
Bounds On Some Geometric Transforms

by

Md. Kamrul Islam

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

May 2005

Copyright c© Md. Kamrul Islam, 2005

Abstract

A flip or edge-replacement can be considered as a transformation by which one

edge e of a geometric figure is removed and an edge f (f 6= e) is inserted such

that the resulting figure belongs to the same class as the original figure. This thesis

is concerned with transformation of two kinds of geometric objects, namely, planar

trees and planar paths, through the application of flips. A technique is presented

for transforming a given planar tree into another one for a set of n points in general

position in the plane. It is proved that the number of flips required for such a

transformation is at most 2n − k − s − 2 (k, s ≥ 1). In the case of planar path

transformation we show that any planar path can be transformed into another by

at most 2n − 5 flips for a set of n points in convex position in the plane. Besides,

experimental results are presented that show transformability of any planar path into

another considering n (n ≤ 13) points in general position. Later, we investigate the

possibility of using flips, as an enumeration technique to generate the set P(S) of all

planar paths of a set S of n points in convex position in the plane. First, it is shown

that |P(S)| = n2n−3. Then two algorithms are proposed that describe the ways flips

can be used to generate all the planar paths uniquely. The first algorithm is based on

a recursion technique and uses flips of size one. The second algorithm is non-recursive

and uses flips of size one and flips of size two (two edges are removed and two are

inserted simultaneously) to enumerate all such paths uniquely.

i

Acknowledgements

First of all, I glorify the greatness and bounty of Allah who has bestowed on me

the strength and ability without which it would not have been possible to carry out

the thesis.

I am grateful to my supervisors Dr. Selim G. Akl and Dr. Henk Meijer who

introduced me to the tremendously exciting field of research and guided me to the way

of innovation and novelty. Their invaluable ideas and profound research experience

kept me enthusiastic and optimistic all the way to the completion of this thesis. I

thank them for their many hours of patience for listening to my problems. Their

assistance, comments, constructive criticism and positive attitude helped me proceed

towards completing each step of the thesis.

I would like to acknowledge the support and facilities I received from the staff of

School of Computing and Queen’s University.

I am indebted to my father Late Md. Anowarul Islam for introducing me the

things I did not know and the utmost care I received from him. I pay my sincere

gratitude and profound love to my mother, Mst. Fazilatun Nessa, who put up with

hardships and kept patient to raise us (My brother, me and my sister).

Lastly, I thank my wife Mithila whose understanding, inspiration and constant

support provided me with optimism in different situations.

ii

Contents

Abstract . i

Acknowledgements . ii

List of Figures . vi

List of Notations . viii

1 Introduction 1

1.1 Defining the Problem . 2

1.1.1 Geometric Transformation . 3

1.1.2 Flip as Geometric Transformation 4

1.1.3 Triangulation Example . 5

1.2 Flips in Trees and Paths . 6

1.2.1 The Meta Graph and its Connectedness 7

1.3 Enumeration of Objects . 9

1.4 Contribution of the Thesis . 11

1.5 Outline of the Thesis . 12

2 Literature Review 14

iii

2.1 Flips and Triangulations . 14

2.2 Flips in Trees . 15

2.3 Edge Slide and Improving Edge Move 16

2.4 Enumeration Techniques . 17

3 Preliminaries and Definitions 19

3.1 Graph Essentials . 19

3.2 Terminologies used for Trees . 20

3.3 Terminologies used for Paths . 22

4 Transformation Results 25

4.1 Tree Transformation . 25

4.1.1 Transformation via Canonical Tree 27

4.2 Path Transformation . 33

4.2.1 Quality of a Canonical path 34

4.2.2 Path Tranformation Strategy 35

4.2.3 Experimental Results for Path Transformation 37

5 Counting and Enumeration 41

5.1 Counting Paths . 41

5.2 Enumeration of Paths . 45

5.2.1 Recursive Generation of All Paths 50

5.2.2 Space and time complexity . 52

iv

5.3 Non-recursive Construction . 53

5.3.1 Generation Method . 53

5.3.2 Correctness of the Algorithm 55

5.3.3 Mapping Between CP0,1 and CPm,m+1 (CPm+1,m) 56

5.3.4 Space and time complexity . 59

5.3.5 Implementation of the algorithm 60

6 Conclusion 61

Bibliography . 63

v

List of Figures

1.1 Illustrating diagonal flips . 4

1.2 Triangulation X is transformed into Y through flips. 6

1.3 (a) A flip on P can transform it into any of the six paths P1, P2, P3,

P4, P5, P6. (b) The path P ′ produced from P by the flip is not valid

as it is not planar. 8

3.1 (a) The canonical tree (b) Not a canonical tree 21

3.2 In (a) v1 can see vertices v3, v4, v5, · · · , v0 and in (b) v2 can see only

v4, v5, v6 and v1 . 22

3.3 (a) Canonical path CP1,2 and (b) not a canonical path. 24

4.1 (a) A tree T ′ = (V,E ′) (b) A tree T ′′ = (V,E ′′) (c) Transformations

(shown with thick edges) applied on T ′ to construct T ′′. 26

4.2 A tree T of case 1. Only the solid line segments represent the edges of

the tree. 29

4.3 A tree T depicting case 3. Only the solid line segments represent the

edges of the tree. 30

vi

4.4 Showing the transformation of tree T into canonical tree T ∗
v0

. Thick

edges represent the edges that are flipped. 31

4.5 Showing the transformation of tree T ′ and T ′′ to be transformed into

canonical tree T ∗
v0

. 33

4.6 (a) Shows a canonical path, CP0,1 with Qua(CPi,i+1) = 7 and (b) shows

an arbitrary path P with Qua(P) = 4. 35

4.7 (a) Shows the edge for flip (b) Shows the resultant path after flipping

the edge {vt, vt′}. 36

4.8 (a) The meta graph of paths with vertices showing all possible paths

of 4 points defined in the plane. 39

5.1 Showing v` can only be connected to either vj−1 or vj+k+1 to construct

P ′′ from P ′. 42

5.2 All paths of length 2 starting at vi are shown in (a) (vivi+1vi+2) (b)

(vivi+1vi−1) (c) (vivi−1vi−2) and (d) (vivi−1vi+1) 43

5.3 Recursive enumeration of all paths from a canonical path CP0,n−1.

Recursion terminates as vertex vn/2 of the leftmost leaf of the tree can

see only one vertex and thus is incapable of producing any path. . . . 49

5.4 Recursive enumeration of all paths from the canonical path CP1,2

(v1v2v3v4v5v0) of 6 vertices. Bold edges represent marks of the cor-

responding paths. 51

5.5 Tree representation of permutations 56

vii

5.6 Mapping between A′
4,3 and A0,1. 57

viii

List of Notations

P set of n points in general position in the plane

S set of n points in convex position in the plane

(vi, vj) an edge connecting vertices vi and vj

CPi,i+1 canonical path begins with edge (i, i + 1)

T (P) set of all planar trees of P

TG(P) graph with T (P) as vertex set

V i
k set of k + 1 consecutive vertices {vi, vi+1, vi+2, · · · , vi+k}

N(vj) the set of vertices which are adjacent to vertex vj

P i
k a set of paths of length k beginning at vi and using V j

k

pi
k number of directed paths of length k starting at vi and using V j

k

T ∗
v0

canonical tree with v0 as the root

P(S) set of all planar trees of S

Pj(vi) any path where j is the number of vertices visible to vertex vi

Nj(vi) the number of child paths produced by Pj(vi)

Qua(P i
n−1) quality of a path P i

n−1

ix

Chapter 1

Introduction

Geometric elements such as points, line segments and polygons are the basis of a

broad variety of different applications and give rise to an interesting set of well-

defined problems and algorithms. One such geometric problem asks whether any

geometric object or figure consisting of those geometric elements (such as straight line

segments and fixed point-set in the plane) can be transformed into another object

of the same type by applying small changes (e.g. removing an edge and replacing

with another) in the object. If this question gives a positive answer then we would

like to determine the minimum (maximum) number of such small changes. The

constraint associated with such problem is that if there is a finite number of changes

needed, then all the intermediate objects will be in the same class as the original one.

Another interesting issue regarding transformation may be posed, namely, whether

it is possible to generate the set of all objects uniquely with small changes in the

objects. The process of generating the objects is called enumeration. In this thesis,

1

we study the transformation of certain geometric objects and determine the bounds

on those transformations.

There are a number of examples that illustrate this particular computational prob-

lem of transformation and enumeration. For instance, problems related to transforma-

tion and enumeration of geometric objects such as triangulations, tetrahedrons, span-

ning trees, crossing free paths, linked-edge lists, pseudo-triangulations and meshes

are studied in the literature of computational geometry. Some of these algorithms,

techniques and their lower and upper bounds to achieve those transformations and

enumerations can be found in [3] [5] [29] [35] [36]. A majority of research activity in

computational geometry is devoted to the design and analysis of algorithms and data

structures, in an effort to find the fastest possible solutions to those problems.

1.1 Defining the Problem

As mentioned earlier, this thesis deals with the geometric problems that involve trans-

formation of a given object defined on a set of points in the plane. The aim of the

thesis is to describe techniques and bounds on the complexity of transforming geo-

metric objects consisting of points and straight line segments. The problem can be

generally defined as follows: Let X be a given geometric figure of a class with some

property M, and let Y be another object of the same class satisfying M. We consider

objects or figures that can be described in terms of vertices and straight line segments

in the plane. It is intended to construct the figure Y by applying a sequence of small

2

changes or transformations to X.

The main criterion is that when changes are applied on the figure X, each resulting

object towards achieving Y from X, must posses the same property, M. The first

question is: Is it at all possible to achieve Y from X? Once the problem is solved as

far as transformation is concerned then we figure out how many steps are required

to do so and if not then what the lower and upper bounds on the number of such

transformations are. One of the aims of this thesis is to answer these questions

on particular geometric objects, namely planar trees and planar paths. We assume

throughout that all problems are defined in the two-dimensional plane.

In the remainder of this section follows in this section, we shed light on what we

mean by a local transformation in general. Subsequently we define and illustrate the

flip operation as a local transformation which is one of the basic operations applied on

geometric objects to produce other objects. Finally we present a particular example

that will help one understand the transformation of geometric figures.

1.1.1 Geometric Transformation

In general, a geometric transformation can be defined as an operation in which new

objects of the class are generated only from previously-examined objects by means

of small changes. This transformation is performed on the vertices and the edges of

a graph. As a new object is produced due to a single transformation of an object,

the new object constitutes the neighbourhood of the original object. This simple

transformation is performed successively on every newly produced object without

3

any duplication of any objects. Thus we form a class of valid objects having similar

characteristics.

