with fine-grained updates over

streaming data as we found in Chapter 3. We also stated that no out of the box

solution exists today to address this problem. To support simple graph queries such

as vertex lookup or getting edges connected to a certain vertex, we need to use an

external graph-based storage system.

Redis proved to be a good solution as we found in the previous chapter. However,
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Redis does not support storing property graphs and has limited graph query capabil-

ities. Hence, we needed to choose a different storage layer. The choice was based on

the following criteria to guarantee that the solution works with streaming data:

1. The storage system has to be a scalable distributed NoSQL data store that is

write-efficient and performs well for Big Data.

2. It should have the ability to save/load Spark Streaming micro-batches into the

datastore efficiently in bulks.

3. Availability with eventual consistency is definitely preferred over strict consis-

tency.

4. It should support OLTP queries such as finding the neighbors of a vertex.

Our initial candidates were HBase and Cassandra. Both databases are scalable

NoSQL systems that proved to have good performance for Big Data applications.

However, HBase will not have bulk loading functionality until its third release3. In

addition to that, it does not offer full availability in order to ensure full consistency.

Cassandra, on the other hand, has bulk loading/saving and highly available.

We chose to adapt the HGraphDB4 storage model on top of Cassandra instead

of other models such as JanusGraph to achieve greater scalability and efficiency for

a broader scope of queries. HGraphDB uses separate tables for the edges and the

vertices as explained in Chapter 2.

3https://issues.apache.org/jira/browse/HBASE-14150
4https://github.com/rayokota/hgraphdb
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4.1.4 Graph Search

We are concerned with two types of graph search: simple OLTP queries and OLAP

or analytical queries such as PageRank and Community Detection. GraphX and

GraphFrames are not efficient for OLTP queries as we found out in Chapter 3, but

Cassandra provides an efficient solution for that. However, GraphFrames provides

highly flexible APIs and many pre-implemented graph algorithms with the ability

to implement new ones. Based on that, we decided that any OLAP or analytical

queries should be executed on the in-memory graph maintained at all times using

GraphFrames.

4.2 Experiments

4.2.1 The Environment

We used 6 identical machines each with 8 cores 2.10 GHz Intel Xeon CPU, 64-bit

architecture, 24 GB of RAM, and 300 GB of disk space. We installed the Hortonworks

Data Platform (HDP-2.6.3.0) on our machines with Spark v 2.2.0. HDFS is deployed

on all the nodes and has 870 GB in total as reserved space. In addition to that,

Cassandra (v 3.11.1) is installed on all 6 nodes to form a cluster. Two of the six

Cassandra servers are used as seed nodes for the cluster, which serve as contact

points for the new nodes that attempt to join the cluster.

For all the experiments, we used 12 executors with 3 cores each and 5 GB of

RAM. This configuration makes sure that there are enough cores to be used by all

the executors and keeps some to be used by other services (including Cassandra). We

validated our framework by demonstrating dynamic and distributed graph updates

from streaming data as new data is appended to an existing graph. We also executed
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pin-point queries on the graphs in both Cassandra and GraphFrames.

4.2.2 Data Source

We used the Global Data on Events, Location, and Tone (GDELT)5 as a data source

to feed the framework. GDELT contains data from news media from all over the world

in print, broadcast, and web formats. In this study, we used the Global Knowledge

Graph (GKG) v2.1 which contains the full news graph connecting persons, organi-

zations, locations, emotions, events, and news sources. This dataset provides a good

source for bulk data with more than 250 million historical events. In addition, it can

be used as a data stream since updates are published every 15 minutes. Based on

these properties we find that this dataset is suitable to demonstrate the capabilities

of our framework. A record of the dataset is demonstrated in Listing 4.2.

Listing 4.2: A record from the test data in JSON format excluding irrelevant fields

{

"GKGRECORDID": "20180128150000-0",

"V2.1DATE": "20180128150000",

"V2SOURCECOMMONNAME": "msn.com",

"V2DOCUMENTIDENTIFIER": "https://www.msn.com/en-ca/news/canada/no-one-denied-flight-

because-of-no-fly-list-mistakes-government-memo-says/ar-BBIlaAr", ...

"V2ENHANCEDPERSONS": [

{ "name": "Scott Bardsley", "offset": "1082" },

{ "name": "Justin Trudeau", "offset": "1690" },

{ "name": "Catharine Tunney", "offset": "199" },

{ "name": "Khadija Cajee", "offset": "2045" } ...

], ...

}

5https://www.gdeltproject.org/
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The file is parsed and the person list, which is under the attribute V2ENHANCEDPERSONS,

is extracted and then sorted by the “offset” attribute. This attribute defines how far

(in number of characters) from the beginning of the article a person was mentioned.

We define that two people have an undirected connection if they are mentioned in the

same paragraph. For simplicity, we assumed that it means that they are less than

1000 character apart (the average length of a paragraph) based on their offsets. We

then drop self-relations and duplicates.

We explain the implementation details of the data ingestion component for the

GDELT data in Appendix A.

4.2.3 Results

To conduct the experiments, we consumed historical data from the GDELT repository

for the years of 2017 and 2018 and we stored this data in our cluster in HDFS

format. This data allowed us to construct a graph consisting of 13,290,365 vertices

and 97,134,816 edges using Spark, which we stored in Cassandra in the HGraphDB

format as described in Chapter 3. Then we ran the streaming job which loads the

graph into the in-memory graph structure using Spark Streaming and then reads

the GDELT “last” file. We made sure that the stream consumed always the same

“last” file for all the experiments to ensure repeating the exact experiment and thus

the consistency of our results. The file we chose contained information about 12,738

articles which generated 51,060 vertices and 87,099 edges that needed to be appended

to the full graph.

