Lemmas and Proofs for
“Complete and Easy Bidirectional Typechecking
for Higher-Rank Polymorphism”

Jana Dunfield Neelakantan R. Krishnaswami
June 2013∗

Contents

A Declarative Subtyping

A.1 Properties of Well-Formedness
1 Proposition (Weakening) 6
2 Proposition (Substitution) 6
A.2 Reflexivity
3 Lemma (Reflexivity of Declarative Subtyping) 6
A.3 Subtyping Implies Well-Formedness
4 Lemma (Well-Formedness) 6
A.4 Substitution
5 Lemma (Substitution) 6
A.5 Transitivity
6 Lemma (Transitivity of Declarative Subtyping) 6
A.6 Invertibility of \(\leq \forall \subseteq \)
7 Lemma (Invertibility) 6
A.7 Non-Circularity and Equality
1 Definition (Subterm Occurrence) 6
8 Lemma (Occurrence) 6
9 Lemma (Monotype Equality) 6
2 Definition (Contextual Size) 6

B Type Assignment

10 Lemma (Well-Formedness) 7
11 Theorem (Completeness of Bidirectional Typing) 7
12 Lemma (Subtyping Coercion) 7
12 Lemma (Application Subtyping) 7
2 Theorem (Soundness of Bidirectional Typing) 7

C Robustness of Typing

13 Lemma (Type Substitution) 7
13 Definition (Context Subtyping) 7
14 Lemma (Subsumption) 7
3 Theorem (Substitution) 7
4 Theorem (Inverse Substitution) 7
5 Theorem (Annotation Removal) 8

∗Recompiled in 2020 to correct the name of the first author.
D Properties of Context Extension 8
 D.1 Syntactic Properties ... 8
 15 Lemma (Declaration Preservation) 8
 16 Lemma (Declaration Order Preservation).......................... 8
 17 Lemma (Reverse Declaration Order Preservation).................. 8
 18 Lemma (Substitution Extension Invariance)....................... 8
 19 Lemma (Extension Equality Preservation).......................... 8
 20 Lemma (Reflexivity) .. 8
 21 Lemma (Transitivity) .. 8
 22 Lemma (Right Softness) .. 8
 23 Lemma (Evar Input) .. 8
 24 Lemma (Extension Order) .. 8
 25 Lemma (Extension Weakening) 9
 26 Lemma (Solution Admissibility for Extension)................... 9
 27 Lemma (Solved Variable Addition for Extension)................ 9
 28 Lemma (Unsolved Variable Addition for Extension).............. 9
 29 Lemma (Parallel Admissibility) 9
 30 Lemma (Parallel Extension Solution) 9
 31 Lemma (Parallel Variable Update) 9

D.2 Instantiation Extends ... 9
 32 Lemma (Instantiation Extension) 9

D.3 Subtyping Extends ... 9
 33 Lemma (Subtyping Extension) 9

E Decidability of Instantiation .. 9
 34 Lemma (Left Unsolvedness Preservation) 9
 35 Lemma (Left Free Variable Preservation) 9
 36 Lemma (Instantiation Size Preservation) 9
 7 Theorem (Decidability of Instantiation) 9

F Decidability of Algorithmic Subtyping 10
 F.1 Lemmas for Decidability of Subtyping 10
 37 Lemma (Monotypes Solve Variables) 10
 38 Lemma (Monotype Monotonicity) 10
 39 Lemma (Substitution Decreases Size) 10
 40 Lemma (Monotype Context Invariance) 10
 F.2 Decidability of Subtyping ... 10
 8 Theorem (Decidability of Subtyping) 10

G Decidability of Typing .. 10
 9 Theorem (Decidability of Typing) 10

H Soundness of Subtyping .. 10
 H.1 Lemmas for Soundness ... 10
 41 Lemma (Uvar Preservation) 10
 42 Lemma (Variable Preservation) 10
 43 Lemma (Substitution Typing) 10
 44 Lemma (Substitution for Well-Formedness) 11
 45 Lemma (Substitution Stability) 11
 46 Lemma (Context Partitioning) 11
 47 Lemma (Softness Goes Away) 11
 48 Lemma (Filling Completes) .. 11
 49 Lemma (Stability of Complete Contexts) 11
 50 Lemma (Finishing Types) ... 11
 51 Lemma (Finishing Completions) 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Lemma (Confluence of Completeness)</td>
<td>11</td>
</tr>
<tr>
<td>H.2</td>
<td>Instantiation Soundness</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Theorem (Instantiation Soundness)</td>
<td>11</td>
</tr>
<tr>
<td>H.3</td>
<td>Soundness of Subtyping</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>Theorem (Soundness of Algorithmic Subtyping)</td>
<td>11</td>
</tr>
<tr>
<td>I</td>
<td>Typing Extension</td>
<td>11</td>
</tr>
<tr>
<td>54</td>
<td>Lemma (Typing Extension)</td>
<td>11</td>
</tr>
<tr>
<td>J</td>
<td>Soundness of Typing</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Theorem (Soundness of Algorithmic Typing)</td>
<td>11</td>
</tr>
<tr>
<td>K</td>
<td>Completeness of Subtyping</td>
<td>12</td>
</tr>
<tr>
<td>K.1</td>
<td>Instantiation Completeness</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Theorem (Instantiation Completeness)</td>
<td>12</td>
</tr>
<tr>
<td>K.2</td>
<td>Completeness of Subtyping</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Theorem (Generalized Completeness of Subtyping)</td>
<td>12</td>
</tr>
<tr>
<td>L</td>
<td>Completeness of Typing</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>Theorem (Completeness of Algorithmic Typing)</td>
<td>12</td>
</tr>
<tr>
<td>Proofs</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>A′</td>
<td>Declarative Subtyping</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>Proof of Proposition (Weakening)</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Proof of Proposition (Substitution)</td>
<td>13</td>
</tr>
<tr>
<td>A′.1</td>
<td>Properties of Well-Formedness</td>
<td>13</td>
</tr>
<tr>
<td>A′.2</td>
<td>Reflexivity</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Proof of Lemma (Reflexivity of Declarative Subtyping)</td>
<td>13</td>
</tr>
<tr>
<td>A′.3</td>
<td>Subtyping Implies Well-Formedness</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Proof of Lemma (Well-Formedness)</td>
<td>13</td>
</tr>
<tr>
<td>A′.4</td>
<td>Substitution</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Proof of Lemma (Substitution)</td>
<td>13</td>
</tr>
<tr>
<td>A′.5</td>
<td>Transitivity</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Proof of Lemma (Transitivity of Declarative Subtyping)</td>
<td>14</td>
</tr>
<tr>
<td>A′.6</td>
<td>Invertibility of $\leq\forall R$</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Proof of Lemma (Invertibility)</td>
<td>15</td>
</tr>
<tr>
<td>A′.7</td>
<td>Non-Circularity and Equality</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Proof of Lemma (Occurrence)</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Proof of Lemma (Monotype Equality)</td>
<td>16</td>
</tr>
<tr>
<td>B′</td>
<td>Type Assignment</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Proof of Lemma (Well-Formedness)</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Proof of Theorem (Completeness of Bidirectional Typing)</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Proof of Lemma (Subtyping Coercion)</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>Proof of Lemma (Application Subtyping)</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>Proof of Theorem (Soundness of Bidirectional Typing)</td>
<td>19</td>
</tr>
<tr>
<td>C′</td>
<td>Robustness of Typing</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>Proof of Lemma (Type Substitution)</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>Proof of Lemma (Subsumption)</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Proof of Theorem (Substitution)</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Proof of Theorem (Inverse Substitution)</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Proof of Theorem (Annotation Removal)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>11</td>
<td>Proof of Theorem (Soundness of Algorithmic Subtyping)</td>
<td>55</td>
</tr>
<tr>
<td>I‘</td>
<td>Typing Extension</td>
<td>57</td>
</tr>
<tr>
<td>54</td>
<td>Proof of Lemma (Typing Extension)</td>
<td>57</td>
</tr>
<tr>
<td>J‘</td>
<td>Soundness of Typing</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>Proof of Theorem (Soundness of Algorithmic Typing)</td>
<td>58</td>
</tr>
<tr>
<td>K‘</td>
<td>Completeness</td>
<td>63</td>
</tr>
<tr>
<td>K‘.1</td>
<td>Instantiation Completeness</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>Proof of Theorem (Instantiation Completeness)</td>
<td>63</td>
</tr>
<tr>
<td>K‘.2</td>
<td>Completeness of Subtyping</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>Proof of Theorem (Generalized Completeness of Subtyping)</td>
<td>66</td>
</tr>
<tr>
<td>L‘</td>
<td>Completeness of Typing</td>
<td>71</td>
</tr>
<tr>
<td>15</td>
<td>Proof of Theorem (Completeness of Algorithmic Typing)</td>
<td>71</td>
</tr>
</tbody>
</table>
A Declarative Subtyping

A.1 Properties of Well-Formedness

Proposition 1 (Weakening). If $\Psi \vdash A$ then $\Psi, \Psi' \vdash A$ by a derivation of the same size.

Proposition 2 (Substitution). If $\Psi \vdash A$ and $\Psi, \alpha, \Psi' \vdash B$ then $\Psi, \Psi' \vdash [A/\alpha]B$.

A.2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if $\Psi \vdash A$ then $\Psi \vdash A \leq A$.

A.3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If $\Psi \vdash A \leq B$ then $\Psi \vdash A$ and $\Psi \vdash B$.

A.4 Substitution

Lemma 5 (Substitution). If $\Psi \vdash \tau$ and $\Psi, \alpha, \Psi' \vdash A \leq B$ then $\Psi, \Psi' \vdash [\tau/\alpha]A \leq [\tau/\alpha]B$.

A.5 Transitivity

Lemma 6 (Transitivity of Declarative Subtyping). If $\Psi \vdash A \leq B$ and $\Psi \vdash B \leq C$ then $\Psi \vdash A \leq C$.

A.6 Invertibility of $\leq \forall R$

Lemma 7 (Invertibility). If D derives $\Psi \vdash A \leq \forall B$ then D' derives $\Psi, \beta \vdash A \leq B$ where $D' < D$.

A.7 Non-Circularity and Equality

Definition 1 (Subterm Occurrence). Let $A \preceq B$ if A is a subterm of B.