We are concerned with the connectedness of all the objects of that class with

respect to the transformation in question, that is, whether every valid object must

be reachable from some initial valid object by means of a finite sequence of transfor-

mations. Local search (that searches only within the neighbourhood of the current

object) and optimization methods such as reverse search enumeration, and random

walks all make use of transformation to visit new objects of the class.

1.1.2 Flip as Geometric Transformation

The standard edge flip in a planar graph G, also called the Lawson flip [7], takes

two triangles 4abc and 4abd, whose union is a convex quadrilateral. By a flip we

exchange the diagonals e and f of this quadrilateral and obtain a new graph G′ as

shown in Fig. 1.1.

d

a b

d

fe

G G’

a

c c

b

Fig. 1.1: Illustrating diagonal flips

4

We say that G′ has been obtained from G by a diagonal transformation or a

diagonal flip. Observe that one can flip only {a,b} if adbc is a convex quadrilateral.

In this case it can be stated that the edge {a,b} is flippable.

Armed with the knowledge of the transformation flip, we can now look forward

to considering the following example involving transformation of a geometric figure

called a triangulation.

1.1.3 Triangulation Example

A triangulation is a an embedded planar graph all of whose faces (except the outer

face) are triangles [30]. A set of points in the plane can be triangulated by connect-

ing pairs of points with straight line-segments until no edges can be added without

making an intersection with existing edges. Similarly the interior of a polygon can

be triangulated by connecting its vertices with diagonals such that each diagonal lies

entirely inside the polygon until no diagonal can be added without intersecting the

existing diagonals.

Let X and Y be two triangulations with the same set of n vertices for n = 7

in the plane. It is required to obtain Y from X by applying a sequence of local

transformations such that every resulting object still is a triangulation. Here we

use flip as the local transformation of triangulations, which is defined earlier as the

removal of one edge and the insertion of a new edge such that all the intermediate

figures belong to the same class of the original figure. Fig 1.2 gives an example.

The questions associated with such transformations deal with whether it is always

5

YX

Intermediate triangulations

X Y

Fig. 1.2: Triangulation X is transformed into Y through flips.

possible to transform one object to another and if so then what is the number of such

transformations. Both questions are settled with an affirmative answer and a lower

bound is found to be Ω(n2) [36] where n is the number of points in the plane.

1.2 Flips in Trees and Paths

In this thesis, we restrict ourselves only to the transformations of planar (sometimes

referred as non-crossing or crossing-free) trees and planar paths. A planar tree is an

embedded connected acyclic (containing no cycle) graph where the edges (straight

line-segments) do not pairwise cross. Similarly a crossing-free or planar path is an

embedded connected graph such that no two edges cross and every vertex has degree

6

at most two.

The standard definition of a flip has been extended (flipping of edges is not re-

stricted to only the diagonals of a quadrilateral) to general graphs such as planar trees

and planar paths where a flip means the operation of removing an edge e ∈ G and

replacing it with another new edge f such that a new planar graph G′ = G\{e}∪{f}

is formed. Here G and G′ represent either planar trees or planar paths. See Fig 1.3(a)

where a flip on the path P can transform it into any of the six paths P1, P2, P3, P4,

P5, P6 as shown. But in Fig 1.3(b) the path P ′ produced from P by the flip is not

valid as it is not planar.

A sequence of flips replaces a given set of edges with another set of the same

cardinality. This operation (flip) can be used for the purposes of enumeration, random

generation of geometric objects such as trees and paths (as we will see later) and for

proving fundamental combinatorial properties of some objects of a certain class.

1.2.1 The Meta Graph and its Connectedness

One can then define a mathematical model in terms of transformations for all the

objects of a class of whether any two geometric objects of a certain class (satisfying

some property) are reachable from one to another via a finite sequence of flips. Here

we define a graph, called the meta graph (also called super graph), that serves as the

mathematical model to describe the relationships among the objects of that graph.

The meta graph can be defined as the graph having the set of objects in the class as

its vertex set, and a pair of vertices is connected by an edge if the objects represented

7

(a)

(b)

Not a valid path

P1

P2

P3
P6

P

P

P4

P ′

P5

Fig. 1.3: (a) A flip on P can transform it into any of the six paths P1, P2, P3, P4, P5, P6. (b) The path P ′

produced from P by the flip is not valid as it is not planar.

by the vertices differ by a small change. In this way, one can develop adjacencies

among nodes of the meta graph.

For a set of points in the plane in general position, the order of the meta graph

is quite large. For example, the number of crossing-free trees is Ω(10.42n) [25], the

number of labelled non-crossing paths of n points in convex position in the plane is

n2n−3 (as will be shown later), and so on.

In most of the cases, generating, examining and establishing relationships among

all the objects is not feasible due to the amount of time needed to construct a graph

8

containing such a huge number of vertices. There is a way that makes it possible to

establish polynomial-size descriptions among the objects even though the size of the

graph is exponential in most of the cases. The procedure of incorporating local mod-

ifications on some initial object to visit new objects allows us to study the essential

characteristics such as connectedness, reachability, diameter of the graph and so on.

The existence of a path between two vertices in the graph means transformability

of the corresponding trees or paths represented by the vertices into one another by

means of repeated application of the local transformations. The length of the shortest

path between two vertices corresponds to the distance between the two trees or paths

in terms of the number of operations. Furthermore, analysis of such graph helps us

develop suitable expressions to represent the relationship among the objects that arise

from the issue of carrying out transformations.

In this thesis, we show that small changes in geometric figures of some class can

be one of the means to enumerate all such figures (having same property) of the class.

Besides, we aim to determine the bounds on the number of such transforms of planar

trees and paths.

1.3 Enumeration of Objects

Enumeration entails the use of algorithms for generating all the combinatorial or

geometric objects of a certain set without duplicates. The problem of efficiently

generating the set of objects has theoretical interest and also is a fundamental problem

9

in combinatorics, computational geometry and operations research. For example,

generation of all graphs for a class may arise in constructing test data for certain

programs. As this thesis is concerned with object transformations, we intend to

extend this capacity to deal with enumeration of all geometric objects of a certain

class. The techniques of generating or enumerating all planar paths are provided.

In order to find out efficient solutions regarding combinatorial objects for the pur-

pose of classification and enumeration, numerous techniques have been investigated

by mathematicians and geometers. One of the earliest object classes to be studied by

the ancients is likely the Platonic solids [16], for example, a polyhedron all of whose

faces are congruent regular polygons. Along with theoretical solutions and proof of

enumeration techniques, computers have also been employed to obtain experimental

results that investigate the structures of objects far more complex than those consid-

ered by the ancients and help provide certain proofs. For example, in graph theory,

the only proofs yet known of the famous Four Colour Theorem have been obtained

by means of computer enumeration of cases [1][2].

Since the size of the meta graph (as described above) is quite large, it takes a

lot of time to enumerate all objects represented by the vertices of the meta graph.

Nonetheless, for the sake of determining connectedness of the meta graph whose ver-

tices represent planar paths, when the vertices are in general position (no three points

are collinear), we apply a brute-force enumeration algorithm and take advantage of

the computer to enumerate all such paths of n vertices for n ≤ 13 when the vertices

are in general position in the plane. Later, two theoretical proofs are given for the

10

enumeration of all planar paths of n vertices assuming that the vertices are in convex

position.

1.4 Contribution of the Thesis

As we deal with transformation of geometric objects, we determine the minimum and

maximum number of flips required for such transformation which are called the lower

and upper bounds of transformation. The problem of finding bounds of transformation

of crossing-free spanning trees and planar paths is addressed and some algorithms

are suggested. Besides, some results are given by studying the combinatorial and

enumerative property namely, the counting of the total number of objects of a certain

class, generating them all, finding relationship between any two successively generated

objects, and so on. Following are the contributions of this thesis:

1. It is shown that at most 2n− 5 flips are required to transform any crossing-free

path into another when the point set is in convex position.

2. The number of crossing-free paths in convex position is shown to be n2n−3. Two

enumeration algorithms (one recursive and another non-recursive) are designed

for generating all such paths.

3. The non-recursive enumeration algorithm for generating paths in convex posi-

tion is implemented. Although the time complexity is exponential, the space

complexity is linear.

11

4. An algorithm is presented for the problem of planar tree transformation and it

is shown that a linear number of flips suffice to transform any planar tree into

another planar tree considering points in general position in the plane. More

specifically, we improve the upper bound on the number of transformations from

2n− 4 [3] to 2n− k − s− 2 where both k and s are larger than or equal to 1.

5. Experimental results concerning transformation of crossing-free paths are pre-

sented for at most n = 13 points in general position in plane. It is shown that

any two paths are reachable from one another which implies that the corre-

sponding meta graph is connected.

1.5 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 provides a brief literature

survey on flips that act as the basis of transforming triangulations and general graphs

and sheds light on some of its applications. In chapter 3 some basic definitions and

terminologies necessary for understanding the thesis are provided. In chapter 4, a

number of lemmas and proofs are provided regarding planar trees and crossing-free

paths transformation. Experimental results demonstrating the connectedness of the

meta graph containing vertices representing non-crossing planar paths are presented

in this chapter. In chapter 5, a simple recursive technique for counting the total

number of planar paths is given. Two algorithms are discussed for enumeration of

all convex planar paths uniquely. The first one is recursive, where it is shown that

12

flipping can be used to generate all planar paths without duplicates. We then present

a non-recursive algorithm that takes only O(n) space to enumerate all such paths.

Chapter 6 provides a summary of the results and concludes with an open problem.

13

Chapter 2

Literature Review

2.1 Flips and Triangulations

The idea of flipping in planar tree and path transformations stems from the edge-

flipping operations used in triangulations, a structure which has great importance

in computational geometry. Flipping can be used in generating different types of

triangulations in two and three dimensions [36][35], enumerating rooted plane trian-

gulation [12] and also in building visibility graphs of a set of objects in the plane [34].

Flipping of edges as a simple tool of changing certain geometric objects, has received

some attention during recent years. Flipping has found its applications in many im-

portant areas such as finite element analysis, solid modeling, shape representation,

terrain modeling, volume rendering and computer vision [17][18][19].

Flips have been used in various fields starting with a simple greedy algorithm

that constructs the Delaunay triangulation of a point set by successive flips from an

14

arbitrary initial triangulation of the point set [8]. The results of [12] provide some

efficient ways of enumeration and a number of algorithms for the generation of all

tri-connected rooted plane triangulation defined with n vertices. The latter are of

particular importance as they are based on the reverse search method that does not

store all the lists of graphs while they are generated successively.