We implemented two approaches for the append operation. The first approach

merges the new data is merged with the GraphFrames graph directly as described
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Figure 4.2: Appending data: (a) directly to GraphFrames (b) into Cassandra first
then loading it to GraphFrames

earlier in Listing 4.1. In Fig. 4.2a, we show the time it took to update different

sizes of graphs in GraphFrames. The plot in blue shows the time spent to append

the graph in GraphFrames without persisting in Cassandra. The red plot shows

the total time to append the in-memory graph and then bulk-saving the updates

in Cassandra. In practice, we will need to persist the new vertices and edges in

Cassandra, and therefore, the red plot represents the actual time to append a graph

in the framework. Fig. 4.2a clearly shows that the time increases linearly with the

graph size from 8.66 seconds for a graph with 125m edges to 23.35 seconds for a graph

with 97m edges.

Figure 4.2b illustrates the performance of the second approach. In this solution,

we first update the tables in Cassandra with new edges and vertices. Then we bulk-

load the complete graph from Cassandra to GraphFrames. This approach showed

poor execution time that increases with graph size which is expected since it reads



4.2. EXPERIMENTS 45

the full data from disk to memory. The slope for this approach is bigger and the

execution time starts at 65.23 seconds for a graph of size 12.5m edges and increases

to 117 seconds for a graph having 97m edges. This also shows that appending in

GraphFrames directly remains a better solution as the graph grows.

Table 4.1: Summary of the experiment numerical results

Graph A B C D E F G H
Links 12.5m 25m 37.5m 50m 62.5m 75m 87.5m 97m
Nodes 4.7m 7m 8.4m 9.5m 10m 11m 11.9m 13m
GF 8.66s 12.03s 13.56s 17.45s 18.55s 19.1s 22.39s 23.35s

GF → C 31.48s 37.26s 40.12s 44.59s 44.05s 45.26s 46.17s 47.57s
C → GF 65.23s 76.6s 91.2s 96.46s 97.59s 103.8s 106.97s 117.03s

Table 4.1 gives a summary of the performances of appending graphs of various sizes

by updating GraphFrames only (GF ), both GraphFrames and Cassandra (GF → C),

and updating Cassandra first then loading to GraphFrames (C → GF ). The table

displays computation times in seconds for each approach.

In addition to having a good performance, the first approach can be adapted to

apply periodic updates to Cassandra on each GraphFrame update since GraphFrames

are inherently fault-tolerant. This can greatly decrease the operational cost and

processing time which we intend to explore further as a future work.

To prove that Cassandra is needed for OLTP graph queries, we chose two simple

queries: looking-up a vertex by Id from the vertex table/RDD. and looking-up the

neighbors of a vertex from the edge table/RDD. We used Graph H from Table 4.1.

Results show in Fig. 4.3 demonstrate a big advantage of using Cassandra for such

queries. We also executed PageRank on GraphFrames as an example of OLAP queries.

Such algorithms cannot be executed on Cassandra.
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Figure 4.3: Graph queries: GraphFrames vs Cassandra

4.3 Summary

Graph analytics applications where data is streamed continuously require dynamic

graph processing in real-time. In this chapter, we proposed Sprouter, a framework

to process and store dynamic graphs over data streams using Apache Spark. The

framework design has many contributions. In contrast to most graph processing

systems which are built to process static graphs, the graph construction is viewed

as an incremental process as the graph evolves with time. The system supports

executing simple queries as well as complex algorithms on the dynamically updated

graph. Also, all components scale to accommodate huge data growth.

The experiments showed that the framework was capable of appending graphs

up to 100 million edges in under 50 seconds and allowed efficient pin-point queries.

Our framework can be applied to complex streaming data analytics applications that

require incremental graphs like recommendation and shortest routes using data from
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multiple domains such as logs and IoT. The in-memory graph enables more complex

multi-level data analytics and knowledge linking for decision support.
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Chapter 5

Incremental Community Detection with Sprouter

One of the applications of dynamic graph processing is community detection which

we present in this chapter as a case study of incremental graph algorithms. Com-

munity detection helps to identify groups of nodes that are highly connected among

themselves and sparsely connected to the rest of the graph. This problem gets more

important for large graphs due to its broad range of applications.

Social networks are everywhere around us from networks of friends to networks

of business personnel. A use case scenario of Sprouter is to ingest streams of social

data and keep a social graph up-to-date with the stream. The communities in this

graph will be found in real-time to allow giving real-time recommendations and to

help avoiding the cold-start problem in recommendation engines. In this scenario,

detecting the communities is our incremental analytical application, while providing

the recommendations in real-time is a graph OLTP query.

In this chapter, we present a distributed implementation of a community detec-

tion algorithm based on Weighted Community Clustering (WCC) optimization for

static graphs. This implementation is used to detect communities in historical data

in Sprouter. We also propose a new algorithm, the Incremental Distributed WCC
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(IDWCC). This new algorithm is used to assign newly added vertices to the most

suitable communities in a dynamic graph. The algorithm assumes that the graph is

undirected and unweighted, the incremental process is done in a node-grained man-

ner, and the generated communities are disjoint. Both algorithms are implemented

in Scala using GraphX [41, 15] to work with Spark as the streaming engine [47].

To the best of our knowledge, this is the first distributed node-grained incremental

community detection algorithm.