Let $A \prec B$ if A is a proper subterm of B (that is, $A \preceq B$ and $A \neq B$).

Let $A \preceq B$ if A occurs in B inside an arrow, that is, there exist B_1, B_2 such that $(B_1 \rightarrow B_2) \preceq B$ and $A \preceq B_k$ for some $k \in \{1, 2\}$.

Lemma 8 (Occurrence).

(i) If $\Psi \vdash A \leq \tau$ then $\tau \not\preceq A$.

(ii) If $\Psi \vdash \tau \leq B$ then $\tau \not\preceq B$.

Lemma 9 (Monotype Equality). If $\Psi \vdash \sigma \leq \tau$ then $\sigma = \tau$.

Definition 2 (Contextual Size). The size of A with respect to a context Γ, written $|\Gamma \vdash A|$, is defined by

\[
|\Gamma \vdash \alpha| = 1 \\
|\Gamma[\beta] \vdash \alpha| = 1 \\
|\Gamma[\beta \leftarrow \tau] \vdash \alpha| = 1 + |\Gamma[\beta \leftarrow \tau]| + \tau| \\
|\Gamma \vdash \forall \alpha. A| = 1 + |\Gamma, \alpha \vdash A| \\
|\Gamma \vdash A \rightarrow B| = 1 + |\Gamma \vdash A| + |\Gamma \vdash B|
\]
B Type Assignment

Lemma 10 (Well-Formedness).
If \(\Psi \vdash e \iff A \) or \(\Psi \vdash e \implies A \) or \(\Psi \vdash \bullet e \implies C \) then \(\Psi \vdash A \) (and in the last case, \(\Psi \vdash C \)).

Theorem 1 (Completeness of Bidirectional Typing).
If \(\Psi \vdash e : A \) then there exists \(e' \) such that \(\Psi \vdash e' \implies A \) and \(|e'| = e \).

Lemma 11 (Subtyping Coercion). \(\Psi \vdash A \leq B \) then there exists \(f \) which is \(\beta\eta \)-equal to the identity such that \(\Psi \vdash f : A \to B \).

Lemma 12 (Application Subtyping). \(\Psi \vdash A \bullet e \implies C \) then there exists \(B \) such that \(\Psi \vdash A \leq B \to C \) and \(\Psi \vdash e \iff B \) by a smaller derivation.

Theorem 2 (Soundness of Bidirectional Typing). We have that:

- If \(\Psi \vdash e \iff A \), then there is an \(e' \) such that \(\Psi \vdash e' : A \) and \(e' =_{\beta\eta} |e| \).
- If \(\Psi \vdash e \implies A \), then there is an \(e' \) such that \(\Psi \vdash e' : A \) and \(e' =_{\beta\eta} |e| \).

C Robustness of Typing

Lemma 13 (Type Substitution).
Assume \(\Psi \vdash \tau \).

- If \(\Psi, \alpha, \Psi' \vdash e' \iff C \) then \(\Psi', [\tau/\alpha]\Psi' \vdash [\tau/\alpha]e' \iff [\tau/\alpha]C \).
- If \(\Psi, \alpha, \Psi' \vdash e' \implies C \) then \(\Psi', [\tau/\alpha]\Psi' \vdash [\tau/\alpha]e' \implies [\tau/\alpha]C \).
- If \(\Psi, \alpha, \Psi' \vdash B \bullet e' \implies C \) then \(\Psi', [\tau/\alpha]\Psi' \vdash [\tau/\alpha]B \bullet [\tau/\alpha]e' \implies [\tau/\alpha]C \).

Moreover, the resulting derivation contains no more applications of typing rules than the given one. (Internal subtyping derivations, however, may grow.)

Definition 3 (Context Subtyping). We define the judgment \(\Psi' \leq \Psi \) with the following rules:

\[
\frac{}{\text{CtxSubEmpty}} \quad \frac{\Psi' \leq \Psi \quad \alpha \leq \Psi, \alpha}{\text{CtxSubVar}} \quad \frac{\Psi' \leq \Psi \quad \Psi, x : A' \leq \Lambda}{\text{CtxSubVar}}
\]

Lemma 14 (Subsumption). Suppose \(\Psi' \leq \Psi \). Then:

(i) If \(\Psi \vdash e \iff A \) and \(\Psi \vdash A \leq A' \) then \(\Psi \vdash e \iff A' \).

(ii) If \(\Psi \vdash e \implies A \) then there exists \(A' \) such that \(\Psi \vdash A' \leq A \) and \(\Psi \vdash e \implies A' \).

(iii) If \(\Psi \vdash C \bullet e \implies C \) and \(\Psi \vdash C' \leq C \) then there exists \(A' \) such that \(\Psi \vdash A' \leq A \) and \(\Psi \vdash C' \bullet e \implies A' \).

Theorem 3 (Substitution).
Assume \(\Psi \vdash e \implies A \).

(i) If \(\Psi, x : A \vdash e' \iff C \) then \(\Psi \vdash [e/x]e' \iff C \).

(ii) If \(\Psi, x : A \vdash e' \implies C \) then \(\Psi \vdash [e/x]e' \implies C \).

(iii) If \(\Psi, x : A \vdash B \bullet e' \implies C \) then \(\Psi \vdash B \bullet [e/x]e' \implies C \).

Theorem 4 (Inverse Substitution).
Assume \(\Psi \vdash e \iff A \).

(i) If \(\Psi \vdash [e : A]/x]e' \iff C \) then \(\Psi, x : A \vdash e' \iff C \).
Lemma 17 (Reverse Declaration Order Preservation).

Theorem 5 (Annotation Removal). We have that:

- If $\Psi \vdash \lambda x. e \leftrightarrow C$ then $\Psi, x : A \vdash e \leftrightarrow C$.

- If $\Psi \vdash B \cdot ([e : A] / x) e' \Rightarrow C$ then $\Psi, x : A \vdash B \cdot e' \Rightarrow C$.

Theorem 6 (Soundness of Eta). If $\Psi \vdash \lambda x. e \leftrightarrow A$ and $x \not\in \text{FV}(e)$, then $\Psi \vdash e \leftrightarrow A$.

\section{Properties of Context Extension}

\subsection{Syntactic Properties}

Lemma 15 (Declaration Preservation). If $\Gamma \rightarrow \Delta$, and u is a variable or marker $\triangleright\kappa$ declared in Γ, then u is declared in Δ.

Lemma 16 (Declaration Order Preservation). If $\Gamma \rightarrow \Delta$ and u is declared to the left of v in Γ, then u is declared to the left of v in Δ.

Lemma 17 (Reverse Declaration Order Preservation). If $\Gamma \rightarrow \Delta$ and u and v are both declared in Γ and u is declared to the left of v in Δ, then u is declared to the left of v in Γ.

Lemma 18 (Substitution Extension Invariance). If $\Theta \vdash A$ and $\Theta \rightarrow \Gamma$ then $[\Gamma]A = [\Gamma][(\Theta)A]$ and $[\Gamma]A = [\Theta][\Gamma]A$.

Lemma 19 (Extension Equality Preservation).

If $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Gamma]A = [\Gamma]B$ and $\Gamma \rightarrow \Delta$, then $[\Delta]A = [\Delta]B$.

Lemma 20 (Reflexivity). If Γ is well-formed, then $\Gamma \rightarrow \Gamma$.

Lemma 21 (Transitivity). If $\Gamma \rightarrow \Delta$ and $\Delta \rightarrow \Theta$, then $\Gamma \rightarrow \Theta$.

Definition 4 (Softness). A context Θ is soft iff it consists only of $\triangleright\kappa$ and $\triangleright\kappa = \tau$ declarations.

Lemma 22 (Right Softness). If $\Gamma \rightarrow \Delta$ and Θ is soft (and (Δ, Θ) is well-formed) then $\Gamma \rightarrow \Delta, \Theta$.

Lemma 23 (Evar Input).

If $\Gamma, \kappa \rightarrow \Delta$ then $\Delta = (\Delta_0, \Delta_\kappa, \Theta)$ where $\Gamma \rightarrow \Delta_0$, and Δ_κ is either $\triangleright\kappa$ or $\triangleright\kappa = \tau$, and Θ is soft.

Lemma 24 (Extension Order).

(i) If $\Gamma L, \alpha, \Gamma R \rightarrow \Delta$ then $\Delta = (\Delta_L, \alpha, \Delta_R)$ where $\Gamma L \rightarrow \Delta_L$. Moreover, if ΓR is soft then Δ_R is soft.

(ii) If $\Gamma L, \triangleright\alpha, \Gamma R \rightarrow \Delta$ then $\Delta = (\Delta_L, \triangleright\alpha, \Delta_R)$ where $\Gamma L \rightarrow \Delta_L$. Moreover, if ΓR is soft then Δ_R is soft.

(iii) If $\Gamma L, \triangleright\alpha, \Gamma R \rightarrow \Delta$ then $\Delta = (\Delta_L, \triangleright\alpha, \Delta R)$ where $\Gamma L \rightarrow \Delta_L$ and Θ is either $\triangleright\alpha$ or $\triangleright\alpha = \tau$ for some τ.

(iv) If $\Gamma L, \triangleright\alpha = \tau, \Gamma R \rightarrow \Delta$ then $\Delta = (\Delta_L, \triangleright\alpha = \tau, \Delta R)$ where $\Gamma L \rightarrow \Delta_L$ and $[\Delta_L]\tau = [\Delta_L]\tau'$.

8
(v) If $\Gamma_l, x : A, \Gamma_r \rightarrow \Delta$ then $\Delta = (\Delta_l, x : A', \Delta_r)$ where $\Gamma_l \rightarrow \Delta_l$ and $[\Delta_l]A = [\Delta_l]A'$. Moreover, Γ_r is soft if and only if Δ_r is soft.

Lemma 25 (Extension Weakening). If $\Gamma \vdash A$ and $\Gamma \rightarrow \Delta$ then $\Delta \vdash A$.

Lemma 26 (Solution Admissibility for Extension). If $\Gamma_l \vdash \tau$ then $\Gamma_l, \hat{\alpha}, \Gamma_r \rightarrow \Gamma_l, \hat{\alpha} = \tau, \Gamma_r$.