2.2 Flips in Trees

Apart from the literature regarding flips and their influence on triangulations, a con-

siderable amount of similar study has been also conducted for general graphs. The

meta graph of trees (as discussed in chapter 1) was introduced in [24], in connection

with the study of electrical networks. An characteristic of the meta graph, specifi-

cally that the graph of trees is Hamiltonian is proved in [24]. A simpler proof of the

same fact was found later [21] and generalized to the base graph of a matroid. A

base graph of a matroid is the graph whose points are the bases of the matroid. Two

bases are adjacent if they differ by exactly one element. Graph-theoretical versions of

the problem of geometric object transformations have been largely studied in [22] for

tree graphs and was shown that tree graphs have maximum connectivity (a directed

graph is said to be maximally connected if it is k-connected and k is the minimum in

or out degree of all vertices). Another excellent discussion of combinatorial version

for graphs more general than trees is studied in [23]. They exclusively treat the case

where the allowed operation is called edge-move, which relates two trees in the meta

15

graph of trees if they have all but one edge in common.

Motivated by the question of enumerating the set of all non-crossing spanning trees

for a point set in general position, Avis and Fukuda [3] showed that the corresponding

tree graph is connected and has a diameter bounded by 2n − 4. To the best of our

knowledge this is the only known result for a general point set. In this thesis, we

present an improved bound of 2n − k − s − 2 (where k, s ≥ 1) which in some cases

produces a better result.

The special case when the point set is in convex position has been treated by

Hernando et al. [26]. They showed that the tree graph has maximum connectivity

and is Hamiltonian in this case. A lower bound of b3n/2c − 5 on its diameter is

established there and it is shown that the number of crossing-free spanning trees is

minimum for the convex case. A different flavour on crossing-free geometric spanning

trees and related results can be found in [27].

2.3 Edge Slide and Improving Edge Move

Recently, two operations slightly different from but related to flips have gained at-

tention in connection with transformations; they are called edge-slide and improving

edge-move [28]. A planar edge-slide is like a constant-size local edge move that keeps

one endpoint of the moved edge fixed and moves the other one along an adjacent

tree edge without generating any edge crossings. An improving edge-move is same as

the edge move or flip, the only difference being that it (move) reduces the total tree

16

length. The length of a tree is the sum of lengths of all the edges of the tree.

As found in [28], the number of length-improving and planar edge-moves needed to

transform a tree T ∈ Ts into MST (S), (Minimum Spanning Tree) of S where Ts is the

set of all crossing-free spanning trees of S, is O(n log n). Edge slide operations could

also prove useful in enumerating all simple polygons on a point set S via constant-size

local transformations but this is still unsettled as reported in [26].

2.4 Enumeration Techniques

There are techniques available for enumeration of typical objects such as generation

of all rooted trees [12], triangulations of a set of points in the plane [37], non-crossing

paths in a connected graph in a two-dimensional Euclidean plane, all connected in-

duced subgraphs of a graph, all topological orderings of an acyclic graph, vertices and

faces of a polyhedron etc [3]. As described in [11], one of the particular applications

of enumerating all graphs having some property includes unbiased statistical analysis.

Davis and Fukuda [14] provide a nice treatment regarding algorithms developed for

counting and generating these objects. As enumeration techniques are in place, the

necessity of searching a particular object also demands attention. Among the number

of searching techniques backtracking is known to be useful for various enumeration

problems associated with graphs [20]. For enumeration problems in computational

geometry the incremental search technique is used [13]. On the other hand two most

typical search techniques in graphs namely, depth first search and breadth first search

17

can be applied to the case where the objects to be listed or counted are the vertices

of some connected graph.

The experimental results presented in this thesis for finding transformability of

planar paths use flips to sequentially traverse all the planar paths of a point set in

general position. That is, we first generate all the planar paths of the point set.

Then to answer the question as to whether any two planar paths P1 and P2 can

be reached from one another by means of flips, the algorithm begins from P1 and

uses a flip to reach its neighbour which in turn reaches to its neighbour and so on

until P2 is reached. This can be called local search as the search is limited only

to the neighbours of a path represented by a vertex of the meta graph. There are

local search techniques discussed in the literature [8][9] of enumeration and searching

algorithms. For example, edge-exchange algorithms for finding a particular object

with some property in some weighted graph and flip algorithm for finding a Delaunay

triangulation in the plane are studied in [8][9][10][13].

18

Chapter 3

Preliminaries and Definitions

A number of definitions are provided in this section. These definitions and notations

will be used throughout the rest of the thesis. In order to follow our discussion, the

following are some basic definitions and concepts given without proof. Some of them

are adopted from [31][32][33].

3.1 Graph Essentials

Graph: A graph G = (V, E) consists of V , a nonempty set of vertices, and E, a set

of edges between the vertices, E = {(vi, vj)|vi, vj ∈ V }. If G is drawn in the plane,

an edge (vi, vj) is represented by a straight line-segment joining two vertices vi and

vj. The cardinalities of V and E are denoted by |V | and |E| respectively. A path

from vi to vj is a sequence of edges where the terminal vertex of an edge is the same

as the initial vertex in the next edge in the path. A cycle in G is a path of length

19

(n ≥ 3) that begins and ends at the same vertex. A graph is called acyclic if it

contains no cycles. A graph is called connected if for every pair vi, vj of distinct

vertices there is a path from vi to vj. A graph G is called planar if it can be drawn

in the plane so that no two edges intersect, except at a common vertex. We also call

such a drawing an embedding of graph G. Throughout the rest of the thesis a graph

G drawn in the plane is assumed to be a planar embedding unless otherwise stated.

If (vi, vj) ∈ E, then vi and vj are adjacent or neighbours, and the edge (vi, vj) is

said to be incident to vi and vj. We define N(vj) to denote the set of vertices which

are adjacent to vertex vj. The degree of a vertex vi is the total number of edges

incident to it. It is denoted by deg(vi). A flip in G is the operation of removing an

edge from G and adding an edge to G. If k (k ≥ 1) edges are removed from, and k

are added to, G then we call this operation a flip of size k.

3.2 Terminologies used for Trees

In the following definitions, assume P = {v0, v1, v2, · · · , vn−1} is a set of n points in

general position (recall that general position means no three points are collinear) in

the two-dimensional Euclidean plane. We assume that trees are drawn in the plane.

Vertices (V) and edges (E) of a tree are represented by points of P and straight

line-segments.

Planar tree: A planar tree T = (V, E) is a connected acyclic planar graph.

Rooted tree: A rooted tree is a planar tree in which one vertex is designated

20

as the root of the tree.

In this thesis, it is considered that the root of a tree T = (V, E) is the vertex with

minimal x−coordinate. The vertex with smallest y−coordinate will be designated as

the root if there are two or more candidates for the root. The root of any tree, T will

be represented by v0.

Canonical tree: A canonical tree T ∗
v0

is a rooted tree where all vertices are

adjacent to v0, that is, in T ∗
v0

, vi ∈ N(v0), ∀i, i 6= 0. Fig. 3.1 shows the canonical tree

and a tree which is not canonical.

(a) (b)

v0

v0

Fig. 3.1: (a) The canonical tree (b) Not a canonical tree

Visibility of vertices: Two vertices vi and vj, vi 6= vj in an embedding of G are

visible to each other if the straight line segment (vi, vj) ∈ E between them does not

intersect any of the edges in G.

It is assumed that vi is not visible to vj if vi ∈ N(vj). If vi and vj are not visible

then they are blocked by some edge in G. This is illustrated in Fig. 3.2.

Let T (P) denote the set of all trees of P and the geometric tree graph TG(P)

21

denote the graph having T (P) as vertex set. Two trees T1, T2 ∈ T (P) are adjacent if

T2 = T1\{e} ∪ {f} for some edges e and f .

(a) (b)

v4

v7

v6

v5

v0

v3

v4

v1

v2

v7

v6

v5

v0

v3

v2

v1

Fig. 3.2: In (a) v1 can see vertices v3, v4, v5, · · · , v0 and in (b) v2 can see only v4, v5, v6 and v1

In the rest of the thesis, it is assumed that a tree is planar unless otherwise

mentioned.

Flip in a tree: A flip in a tree T1 is the operation of removal an edge e and

addition of a edge f so that T2 = T1\{e} ∪ {f} is a tree.

3.3 Terminologies used for Paths

In the following definitions, assume a point set S = {v0, v1, v2, · · · , vn−1} is a set of

n points in convex position in the two-dimensional Euclidean plane. Assume that

no two points of S have the same y − coordinates otherwise we rotate the points

accordingly.

Denote the vertex with the lowest y − coordinate in S as v0 and label the rest

of the vertices v1, v2, · · · , vn−2, vn−1 counter clock-wise from v0. Arithmetic on the

22

indices of vertices of paths will be defined modulo n. In the rest of the thesis, it

is assumed that all paths are drawn in the plane whose vertices (V) and edges (E)

are represented by points of S (unless a different point-set is specified) and straight

line-segments.

Consecutive group of vertices: A set of k+1 vertices, vi, vi+1, vi+2, · · · , vi+k−1, vi+k

is called a consecutive group of vertices and denoted by V i
k .

Let P(S) denote the set of all planar paths on S. Henceforth, whenever we mention

a path we mean it is a planar path.

Let P i
k denote any path of k edges beginning at vi and using all vertices of V j

k

for some j such that vi ∈ V j
k . Note that a path P i

k is a Hamiltonian planar path if

k = n− 1.

Also, let pi
k define the number of directed paths of length k starting at vi and

connecting vertices of V j
k for some j such that vi ∈ V j

k .

End-edge of a path: The edge (vi, vj) of a path P ∈ P(S) is called an end-edge

of P if vi or vj has degree one.

Canonical path: A directed path (vivi+1vi+2 · · · vi−2vi−1) (resp. (vivi−1vi−2 · · · vi+2vi+1))

in P i
n−1 is called a canonical path and denoted by CPi,i+1 (resp. CPi,i−1).

The two end-edges of CPi,i+1 are (vi, vi+1) and (vi−2, vi−1). The path CPi,i+1 can

also be represented as CPi−1,i−2.

Fig. 3.3 shows an example of a canonical path and a path that is not canonical.

Furthest (Nearest) Visible Vertices: A vertex vj is called furthest (nearest)

visible vertex from vi with respect to a path P ∈ P(S) if vj is visible to vi and the

23

(a) (b)

v4

v6

v5

v0

v3

v4

v1

v2

v7

v6

v5

v0

v3

v7 v1

v2

Fig. 3.3: (a) Canonical path CP1,2 and (b) not a canonical path.

number of edges walking along the path from vi to vj is maximum (minimum).

It is clear from the context that Furthest (Nearest) visible vertices will always be

considered with respect to a path P whether mentioned or not.

Flip in a path: A flip in a path P1 is the operation of removal of an edge e and

addition of a edge f so that P2 = P1\{e} ∪ {f} is a path.