5.1 Background

We chose the WCC metric [28] and its optimization method [30] to be the foundation

of our community detection research. Given a graph G(V,E) composed of a set of

vertices V and a set of edges E, t(x, V ) denotes the number of links between the

neighbors of the vertex x or the triangle count, and vt(x, V ) denotes the number

of neighbor vertices that close at least one triangle with x for each vertex of the

graph. Given a community C in G, t(x,C) and vt(x, V ) are the same as the previous

measurements taking into account the vertices inside C only. Based on these four

measurements, the WCC value for a vertex x can be calculated using Equation 5.1

WCC(x,C) =


t(x,C)
t(x,V )

· vt(x,V )
|C\{x}|+vt(x,V \C)

if t(x, V ) 6= 0

0 otherwise
(5.1)

Then, the WCC value for the whole graph is the weighted average of the WCC of

all the vertices in the graph as described in Equation 5.2.

WCC(G) = 1
|V |
∑n

i=1WCC(xi, C) (5.2)
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We chose the WCC metric since the existing state-of-the-art algorithms to opti-

mize this metric proved to provide a good trade-off between performance and quality

[33, 30, 29]. In addition, the optimization of WCC can be distributed easily; the

calculations of the best movement and the WCC value for each vertex can be done

locally, and thus the computations can be done simultaneously. It is the best solution

to our knowledge for community detection in large-scale graphs. Unlike Louvain [2],

which we explained in Chapter 3, WCC optimization does not take into account edge

weights in the computations. However, the weights do not contribute to communi-

ties in many graphs such as social networks. For other use cases such as computer

networks, Louvain works better.

Although the Node-Grained Incremental community detection algorithm (NGI)

[43] is an incremental solution, it has not been implemented for distributed processing.

We preferred WCC optimization since its distributed version has already proven to

have good results [33].

The WCC optimization algorithm is explained in details in Prat-Pérez et al.

[30, 33]. However, in this section, we will summarize the basic steps. WCC optimiza-

tion works in three main phases: preprocessing, initial partitioning, and partition

refinement.

5.1.1 Preprocessing

This phase aims at calculating t(x, V ) and vt(x, V ) values for each vertex of the graph.

After these measurements are calculated, a graph optimization is performed to reduce

the graph size by removing edges that do not close any triangles.



5.1. BACKGROUND 51

5.1.2 Initial Partitioning

The next step is to compute an initial partition of the graph. First, the vertices are

sorted by their clustering coefficients in a descending order. Then, the vertices are

iterated on and for each vertex x not previously visited, we create a new community

C that contains x and all its neighbors that were not visited before.

The algorithm requires the following conditions to be met in an initial partition:

1. Every community should contain a single center vertex and a set of border

vertices connected to the center vertex.

2. The center vertex should be the vertex with the highest clustering coefficient in

the community.

3. Given a center vertex x and a border vertex y in a community, the clustering

coefficient of x must be higher than the clustering coefficient of any neighbor z

of y that is the center of its own community.

5.1.3 Partition Refinement

In this step, the initial partition is improved iteratively using a hill climbing method.

The execution stops when no further improvement to the global WCC can be achieved,

or when the number of iterations made without a significant improvement exceeds a

threshold.

Next, we will discuss our distributed implementation of WCC optimization for

GraphX. The proposed IDWCC algorithm is explained after that.
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5.2 Distributed WCC for GraphX

To be able to find communities for historical data with Sprouter, and to validate

our proposed algorithm, we need an implementation of WCC optimization. There is

an available implementation of the centralized WCC optimization version, which is

called the Scalable Community Detection (SDC), by the original authors1. However,

it is written in C++ for symmetric multiprocessing (SMP) systems. A distributed

version is also available in Java for the Giraph processing engine2. We are looking

for an implementation that is distributed and works with Spark, GraphX and/or

GraphFrames.

Since no solution was available, we implemented our own version of WCC opti-

mization for GraphX and GraphFrames in Scala for distributed processing on Spark.

We refer to this implementation as Distributed WCC (DWCCC). Next, we explain

our implementation details for each step of the algorithm.

5.2.1 Preprocessing

The Triangle Count algorithm in GraphX3 requires the graph to be canonical which

means that the graph should ensure the following:

• Free from self-edges (edges with the same vertex as a source and a destination).

• All its edges are oriented (the source vertex is greater than the destination

vertex using a pre-defined comparison method).

• Has no duplicate edges.

1https://github.com/DAMA-UPC/SCD
2https://github.com/saltzm/distributed_wcc
3https://spark.apache.org/docs/latest/graphx-programming-guide.html#

triangle-counting
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The optimization is done using the subgraph API provided by GraphX. We keep the

calculated statistics, namely the triangle count and the vertex degree, as they are

used later. We take advantage of the fact that GraphX supports property graphs and

hence we can save these statistics as properties of the graph vertices.

5.2.2 Initial Partitioning

The Pregel API in GraphX helps in executing the partitioning while respecting all the

initial partitioning conditions we mentioned earlier. In the first superstep, each vertex

sends its clustering coefficient (cc) to all its neighbors. In the second superstep, each

vertex chooses the vertex with the highest cc from the messages it received (including

its own cc) as its community center. Then the vertices send their choices to their

neighbors to ensure that a vertex does not choose a vertex as its community center

while that vertex is a member of another community. In that case, the vertex has to

change its community. The changes are propagated until no further adjustments are

needed.

5.2.3 Partition Refinement

Computing the improvement of the global WCC using Equation 5.2 requires the

computation of the internal triangles of each community of the graph, which makes

it really inefficient to compute for all possible movements of each vertex. Prat-Pérez

et al. [30] present a heuristic for calculating WCC improvement caused by moving

a single vertex to a new community using statistics about the vertex and its neigh-

boring communities. The heuristic, which can be seen in Equation 5.3, gives an

approximated value and does not require the computation of the internal triangles
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of each community. Instead, it depends on calculating the following statistics: din

the number of edges that connect the vertex v to vertices inside the community C

where it is moving, dout the number of edges that connect v to vertices outside C, b

the number of edges that are in the boundary of C, δ the edge density of C, r the

number of vertices in C, and ω the clustering coefficient of the graph.