Lemma 27 (Solved Variable Addition for Extension). If $\Gamma_l \vdash \tau$ then $\Gamma_l, \Gamma_r \rightarrow \Gamma_l, \hat{\alpha} = \tau, \Gamma_r$.

Lemma 28 (Unsolved Variable Addition for Extension). We have that $\Gamma_l, \Gamma_r \rightarrow \Gamma_l, \hat{\alpha}, \Gamma_r$.

Lemma 29 (Parallel Admissibility).
If $\Gamma_l \rightarrow \Delta_l$ and $\Gamma_l, \Gamma_r \rightarrow \Delta_l, \Delta_r$ then:

(i) $\Gamma_l, \hat{\alpha}, \Gamma_r \rightarrow \Delta_l, \hat{\alpha}, \Delta_r$

(ii) If $\Delta_l \vdash \tau'$ then $\Gamma_l, \hat{\alpha}, \Gamma_r \rightarrow \Delta_l, \hat{\alpha} = \tau', \Delta_r$.

(iii) If $\Gamma_l \vdash \tau$ and $\Delta_l \vdash \tau'$ and $[\Delta_l]|\tau = [\Delta_l]|\tau'$, then $\Gamma_l, \hat{\alpha} = \tau, \Gamma_r \rightarrow \Delta_l, \hat{\alpha} = \tau', \Delta_r$.

Lemma 30 (Parallel Extension Solution).
If $\Gamma_l, \hat{\alpha}, \Gamma_r \rightarrow \Delta_l, \hat{\alpha} = \tau', \Delta_r$ and $\Gamma_l \vdash \tau$ and $[\Delta_l]|\tau = [\Delta_l]|\tau'$ then $\Gamma_l, \hat{\alpha} = \tau, \Gamma_r \rightarrow \Delta_l, \hat{\alpha} = \tau', \Delta_r$.

Lemma 31 (Parallel Variable Update).
If $\Gamma_l, \hat{\alpha}, \Gamma_r \rightarrow \Delta_l, \hat{\alpha} = \tau_0, \Delta_r$ and $\Gamma_l \vdash \tau_1$ and $\Delta_l \vdash \tau_2$ and $[\Delta_l]|\tau_0 = [\Delta_l]|\tau_1 = [\Delta_l]|\tau_2$ then $\Gamma_l, \hat{\alpha} = \tau_1, \Gamma_r \rightarrow \Delta_l, \hat{\alpha} = \tau_2, \Delta_r$.

D.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If $\Gamma \vdash \hat{\alpha} : \hat{\Delta} \rightarrow \Delta$ or $\Gamma \vdash \tau \vdash \hat{\alpha} : \hat{\Delta} \rightarrow \Delta$ then $\Gamma \rightarrow \Delta$.

D.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If $\Gamma \vdash A <: B \rightarrow \Delta$ then $\Gamma \rightarrow \Delta$.

E Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash \hat{\alpha} : \hat{\Delta} \rightarrow \Delta$ or $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash A : \hat{\Delta} \rightarrow \Delta$, and $\hat{\beta} \in \text{unsolved}(\Gamma_0)$, then $\hat{\beta} \in \text{unsolved}(\Delta)$.

Lemma 35 (Left Free Variable Preservation). If $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash \hat{\alpha} : \hat{\Delta} \rightarrow \Delta$ or $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash A : \hat{\Delta} \rightarrow \Delta$, and $\Gamma \vdash B$ and $\hat{\alpha} \notin \text{FV}([\Gamma]|B)$ and $\hat{\beta} \in \text{unsolved}(\Gamma_0)$ and $\hat{\beta} \notin \text{FV}([\Gamma]|B)$, then $\hat{\beta} \notin \text{FV}([\Delta]|B)$.

Lemma 36 (Instantiation Size Preservation). If $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash \hat{\alpha} : \hat{\Delta} \rightarrow \Delta$ or $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash A : \hat{\Delta} \rightarrow \Delta$, and $\Gamma \vdash B$ and $\hat{\alpha} \notin \text{FV}([\Gamma]|B)$, then $|[\Gamma]|B = |[\Delta]|B$, where $|C|$ is the plain size of the term C.

This lemma lets us show decidability by taking the size of the type argument as the induction metric.

Theorem 7 (Decidability of Instantiation). If $\Gamma = \Gamma_0[\hat{\alpha}]$ and $\Gamma \vdash A$ such that $[\Gamma]|A = A$ and $\hat{\alpha} \notin \text{FV}(A)$, then:

(1) Either there exists Δ such that $\Gamma_0[\hat{\alpha}] \vdash \hat{\alpha} : \hat{\Delta} \rightarrow \Delta$, or not.

(2) Either there exists Δ such that $\Gamma_0[\hat{\alpha}] \vdash A : \hat{\Delta} \rightarrow \Delta$, or not.
F Decidability of Algorithmic Subtyping

F.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If $\Gamma \vdash \tau <: \Delta$ or $\Gamma \vdash \tau : \Delta$, then if $[\Gamma]\tau = \tau$ and $\alpha \notin \text{FV}([\Gamma]\tau)$, then $|\text{unsolved}(\Gamma)| = |\text{unsolved}(\Delta)| + 1$.

Lemma 38 (Monotype Monotonicity). If $\Gamma \vdash \tau_1 <: \tau_2 \vdash \Delta$ then $|\text{unsolved}(\Delta)| \leq |\text{unsolved}(\Gamma)|$.

Lemma 39 (Substitution Decreases Size). If $\Gamma \vdash A$ then $|\Gamma \vdash [\Gamma]A| \leq |\Gamma \vdash A|$.

Lemma 40 (Monotype Context Invariance). If $\Gamma \vdash \tau <: \tau' \vdash \Delta$ where $[\Gamma]\tau = \tau$ and $[\Gamma]\tau' = \tau'$ and $|\text{unsolved}(\Gamma)| = |\text{unsolved}(\Delta)|$ then $\Gamma = \Delta$.

F.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping). Given a context Γ and types A, B such that $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Gamma]A = A$ and $[\Gamma]B = B$, it is decidable whether there exists Δ such that $\Gamma \vdash A <: B \vdash \Delta$.

G Decidability of Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e, it is decidable whether there exist a type A and a context Δ such that $\Gamma \vdash e \Rightarrow A \vdash \Delta$.

(ii) Checking: Given a context Γ, a term e, and a type B such that $\Gamma \vdash B$, it is decidable whether there is a context Δ such that $\Gamma \vdash e \Leftarrow B \vdash \Delta$.

(iii) Application: Given a context Γ, a term e, and a type A such that $\Gamma \vdash A$, it is decidable whether there exist a type C and a context Δ such that $\Gamma \vdash A \bullet e \Rightarrow C \vdash \Delta$.

H Soundness of Subtyping

Definition 5 (Filling). The filling of a context $[\Gamma]$ solves all unsolved variables:

$|\cdot|$

$|\Gamma; x : A| = |\Gamma|, x : A$

$|\Gamma; \alpha| = |\Gamma|, \alpha$

$|\Gamma; \& = \tau| = |\Gamma|, \& = \tau$

$|\Gamma; \& \alpha| = |\Gamma|, \& \alpha$

$|\Gamma; \alpha| = |\Gamma|, \alpha$

H.1 Lemmas for Soundness

Lemma 41 (Uvar Preservation). If $\alpha \in \Omega$ and $\Delta \rightarrow \Omega$ then $\alpha \in [\Omega]\Delta$.

Proof. By induction on Ω, following the definition of context application. \qed

Lemma 42 (Variable Preservation). If $(x : A) \in \Delta$ or $(x : A) \in \Omega$ and $\Delta \rightarrow \Omega$ then $(x : [\Omega]A) \in [\Omega]\Delta$.

Lemma 43 (Substitution Typing). If $\Gamma \vdash A$ then $\Gamma \vdash [\Gamma]A$. 10
Lemma 44 (Substitution for Well-Formedness). If $\Delta \vdash A$ then $[\Omega]\Delta \vdash [\Omega]A$.

Lemma 45 (Substitution Stability). For any well-formed complete context (Ω, Ω_Z), if $\Delta \vdash A$ then $[\Omega]A = [\Omega, \Omega_Z]A$.

Lemma 46 (Context Partitioning). If $\Delta, \Theta \rightarrow \Omega, \Theta_A, \Omega_Z$ then there is a Ψ such that $[\Omega, \Theta_A, \Omega_Z](\Delta, \Theta) = [\Omega]\Delta, \Psi$.

Lemma 47 (Softness Goes Away). If $\Delta, \Theta \rightarrow \Omega, \Omega_Z$ where $\Delta \rightarrow \Omega$ and Θ is soft, then $[\Omega, \Omega_Z](\Delta, \Theta) = [\Omega]\Delta$.

Proof. By induction on Θ, following the definition of $[\Theta]$.

Lemma 48 (Filling Completes). If $\Gamma \rightarrow \Omega$ and (Γ, Θ) is well-formed, then $\Gamma, \Theta \rightarrow \Omega, \Theta$.

Proof. By induction on Θ, following the definition of \rightarrow and applying the rules for \rightarrow.

Lemma 49 (Stability of Complete Contexts). If $\Gamma \rightarrow \Omega$ then $[\Omega]\Gamma = [\Omega]\Omega$.

Lemma 50 (Finishing Types). If $\Omega \vdash A$ then $\Omega \rightarrow \Omega'$ then $[\Omega]A = [\Omega']A$.

Lemma 51 (Finishing Completes). If $\Omega \rightarrow \Omega'$ then $[\Omega]\Omega = [\Omega']\Omega'$.

Lemma 52 (Confluence of Completeness). If $\Delta_1 \rightarrow \Omega$ and $\Delta_2 \rightarrow \Omega$ then $[\Omega]\Delta_1 = [\Omega]\Delta_2$.

H.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness). Given $\Delta \rightarrow \Omega$ and $[\Gamma]B = B$ and $\alpha \not\in \text{FV}(B)$:

1. If $\Gamma \vdash \alpha ; \leq B \rightarrow \Delta$ then $[\Omega]\Delta \vdash [\Omega]B$.

2. If $\Gamma \vdash B \leq \alpha \rightarrow \Delta$ then $[\Omega]\Delta \vdash [\Omega]B \leq [\Omega]B$.

H.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping). If $\Gamma \vdash A <: B \rightarrow \Delta$ where $[\Gamma]A = A$ and $[\Gamma]B = B$ and $\Delta \rightarrow \Omega$ then $[\Omega]\Delta \vdash [\Omega]A < [\Omega]B$.