Path generation: A path Qj
k is called generated from P i

k if a flip transforms

P i
k into Qj

k.

We say that path Qj
k is generated from P i

k by a single flip.

Quality of a path: The quality of a path P i
n−1 is defined to be the number of

edges on the boundary of the convex hull of S and is denoted by Qua(P i
n−1).

It can be verified that Qua(P i
n−1) ≥ 2.

24

Chapter 4

Transformation Results

In this chapter, we discuss flipping operations for transformation of spanning trees

and paths . The focus is mainly centered on finding the bounds on the number of flips

required to transform trees and paths. In sections 4.1 and 4.2 we provide the technique

and find the bound in terms of the number of flips used in such transformation.

In section 4.3, our path transformation strategy is explained along with the bound

needed to achieve the transformation.

4.1 Tree Transformation

Let T ′ = (V,E ′) and T ′′ = (V, E ′′) be any two trees belonging to T (P) (recall that

T (P) denote the set of all trees of point set P). It is required to construct T ′′ by

applying a sequence of flips one by one to T ′. The number of flips required for such

construction is known to be at most 2n − 4 [3]. In general we say that T ′′ can be

25

transformed from T ′ by p flips if there is a set of trees T0, T1, · · · , Tp where T ′ = T0

and T ′′ = Tp such that Tt+1 can be obtained from Tt by a single flip. This implies

that for any t, Tt and Tt+1 are adjacent in TG(P).

Consider the Fig. 4.1 where the tree T ′′ is obtained from T ′ by a sequence of

transformation.

(c)

(a) (b)

T ′

T ′′

Fig. 4.1: (a) A tree T ′ = (V, E′) (b) A tree T ′′ = (V, E′′) (c) Transformations (shown with thick edges) applied

on T ′ to construct T ′′.

In this thesis, we try to improve the upper bound (2n−4). In the following section

it is proved that two trees T ′, T ′′ ∈ T (P) can be transformed to each other with at

most 2n− k− s− 2 flips, where k > 0 and s > 0 are the number of neighbours of the

roots of T ′ and T ′′ respectively.

Instead of proving directly that a tree can be transformed into another tree the

26

strategy is to show that it is always possible to transform the given tree into a unique

canonical tree. One can then perform the reverse operations that transform the target

tree into the same canonical tree.

4.1.1 Transformation via Canonical Tree

The following lemma provides a useful direction towards proving the main result:

Lemma 4.1.1 At least one vertex of T ∈ T (P) and T 6= T ∗
v0

is visible to the root, v0

of T .

Proof Since the tree T = (V,E) is not in its canonical form, ∃i such that vi 6∈ N(v0).

Let N1 and N2 be the set of neighbours of v0 such that deg(vp) = 1 for vp ∈ N1 and

deg(vq) > 1 for vq ∈ N2 with 0 < p, q ≤ n− 1. According to the definition, v0 can see

neither the vertices of N1 nor those of N2.

Let `1 be a line segment connecting v0 to any of the vertices vr 6∈ N(v0). Denote

by 6 `1 the angle made by `1 with v0 along the vertical line that goes up through v0.

If `1 does not cross any edge of E, this means vr is visible to v0 and the proof is done.

So we may assume that `1 crosses some edges of T . Denote the set of intersected

edges Eint1 .

Select the edge e1 ∈ Eint1 whose intersection with `1 is nearest to v0.

Now at least one of the vertices of e1 = (v1, v2) must not be a neighbour of v0,

otherwise if both of them are neighbours of v0 then it is a loop. Assume v1,v2 6∈ N(v0).

In this case we can arbitrarily choose v1 or v2 to connect to v0. If one of them is a

27

neighbour then we select the other vertex which is not a neighbour of v0 and connect

it to v0. Let `2 denote a line segment joining v0 to one of the vertices v1 or v2 . Now

check whether the edge `2 crosses any edges of T . If there is no crossing then the other

vertex on `2 is visible to v0. If this is not the case, i.e., |Eint2| > 0, then choose the

closest intersected edge e2 from Eint2 from the root and follow the above procedure of

connecting v0 to the vertex of e2 which is not neighbour of v0. Repeatedly applying

the procedure described above gives rise to the following cases:

Case 1: Case 1 deals with the situation where 6 `1 < 6 `2 < 6 `3 · · · < 6 `a (here

a ≤ n − 2). Since there is a finite number of vertices in the graph, by following the

above procedure we can reach to a vertex vs where the edge `a (one end vertex is vs

and the other one is v0) will not cross any edges. This ensures us that in the worst

case (a = n− 2) the line segment `a makes the largest angle joining the vertex vs to

v0. Then vs is the vertex visible to v0. This is illustrated in Fig. 4.2.

Case 2: Case 2 is the reverse of case 1 (6 `1 > 6 `2 > 6 `3 · · · > 6 `a) and can be

similarly resolved.

Case 3: In Case 3 we consider the following:

There exists some i such that (i) 6 `i < 6 `i+1 > 6 `i+2 or (ii) 6 `i > 6 `i+1 < 6 `i+2

Without loss of generality consider (i) 6 `i < 6 `i+1 > 6 `i+2. Now the line segment

`i+2 must lie between `i+1 and `i and ei. Let vi and vi+1 be the end vertices of the

line segments `i and `i+1 respectively. Any `j (for j > i + 2) must lie in triangle

formed by the line segments `i,`i+1 and ei because at each step we are taking the

closest intersected edges to v0. Also this implies that at every iteration the number

28

Root of T’
vertical line

with the vertical line
This line makes the largest angle

(counterclockwise)

li−1

li

li+2

v0

li+1vs

vs is visible to v0

Fig. 4.2: A tree T of case 1. Only the solid line segments represent the edges of the tree.

of vertices to be considered for visibility to v0 are reduced (only those vertices inside

the triangles) as the area of successive triangles are decreased gradually. Since the

number of vertices are finite and the number is becoming smaller and smaller at each

step, we must end up with a single vertex vs inside the smallest of such triangles (in

the worst case) that will be visible to v0. Fig. 4.3. shows such a scenario.

Lemma 4.1.2 Any tree T ∈ T (P) and T 6= T ∗
v0

can be transformed into its canonical

form T ∗
v0

through flipping of edges at most (n− k − 1) steps, where k = |N(v0)|.

Proof Begin with any vertex visible to v0 (according to Lemma 4.1.1 at least one

vertex of T will be visible to the root). Assume v0 can see vj. Since adding a line

segment (v0, vj) makes a unique cycle v0 · · · vivjv0 in T , break the cycle by eliminating

the edge (vi, vj). This flip increases the degree of v0 by one. Then continue the same

29

axis

v0

vs is visible to v0

li+1

li+2

li

vs ei

Fig. 4.3: A tree T depicting case 3. Only the solid line segments represent the edges of the tree.

process with another vertex visible to v0 until ∀vi ∈ N(v0) and vi 6= v0. An illustration

is Fig. 4.4 shows the transformation of T into canonical tree T ∗
v0

through successive

flips.

Since for any tree there can be n− 1− k edges possible which are not incident to

v0, the total number of flips required to produce T ∗
v0

is n− 1− k.

Example Given the tree in Fig. 4.4 with n = 10 and k = 1 note that the number of

flips to obtain T ∗
v0

from the initial tree T is n− k − 1 = 10− 1− 1 = 8.

We will prove one of the main results of this thesis, i.e., two trees T ′, T ′′ ∈ T (P)

can be transformed into one another with only a linear number of flips. Instead of

directly proving that a tree can be transformed into another tree our strategy is that

we transform T ′ into the unique canonical tree T ∗
v0

. And then we can reverse the

operations that transform T ′′ into T ∗
v0

. This is shown in the following lemma:

30

v0 v0

v0

v0

v0

T

v0

T ∗
v0

Fig. 4.4: Showing the transformation of tree T into canonical tree T ∗v0
. Thick edges represent the edges that

are flipped.

Lemma 4.1.3 Two trees T ′, T ′′ ∈ T (P) can be transformed to each other with at

most 2n− k − s− 2 flips where k ≥ 1 and s ≥ 1 are the number of neighbours of the

roots of T ′ and T ′′ respectively.

Proof Given the tree T ′, one can transform it into canonical tree T ∗
v0

using Lemma

4.1.2 with at most n−k−1 steps where k is the number of neighbours of v0. Similarly,

the tree T ′′ can be transformed into canonical tree T ∗
v0

with at most n − s − 1 flips

where s is the number of neighbours of T ′′. Since the canonical trees for T ′ and T ′′

are same, it takes 2n − k − s − 2 flips to transform T ′ into T ′′. This completes the

proof.

31

The following corollary follows from the above lemma.

Corollary 4.1.4 The number of flips required to transform a tree T ′ into another

tree T ′′, where T ′, T ′′ ∈ T (P) is 2n− p− 2 where p = maxv∈CH(V)(degree v in T ′ +

degree v in T ′′).

Suppose that T ′ and T ′′ are two trees with n = 7 as shown in Fig. 4.5. The

neighbours of the roots of T ′ and T ′′ are 3 and 2 (hence k = 3 and s = 2) respectively.

It takes 3 flips for T ′ to be modified to T ∗
v0

and 4 flips for T ′′ to be transformed to

T ∗
v0

. Hence we need 2n− k − s− 2 = 14− 3− 2− 2 = 7 flips to transform T ′ to T ′′.

The above result can be expressed in terms of the meta graph TG(P) whose vertices

are the non-crossing set of trees, T (P). Two vertices of the meta graph are adjacent

if the trees represented by them can be obtained from the other by a single edge

replacement. According to the proof of the above lemma, we can derive that TG(P)

is connected and the diameter of TG(P) which is the shortest distance between any

two furthest vertices, can be at most 2n − k − s − 2. As mentioned earlier, Avis

and Fukuda [3] showed that the corresponding tree graph has a diameter bounded

by 2n− 4. We improve their result by 2n− k − s− 2 which produces a better result

when the values for k or s are greater than one. Even in the worst case when both

the parameters k and s have the value equal to one our result is as good as theirs.

32

(d)
Canonical Tree

(a)
(b)

(c) Canonical Tree

T ′′

v0v0 v0

T ∗
v0

T ′

T ′′

v0 v0

v0v0

T ′

v0

T ∗
v0

Fig. 4.5: Showing the transformation of tree T ′ and T ′′ to be transformed into canonical tree T ∗v0
.

4.2 Path Transformation

In this section both theoretical and experimental results regarding path transforma-

tion are presented. We were not able to prove that a path can be transformed into

another when the point set is in general position in the plane. Instead of tackling the

problem of path transformation with points in general position (as we did for tree

33

transformation in the previous section) we conducted a number of experiments. We

generated n random points (n ≤ 13, and points are in general position and no three

points are collinear) in the plane and all the planar paths were constructed. Then

brute force search was employed to traverse all the paths of the point set and it was

found that the path graph (defined earlier) was connected in all of the simulation

runs. Section 4.2.3 provides the details of the experiment.