WCC
′

I(x,C) =
1

|V |
. (din.Θ1 + (r − din).Θ2 + Θ3) (5.3)

where :

Θ1 =
(r − 1)δ + 1 + q

(r + q)((r − 1)(r − 2)δ3 + (din − 1)δ + q(q − 1)δω + q(q − 1)ω + doutω)
.

(din − 1)δ;

Θ2 = − (r − 1)(r − 2)δ3

(r − 1)(r − 2)δ3 + q(q − 1)ω + q(r − 1)δω
.

(r − 1)δ + q

(r + q)(r − 1 + q)
;

Θ3 =
+dout(dout − 1

din(din − 1) + dout(dout − 1)ω + doutdinω
.
din + dout
r + dout

;

q = (b− din)/r;

We use the same heuristic due to its efficiency. Since this computation occurs

independently within each vertex, all vertices may perform their movements simulta-

neously, meaning that this part of the algorithm can be distributed effectively.

5.3 Incremental Distributed WCC for GraphX

In this work, We limit our scope of interest to dynamic graphs that satisfy two

properties: First, the graph progresses over a window of time in which a small batch

of vertices and their edges are added. These edges connect the new vertices to each

other and to the full graph generated from the last micro-batch. Second, the edges
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are equal in value i.e. the edges are not weighted or directed.

We denote the graph from the previous iteration as Gt = {Vt, Et} where Vt and

Et are its sets of vertices and edges at time t respectively. Let’s refer to the vertices

in the newly arriving batch as V ∗ and the edges as E∗. We define a micro-batch from

the stream of a node-grained dynamic graph δ∗ as follows:

δ∗ = V ∗ ∪ E∗ where ∀ej,k ∈ E∗ : vj ∈ V ∗ \ Vt ∨ vk ∈ V ∗ \ Vt (5.4)

In this section, we propose IDWCC, an algorithm for node-grained dynamic graphs.

The algorithm has many similar steps as DWCC. However, it has optimizations that

avoid repeated calculations while processing previous micro-batches and consequently

reduce the memory, data movement, and computational costs without sacrificing the

quality of the result as we prove in our evaluation. We calculated the execution time

for each small step of DWCC as shown in Fig. 5.2. Based on these calculations, we

developed an algorithm that works in three phases. First, it merges the batch with

the maintained evolving graph, updates the vertex statistics, and optimizes the graph.

Second, it assigns the new vertices to initial communities. Finally, it optimizes the

WCC metric to generate better communities.

5.3.1 The Merging Phase

As a first step, a new graph G∗ = {V ∗, E∗} is generated from the newly arrived

batch δ∗. The produced graph is then merged with the full graph to produce Gt+1 =

{Vt ∪ V ∗, Et ∪ E∗} as demonstrated in Fig. 5.1.

For optimization purposes, we identify a set of vertices we call the border vertices.

These vertices exist in both Gt and G∗ and are a part of the edges that connect the
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Figure 5.1: Merging G∗ with Gt

newly arriving batch with the old graph. Let’s denote this set as Vb = Vt ∩ V ∗. We

refer to the rest of the vertices in the new graph which are not part of the border

vertices as the inner vertices Vn = V ∗ \ Vb.

The problem with the border vertices is that they have already been assigned to

communities inGt. But since they have new connections, now they are likely to belong

to different communities. We isolate each of these vertices in its own community in

the full graph Gt+1.

The merge phase also calculates t(x, Vt+1) and vt(x, Vt+1) for each vertex x in

Gt+1. To perform the calculations efficiently, we recognize three situations: (a) The

old vertices statistics stay the same as they were in the previous micro-batch t. (b)

The inner vertices need to calculate the statistics. (c) The border vertices have new

connections and thus might belong to new triangles and need to update their statistics.

The definition of the stream batches, which is presented in 5.4, is important for

updating the statistics of the border vertices as it assures that the graph holds the

following. Let’s denote the set of triangles that pass through a vertex x in graph G
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as Tx,G and the set of vertices that form at least one triangle with x as V Tx,G. Then

the following holds true:

Tx,Gt ∩ Tx,G∗ = ∅ and V Tx,Gt ∩ V Tx,G∗ = A

Where A is the set of vertices that are neighbors of x and form triangles with it in

both Gt and G∗. Based on these statements, the statistics for the border vertices are

calculated as follows:

t(x,Gt+1) = t(x,Gt) + t(x,G∗) (5.5)

vt(x,Gt+1) = vt(x,Gt) + vt(x,G∗)− |A| (5.6)

Using these two measurements we can compute the local clustering coefficient for

each vertex and the global clustering coefficient ω which is needed to calculate WCC
′
I .

At the end of this phase, we optimize the graph in the same way as it is done

in DWCC to reduce the memory consumption and the processing required in the

succeeding phases. Furthermore, it is a relatively cheap operation as can be seen in

Fig. 5.2.

5.3.2 Initial Partitioning

In this phase, we choose communities for the vertices that appear in the new batch.

These vertices include the inner vertices Vn which have no communities assigned to

them yet, and the border vertices Vb which were removed from their communities

during the previous phase. We use the same algorithm from DWCC but we limit it

to the above mentioned sets of vertices only. Hence, every vertex in the new batch

chooses the vertex with the highest clustering coefficient that does not belong to a
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community of another vertex as its community center.