Corollary 53 (Soundness, Pretty Version). If $\Psi \vdash A <: B \rightarrow \Delta$, then $\Psi \vdash A \leq B$.

I Typing Extension

Lemma 54 (Typing Extension). If $\Gamma \vdash e \in A \rightarrow \Delta$ then $\Gamma \vdash e \in [\Omega]A$.

J Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given $\Delta \rightarrow \Omega$:

1. If $\Gamma \vdash e \in A \rightarrow \Delta$ then $[\Omega]\Delta \vdash e \in [\Omega]A$.

2. If $\Gamma \vdash e \Rightarrow A \rightarrow \Delta$ then $[\Omega]\Delta \vdash e \Rightarrow [\Omega]A$.

3. If $\Gamma \vdash A \Rightarrow e \Rightarrow C \rightarrow \Delta$ then $[\Omega]\Delta \vdash [\Omega]A \Rightarrow e \Rightarrow [\Omega]C$.
K Completeness of Subtyping

K.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness). Given $\Gamma \rightarrow \Omega$ and $A = [\Gamma]A$ and $\& \in \text{unsolved}(\Gamma)$ and $\& \notin \text{FV}(A)$:

(1) If $[\Omega]\Gamma \vdash [\Omega]\& \leq [\Omega]A$
then there are Δ, Ω' such that $\Omega \rightarrow \Omega'$ and $\Delta \rightarrow \Omega'$ and $\Gamma \vdash \& : \leq A \triangleright \Delta$.

(2) If $[\Omega]\Gamma \vdash [\Omega]A \leq [\Omega]\&$
then there are Δ, Ω' such that $\Omega \rightarrow \Omega'$ and $\Delta \rightarrow \Omega'$ and $\Gamma \vdash A = \leq \& \triangleright \Delta$.

K.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If $\Gamma \rightarrow \Omega$ and $\Gamma \vdash A$ and $\Gamma \vdash B$ and $[\Omega]\Gamma \vdash [\Omega]A \leq [\Omega]B$ then there exist Δ and Ω' such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash [\Gamma]A <: [\Gamma]B \triangleright \Delta$.

Corollary 55 (Completeness of Subtyping). If $\Psi \vdash A \leq B$ then there is a Δ such that $\Psi \vdash A <: B \triangleright \Delta$.

L Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given $\Gamma \rightarrow \Omega$ and $\Gamma \vdash A$:

(i) If $[\Omega]\Gamma \vdash e \leq [\Omega]A$
then there exist Δ and Ω' such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash e \leq [\Gamma]A \triangleright \Delta$.

(ii) If $[\Omega]\Gamma \vdash e \Rightarrow A$
then there exist Δ, Ω', and A'
such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash e \Rightarrow A' \triangleright \Delta$ and $A = [\Omega']A'$.

(iii) If $[\Omega]\Gamma \vdash [\Omega]A \bullet e \Rightarrow C$
then there exist Δ, Ω', and C'
such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash [\Gamma]A \bullet e \Rightarrow C' \triangleright \Delta$ and $C = [\Omega']C'$.
Proofs
In the rest of this document, we prove the results stated above, with the same sectioning.

\textbf{A’ Declarative Subtyping}

\textbf{Proposition 1 (Weakening).} If \(\Psi \vdash A \) then \(\Psi, \Psi' \vdash A \) by a derivation of the same size.

\textbf{Proposition 2 (Substitution).} If \(\Psi \vdash A \) and \(\Psi, \alpha, \Psi' \vdash B \) then \(\Psi, \Psi' \vdash [A/\alpha]B \).

The proofs of these two propositions are routine inductions.

\textbf{A’.1 Properties of Well-Formedness}

\textbf{A’.2 Reflexivity}

\textbf{Lemma 3 (Reflexivity of Declarative Subtyping).} Subtyping is reflexive: if \(\Psi \vdash A \) then \(\Psi \vdash A \leq A \).

\textit{Proof.} By induction on \(A \).

- \textbf{Case} \(A = 1 \): Apply rule \(\leq \text{Unit} \).
- \textbf{Case} \(A = \alpha \): Apply rule \(\leq \text{Var} \).
- \textbf{Case} \(A = A_1 \rightarrow A_2 \):
 \begin{align*}
 &\Psi \vdash A_1 \leq A_1 \quad \text{By i.h.} \\
 &\Psi \vdash A_2 \leq A_2 \quad \text{By i.h.} \\
 &\Psi \vdash A_1 \rightarrow A_2 \leq A_1 \rightarrow A_2 \quad \text{By} \leq \rightarrow
 \end{align*}
- \textbf{Case} \(A = \forall \alpha. A_0 \):
 \begin{align*}
 &\Psi, \alpha \vdash A_0 \leq A_0 \quad \text{By i.h.} \\
 &\Psi, \alpha \vdash \alpha \quad \text{By DeclUvarWF} \\
 &\Psi, \alpha \vdash [\alpha/\alpha]A_0 \leq A_0 \quad \text{By def. of substitution} \\
 &\Psi, \alpha \vdash \forall \alpha. A_0 \leq A_0 \quad \text{By} \leq \forall L \\
 &\Psi \vdash \forall \alpha. A_0 \leq \forall \alpha. A_0 \quad \text{By} \leq \forall R \quad \square
 \end{align*}

\textbf{A’.3 Subtyping Implies Well-Formedness}

\textbf{Lemma 4 (Well-Formedness).} If \(\Psi \vdash A \leq B \) then \(\Psi \vdash A \) and \(\Psi \vdash B \).

\textit{Proof.} By induction on the given derivation. All 5 cases are straightforward. \square

\textbf{A’.4 Substitution}

\textbf{Lemma 5 (Substitution).} If \(\Psi \vdash \tau \) and \(\Psi, \alpha, \Psi' \vdash A \leq B \) then \(\Psi, [\tau/\alpha]\Psi' \vdash [\tau/\alpha]A \leq [\tau/\alpha]B \).

\textit{Proof.} By induction on the given derivation.

- \textbf{Case} \(\beta \in (\Psi, \alpha, \Psi') \): Apply rule \(\leq \text{Var} \).

It is given that \(\Psi \vdash \tau \).

Either \(\beta = \alpha \) or \(\beta \neq \alpha \). In the former case: We need to show \(\Psi, \Psi' \vdash [\tau/\alpha]A \leq [\tau/\alpha]A \), that is, \(\Psi, \Psi' \vdash \tau \leq \tau \), which follows by Lemma 3 (Reflexivity of Declarative Subtyping). In the latter case: We need to show \(\Psi, \Psi' \vdash [\tau/\alpha]\beta \leq [\tau/\alpha]\beta \), that is, \(\Psi, \Psi' \vdash \beta \leq \beta \). Since \(\beta \in (\Psi, \alpha, \Psi') \) and \(\beta \neq \alpha \), we have \(\beta \in (\Psi, \Psi') \), so applying \(\leq \text{Var} \) gives the result.
• Case
\[\Psi, \alpha, \Psi' \vdash 1 \leq \text{Unit} \]
For all \(\tau \), substituting \([\tau/\alpha]1 = 1\), and applying \(\leq \text{Unit} \) gives the result.

• Case
\[\Psi, \alpha, \Psi' \vdash B_1 \leq A_1 \quad \Psi, \alpha, \Psi' \vdash A_2 \leq B_2 \]
\[\Psi, \alpha, \Psi' \vdash A_1 \rightarrow A_2 \leq B_1 \rightarrow B_2 \]
\(\leq \rightarrow \)
\[\Psi, \alpha, \Psi' \vdash B_1 \leq A_1 \]
\(\text{Subderivation} \)
\[\Psi, \Psi' \vdash [\tau/\alpha]B_1 \leq [\tau/\alpha]A_1 \]
By i.h.
\[\Psi, \alpha, \Psi' \vdash A_2 \leq B_2 \]
\(\text{Subderivation} \)
\[\Psi, \Psi' \vdash [\tau/\alpha]A_2 \leq [\tau/\alpha]B_2 \]
By i.h.
\[\Psi, \Psi' \vdash ([\tau/\alpha]A_1 \rightarrow ([\tau/\alpha]B_1) \leq ([\tau/\alpha]A_2 \rightarrow ([\tau/\alpha]B_2)) \]
By \(\leq \rightarrow \)
\[\Psi, \Psi' \vdash ([\tau/\alpha]A_1 \rightarrow A_2) \leq ([\tau/\alpha]B_1 \rightarrow B_2) \]
By definition of subst.

• Case
\[\Psi, \alpha, \Psi' \vdash \sigma \quad \Psi, \alpha, \Psi' \vdash [\sigma/\beta]A_0 \leq B \]
\(\leq \text{vL} \)
\[\Psi, \alpha, \Psi' \vdash \forall \beta. A_0 \leq B \]
\(\text{Subderivation} \)
\[\Psi, \Psi' \vdash [\tau/\alpha][\sigma/\beta]A_0 \leq [\tau/\alpha]B \]
By i.h.
\[\Psi, \Psi' \vdash [\tau/\alpha][\sigma/\beta]A_0 \leq [\tau/\alpha]B \]
By distributivity of substitution
\[\Psi, \Psi' \vdash \forall \beta. [\tau/\alpha]A_0 \leq [\tau/\alpha]B \]
By \(\leq \text{vL} \)
\[\Psi, \Psi' \vdash [\tau/\alpha](\forall \beta. A_0) \leq [\tau/\alpha]B \]
By definition of substitution

• Case
\[\Psi, \alpha, \Psi' \vdash \beta \leq B_0 \]
\(\leq \text{vR} \)
\[\Psi, \alpha, \Psi' \vdash \beta \leq \forall \beta. B_0 \]
\(\text{Subderivation} \)
\[\Psi, \Psi' \vdash [\tau/\alpha]A \leq [\tau/\alpha]B_0 \]
By i.h.
\[\Psi, \Psi' \vdash [\tau/\alpha]A \leq [\tau/\alpha]B_0 \]
By \(\leq \text{vR} \)
\[\Psi, \Psi' \vdash [\tau/\alpha]A \leq [\tau/\alpha](\forall \beta. B_0) \]
By definition of substitution \(\square \)

A'.5 Transitivity

To prove transitivity, we use a metric that adapts ideas from a proof of cut elimination by Pfenning (1995).