In section 4.2.2 we consider a special point set (points in convex position) and prove

the theoretical result that any two paths can be transformed from one to another. It

is shown that it takes a linear number of flips to transform a path into another path.

Assume we have the following information regarding the path graph. Define the

geometric path graph as the graph having P(S) as vertex set and two paths P i
k,Qj

k ∈

P(S) are adjacent if Qj
k = P i

k\{e} ∪ {f} for some edges e and f . In the following

section, it is proved that two arbitrary paths in P(S) can be transformed to each

other with at most 2n− 5 flips if n = |S|.

4.2.1 Quality of a Canonical path

Recall that a canonical path CPi,i+1 on S (recall that S is set of points in convex

position) is a path where the edges (vi, vi+1) are defined on the boundary of the convex

hull of S. This means that the quality of CPi,i+1 is, Qua(CPi,i+1) = n− 1 (as defined

earlier the quality of a path is the number of edges that are on the boundary of S),

see the Fig. 4.6.

The quality of any path is at least two because a path P which starts at vi must

34

(a) (b)

v4

v1

v2

v7

v6

v5

v0

v3

v4

v1

v2

v7

v6

v5

v0

v3

Fig. 4.6: (a) Shows a canonical path, CP0,1 with Qua(CPi,i+1) = 7 and (b) shows an arbitrary path P with

Qua(P) = 4.

have the starting edge vivi+1 or vivi−1 which is on the boundary of the convex hull.

This is also true for the other end of P . So the quality of any path P is at least two.

4.2.2 Path Tranformation Strategy

Like the canonical transformation for trees, instead of directly transforming a path

Pa
n−1 ∈ P(S) into another path Pb

n−1 ∈ P(S) where Pa
n−1 6= Pb

n−1, we first show that

it is always possible to transform Pa
n−1 into a canonical form CPi,i+1 and then do the

reverse of the operations that transform Pb
n−1 into CPi,i+1. By the following lemma

we prove that to obtain CPi,i+1 from Pa
n−1 takes n− 3 flips.

Lemma 4.2.1 Every path P i
n−1 ∈ P(S) which is not canonical can be transformed

into a canonical form through flipping of edges in at most (n− 3) steps.

Proof Here vi is one of the end point of the path P i
n−1. There is a j such that the first

j +2 vertices of the path are (vivi+1vi+2 · · · vi+jvi−1) or (vivi−1vi−2 · · · vi−jvi+1). With-

35

out loss of generality consider the former path consisting of vertices (vivi+1vi+2 · · · vi+jvi−1 · · · vk).

If j = n−2 then we are done because all the edges are on the boundary of the convex

hull and hence the path is a canonical path. If j < n−2 then we add the edge (vivi−1)

and delete (vi+jvi−1). The resulting set of vertices constitutes a path P i+j
n−1 because

the addition of (vivi−1) makes a cycle (vivi+1vi+2 · · · vi+jvi−1vi) where the vertex vi−1

has degree three. The cycle is broken by removing the edge vi+jvi−1 connected to

vi−1 and reducing its degree to two. So the path P i+j
n−1 has the set of j + 2 vertices

(vi+jvi+j−1 · · · vivi−1). Thus the quality of the path P i
n−1 is increased by one.

This implies that if Pq
n−1 represents any path at step i and Pr

n−1 is generated from

Pq
n−1 at step i + 1 then Qua(Pr

n−1) = Qua(Pq
n−1) + 1.

This edge will be flipped

(b)(a)

Newly inserted edge

vr

vt

vb

vb+1

vr

vt

vb

vb+1

va

va−1va−1

vy+1
vy+1

va

vt′ vt′

Fig. 4.7: (a) Shows the edge for flip (b) Shows the resultant path after flipping the edge {vt, vt′}.

Since there are at least two edges are on boundary for any given path, the number

of flips required is n− 3.

36

It is shown in the following, that to transform any two paths from one to another

the total number of flips is linear.

Theorem 4.2.2 For any paths P i
n−1,Pj

n−1 ∈ P(S), it takes at most 2n − 5 flips to

transform one into another.

Proof From Lemma 5.1.2 it is clear that to obtain a canonical path from any given

path P i
n−1 at most n − 3 flips are necessary. Also, from the definition of canonical

path we find that there are n possible canonical paths of n points in convex position

since i can take any value from 0 to n− 1. Moreover, with a single flip it is possible

to transform a canonical path into another one. This gives us a total of n − 2 flips.

Similarly, transforming P i
n−1 into canonical form takes n − 3 flips. Therefore, the

total number of flips to transform P i
n−1 into Pj

n−1 is at most 2n− 5.

4.2.3 Experimental Results for Path Transformation

In this section, we present experimental results of path transformation considering

the set P of n points. Recall that P is a set of n points in general position in the

plane.

Theoretically, the proof of connectedness of the path graph whose vertices are

non-crossing paths of P , and where two paths Pa
n−1 and Pb

n−1 are adjacent if Pb
n−1 =

Pa
n−1\{e} ∪ {f}) is difficult. We implemented the problem for a small set of points

n (n ≤ 13) in general position in the plane. The experiment to solve the problem

employs a brute-force technique to generate all paths (intersected and intersection

37

free) on n vertices. The number of all such paths is n!/2. Any path connecting all

vertices of P can be represented by a permutation of n− digits. We filtered out all

intersected paths and compute Paccept, the set of permutations that correspond to the

planar paths of n− vertices.

Denote P ′ ∈ Paccept as the initial path consisting of all the vertices with increasing

order of their indices. We perform Depth First Search (DFS) technique starting from

the initial permutation P ′ to find out those permutations, each of which differs from

P ′ in such a way that their equivalent path representations differ by one edge. All

those permutations (including P ′) are marked indicating that they can be reached

from P ′ at most one flip. A similar step is followed with all the children of P ′ where

the children of P ′ are those permutations marked at previous step. This process of

marking permutations is continued following Depth First Search strategy until all the

permutations are covered (either marked or not marked).

Finally, it is checked whether all the permutations are marked or not. If all of

the permutations are marked then the meta graph is connected meaning any path

is reachable from any other path. If all the permutations are not marked, then this

means the meta graph is not connected. In the experiments we found that in every

run with a random set of points, or a specific input-set, the corresponding meta graph

is connected. We performed more than 100 simulation runs with point sets of size n

(n ≤ 13). Since the algorithm generates all the paths (planar and non-planar) of n

points and accepts only those which are planar, it takes exponential amount of time

to generate all such paths. Increasing the number of points (more than 13) costs

38

a lot of time to execute the algorithm. Therefore, we took at most 13 points for

our experiments. Each time of the simulation the points were randomly generated

in general position with no three points collinear. All the simulation runs produced

the same result of connectedness of the corresponding meta graph. We did not find

a counter example where the meta graph is not connected. The conclusion that we

draw from the results of our experiment lead us to believe that for any value of n the

corresponding meta graph is connected.

1234
1243
1423
1432

2134
2143
2314
3214

8 acceptable permutations of 4! permutations

32

1 4

32

1 4

2

4

32

1 4

3

1

2

4

32

1 4

3

1

2

4

1

3

4

2

1

3

Fig. 4.8: (a) The meta graph of paths with vertices showing all possible paths of 4 points defined in the plane.

As an illustration, Fig. 4.8 shows the meta graph of paths of four vertices placed

on the corner of a square (points are shown inside each circle labeled as 1,2,3,4).

There are 8 acceptable permutations out of 4!/2 = 12 permutations as depicted. Two

incident vertices with each undirected edge in the graph indicate that the paths they

39

represent are reachable from one another by a single flip. Note that in this particular

example one can reach any one vertex from another with at most three flips.

40

Chapter 5

Counting and Enumeration

5.1 Counting Paths

We show how to count all the directed and undirected paths on a point set in convex

position. A simple recurrence formula is used to count all such paths. Recall that P i
k

denotes the set of paths length k starting at vi and connecting all vertices of V j
k for

some j where vi ∈ V j
k . The number of such paths (P i

k) is denoted by pi
k. The basic

idea of counting relies on the definition of pi
k. For any path P ′ ∈ P i

k (one end is vi),

let v` be the other end of this path.

Lemma 5.1.1 For any path P ′ ∈ P i
k on V j

k (k ≤ n− 3) let v` be the other end of P ′.

We can construct a new path P ′′ of length k + 1, P ′′ ∈ P i
k+1 from P ′ by connecting

v` of P ′ to vj−1 or vj+k+1. For k = n− 2 we can connect v` only to vj+k+1.

Proof Consider the end vertex v` of P ′. Assume v` is connected to any of the

41

vertices other than vj−1 or vj+k+1 to construct P ′′. Select vm ∈ V \V j
k such that

vm 6= vj−1 and vm 6= vj+k+1. Consider the edge (vm, v`). Joining vm and v` divides

V \V j
k into two disjoint sets of consecutive vertices X = {v`+1, v`+2, · · · , vm−1} and

Y = {vm+1, vm+2, · · · , vj−1} as shown in Fig. 5.1.

X

Y

Two choices to formv`

vj+k+1

vm

vi

vj vi+1

vj−1

P ′′

Fig. 5.1: Showing v` can only be connected to either vj−1 or vj+k+1 to construct P ′′ from P′.

Any vertex of either set (X or Y) can see only the vertices of the same set (X

or Y) because all the vertices of the other set are blocked by the edge (vm, v`). In

this circumstance it is obvious that any attempt to connect any vertex vr ∈ X to any

vertex vs ∈ Y will result in a crossing with edge (vm, v`). See the Fig. 5.1.

Therefore, the only way to get rid of crossings of edges and have a Hamiltonian

crossing-free path P ′′ of length k + 1 from P ′ is to join the vertex v` to either of the

vertices vj−1 or vj+k+1 of V \V j
k . If k = n − 2 then there is only one vertex vj+k+1

that can be connected to the other end of P ′ to complete P ′′.

This completes the proof.

42

Lemma 5.1.2 The number of directed Hamiltonian paths of length n−1 and starting

at vertex vi is 2n−2.

Proof We can prove the above lemma through induction.

Recall that pi
k denotes the number of paths of length k and starting at vi. For

k = 0, it is trivial that the number of paths of length 0 and starting at vi equals one as

there is only one path beginning at vi with no edge. For k = 1, pi
1 = 2 because there

can be only two paths of length one beginning from vi namely (vivi+1) and (vivi−1).

Similarly for k = 2, pi
2 = 4 = 2pi

1 since the total number of paths of length 2 starting

from vi is 4. These paths are (vivi+1vi+2), (vivi+1vi−1), (vivi−1vi−2) and (vivi−1vi+1).