5.3.3 Partition Refinement

This phase follows the same steps as its counterpart in the DWCC algorithm. How-

ever, it includes two optimizations since it is the most expensive phase in terms of

computations:

1. Calculations of the community movements are still done on all the vertices, but

we drop calculating the value of WCC on each iteration.

2. Extra iterations are not performed when good WCC improvements appear. This

might result in missing community movements that can have a good impact on

WCC. However, as we process subsequent micro-batches, all the vertices start

changing their communities again and any previous changes that were missed

should be recovered. This way, the degradation of WCC overtime is avoided.

5.4 Complexity Analysis

In this section, We aim to compare the complexity of a sequential implementation of

our incremental algorithm to its static counterpart when both are applied to detect

communities in a dynamic graph.

Let n be the number of vertices and m the number of edges in the graph. We

assume that the average degree of the graph d at any point of time t is d = m/n

and that real graphs have a quasi-linear relation between vertices and edges O(m) =

O(n·log n). Under these assumptions, The complexity of the static WCC optimization

algorithm, as calculated in Prat-Perez et al. [30], is O(m · log n).
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Let’s now calculate the complexity of a centralized version of the sequential in-

cremental WCC optimization algorithm. For the first phase, we do not consider the

complexity of merging the graphs since the operation is necessary for any dynamic

graph. That leaves the cost of computing the triangles and degrees for the vertices

in the new batch O(m∗ · d+m∗) = O(m∗ · log nt+1).

The second phase requires sorting the vertices based on the local clustering coef-

ficient. However, the vertices are already sorted from processing a previous micro-

batch. Hence, the cost is only for organizing the new vertices in the right order which

requires sorting the new vertices and then executing a full scan of the vertices in the

worst case O(n∗ + nt) = O(nt)

For the third phase, let α be the number of iterations required to find the best

possible communities, which is a constant. In each iteration, we compute in the worst

case d + 1 movements for each vertex of type WCC
′
I which has a cost O(1). That

makes the total cost O(n · (d+ 1)) = O(m). Then we apply all the movements which

are equal to the number of vertices so it costs O(nt+1). We also need to update, for

each iteration in the second phase, the statistics ω, cout, din, and dout for each vertex

and community, which has a cost of O(mt+1). We sum all the costs to get the full

cost of this phase O(α · (mt+1 + nt+1 +mt+1)) = O(mt+1).

The full cost of the algorithm is the sum of the cost of the three phases: O(m∗ ·

log nt+1 + nt + mt+1). Since m∗ � nt+1, then m∗ · log nt+1 � nt+1 · log nt+1 < mt+1.

The cost can be simplified to become O(mt+1). This cost is much smaller than

O(mt+1 · log nt+1) the cost of applying the static algorithm on the whole graph on

iteration t.
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5.5 Experiments

In this section we present our experimental study which included three sets of ex-

periments: (a) Computing the efficiency of the optimizations used in IDWCC by

comparing the execution time of each step with its counterpart in DWCC. (b) Com-

paring the quality of the results of DWCC, IDWCC, and SCD. (c) Comparing the

quality of the results and the execution time for the DWCC and IDWCC algorithms

over time when applied to a data stream.

5.5.1 The Environment

To test our system, we used 8 identical machines each with 8 cores 2.10 GHz Intel

Xeon 64-bit CPU, 30 GB of RAM, and 300 GB of disk space. We installed Apache

Spark v 2.2.0 on all the machines. Both algorithms were implemented in Scala 2.11

and the code is publicly available on Github4.

We used 5 as the number of iterations that both DWCC and IDWCC execute. This

number was recommended by the original authors of the original WCC optimization

algorithm.

5.5.2 Data Source

For experimentations, we chose to use a set of different real-life undirected graphs

that have ground-truth communities. We took these graphs from the SNAP graph

repository5. The chosen graphs and some statistics about them can be found in Table

5.1.

4https://github.com/TariqAbughofa/incremental_distributed_wcc
5http://snap.stanford.edu/
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Table 5.1: Properties of the test graphs

Vertices Edges Communities
Amazon 334,863 925,872 75,149
DBLP 317,080 1,049,866 13,477
YouTube 1,134,890 2,987,624 8,385
LiveJournal 3,997,962 34,681,189 287,512

Table 5.2: Streaming information about the test graphs

Bulk Vertices Bulk Edges Stream Edges # of Micro-batches
Amazon 258,464 576,718 349,154 10
DBLP 253,119 852,754 197,112 10
YouTube 903,959 2666,836 320,788 10
LiveJournal 768,792 13,997,342 20,683,847 30

After loading a graph from the experimental sets, we make sure to clean it up of

duplicate edges and self-edges. We also noticed that the edges are sorted by the source

vertices which makes the graph canonical from the start and ready for processing.

5.5.3 Experimental Details and Results

Using multiple graphs for the experiments allows us to compare the results for different

graph sizes. In addition, it gives us the ability to experiment with different sizes of

micro-batches easily. Table 5.2 shows the choices we made for each graph regarding

the size of the bulk graph (the initial graph size before consuming from the data

stream), the stream size, the micro-batch number and size. It can be noticed that we

chose to have smaller bulk graph and micro-batches, and greater numbers of micro-

batches for large graphs to limit the use of the resources on each iteration.