Lemma 6 (Transitivity of Declarative Subtyping). If \(\Psi \vdash A \leq B \) and \(\Psi \vdash B \leq C \) then \(\Psi \vdash A \leq C \).

Proof. By induction with the following metric:
\[\langle \#\forall(B), \quad D_1 + D_2 \rangle \]
where \(\langle \ldots \rangle \) denotes lexicographic order, the first part \(\#\forall(B) \) is the number of quantifiers in \(B \), and the second part is the (simultaneous) size of the derivations \(D_1 : \Psi \vdash A \leq B \) and \(D_2 : \Psi \vdash B \leq C \). We need to consider the number of quantifiers first in one case: when \(\leq \text{vR} \) concluded \(D_1 \) and \(\leq \text{vL} \) concluded \(D_2 \), because in that case, the derivations on which the i.h. must be applied are not necessarily smaller.

• Case
\[\alpha \in \Psi \]
\[\Psi \vdash \alpha \leq \alpha \quad \text{(Var)} \]
Apply rule \(\leq \text{Var} \).
• **Case** $\leq \text{Unit} / \leq \text{Unit}$. Similar to the $\leq \text{Var} / \leq \text{Var}$ case.

• **Case**

$$
\begin{align*}
\psi \vdash B_1 \leq A_1 & \quad \psi \vdash A_2 \leq B_2 \\
\psi \vdash A_1 \rightarrow A_2 \leq B_1 \rightarrow B_2 \\& \quad \psi \vdash C_1 \leq B_1 & \quad \psi \vdash B_2 \leq C_2 \\
\psi \vdash B_1 \rightarrow B_2 \leq C_1 \rightarrow C_2
\end{align*}
$$

By i.h. on the 3rd and 1st subderivations, $\psi \vdash C_1 \leq A_1$.
By i.h. on the 2nd and 4th subderivations, $\psi \vdash A_2 \leq C_2$.
By $\leq \rightarrow$, $\psi \vdash A_1 \rightarrow A_2 \leq C_1 \rightarrow C_2$.

If $\leq \forall L$ concluded D_1:

• **Case**

$$
\begin{align*}
\psi \vdash \tau & \quad \psi \vdash [\tau/\alpha]A_0 \leq B \\
\psi \vdash \forall \alpha. A_0 \leq B \\& \quad \psi \vdash C_1 \leq B_1 & \quad \psi \vdash B_2 \leq C_2 \\
\psi \vdash B_1 \rightarrow B_2 \leq C_1 \rightarrow C_2
\end{align*}
$$

If $\leq \forall R$ concluded D_2:

• **Case**

$$
\begin{align*}
\psi, \beta \vdash A \leq B_0 & \quad \psi \vdash [\tau/\beta]A \leq C \\
\psi \vdash A \leq \forall \beta. B_0 \leq \forall \beta. C \\& \quad \psi \vdash \tau & \quad \psi \vdash \forall \beta. B_0 \leq C \\
\psi \vdash A \leq \forall \beta. C & \quad \psi \vdash [\tau/\beta]B_0 \leq C
\end{align*}
$$

The only remaining possible case is $\leq \forall R / \leq \forall L$.

A’.6 Invertibility of $\leq \forall R$

Lemma 7 (Invertibility).

*If D derives $\psi \vdash A \leq \forall \beta. B$ then $D’$ derives $\psi, \beta \vdash A \leq B$ where $D’ < D$.***

Proof. By induction on the given derivation D.

• **Cases** $\leq \text{Var}$, $\leq \text{Unit}$, $\leq \rightarrow$: Impossible: the supertype cannot have the form $\forall \beta. B$.

\[\]
• Case \[\Psi, \beta \vdash A \leq B \]
\[\Psi \vdash A \leq \forall \beta. B \leq \forall R \]

The subderivation is exactly what we need, and is strictly smaller than \(D \).

• Case
\[\frac{\Psi \vdash \tau \quad \Psi \vdash [\tau/\alpha]A_0 \leq \forall \beta. B}{\Psi \vdash \forall \alpha. A_0 \leq \forall \beta. B \leq \forall L} \]

By i.h., \(D_0' \) derives \(\Psi, \beta \vdash [\tau/\alpha]A_0 \leq B \) where \(D_0' < D_0 \).

By \(\leq \forall L \), \(D' \) derives \(\Psi, \beta \vdash \forall \alpha. A_0 \leq B \); since \(D_0' < D_0 \), we have \(D' < D \).

\[\square \]

A’.7 Non-Circularity and Equality

Lemma 8 (Occurrence).

(i) If \(\Psi \vdash A \leq \tau \) then \(\tau \not\prec A \).

(ii) If \(\Psi \vdash \tau \leq B \) then \(\tau \not\prec B \).

Proof. By induction on the given derivation.

- **Cases** \(\leq \text{Var}, \leq \text{Unit} \): (i), (ii): Here A and B have no subterms at all, so the result is immediate.

- **Case**
\[\frac{\psi \vdash B_1 \leq A_1 \quad \psi \vdash A_2 \leq B_2}{\psi \vdash A_1 \rightarrow A_2 \leq B_1 \rightarrow B_2 \leq \rightarrow} \]

(i) Here, \(A = A_1 \rightarrow A_2 \) and \(\tau = B_1 \rightarrow B_2 \).

\(B_1 \not\prec A_1 \) By i.h. (ii)

\(B_1 \rightarrow B_2 \not\prec A_1 \) Suppose \(B_1 \rightarrow B_2 \leq A_1 \). Then \(B_1 \not\prec A_1 \): contradiction.

\(B_2 \not\prec A_2 \) By i.h. (i)

\(B_1 \rightarrow B_2 \not\prec A_2 \) Similar

Suppose (for a contradiction) that \(B_1 \rightarrow B_2 \not\prec A_1 \rightarrow A_2 \).

Now \(B_1 \rightarrow B_2 \leq A_1 \) or \(B_1 \rightarrow B_2 \leq A_2 \).

But above, we showed that both were false: contradiction.

Therefore, \(B_1 \rightarrow B_2 \not\equiv A_1 \rightarrow A_2 \).

Therefore, \(B_1 \rightarrow B_2 \not\prec A_1 \rightarrow A_2 \).

(ii) Here, \(A = \tau \) and \(B = B_1 \rightarrow B_2 \).

Symmetric to the previous case.

- **Case**
\[\frac{\psi \vdash \tau' \quad \psi \vdash [\tau'/\alpha]A_0 \leq \tau}{\psi \vdash \forall \alpha. A_0 \leq \tau \leq \forall L} \]

In part (ii), this case cannot arise, so we prove part (i). By i.h. (i), \(\tau \not\prec [\tau'/\alpha]A_0 \).

It follows from the definition of \(\not\prec \) that \(\tau \not\prec \forall \alpha. A_0 \).

- **Case**
\[\frac{\psi, \beta \vdash \tau \leq B_0}{\psi \vdash \tau \leq \forall \beta. B_0 \leq \forall R} \]

In part (i), this case cannot arise, so we prove part (ii). Similar to the \(\leq \forall L \) case.

\[\square \]

Lemma 9 (Monotype Equality). If \(\psi \vdash \sigma \leq \tau \) then \(\sigma = \tau \).
Proof. By induction on the given derivation.

- **Case** \(\leq \text{Var} \): Immediate.
- **Case** \(\leq \text{Unit} \): Immediate.
- **Case** \(\text{Case } \forall L \): Here \(\sigma = \forall \alpha. A_0 \), which is not a monotype, so this case is impossible.
- **Case** \(\leq \forall R \): Here \(\tau = \forall \beta. B_0 \), which is not a monotype, so this case is impossible.

\(B' \) Type Assignment

Lemma 10 (Well-Formedness).
If \(\Psi \vdash e \iff A \) or \(\Psi \vdash e \Rightarrow A \) or \(\Psi \vdash A \Rightarrow C \) then \(\Psi \vdash A \) (and in the last case, \(\Psi \vdash C \)).

Proof. By induction on the given derivation.

In all cases, we apply the induction hypothesis to all subderivations.

- In the DeclVar and Decl\(\rightarrow I \) cases, we use our standard assumption that every context appearing in a derivation is well-formed.
- In the Decl\(\rightarrow I \Rightarrow \) case, we use inversion on the \(\Psi \vdash \sigma \rightarrow \tau \) premise.
- In the Decl\(\forall \text{App} \) case, we use the property that if \(\Psi \vdash [\tau/\alpha]A_0 \) then \(\Psi \vdash \forall \alpha. A_0 \).
- In the DeclAnno case, we use its premise.

Theorem 1 (Completeness of Bidirectional Typing).
If \(\Psi \vdash e : A \) then there exists \(e' \) such that \(\Psi \vdash e' \Rightarrow A \) and \(|e'| = e \).

Proof. By induction on the derivation of \(\Psi \vdash e : A \).

- **Case** \(x : A \in \Psi \)

\(\Psi \vdash x : A \)

Immediate, by rule DeclVar.

- **Case** \(\Psi, x : A \vdash e : B \)

\(\Psi \vdash \lambda x. e : A \rightarrow B \)

A\(\rightarrow I \)

By inversion, we have \(\Psi, x : A \vdash e : B \).

By induction, we have \(\Psi, x : A \vdash e' \Rightarrow B \), where \(|e'| = e \).

By Lemma 3 (Reflexivity of Declarative Subtyping), \(\Psi \vdash B \leq B \).

By rule DeclSub, \(\Psi, x : A \vdash e' \Leftarrow B \).

By rule Decl\(\rightarrow I \), \(\Psi \vdash \lambda x. e' \Leftarrow A \rightarrow B \).

By Lemma 10 (Well-Formedness), \(\Psi \vdash A \rightarrow B \).

By rule DeclAnno, \(\Psi \vdash (\lambda x. e') : A \rightarrow B \Rightarrow A \rightarrow B \).

By definition, \(|((\lambda x. e') : A \rightarrow B)| = |\lambda x. e'| = \lambda x.|e'| = \lambda x. e \).
Lemma 11 (Subtyping Coercion). If $\Psi \vdash A \leq B$ then there exists f which is $\beta\eta$-equal to the identity such that $\Psi \vdash f : A \to B$.