Fig. 5.2 shows all the four paths of length 2 and starting from vi.

(a)
(b)

(c) (d)

vi

vi+1

vi+2

vi−1

vi−2

vi

vi+1

vi+2

vi−1

vi−2

vi

vi+1

vi+2

vi−1

vi−2

vi

vi+1

vi+2

vi−1

vi−2

Fig. 5.2: All paths of length 2 starting at vi are shown in (a) (vivi+1vi+2) (b) (vivi+1vi−1) (c) (vivi−1vi−2)

and (d) (vivi−1vi+1)

43

For every value of k (k ∈ {0, 1, · · · , n − 3, n − 2}) there are twice as many paths

for pi
k than pi

k−1. This is because for each of the path pi
k−1 of length k − 1 we can

form two more paths of length k with the other end of each of the path pi
k−1. So we

have pi
k = 2pi

k−1 for 0 < k ≤ n− 2.

For the value k = n−1 we have pi
n−1 = pi

n−2, because for each path of length n−2

we get exactly one corresponding path of length n− 1. Evaluating the recursion for

k = n− 1 the number of directed paths equals to pi
n−1 = 2n−2.

Lemma 5.1.3 All the paths of P i
k+1 derived from P i

k are distinct for 0 ≤ k ≤ n− 2.

Proof Take any path P ∈ P i
k that starts at vi and uses all the vertices of V j

k =

{vj, vj+1, · · · , vj+k} where vi ∈ V j
k . The path P can produce two paths of length k+1,

say P ′ and P ′′. Assume P ′ uses the vertex set, V1 = {vj, vj+1, · · · , vi, vi+1, · · · , vj+k, vj+k+1}

and P ′′ uses V2 = {vj−1, vj, · · · , vi, vi+1, · · · , vj+k, vj+k}. Since V1 6= V2, P ′ and P ′′ are

different.

From above we can conclude that although P ′ and P ′′ use different sets of vertices,

their starting edges, i.e., vivi+1 is common to them as they are generated from P in

which the starting edge vivi+1 is not changed to form P ′ and P ′′. Now consider

another path Q ∈ P i
k which produces two paths Q′ and Q′′ of length k + 1. Since the

starting edge of Q is not equivalent to that of P , all the paths Q′ and Q′′ of Q are

different from P ′ and P ′′ of P .

Now we can prove the main theorem:

Theorem 5.1.4 The number of undirected Hamiltonian paths of length n−1 is n2n−3.

44

From Lemma 5.1.2 it has been found that the number of directed paths (of length

n− 1) of S starting at vertex vj is equal to 2n−2. Since there are n vertices, applying

the procedure described in the above lemma for each of the individual vertices the

total count of directed paths equals n2n−2. On the other hand for the case of counting

the number of undirected paths, observe that each of the paths is counted twice, one

starting with the higher labeled vertex and the same path with the lower labeled

vertex. So, the number of undirected paths is n2n−3.

5.2 Enumeration of Paths

In this section and the section following that we present two algorithms to generate

all the paths of n− points when the point set is convex position. Both algorithms

offer their relative advantages and limitations. The first algorithm (described in this

section) is recursive. In some sense, this algorithm is simple and straightforward, uses

only single flips to produce all the paths of n points. But the main limitation is that

it takes an exponential amount of space because of its recursive nature (uses stack to

store intermediate paths). In order to overcome the limitation of this algorithm we

present a non-recursive algorithm. This non-recursive algorithm uses less space. It

takes linear space to store the paths and produce new paths from them. The non-

recursive algorithm employs flips of size one and two. As defined earlier, a flip of size

two means removing two edges and putting two edges at a time in a path. Following

the presentations of the algorithms then space and time complexities are derived.

45

In the recursive algorithm, our strategy to generate all the paths of P(S) is to

begin with a canonical path, CPi,i+1 ∈ P(S) and generate all those paths possible from

CPi,i+1 with edge (vi, vi+1) fixed. The notion of vertex visibility plays the vital role to

carry out the process of path generation. As we go through a recursive procedure to

obtain new paths, consider building a tree where the root vertex of the tree represents

the path CPi,i+1 and all the children of CPi,i+1 are designated as the vertices of the

tree.

The spawning of a new path can only be initiated from its parent when a vertex

vi in the parent path can see at least one vertex vj such that j > i + 1.

Lemma 5.2.1 There is an algorithm that produces exactly 2n−3 distinct Hamiltonian

paths starting from a canonical path.

Proof Begin with a canonical path CPi,i+1 and consider it the root of the tree.

Consider the vertex vi−1 of CPi,i+1.

The vertices visible to vi−1 are vi, vi+1, vi+2, vi+3, · · · , vi−3 and the number of those

vertices is n−2 since vi−1 can not see itself and vi−2. Among the set of visible vertices

consider the second furthest visible vertex vi+1.

Start by generating the first path from CPi,i+1 by flipping the edge between the

second furthest visible vertex vi−2 and vi−3, i.e. removing edge (vi+1, vi+2) and in-

serting an edge (vi−1, vi+1). Represent this child path as Pn−3(vi+2) = CPi,i+1 ∪

(vi−1, vi+1)\(vi+1, vi+2) that differs from its parent by a single edge. Here Pj(vi) de-

notes a path where j is the number vertices visible to vi. Call the edge (vi−1, vi+1) as a

46

mark of Pn−3(vi+2). A mark is an edge that is not flipped, i.e., it remains unchanged

for a parent and all its successors.

Place this newly generated path as the leftmost child of the root. Continue gen-

erating the rest of the n− 3 paths and placing them from left to right:

Pn−3(vi+2) = CPi,i+1 ∪ (vi−1, vi+1)\(vi+1, vi+2)

Pn−4(vi+3) = CPi,i+1 ∪ (vi−1, vi+2)\(vi+2, vi+3)

Pn−5(vi+4) = CPi,i+1 ∪ (vi−1, vi+3)\(vi+3, vi+4)

...

P2(vi−3) = CPi,i+1 ∪ (vi−1, vi−4)\(vi−4, vi−3)

P1(vi−2) = CPi,i+1 ∪ (vi−1, vi−3)\(vi−3, vi−2).

Note that the marks of paths Pn−3(vi+2), Pn−4(vi+3), · · · ,P1(vi−2) are (vi−1, vi+1),

(vi−1, vi+2), · · · , (vi−1, vi−3), respectively. Since each of the marks is unique to each

path at this level (level-1, root is considered at level-0), all the paths generated are

unique, i.e. no path at this level has the same marks.

Starting from the leftmost child of the root we observe that the end vertex vi+2 of

the path Pn−3(vi+2) can see n− 3 vertices (which is one less than the number that its

parent can see). This is because vi is now blocked by edge vi−1vi+2. Like the previous

step, the leftmost child representing the path with end vertex vi−3 can produce n− 4

paths as its children in the next level where each of the paths (already having a mark

edge (vi−1, vi+1)) is generated with an additional mark edge (vi−1, vi+2). These two

47

marks uniquely identify a path which was not generated at a previous step and also

distinct in this level (level-2).

Similarly, the process is continued with each of the children of the root up to the

rightmost child which can see only vi−3 and can not generate any path.

Since at each level a new mark is added to each of the paths (which consists of a

set of unique marks from all previous levels) it can be concluded that all the paths in

the tree are uniquely generated. This recursive construction of paths continues until

the leftmost child of the tree can see only one vertex and thus can not produce any

offspring. The scenario is depicted in Fig. 5.3.

Let Nj(vi) be the number of child paths produced by Pj(vi).

The following gives us the values of Nj(vi)s:

N1(vi−2) = 0

N2(vi−3) = 1.

Continue going from the third rightmost vertex and so on and apply recursion in each

step:

N3(vi−4) = N2(vi−3) + N1(vi−2)

= (1 + 1) + (1 + 0)

= (1 + 21 − 1) + (1 + 20 − 1)

The first 1 in each of the terms of the sum indicates the presence of the vertices

48

vn/2

vi

v1

v5

v0

vn−1

vi

v3

v2

v1

v5

v0

vn−1

vi

v3

v2

v1

v5

v0

vn−1

v3

v2

v1

v0

vn−1

vn−4

v3

v1

v0

vn−4

v3

v2

v1

v0

v3

v2

v1

v0

v3

v2

v1

v0

v3

v2

v1

v0

v4

vi

v3

v2

v1

v5

v0

v4

v4

v4

vi

v3

v2

v1

v5

v0

vn−1

vn−4

vn−4
vn−4vn−4

vn−2

vn−3

vn−1

vn−2

vn−3 vn−3

v2
vn−2

vn−1

vn−1

vn−2

vn−3

vn−1

vn−2

vn−3

vn−2

vn−3

vn−1vn−1

Fig. 5.3: Recursive enumeration of all paths from a canonical path CP0,n−1. Recursion terminates as vertex

vn/2 of the leftmost leaf of the tree can see only one vertex and thus is incapable of producing any path.

themselves and the rest of the integers denote the number of children they produce.

N4(vi−5) = N3(vi−4) + N2(vi−3) + N1(vi−2)

= (1 + 3) + (1 + 1) + (1 + 0)

= (1 + 22 − 1) + (1 + 21 − 1) + (1 + 20 − 1)

= (22) + (21) + (20)

...

49

Nn−2(vi) = Nn−3(vi+2) + Nn−4(vi+3) + Nn−5(vi=4) + · · ·+ N2(vi−3) + N1(vi−2)

= 2n−4 + 2n−5 + 2n−6 + · · ·+ 21 + 20

= 2n−3 − 1

This is the number of total vertices (excluding the root) of the tree. Counting the

root together with this number we get 2n−3 which is the total number of paths that

can be generated by CPi,i+1.

Consider the example of a set of n = 6 vertices given in Fig. 5.4. The root of the

tree is the path CP1,2 (v1v2v3v4v5v0). The generation of all paths from this canonical

path (26−3 = 8) starting with edge v1v2 is depicted.

5.2.1 Recursive Generation of All Paths

In the last section (specifically Lemma 5.2.1) we showed how we could generate paths

from a single canonical path. Here we describe the algorithm of generating all paths of

n vertices in convex position. We use all canonical paths CPi,i+1 and CPi+1,i (there are

2n such canonical paths) to enumerate all paths. As our algorithm uniquely generates

paths, we need to keep track, as the algorithm progresses whether a particular path is

generated twice. For this we form a A = n x n matrix that updates its entry ai,j = 1

where j = i+1 or j = i− 1 if all the paths beginning with edge (vi, vj) are generated

else ai,j = 0.