The first experiment shows the benefits of the optimization techniques we applied

in our IDWCC algorithm, which resulted in shorter execution times compared to

the DWCC algorithm. We calculated the time that each step in both DWCC and

IDWCC took to be executed on the full Amazon graph and we summed up the results
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Figure 5.2: Execution Time for Each Step in DWCC vs IDWCC.

in Fig. 5.2. The vertex statistics step is the one responsible for calculating each

vertex triangle count and degree. We noticed that the execution time was reduced

in IDWCC almost three times as we applied it only on the new vertices in addition

to updating the border vertices. The graph optimization and apply movements steps

had no change in execution time as there were no adjustments were done to them.

The initial partition step had a small decrease in execution time caused by the way we

altered this stage. However, the biggest gain was expected in memory consumption

as proven later. Finally, the calculate WCC step, which is highly expensive, was

eliminated completely from the IDWCC algorithm and thus its cost was saved.

The second set of experiments aimed at proving the result quality of the DWCC

and IDWCC algorithms. SDC already proved that it has better quality than many

other centric community detection algorithms while having faster execution [30]. The
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Figure 5.3: Global WCC: SCD vs DWCC vs IDWCC

experiments compared SDC to algorithms like Infomap [32] and Louvain [2]. There-

fore, we compared DWCC and IDWCC to SCD. The comparison was done by calcu-

lating the global WCC on the test graphs described earlier when the last micro-batch

was added to the graph. In other words, the algorithms were applied to the full

graph. The results, which are displayed in Fig. 5.3, show that both DWCC and

IDWCC produce good WCC values. These WCC values show only up to 5% decrease

from their SCD counterparts. On top of that, IDWCC gives slightly better results

than DWCC. It can be observed that we do not show the results for the LiveJournal

graph as both DWCC and IDWCC failed to process the whole stream due to memory

consumption that exceeded the available resources.

We also conducted another set of experiments with the goal of proving the quality

of the results and the efficiency of the IDWCC algorithm. For each graph and each

micro-batch in the stream as described in Table 5.2, we merged the micro-batch with

the full graph. Then we applied both DWCC and IDWCC on the generated graph.
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Figure 5.4: Comparing WCC values and execution time IDWCC vs DWCC

In this streaming context, DWCC finds the communities for the whole graph again,

whereas IDWCC finds communities for the new vertices and reflects these changes on

the old vertices. For each micro-batch, we compared the global WCC values of the

final results generated by IDWCC and DWCC in addition to the execution times.

Fig. 5.4 shows the results of the data streaming experiments. Missing data points

indicate that the algorithm was not able to continue processing the graph due to

memory consumption that exceeded the available resources. We can easily notice

that IDWCC produces communities with global WCC values that are very close to

the ones produced by DWCC. We can even see that the results start to be better

than DWCC in later iterations. Regarding the execution time, IDWCC performed

two to three times better than DWCC. For the LiveJournal graph, we can see that

both algorithms failed to continue with the available resources. However, IDWCC

continued for 7 micro-batches before it crashed. While DWCC could only work for 3

micro-batches. This shows that IDWCC has significantly less memory consumption

than DWCC.
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5.6 Case Study

We further examine the communities formed by IDWCC in a real-world application

that can be applied to our previously proposed framework, Sprouter. The application

we chose is product purchase recommendation and for that, we used the Amazon

dataset one of the experimental datasets. The metadata for this graph is available

on the SNAP website and contains the titles of the products.

The product recommendation problem aims to find products that are usually

bought together to suggest them to the users. This graph represents a network of

products, where each vertex is a product and an edge connects two products if they

have been co-purchased frequently. Therefore, the communities in the Amazon graph

should contain similar products that can be recommended together.

We ran the incremental algorithm on the graph and we chose three communities

which are reported in Table 5.3. The table has 10 randomly selected vertices from

each community. In the case of the first community, we see that it is formed of classic

novels. The second community consists of Shakespearean literature. Finally, the third

one is mostly political and allegorical novels. We observe that the algorithm is able

to perform a good selection of the relations in the graphs in order to give meaningful

communities.

5.7 Summary

In this chapter, we studied community detection as an example of incremental graph

algorithms and a case study of Sprouter. We presented IDWCC, a distributed algo-

rithm for community detection over node-grained dynamic graphs based on the WCC

metric. The algorithm and its static counterpart (DWCC) were implemented using
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Table 5.3: Examples of communities of Amazon products produced by IDWCC.

community #1

Gulliver’s Travels
Science Fiction Classics of H.G. Wells
Swiss Family Robinson
The War of the Worlds
Anne of Avonlea

Robinson Crusoe: His Life and Strange Surprising Adventures
Treasure Island
Gulliver’s Travels
The Swiss Family Robinson
Robinson Crusoe: Life and Strange Surprizing Adventures

community #2

Merchant of Venice
The Merchant of Venice
Macbeth
Othello : The Applause Shakespeare Library
Much Ado About Nothing

Hamlet: The New Variorum Edition
Hamlet
The Merchant of Venice
A Midsummer Night’s Dream
Othello

community #3

1984
A Separate Peace
Lord of the Flies
Romeo and Juliet
1984

To Kill a Mockingbird
John Knowles’s a Separate Peace
Joseph Heller’s Catch-22
The Grapes of Wrath
1984

GraphX and tested with Spark Streaming. The experiments showed that IDWCC

outperforms DWCC for large-scale dynamic graphs. IDWCC produced the same or

better WCC values compared to DWCC. It was also two to three times faster than

DWCC. The memory consumption was more optimized in IDWCC as well. We con-

clude that, to our knowledge, IDWCC is the best performing incremental community

detection algorithm for node-grained dynamic graphs. We also demonstrated how

the detected communities can be used within Sprouter to give recommendation in an

e-commerce setting.
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Chapter 6

Conclusions and Future Work

In this work, we explored cutting-edge big data processing technologies to build a

streaming data processing framework that facilitate real-time data extraction and

linking in a graph structure and serves OLTP and OLAP queries in a timely manner.