Proof. By induction on the derivation of $\Psi \vdash A \leq B$.

- **Case** $\Psi \vdash e_1 : A \to B$, $\Psi \vdash e_2 : A$, $\Psi \vdash e_1 \; e_2 : B$

 By induction, $\Psi \vdash e_1' \Rightarrow A \to B$ and $|e_1'| = e_1$.

 By induction, $\Psi \vdash e_2' \Rightarrow A$ and $|e_2'| = e_2$.

 By Lemma 3 (Reflexivity of Declarative Subtyping), $\Psi \vdash A \leq A$.

- **Case** $\Psi, \alpha \vdash e : A$

 By induction, $\Psi, \alpha \vdash e' \Rightarrow A$ where $|e'| = e$.

- **Case** $\Psi \vdash e : \forall \alpha. A$

 By Lemma 3 (Reflexivity of Declarative Subtyping), $\Psi, \alpha \vdash A \leq A$.

- **Case** $\Psi \vdash e : [\tau/\alpha]A$

 By induction, $\Psi \vdash e' \Rightarrow \forall \alpha. A$ where $|e'| = e$.

- **Case** $\Psi \vdash e : [\tau/\alpha]A$

 By $\leq \forall \lambda$, $\Psi \vdash \forall \alpha. A \leq [\tau/\alpha]A$.

- **Case** $\Psi \vdash e' \Rightarrow [\tau/\alpha]A$.

 By Lemma 10 (Well-Formedness), $\Psi \vdash \forall \alpha. A$.

- **Case** $\Psi \vdash e' \Leftarrow [\tau/\alpha]A$.

 By Lemma 10 (Well-Formedness), $\Psi \vdash [\tau/\alpha]A$.

- **Case** $\Psi \vdash e : [\tau/\alpha]A$

 By definition, $|e'| : [\tau/\alpha]A = |e'| = e$.

- **Case** $\Psi \vdash e : [\tau/\alpha]A$

\[\square\]
Case \(\Gamma \vdash \tau \quad \Gamma \vdash [\tau/\alpha]A \leq B \)
\[
\Gamma \vdash \forall \alpha. A \leq B \quad \leq \forall L
\]

By induction, \(g : [\tau/\alpha]A \rightarrow B \).

Let \(f \equiv \lambda x.g x \).

\(f \) is an eta-expansion of \(g \), which is \(\beta \eta \)-equal to the identity. Hence \(f \) is too.

Also, \(\lambda x.g x : (\forall \alpha. A) \rightarrow B \), using the \(\text{Decl} \forall E \) rule on \(x \).

Case \(\Psi, \beta \vdash A \leq B \)
\[
\Psi \vdash A \leq \forall \beta. B \quad \leq \forall R
\]

By induction, we have \(g \) such that \(\Psi, \beta \vdash g : A \rightarrow B \).

Let \(f \equiv \lambda x.g x \).

Use the following derivation:

\[
\begin{align*}
\text{Weaken} & \quad \Psi, \beta \vdash g : A \rightarrow B \\
\text{Decl} \rightarrow \text{App} & \quad \Psi, x : A, \beta \vdash g : A \rightarrow B \\
\text{Decl} \forall \text{App} & \quad \Psi, x : A, \beta \vdash x : A \\
\text{Subderivation} & \quad \Psi, x : A \vdash g x : B \\
\text{Subderivation} & \quad \Psi, x : A \vdash \forall \beta. B \rightarrow \forall \beta. B \\
\end{align*}
\]

Lemma 12 (Application Subtyping). If \(\Gamma \vdash A \bullet e \Rightarrow C \) then there exists \(B \) such that \(\Gamma \vdash A \leq B \rightarrow C \) and \(\Gamma \vdash e \Leftarrow B \) by a smaller derivation.

Proof. By induction on the given derivation \(D \).

• Case \(\Gamma \vdash e \Leftarrow B \\
\Gamma \vdash B \rightarrow C \bullet e \Rightarrow C \)
\text{Decl} \rightarrow \text{App}

\(D' \equiv \Gamma \vdash e \Leftarrow B \)

Subderivation

\(D' < D \)

\(D' \) is a subderivation of \(D \)

\(\Psi \vdash B \rightarrow C \leq B \rightarrow C \)

\(\beta \eta \)-Reflexivity of Declarative Subtyping

Case \(\Gamma \vdash \tau \quad \Gamma \vdash [\tau/\alpha]A_0 \bullet e \Rightarrow C \)
\text{Decl/\text{App}}
\[
\begin{align*}
\Psi \vdash \forall \alpha. A_0 \bullet e \Rightarrow C \\
\text{Subderivation} & \quad \Psi \vdash [\tau/\alpha]A_0 \bullet e \Rightarrow C \\
\text{Subderivation} & \quad \Psi \vdash [\tau/\alpha]A_0 \leq B \rightarrow C \\
\text{By i.h.} & \quad \Psi \vdash B \rightarrow C \\
\end{align*}
\]

\(D' \equiv \Gamma \vdash e \Leftarrow B \)

\(D' < D \)

\(\Psi \vdash \forall \alpha. A_0 \leq B \rightarrow C \)

\(\beta \eta \)-Reflexivity of Declarative Subtyping

Theorem 2 (Soundness of Bidirectional Typing). We have that:

• If \(\Gamma \vdash e \Leftarrow A \), then there is an \(e' \) such that \(\Gamma \vdash e' : A \) and \(e' = \beta \eta | e | \).

• If \(\Gamma \vdash e \Rightarrow A \), then there is an \(e' \) such that \(\Gamma \vdash e' : A \) and \(e' = \beta \eta | e | \).

Proof.

• Case \((x : A) \in \Psi \)
\text{DeclVar}
\[
\begin{align*}
\Psi \vdash x \Rightarrow A \\
\end{align*}
\]

By rule \(\text{AVar} \), \(\Psi \vdash x : A \).

Note \(x = \beta \eta x \).
By induction, \(\Psi \vdash e' \colon A \) and \(e' =_\beta e \).
By Lemma 11 (Subtyping Coercion), \(f : A \to B \) such that \(f = _\beta \id \).
By \(A \der e, \Psi \vdash e' : B \).
Note \(f e' = _\beta \id e' = _\beta e = _\beta e' \).

Case
\[\begin{align*} \Psi \vdash & e \Rightarrow A \quad \Psi \vdash & e \Leftarrow A \quad \text{DeclSub} \\
\Psi \vdash & e \Leftarrow B \end{align*} \]
By induction, \(\Psi \vdash e' : A \) and \(e' = _\beta A \).

Case
\[\begin{align*} \Psi \vdash & A \quad \Psi \vdash & e \Leftarrow A \quad \text{DeclAno} \\
\Psi \vdash & (e : A) \Rightarrow A \end{align*} \]
By induction, \(\Psi \vdash e' : A \) such that \(e' = _\beta e \).
Note \(e' = _\beta e \).

Case
\[\Psi \vdash () \Leftarrow 1 \quad \text{Decl1I} \]
By AUnit, \(\Psi \vdash () : 1 \).
Note \(() = _\beta () \).

Case
\[\Psi \vdash () \Rightarrow 1 \quad \text{Decl1I} \]
By AUnit, \(\Psi \vdash () : 1 \).
Note \(() = _\beta () \).

Case
\[\begin{align*} \Psi, \alpha \vdash & e \Leftarrow A \quad \Psi \vdash & e \Leftarrow \forall \alpha. A \quad \text{DeclI} \\
\end{align*} \]
By induction, \(\Psi, \alpha \vdash e' : A \) such that \(e' = _\beta e \).
By rule A\(I\), \(\Psi \vdash \forall \alpha. A \).

Case
\[\begin{align*} \Psi, x : A \vdash & e \Leftarrow B \quad \text{Decl} \to I \\
\Psi & \vdash \lambda x. e \Leftarrow A \Rightarrow B \end{align*} \]
By induction, \(\Psi, x : A \vdash e' : B \) such that \(e' = _\beta e \).
By \(A \to I \), \(\Psi \vdash \lambda x. e' : A \to B \).
Note \(\lambda x. e' = _\beta \lambda x. e \).

Case
\[\begin{align*} \Psi & \vdash e \Rightarrow \sigma \quad \Psi, x : \sigma \vdash e \Leftarrow \tau \quad \text{Decl} \to I \Rightarrow \\
\Psi & \vdash \lambda x. e \Rightarrow \sigma \Rightarrow \tau \end{align*} \]
By induction, \(\Psi, x : \sigma \vdash e' : \tau \) such that \(e' = _\beta e \).
By \(A \to I \), \(\Psi \vdash \lambda x. e' : \sigma \Rightarrow \tau \).
Note \(\lambda x. e' = _\beta \lambda x. e \).

Case
\[\begin{align*} \Psi & \vdash e_1 \Rightarrow A \quad \Psi & \vdash A \bullet e_2 \Rightarrow C \\
\Psi & \vdash e_1 e_2 \Rightarrow C \quad \text{Decl} \to E \end{align*} \]
By induction, \(\Psi \vdash e'_1 : A \) such that \(e'_1 = _\beta e_1 \).
By Lemma 12 (Application Subtyping), there is a \(B \) such that
1. \(\Psi \vdash A \leq B \Rightarrow C \), and
2. \(\Psi \vdash e_2 \Leftarrow B \), which is no bigger than \(\Psi \vdash A \bullet e_2 \Rightarrow C \).
By Lemma 11 (Subtyping Coercion), we have \(f \) such that \(\Psi \vdash f : A \to B \to C \) and \(f = _\beta \id \).
By induction, we get \(\Psi \vdash e'_2 : B \) and \(e'_2 = _\beta e_2 \).
By \(A \to E \) twice, \(\Psi \vdash f e'_1 e'_2 \Rightarrow C \).
Note \(f e'_1 e'_2 = _\beta \id e'_1 e'_2 = _\beta e_1 e'_2 = _\beta e_1 | e_2 = _\beta e_1 | e_2 = e_1 e_2 \).
\[\Box \]
C’ Robustness of Typing

Lemma 13 (Type Substitution). Assume \(\psi \vdash \tau \).