Start first with CP0,1 to generate all paths from it and then with CP1,0, CP1,2

50

v3

v4

v0

v5

v2

v1

v3

v4

v5
v0

v2

v1

v3

v4

v5
v0

v2

v1

v3

v4

v5
v0

v2

v1

v3

v4

v5
v0

v2

v1

v3

v4

v5
v0

v2

v1

v3

v4

v5
v0

v2

v1

v3

v4

v5
v0

v2

v1

Fig. 5.4: Recursive enumeration of all paths from the canonical path CP1,2 (v1v2v3v4v5v0) of 6 vertices. Bold

edges represent marks of the corresponding paths.

CP2,1, and continue up to CP0,n−1 and CPn−1,0. In general for each i (starting i at

0 and then incrementing it by one after each pair CPi,i+1 and CPi+1,i are done with

generation until i = n− 1) we generate paths from CPi,i+1 and CPi+1,i and continue

until paths are generated from CP0,n−1 and CPn−1,0.

Beginning with CP0,1 enumerate all the paths recursively as described in Lemma

5.2.1. And this generates 2n−3 paths each of which begins with edge (v0, v1). The entry

a0,1 in the matrix A is updated to 1 as all the paths from CP0,1 are generated. Then

begin and continue with CP1,0, CP1,2, · · · , CP0,n−1 and follow the same procedure.

Resolve the difficulty of avoiding previously generated paths in the following way.

51

Suppose we are generating paths from CPi,i+1. Let P ′ be a path generated from

CPi,i+1. Let (vp, vq) be its end-edge (q = p + 1 or q = p − 1). If the entry ap,q of A

is 0 then none of the paths with end-edge (vp, vq) have been generated then P ′ is not

duplicated and hence can be outputted. If on the other hand, the entry ap,q is 1, then

we do not ouput P ′.

5.2.2 Space and time complexity

As described earlier, we begin with a canonical path and start generating all the paths

from it in the next level. And then do the same of generating paths from each of

the paths (generated so far) in the next level and so on until we are finished with

the last one from which no paths can be generated. We need to keep track all the

paths generated from the root up to the left-most leaf to continue generating paths

which produce exponential number of paths (2n−3 paths). It follows that the space

complexity is also exponential which is O(2n).

In the case of time complexity we find the maximum time required to successively

generate any two paths Pi and Pi+1. If t(Pi) represents the time elapsed from the

beginning of the algorithm until Pi generated then maxi = t(Pi+1)− t(Pi) determines

the amount of time required to generate and output two successive paths Pi and Pi+1.

Since there can be an exponential number of paths that are generated (according to

the algorithm) but not outputted between Pi and Pi+1, the time maxi results in

exponential. This gives O(2n) time complexity.

52

5.3 Non-recursive Construction

Here we discuss an algorithm to non-recursively generating all paths P(S).

Each path consisting of n vertices is unique and it can be represented by a per-

mutation of n− digits where each of the vertices represents a digit.

Begin with the canonical path CP0,1 (v0v1v2v3 · · · vn−2vn−1). What we wish to do

is enumerate all 2n−3 paths from CP0,1 keeping the edge (v0, v1) fixed (not flipped)

and flipping edges (vi−1, vi) not involving (v0, v1). We will also do the same with

the rest of the canonical paths CPm,m+1 and CPm+1,m by not flipping the edges

(vm, vm+1) and (vm+1, vm) respectively. Assume the equivalent n−digit representation

of the permutation of CP0,1 (v0v1v2v3 · · · vn−2vn−1) is A0,1 = a0a1a2 · · · an−2an−1 where

an−1 > an−2 > an−3 · · · > a1 > a0. Call this the initial permutation where each

digit ai where 0 ≤ i ≤ n − 1 of the permutation corresponds to each vertex vi.

In the following the generation of successive permutations is shown. Each of the

permutations represents a unique path.

5.3.1 Generation Method

Keep the positions of a0 and a1 unchanged and change the positions of the remaining

digits ai, 1 < i ≤ n− 1, to generate successive permutations.

The basic idea is that, at any step, a digit ai of the permutation can only have

digit max{ai+1, ai+2, · · · , an−1} or min{ai+1, ai+2, · · · , an−1} as its right neighbour.

Having a minimum or a maximum digit to the right of a digit ensures planarity of the

53

path represented by the permutation (this can be verified from Lemma 5.1.1). For

example, 01 276345 is a permutation of this kind where the digit 7 has 6 as its right

neighbour which is the maxmimum of {6, 3, 4, 5} and 6 has 3 as its right neighbour

which is the minimum of {3, 4, 5} etc.

Find i from the rightmost position of the permutation such that ai−1 < ai. If

i = n−1, obtain the next permutation by exchanging the positions of ai−1 and ai which

is equivalent to a single flip (a flip of size one). Let the number of digits to the right

of ai be k. If i 6= n−1, then the next permutation is obtained by first exchanging the

positions of ai−1 and ai and then reversing the positions of ai+1, ai+2, ai+3, · · · , an−1.

The changing of positions of the digits is equivalent to a flip of size two. The edges

that are removed are (vai
, vai+1

) and (vai−1
, vai−2

) and the newly inserted edges are

(vai−1
, va1) and (vai−2

, vai
) which is the reflection of the above permutation. The

process of generating a permutation Pm from a previous one Pm−1 beginning from

the rightmost digit of Pm−1 to find ai−1 < ai is continued until we obtain a2 > a3 >

a4 · · · > an−2 > an−1.

As an example, consider n = 8. All the possible permutations of 8−digits (from

Lemma 5.1, 28−3 = 32) according to this method are shown below (keeping the

positions of the two leftmost (01) digits unchanged):

01 234567 → 01 234576 → 01 234756 → 01 234765 → 01 237456 → 01 237465

01 237645 → 01 237654 → 01 273456 → 01 273465 → 01 273645 → 01 273654

54

01 276345 → 01 276354 → 01 276534 → 01 276543 → 01 723456 → 01 723465

01 723645 → 01 723654 → 01 726345 → 01 726354 → 01 726534 → 01 726543

01 762345 → 01 762354 → 01 762534 → 01 762543 → 01 765234 → 01 765243

01 765423 → 01 765432.

5.3.2 Correctness of the Algorithm

What we wish to show is that all the paths generated by this algorithm are unique

and the total number of such paths is 2n−3. We can imagine a binary tree where

each of the vertices will represent a digit ai of a permutation. Let us assume A =

{a1, a2, · · · , an−1} and let the root be denoted as the element a1 which is at level-0. At

the next level the left and right children of the root are determined by max{A−{a1}}

and min{A − {a1}}, respectively.

In general at level-i the left and right children of a vertex at level-(i − 1) will be

determined in the following way (see Fig. 5.5 where a0a1a2a3a4a5a6 = 0123456):

left child = max{A−{all ais along the path from the root to the current vertex at level i-1}}

and

right child = min{A−{all ais along the path from the root to the current vertex at level i-1}}

As there are n−1 elements in the permutation a1a2a3 · · · an−2an−1 and the parent

of each leaf contains exactly one leaf, the height of the tree is n−1−2 = n−3. Then

55

1

6 2

5

2

3

3 4 4

4 2

2

3 3 42

3 4 3

4 4 53 4 5 5 6

5

3

435

5

4 3

6

4

6

5 4 6 554534

Fig. 5.5: Tree representation of permutations

the total number of leaves equals 2n−3. As all the elements of A are distinct and each

path from a leaf to the root is unique, all such paths of the tree are unique.

5.3.3 Mapping Between CP0,1 and CPm,m+1 (CPm+1,m)

After generating all the valid permutations (each represents a unique path) of A0,1

we can now proceed to generate other paths from each of the remaining canonical

paths. Without loss of generality we only show mapping between CP0,1 and CPm,m+1.

Mapping between CP0,1 and CPm+1,m is also meant subsequently after mapping of

CPm,m+1 is done, although not mentioned.

There is a one-to-one correspondence between CP0,1 and all other canonical paths

CPm,m+1 and CPm+1,m. Let the equivalent n− digit representation of the permutation

of CPm,m+1 be A′
m,m+1 = amam+1am+2 · · · am−2am−1.

In order to enumerate paths from CPm,m+1 we first map A′
m,m+1 (the equivalent

permutation of CPm,m+1) and A0,1 (the equivalent permutation of CP0,1) with the

56

function f : A′
m,m+1 → A0,1 such that the function yields:

f(aim) = ai0 , f(aim+1) = ai1 , · · · , f(aim−1) = ain−1 .

A mapping between A′
4,3 and A0,1 is shown in Fig. 5.6.

0 1 2 6543

4 013 2 6 5

A0,1

A′
4,3

Fig. 5.6: Mapping between A′4,3 and A0,1.

Start generating permutations with A0,1 as it is done before. But this time we

need to check whether paths represented by permutations are already generated or

not. In generating permutations, if we find any of them is already generated then

the permutation is discarded, else it is generated. To realize the fact whether any

paths are already generated we introduce the term what we call index to the two

leftmost (rightmost) digits of all the permutations. Index starts from the two left-

most digits of A0,1 with the value 1. That is, the index of the two leftmost digits

a0a1 of a permutation is 1. Next the index of the two digits a1a0 is 2, the index

of a1a2 is 3 and so on. So in general for each m (starting at m = 0 and then in-

crementing it by one after each pair of digits amam+1 and am+1am are indexed until

m = n − 1) the indices of two leftmost (rightmost) digits amam+1 and am+1am are

2m + 1 and 2m + 2 respectively. For example, if n = 6 the indices of two leftmost

(rightmost) digits a0a1, a1a0, a1a2, a2a1, a2a3, a3a2, a3a4, a4a3, a4a5, a5a4, a5a0, a0a5 are

57

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, respectively.

As a permutation is generated from A0,1, do the inverse of f on this permutation

and see whether the index of the two rightmost digits or their reverse is smaller than

the index of the two leftmost digits of this permutation. If this is smaller then this

means that the permutation is already generated and we can discard the permutation.

This is evident since we begin generating all the permutations in order where the two

leftmost digits of all the permutations are a0a1, a1a0, a1a2, a2a1, · · · , an−1an−2, a0an−1.

This ensures us that when we find the index of the two rightmost (or their reverse)

digits is smaller than the index of two the leftmost digits, this indicates that those

permutations with smaller index in the two leftmost digits are already generated.