We demonstrated the framework functionalities and applications using a case study

of social data analytics.

We started by conducting a thorough literature study on cutting-edge stream

processing engines, graph processing, and graph storage systems in Chapter 2. We

also discussed the problem of incremental graph processing and community detection

as an example of graph analytics.

We selected Apache Spark to build a solution for real time data processing since

it is one of the most advanced streaming engines, an open-source solution, offers both

bulk and streaming APIs, and supports large-scale graph processing. Based on this

choice, we studied maintaining a dynamic graph on top of Apache Spark. We chose

IndexedRDDs and Redis as possible solutions in chapter 3. We compared the two

to RDDs which is the basic storage abstraction in GraphX. The experiments showed

that IndexedRDDs, although provide fast fine-grained updates, retrieving the inserted
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values proved to be slow. Redis was more efficient but still has no support for storing

property graphs.

In Chapter 4, we built on the results we got in Chapter 3 to design Sprouter, a

framework for dynamic graph processing that supports OLTP/OLAP queries. We

chose Cassandra as a graph store with Spark as it is a NoSQL solution with fast

read/write performance and property graphs storage support. We presented three

approaches to creating, storing and querying information from the graph storage: a)

dynamically updating and querying the in-memory graph in GraphX, b) updating the

in-memory graph first and then persisting the changes in Cassandra, or c) persisting

the data in Cassandra then reloading the full graph to the in-memory graph structure.

The experimental results showed that the second approach is the most efficient while

depending on Cassandra for pinpoint or OLTP queries and GraphX for analytical

queries. After implementing a full framework that is capable of ingesting data streams

and processing them in real-time, we conducted many experiments to measure the

efficiency of the solution. The experiments showed that the framework is capable of

maintaining graphs up to 100 million edges while updating them with stream data in

under 50 seconds. It also allowed efficient pinpoint queries and fast analytics.

Finally, we showcased the framework applications with a case study on incremental

graph algorithms by exploring the analytical problem of community detection in large

distributed dynamic graphs. We chose WCC optimization as a static graph algorithm

to extend into an incremental community detection method. As described in chapter

5, we implemented WCC optimization for Spark’s GraphX in addition to a new incre-

mental WCC optimization which we called Incremental Distributed WCC (IDWCC).

We compared the two as the original WCC optimization was already tested against
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state-of-the-art community detection algorithms and showed superiority in terms of

efficiency and performance. The comparison results showed that IDWCC was more

efficient in terms of computational cost and memory consumption and it was two to

three times faster than DWCC in all our experiments. In terms of the quality of

results, IDWCC performed the same or better than its static counterpart, DWCC, in

all experiments.

6.1 Future Work

Fast processing and analytics of streaming data is increasingly becoming an impor-

tant problem as we need recent data to be reflected in the insights instantly. We

describe our future work directions based on the limitations that we observed in cur-

rent approaches, possible enhancements, and potential new problem areas that we

need to address.

6.1.1 Exploring Other Graph Storage Systems

We plan to investigate more data storage systems. One group we are interested in

exploring is in-memory SQL data stores such as MemSQL1, a distributed, highly-

scalable SQL database that supports both OLTP and OLAP queries, and Snappy-

Data [25] which embeds an in-memory transactional database into Spark to avoid

serialization/deserialization time. We also intend to explore graph data stores such

as OrientDB, Neo4J, and Titan.

The results of this research will allow us to determine the most robust scalable

storage for graphs to use within Sprouter. We aim to make it perform faster updates

1https://www.memsql.com/
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and support a wider range of OLTP queries efficiently.

6.1.2 Validating IDWCC for Very Long Runs

We want to study the stability of the results of IDWCC over long periods of time.

In the case of result degradation, one possible approach to overcome it might be to

apply the static algorithm (DWCC) periodically on the full graph to maintain high

accuracy of the results.

6.1.3 Alleviate the Memory Consumption of IDWCC

We also aim to address the memory consumption of the IDWCC algorithm which

causes a bottleneck for the computation of new communities for each vertex. We

plan to further optimize the iteration phase by limiting the number of vertices for

which we change communities on each iteration by using statistics calculated from

the previous iteration.

6.1.4 Expand the Scope of IDWCC

We only addressed undirected unweighted node-grained dynamic graphs in this re-

search. In the future, we like to extend our framework to work with edge-grained

dynamic graphs. Another area to explore is adding the edge weights to the commu-

nity detection process.



BIBLIOGRAPHY 71

Bibliography

[1] James P Bagrow. Communities and bottlenecks: Trees and treelike networks

have high modularity. Physical Review E, 85(6):066118, 2012.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne

Lefebvre. Fast unfolding of communities in large networks. Journal of statis-

tical mechanics: theory and experiment, 2008(10):P10008, 2008.

[3] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.

Complex networks: Structure and dynamics. Physics reports, 424(4-5):175–308,

2006.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-

lor. Freebase: a collaboratively created graph database for structuring human

knowledge. In Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 1247–1250. AcM, 2008.

[5] Hsinchun Chen, Xin Li, and Zan Huang. Link prediction approach to collab-

orative filtering. In Digital Libraries, 2005. JCDL’05. Proceedings of the 5th

ACM/IEEE-CS Joint Conference on, pages 141–142. IEEE, 2005.



BIBLIOGRAPHY 72

[6] Xi Chen, Huajun Chen, Ningyu Zhang, Jue Huang, and Wen Zhang. Large-scale

real-time semantic processing framework for internet of things. International

Journal of Distributed Sensor Networks, 11(10):365372, 2015.