- If \(\psi, \alpha, \psi' \vdash e \iff C \) then \(\psi, [\tau/\alpha]\psi' \vdash [\tau/\alpha]e' \iff [\tau/\alpha]C \).
- If \(\psi, \alpha, \psi' \vdash e \Rightarrow C \) then \(\psi, [\tau/\alpha]\psi' \vdash [\tau/\alpha]e' \Rightarrow [\tau/\alpha]C \).
- If \(\psi, \alpha, \psi' \vdash B \bullet e' \Rightarrow C \) then \(\psi, [\tau/\alpha]\psi' \vdash [\tau/\alpha]B \bullet [\tau/\alpha]e' \Rightarrow [\alpha/\alpha]C \).

Moreover, the resulting derivation contains no more applications of typing rules than the given one. (Internal subtyping derivations, however, may grow.)

Proof. By induction on the given derivation.

In the DeclVar case, split on whether the variable being typed is in \(\psi \) or \(\psi' \); the former is immediate, and in the latter, use the fact that \((x : C) \in \psi' \) implies \((x : [\tau/\alpha]C) \in [\tau/\alpha]\psi' \).

In the DeclSub case, use the i.h. and Lemma 5 (Substitution).

In the DeclAnno case, we are substituting in the annotation in the term, as well as in the type; we also need Proposition 2.

In Decl\(\rightarrow l \), Decl\(\rightarrow r \) and Decl\(\vdash \), we add to the context in the premise, which is why the statement is generalized for nonempty \(\psi' \).

\(\square \)

Lemma 14 (Subsumption). Suppose \(\psi' \leq \psi \). Then:

(i) If \(\psi \vdash e \iff A \) and \(\psi \vdash A \leq A' \) then \(\psi' \vdash e \iff A' \).

(ii) If \(\psi \vdash e \Rightarrow A \) then there exists \(A' \) such that \(\psi \vdash A' \leq A \) and \(\psi' \vdash e \Rightarrow A' \).

(iii) If \(\psi \vdash C \bullet e \Rightarrow A \) and \(\psi \vdash C' \leq C \) then there exists \(A' \) such that \(\psi \vdash A' \leq A \) and \(\psi' \vdash C' \bullet e \Rightarrow A' \).

Proof. By mutual induction: in (i), by lexicographic induction on the derivation of the checking judgment, then of the subtyping judgment; in (ii), by induction on the derivation of the synthesis judgment; in (iii), by lexicographic induction on the derivation of the application judgment, then of the subtyping judgment.

For part (i), checking:

- **Case** \(\psi \vdash e \Rightarrow B \) \(\psi \vdash B \leq A \) \(\psi \vdash e \iff A \) \(\psi \vdash e \Rightarrow B \) \(\psi' \vdash e \Rightarrow B' \) By i.h.

- \(\psi \vdash B \leq A \) \(\psi \vdash A \leq A' \) \(\psi \vdash B' \leq A' \) By Lemma 6 (Transitivity of Declarative Subtyping) (twice)

\(\iff \) \(\psi' \vdash e \iff A' \) By DeclSub

- **Case**

 - \(\psi \vdash () \iff 1 \) By Decl11

 - \(\psi' \vdash () \Rightarrow 1 \) By Decl11\(\Rightarrow \)

 - \(\psi \vdash 1 \leq A' \) Given

 - \(\psi' \vdash 1 \leq A' \) By weakening

\(\iff \) \(\psi' \vdash () \iff A' \) By DeclSub

21
• Case \(\Psi, \alpha \vdash e \Leftarrow A_0 \) \text{ Decl\var}\n
\(\Psi \vdash e \Leftarrow \forall \alpha. A_0 \) \text{ Decl\var}\n
We consider cases of \(\Psi \vdash \forall \alpha. A_0 \leq A' \):

- Case \(\Psi, \beta \vdash \forall \alpha. A_0 \leq B \) \n
\(\Psi \vdash \forall \alpha. A_0 \leq \forall \beta. B \leq \forall R \) \n
\(\Psi, \beta \vdash \forall \alpha. A_0 \leq B \) \text{ Subderivation}\n
\(\Psi \vdash e \Leftarrow \forall \alpha. A_0 \) \text{ Given}\n
\(\Psi' \vdash e \Leftarrow B \) \text{ By i.h. (i)}\n
\(\phi \Psi' \vdash e \Leftarrow \forall \beta. B \) \text{ By Decl\var}\n
- Case \(\Psi \vdash \tau \) \n
\(\Psi \vdash [\tau/\alpha]A_0 \leq A' \leq \forall L \) \n
\(\Psi, \alpha \vdash e \Leftarrow A_0 \) \text{ Subderivation}\n
\(\Psi \vdash e \Leftarrow [\tau/\alpha]A_0 \) \text{ By Lemma 13 (Type Substitution)}\n
\(\Psi \vdash [\tau/\alpha]A_0 \leq A' \) \text{ Subderivation}\n
\(\phi \Psi' \vdash e \Leftarrow A' \) \text{ By i.h. (i)}\n
• Case \(\Psi, \alpha \vdash e \Leftarrow A_0 \) \text{ Decl\var}\n
\(\Psi \vdash \lambda x. e_0 \Leftarrow A_1 \rightarrow A_2 \) \text{ Decl\rightarrow}\n
We consider cases of \(\Psi \vdash A_1 \rightarrow A_2 \leq A' \):

- Case \(\Psi \vdash B_1 \leq A_1 \) \n
\(\Psi \vdash A_1 \rightarrow A_2 \leq B_1 \rightarrow B_2 \leq \rightarrow \) \n
\(\Psi \leq \Psi' \) \text{ Given}\n
\(\Psi \vdash B_1 \leq A_1 \) \text{ Subderivation}\n
\(\Psi', x : B_1 \leq \Psi, x : A_1 \) \text{ By CtxSubVar}\n
\(\Psi', x : B_1 \vdash e_0 \Leftarrow B_2 \) \text{ By i.h. (i)}\n
\(\phi \Psi' \vdash \lambda x. e_0 \Leftarrow B_1 \rightarrow B_2 \) \text{ By Decl\rightarrow}\n
- Case \(\Psi, \beta \vdash A_1 \rightarrow A_2 \leq B' \) \n
\(\Psi + A_1 \rightarrow A_2 \leq \forall \beta. B' \leq \forall R \) \n
\(\Psi, \beta \vdash A_1 \rightarrow A_2 \leq B' \) \text{ Subderivation}\n
\(\Psi, \beta \vdash \lambda x. e_0 \Leftarrow A_1 \rightarrow A_2 \) \text{ By weakening}\n
\(\Psi', \beta \vdash \lambda x. e_0 \Leftarrow B' \) \text{ By i.h. (i)}\n
\(\phi \Psi' \vdash \lambda x. e_0 \Leftarrow \forall \beta. B' \) \text{ By Decl\var}\n
For part (ii), synthesis:

• Case \((x : A) \in \Psi \) \n
\(\Psi \vdash x \Rightarrow A \) \text{ DeclVar}\n
By inversion on \(\Psi' \leq \Psi \), we have \((x : A') \in \Psi' \) where \(\Psi' \vdash A' \leq A \). By DeclVar, \(\Psi' \vdash x \Rightarrow A' \).

• Case \(\Psi \vdash A \) \n
\(\Psi \vdash e_0 \Leftarrow A \) \text{ DeclAnno}\n
By inversion on \(\Psi' \leq \Psi \), we have \((e_0 : A') \in \Psi' \) where \(\Psi' \vdash A' \leq A \). By DeclAnno, \(\Psi' \vdash (e_0 : A) \Rightarrow A \).
Let $A' = A$.

$\Psi \vdash A$ \hspace{1cm} Subderivation

$\Psi' \vdash A$ \hspace{1cm} By weakening

$\Psi \vdash e_0 \iff A$ \hspace{1cm} Subderivation

$\Psi' \vdash e_0 \iff A$ \hspace{1cm} By i.h.

$\Psi' \vdash (e_0 : A) \Rightarrow A'$ \hspace{1cm} By DeclAnno and $A' = A$

$\Psi' \vdash A' \leq A$ \hspace{1cm} By Lemma 3 (Reflexivity of Declarative Subtyping)

• Case

$\Psi \vdash () \Rightarrow 1$ Decl11\Rightarrow

Let $A' = 1$.

$\Psi' \vdash () \Rightarrow 1$ \hspace{1cm} By Decl11\Rightarrow

$\Psi' \vdash 1 \leq 1$ \hspace{1cm} By \leqUnit

• Case

$\Psi \vdash \sigma \rightarrow \tau$ \hspace{1cm} Given

$\Psi', x : \sigma \leq \Psi, x : \sigma$ \hspace{1cm} By CtxSubVar

$\Psi, x : \sigma \vdash e_0 \iff \tau$ \hspace{1cm} Subderivation

$\Psi \vdash \tau \leq \tau$ \hspace{1cm} By Lemma 3 (Reflexivity of Declarative Subtyping)

$\Psi', x : \sigma \vdash e_0 \iff \tau$ \hspace{1cm} By i.h. (i) with τ

$\Psi \vdash A' \leq \sigma \rightarrow \tau$ \hspace{1cm} By Lemma 3 (Reflexivity of Declarative Subtyping)

$\Psi' \vdash \lambda x. e_0 \Rightarrow A'$ \hspace{1cm} By Decl\rightarrowI\Rightarrow

• Case

$\Psi \vdash e_1 \Rightarrow C$ \hspace{1cm} Subderivation

$\Psi' \vdash e_1 \Rightarrow C'$ \hspace{1cm} By i.h. (ii)

$\Psi \vdash C' \leq C$ \hspace{1cm} \hspace{1cm} "

$\Psi \vdash C \cdot e_2 \Rightarrow A$ \hspace{1cm} Subderivation

$\Psi \vdash A' \leq A$ \hspace{1cm} By i.h. (iii)

$\Psi' \vdash C' \cdot e_2 \Rightarrow A'$ \hspace{1cm} By Decl\rightarrowI\Rightarrow

$\Psi \vdash e_2 \Rightarrow A$ \hspace{1cm} Subderivation

$\Psi' \vdash e_1 e_2 \Rightarrow A'$ \hspace{1cm} By Decl\rightarrowE

For part (iii), application:

• Case

$\Psi \vdash \tau$ \hspace{1cm} Given

$\Psi \vdash [\tau/\alpha] C_0 \cdot e \Rightarrow A$ \hspace{1cm} Decl\forallApp