Consider the example with n = 6 and assume that we are going to generate paths

from CP3,4 where A′
3,4 = 34 5012 and A0,1 = 01 2345. First we do f : A′

3,4 → A0,1

and find f(3) = 0, f(4) = 1, f(5) = 2, f(0) = 3, f(1) = 4, f(2) = 5. So the

first permutation is 01 2345. As this is obtained we need to check whether it is

already generated. Applying the reverse function we get f−1(0) = 3, f−1(1) = 4,

f−1(2) = 5, f−1(3) = 0, f−1(4) = 1, f−1(5) = 2, i.e., the permutation is 34 5012

where the index of the two rightmost digits is smaller than the index of the two

leftmost digits (index of a1a2 is 3 and the index of a3a4 is 7). This means that we will

produce this permutation as output since it is generated with A′
1,2. Let us assume

another permutation 01 5423. Now apply the reverse function and get the following

permutation 34 2150. Since (index of a5a0 is 11 and the index of a3a4 is 7) we are

sure that this permutation has not been generated before and we can generate this

58

permutation.

Note that we do not need to generate any permutations from A′
0,n−1 since all

the permutations that can be generated from A′
0,n−1 have their two rightmost digits

(or their reverse) equal to the two leftmost digits of all the permutations that have

already been generated. In fact, permutations from A′
n−2,n−1 and A′

n−1,n−2 do not

need to be generated for the same reasoning.

5.3.4 Space and time complexity

Space complexity has been improved a lot (from exponential to linear) in this non-

recursive procedure. We begin with a canonical path and start generating a path

from it. And then generate a new path from the currently generated one in sequence

and so on until there is no more path generated. In the procedure, we do not keep

track any of the previously generated path only the current one. Since a path of

length n− 1 of takes n− points to be stored, the space complexity is O(n).

In order to generate and output a permutation Pi+1 that represents a planar path

from a permutation Pi, we generate a permutation Pi and check the two indices of the

two leftmost and rightmost digits of the generated permutation. If they satisfy the

condition (if the index of the two rightmost digits is greater than the index of the two

leftmost digits) then we output the permutation as Pi+1 otherwise this permutation is

not outputted. In the worst case, there can be an exponential number of permutations

between Pi and Pi+1 that are generated but not outputted. This indicates that the

time required to produce Pi+1 when Pi is already found is exponential. Hence the

59

time complexity is factorial.

5.3.5 Implementation of the algorithm

In order to ensure that the proposed non-recursive algorithm works properly and

enumerates all the Hamiltonian paths with points in convex position, we implemented

the algorithm. The input to the algorithm consists only the number of points (the

number of points taken was less than or equal to 12). The algorithm enumerates

all the paths by producing the corresponding permutations of the paths without

duplication. We performed more than 50 runs and verified the total number of paths

and their uniqueness. The algorithm worked correctly.

60

Chapter 6

Conclusion

In this thesis, attention was directed towards transforming two geometric figures

namely, planar paths and planar trees, for certain sets of point through the use of

edge replacements commonly called flips. As defined earlier, a flip can be considered

as a basic unit of operation for geometric transformation which involves removal of

one edge and insertion of a new edge into the given figure such that the resultant

figure belongs to the same class as the original one.

We attempted to answer the question whether it is possible to transform a given

tree (or path) to another tree (or path) for a fixed set of points in the plane. In

the case of tree transformation the answer was given in the affirmative by providing

certain theoretical proofs. In path transformation we present experimental results for

the connectedness of the meta graph of paths for n ≤ 13 points. We performed more

than 100 simulations with random sets of points and we did not find any counter

example for which the meta graph of paths is not connected.

61

In chapter 4 a method was presented for tree transformation through flips when

the points are in general position. In this method, a definition of a canonical tree

was given for a fixed set of points in the plane. With the use of the canonical tree we

obtained the necessary transformation from one tree to another. Later, description

and formation of the meta graph GT consisting of vertices which are the non-crossing

set of trees T (P) of a point set P was provided. This helped derive the bound of the

diameter of the meta graph in terms of the number flips, which is the shortest longest

distance between any two vertices of the meta graph. The diameter of GT was also

determined to be bounded by 2n− k − s− 2, where k, s ≥ 1.

In a similar fashion, the problem of crossing-free Hamiltonian path transformation

for points in general position and points in convex position was considered. In the case

where the points are in convex position it is proved that at most (2n−5) edge changes

are sufficient for any two non-crossing paths on convex postion to be transformed one

to another. The main implication of this result is that the meta graph GP (defined

similarly to GT) is connected and the diameter bounded by 2n− 5.

Later in chapter 4, the experimental results of the above problem (path transfor-

mation) with a small number of points (n ≤ 13) in general position were presented.

We found that for all the simulation runs (for each run points were chosen randomly

in general position in the Euclidean plane) the corresponding meta graphs were con-

nected. Although we can not claim strongly that all the meta graphs are connected

as the experiments did not include all the possible point sets, the results gave us the

flavour that the connectedness of the meta graphs might be promising. It remains an

62

open problem to show whether the meta graph, GP is connected for the set of points

in general position.

In chapter 5 we investigated the possibility whether flipping can be used as a

technique to enumerate all the geometric objects of a certain set. As an example we

made an attempt to count and generate all labelled paths considering the points in

convex position.

As, in general, counting precedes generation, we first provided a simple recursion

procedure to count the total number of paths and proved that this number equals

n2n−3. Two algorithms for generating all such paths are explained with example. The

first one is recursive, where it was shown that flipping of edges can be used to generate

all paths without duplicates. Secondly, we explained a non-recursive algorithm that

establishes a one-to-one relation between n vertices and permutations of n digits

and allows us to produce uniquely the set of all paths each of which resembles a

permutation of n digits. In this non-recursive construction, along with flip of size

one, we took advantage of flips of size two to generate all the paths uniquely.

.

63

Bibliography

[1] K. Appel and W. Haken, Every planar map is four colorable, Bull. American

Math. Soc. 82:711-712, 1976.

[2] N. Robertson, D.P. Sanders, P.D. Seymour and R.Thomas, A new proof of the

four colour theorem, Electron. Res. Announcement. Amer. Math. Soc. 2:17-

25,1996.

[3] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Applied Mathe-

matics 65(1996)-21-46.

[4] D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumera-

tion of arrangements and polyhedra, Discrete Computer Geometry 8(3):295-313,

1992.

[5] K. Fukuda and V. Rosta, Combinatorial face enumeration in convex polytopes,

Computational Geometry Theory Applied 4:191-198,1994.

64

[6] K. Fukuda, S. Saito and A. Tamura, Combinatorial face enumeration in ar-

rangements and oriented matroids, Discrete Applied Mathematics 31(2):141-

149, 1991.

[7] C.L. Lawson, Transforming triangulations, Discrete Mathematics 3:365-372,

1972.

[8] S. Fortune, A note on Delaunay diagonal flips, AT&T bell Laboratories, Murray

Hill, NJ (1987).

[9] A.V. Aho, J.E. Hopcroft and J.D. Ullman, data Structures and Algorithms

(Addison-Wesley, Reading, AM, 1987).

[10] H. Telly, Static and dynamic weighted Delaunay Triangulation in the Euclidean

Plane and in the flat torus, Research Report UIUCDCS-R-90-1662, Department

of Computer Science, University of Illinois at Urbana-Champaign(1990).

[11] B.D. McKay, Isomorph-free exhaustive generation, Journal of Algorithms

26(1998) 306-324.

[12] S. Nakano Efficient generation of triconnected plane triangulations, Computa-

tional geometry 27(2004) 109-122.

[13] H. Edelsbrunner, Algorithms in Combinatorial Geometry (springer, Berlin,

1987).

65

[14] D. Avis, Generating rooted triangulations without repetitions, Algorithmica

16(1996) 618-632.

[15] H. Cormen, et al, Introduction to Algorithms, The MIT Press and McGraw-Hill,

1990.

[16] C. Hernando, M.E. Houle and F. Hurtado, On local transformation of polygons

with visibility properties, Theoretical Computer Science 289(2):919-937, 2002.

[17] J.D. Boissonnat, Geometric Structures for Three Dimensional Shape Represen-

tation, ACM Transactions on Graphics 3 (1984) 266-286.

[18] J.C. Cavendish, Automatic Triangulation of Arbitrary Planar Domains for Fi-

nite Element Method, International Journal for Numerical Methods in Engi-

neering 8 (1974) 679-696.

[19] H.J. Choi, An implementation of a Flight Path Visualization System using

Optimization Algorithms of the Triangulated Irregular Network, Ms. Thesis,

POSTECH, 1996.

[20] R.C. Read, R.E. Tarjan, Bounds on backtrack algorithms for listing cycles,

paths and spanning trees, networks 5(1975) 237-252.

[21] C.A. Holzmann, F. Harary, On the tree graph matroid, SIAM Journal of Applied

Mathematics 22(1972), 187-193.

66

[22] G. Liu, On connectivities of tree graphs, Journal of Graph Theory 12(1988)

453-459.

[23] W. Goddard, H.C. Swart, Distances between graphs under edge operations,

Discrete Mathematics 161(1996), 121-132.

[24] R.L. Cummings, Hamilton circuits in tree graphs, IEEE Transaction Circuit

Theory 13(1966) 82-90.

[25] A. Garcia, M.Noy and J. Teigel, Lower bounds on the number of crossing free

subgraphs of Kn, Computational Geometry: Theory and Applications 16(2000),

211-221.

[26] C. Hernando, F. Hurtado, M. Marquez, M. Mora and M.Noy, Geometric tree

graphs of points in convex position, Discrete Applied Mathematics 93(1999),

51-66.

[27] G. Karolyi, J. Pack and G. Toth, Ramsey type results in geometric graphs,I,

Discrete and Computational Geometry 18(1997), 247-255.

[28] O. Aichholzer, F. Aurenhammer and F. Hurtado, Sequences of spanning tres

and a fixed tree theorem,Computational Geometry: Theory and Applications

21(2002), 3-20.

[29] O. Aichholzer, F. Aurenhammer and F. Hurtado, Edge operations on non-

crossing spanning trees. EWCG 2000, 121-125

67

[30] S. G. Akl, Inherently parallel geometric problems, Technical Report No. 2004-

480, School of Computing, Queen’s University, Kingston, Ontario, April 2004,

19 pages.

[31] S. Even, Graph Algorithms, Computer Science press, 1979.

[32] O.Ore, The Four-Color Problem, Academic Press, 1967.

[33] B. Bollobas, Graph Theory An Introductory Course, Springer-Verlag, 1979.

[34] M. Pocchiola and M. Vertger, Topologically sweeping visibility complexes via

pseudotraingulations, Discrete and Computational Geometry, 16(1996), 419-

453.

[35] B. Joe, Construction of three dimensional Delaunay triangulations using local

transformation, Computer Aided Geometric Design, 16(1991), 419-453.

[36] F. Hurtado, M. Noy and J. Urrutia, Flipping edges in triangulation, Discrete

and Computational Geometry, 22(1999), 333-346.

[37] S. Bespamyatnikh, An efficient algorithm for enumeration of triangulations,

Computational Geometry, 23(2002), 271-279.

68