[7] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sam-

bavi Muthukrishnan. One trillion edges: Graph processing at facebook-scale.

Proceedings of the VLDB Endowment, 8(12):1804–1815, 2015.

[8] Sutanay Choudhury, Khushbu Agarwal, Sumit Purohit, Baichuan Zhang, Meg

Pirrung, Will Smith, and Mathew Thomas. Nous: Construction and querying

of dynamic knowledge graphs. In 2017 IEEE 33rd International Conference on

Data Engineering (ICDE), pages 1563–1565. IEEE, 2017.

[9] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and

Matei Zaharia. Graphframes: an integrated api for mixing graph and relational

queries. In Proceedings of the Fourth International Workshop on Graph Data

Management Experiences and Systems, page 2. ACM, 2016.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[11] Paul Dourish and Matthew Chalmers. Running out of space: Models of infor-

mation navigation. In Short paper presented at HCI, volume 94, pages 23–26,

1994.

[12] Guillaume Durand, Nabil Belacel, and François LaPlante. Graph theory based

model for learning path recommendation. Information Sciences, 251:10–21, 2013.



BIBLIOGRAPHY 73

[13] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.

Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J

Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow

framework. 14:599–613, 2014.

[15] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J

Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow

framework. In OSDI, volume 14, pages 599–613, 2014.

[16] Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari, and Miriam AM

Capretz. Data management in cloud environments: Nosql and newsql data stores.

Journal of Cloud Computing: advances, systems and applications, 2(1):22, 2013.

[17] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza

Zadeh. Wtf: The who to follow service at twitter. pages 505–514, 2013.

[18] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-

evolving graph processing at scale. In Proceedings of the Fourth International

Workshop on Graph Data Management Experiences and Systems, page 5. ACM,

2016.

[19] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth

Taneja. Twitter heron: Stream processing at scale. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data, pages 239–

250. ACM, 2015.



BIBLIOGRAPHY 74

[20] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree:

Artful indexing for main-memory databases. pages 38–49, 2013.

[21] Azi Lipshtat, Susana R Neves, and Ravi Iyengar. Specification of spatial rela-

tionships in directed graphs of cell signaling networks. Annals of the New York

Academy of Sciences, 1158(1):44–56, 2009.

[22] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. pages 135–146, 2010.

[23] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of data, pages 135–146. ACM, 2010.

[24] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: a

survey of vertex-centric frameworks for large-scale distributed graph processing.

ACM Computing Surveys (CSUR), 48(2):25, 2015.

[25] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik

Chakraborty, Hemant Bhanawat, and Kishor Bachhav. Snappydata: A unified

cluster for streaming, transactions and interactice analytics. In CIDR, 2017.

[26] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,

Indranil Gupta, and Roy H Campbell. Samza: stateful scalable stream processing

at linkedin. Proceedings of the VLDB Endowment, 10(12):1634–1645, 2017.



BIBLIOGRAPHY 75

[27] Gang Pan, Wangsheng Zhang, Zhaohui Wu, and Shijian Li. Online community

detection for large complex networks. PloS one, 9(7):e102799, 2014.
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Appendix A

The Ingestion Component Implementation for

GDELT

A.1 Ingesting Historical Data

Fig. A.1 shows the historical data pipeline as it is implemented in NiFi. The pipeline

consists of six processing steps.

1. Fetch History File: A “GetHTTP” processor that initiates an HTTP request

to fetch the master file.

2. Split File To Lines: A “Split Text” processor that split the master file into lines.

3. Parse GKG File URL: Parses each line of the master file and extracts URLs of

the GKG files only.

4. Fetch GKG File: Another “GetHTTP” processor that initiates an HTTP re-

quest for each GKG file URL.

5. Update Attribute: Add an attribute “filename” to each file which represents

the name of the file.
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6. Save To HDFS: Saves the file as is into HDFS using the name in the attribute.

Figure A.1: The NiFi Pipeline for Historical Data

A.2 Ingesting New Data

The real-time data ingestion from the latest file consists of five processors as listed

below and is shown in Fig. A.2.

1. Fetch Latest File: A “GetHTTP” processor that initiates an HTTP request to

fetch the latest file.

2. Parse GKG File URL: Parses the latest file and extracts URLs of the GKG files

only.

3. Fetch GKG File: Another “GetHTTP” processor that initiates an HTTP re-

quest for each GKG file URL extracted from the latest file.
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4. Unzip File Content: Unzips the GKG file content since it is in “zip” format.

5. Split Files to Records: Splits each GKG file into lines.

6. Spark: An “Output Port” to which NiFi directs the output of the last processor

and from which Spark then reads the data.

Figure A.2: The NiFi pipeline for Real-time Data
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Appendix B

The IDWCC Algorithm

Algorithm 1 Phase 2, Initial Partition

1: Let P be a set of communities generated at the last micro-batch;
2: S ← sortByClusteringCoefficient(Vt+1);
3: for all v in S do
4: if notVisited(v) then
5: markAsV isited(v);
6: if v ∈ V ∗ then
7: C ← {v};
8: else
9: C ← P.getCommunity(v);

10: for all u in neighbors(v) do
11: if notV isited(u) then
12: markAsV isited(u);
13: if u ∈ V ∗ then
14: C.add(u);

15: P.add(C);
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Algorithm 2 Phase 3, Refinement

1: Let P be the initial partition;
2: iteration← 1;
3: repeat
4: M ← φ
5: for all v in V do
6: M.add(bestMovement(v, P ));

7: P ← applyMovements(M,P );
8: iteration = iteration+ 1;
9: until iteration > maxIterations;