$\Psi \vdash \forall \alpha. C_0 \cdot e \Rightarrow A$ \hspace{1cm} \hspace{1cm} "

$\Psi, \alpha \vdash C' \leq C_0$ \hspace{1cm} By Lemma 7 (Invertibility)

$\Psi \vdash [\tau/\alpha] C' \leq [\tau/\alpha] C_0$ \hspace{1cm} By Lemma 5 (Substitution)

$\Psi \vdash C' \leq [\tau/\alpha] C_0$ \hspace{1cm} α cannot appear in C'

$\Psi \vdash [\tau/\alpha] C_0 \cdot e \Rightarrow A$ \hspace{1cm} Subderivation

$\Psi' \vdash C' \cdot e \Rightarrow A'$ \hspace{1cm} By i.h. (iii)

$\Psi' \vdash A' \leq A$ \hspace{1cm} \hspace{1cm} "

23
\[\Psi \vdash \tau \quad \Psi \vdash [\tau/\beta]B \leq C_0 \rightarrow A \leq \gamma L \]

- **Case**
 \[\Psi \vdash \forall \beta, B \leq C_0 \rightarrow A \text{ Subderivation} \]
 \[\Psi \vdash [\tau/\beta]B \leq C_0 \rightarrow A \text{ Subderivation} \]
 \[\Psi' \vdash [\tau/\beta]B \bullet e \Rightarrow A' \text{ By i.h. (iii)} \]
 \[\Psi' \vdash A' \leq A \quad \text{Subderivation} \]
 \[\Psi \vdash \tau \quad \text{Subderivation} \]
 \[\Psi' \vdash \tau \quad \text{By weakening} \]
 \[\Psi' \vdash \forall \beta, B \bullet e \Rightarrow A' \quad \text{By Decl/App} \]

Theorem 3 (Substitution).
Assume \(\Psi \vdash e \Rightarrow A\).

(i) If \(\Psi, x : A \vdash e' \Leftarrow C\) then \(\Psi \vdash [e/x]e' \Leftarrow C\).

(ii) If \(\Psi, x : A \vdash e' \Rightarrow C\) then \(\Psi \vdash [e/x]e' \Rightarrow C\).

(iii) If \(\Psi, x : A \vdash B \bullet e' \Rightarrow C\) then \(\Psi \vdash B \bullet [e/x]e' \Rightarrow C\).

Proof. By a straightforward mutual induction on the given derivation. \(\square\)

Theorem 4 (Inverse Substitution).
Assume \(\Psi \vdash e \Leftarrow A\).

(i) If \(\Psi \vdash [(e : A)/x]e' \Leftarrow C\) then \(\Psi, x : A \vdash e' \Leftarrow C\).

(ii) If \(\Psi \vdash [(e : A)/x]e' \Rightarrow C\) then \(\Psi, x : A \vdash e' \Rightarrow C\).

(iii) If \(\Psi \vdash B \bullet [(e : A)/x]e' \Rightarrow C\) then \(\Psi, x : A \vdash B \bullet e' \Rightarrow C\).

Proof. By mutual induction on the given derivation.

(i) We have \(\Psi \vdash [(e : A)/x]e' \Leftarrow C\).

- **Case**
 \[\Psi \vdash [(e : A)/x]e' \Rightarrow B \quad \Psi \vdash B \leq C \quad \text{DeclSub} \]
 \[\Psi \vdash [(e : A)/x]e' \Leftarrow C \quad \text{By i.h. (ii), } \Psi, x : A \vdash e' \Rightarrow B. \]
 \[\text{By DeclSub, } \Psi, x : A \vdash e' \Leftarrow C. \]

- **Case**
 \[\Psi \vdash () \Leftarrow \frac{1}{C} \quad \text{Decl11} \]
 \[\text{We have } [(e : A)/x]e' = (). \text{ Therefore } e' = (), \text{ and the result follows by Decl11.} \]
• **Case** \(\Psi, \alpha \vdash [(e : A)/x]e' \iff C'\)
 \[\Psi \vdash [(e : A)/x]e' \iff \forall \alpha. C'\]
 By i.h. (i), \(\Psi, \alpha, x : A \vdash e' \iff C'\).
 By exchange, \(\Psi, x : A, \alpha \vdash e' \iff C'\).
 By Decl'\(\Psi, x : A \vdash e' \iff \forall \alpha. C'\).

• **Case** \(\Psi, y : C_1 \vdash e'' \iff C_2\)
 \[\Psi \vdash \lambda y. e'' \iff C_1 \rightarrow C_2\]
 By above equality
 By the definition of substitution, \(e' = \lambda y. e_0\) and \(e'' = [(e : A)/x]e_0\).
 \[\Psi, y : C_1 \vdash [(e : A)/x]e_0 \iff C_2\]
 By exchange (i)
 By DeclAnno, \(\Psi \vdash (e : A) \Rightarrow A\).
 By DeclVar, \(\Psi, x : A \vdash \lambda e_0 \Rightarrow A\).

(ii) We have \(\Psi \vdash [(e : A)/x]e' \Rightarrow C\).

• **Case** \(e' = x:\)
 Note \([(e : A)/x]x = (e : A)\).
 Hence \(\Psi \vdash (e : A) \Rightarrow C\); by inversion, \(C = A\).
 By Lemma 10 (Well-Formedness), \(\Psi \vdash C\), which is \(\Psi \vdash A\).
 By DeclAnno, \(\Psi \vdash (e : A) \Rightarrow A\).
 By DeclVar, \(\Psi, x : A \vdash x \Rightarrow A\).

• **Case** \(e' \neq x:\)
 We now proceed by cases on the derivation of \(\Psi \vdash [(e : A)/x]e' \Rightarrow C\).

 – **Case** \((y : C) \in \Psi\)
 \[\Psi \vdash y \Rightarrow C\]
 DeclVar
 Since \([(e : A)/x]e' = y\), we know that \(e' = y\).
 By DeclVar, \(\Psi, x : A \vdash y \Rightarrow C\).

 – **Case** \(\Psi \vdash e'' \iff C\)
 \[\Psi \vdash (e'' : C) \Rightarrow C\]
 DeclAnno
 We know \([(e : A)/x]e' = (e'' : C)\) and \(e' \neq x\).
 Hence there is \(e_0\) such that \(e' = (e_0 : C)\) and \([(e : A)/x]e_0 = e''\).
 \[\Psi \vdash e'' \iff C\]
 Subderivation
 \[\Psi \vdash [(e : A)/x]e_0 \iff C\]
 By above equality
 \[\Psi, x : A \vdash e_0 \iff C\]
 By i.h. (i)
 \[\Psi, x : A \vdash C\]
 By Lemma 10 (Well-Formedness)
 \[\Psi, x : A \vdash (e_0 : C) \Rightarrow C\]
 By DeclAnno
 \[\Psi, x : A \vdash e' \Rightarrow C\]
 By DeclAnno

 – **Case** \(\Psi \vdash () \Rightarrow 1\)
 Decl1⇒
 Since \([(e : A)/x]e' = ()\), it follows that \(e' = ()\).
 By Decl1⇒, \(\Psi, x : A \vdash () \Rightarrow 1\).
The third, which additionally requires a small induction on the application judgment.

Proof. All of these follow directly from inversion and Lemma 14 (Subsumption). The one exception is the third, which additionally requires a small induction on the application judgment.
Case \(\Psi, x : B \vdash e \ x \triangleq C\)
By \(\text{Decl}\rightarrow\text{I}\)
\[\Psi \vdash \lambda x. e \ x \triangleq B \rightarrow C\]
We have \(\Psi, x : B \vdash e \ x \triangleq C\).
By inversion on \(\text{DeclSub}\), we get \(\Psi, x : B \vdash e \rightarrow C'\) and \(\Psi \vdash C' \leq C\).
By inversion on \(\text{Decl}\rightarrow\text{E}\), we get \(\Psi, x : B \vdash A' \rightarrow C'\) and \(\Psi, x : B \vdash x \triangleq B'\).
By thinning, we know that \(\Psi \vdash e \rightarrow A'\).
By Lemma [12] (Application Subtyping), we get \(B'\) so \(\Psi, x : B \vdash A' \leq B' \rightarrow C'\) and \(\Psi, x : B \vdash x \triangleq B'\).
By inversion, we know that \(\Psi, x : B \vdash x \rightarrow B\) and \(\Psi \vdash B \leq B'\).
By \(\leq \rightarrow\), \(\Psi, x : B \vdash B' \rightarrow C' \leq B \rightarrow C\).
Hence by Lemma [6] (Transitivity of Declarative Subtyping), \(\Psi, x : B \vdash A' \leq B \rightarrow C\).
Hence \(\Psi \vdash A' \leq B \rightarrow C\).
By \(\text{DeclSub}\), \(\Psi \vdash e \triangleq B \rightarrow C\).

Case \(\Psi, \alpha \vdash \lambda x. e \ x \triangleq B\)
By induction, \(\Psi, \alpha \vdash \lambda x. e \ x \triangleq B\).
By \(\text{Decl}\rightarrow\text{I}\), \(\Psi \vdash \lambda x. e \ x \triangleq \forall \alpha. B\).

Case
\[
\begin{align*}
\Psi & \vdash \lambda x. e \ x \rightarrow B \\
\Psi \vdash B \rightarrow A
\end{align*}
\]
Decl\rightarrow\text{E}
We have \(\Psi \vdash \lambda x. e \ x \rightarrow B\) and \(\Psi \vdash B \leq A\).
By inversion on \(\text{Decl}\rightarrow\text{I}\), \(\Psi, x : \sigma \vdash e \ x \triangleq \tau\) and \(B = \sigma \rightarrow \tau\).
By inversion on \(\text{DeclSub}\), we get \(\Psi, x : \sigma \vdash e \ x \rightarrow C_2\) and \(\Psi \vdash C_2 \leq \tau\).
By inversion on \(\text{Decl}\rightarrow\text{E}\), we get \(\Psi, x : \sigma \vdash e \rightarrow C\) and \(\Psi, x : \sigma \vdash C \bullet x \rightarrow C_2\).
By thinning, we know that \(\Psi \vdash e \rightarrow C\).
By Lemma [12] (Application Subtyping), we get \(C_1\) such that \(\Psi, x : \sigma \vdash C \leq C_1 \rightarrow C_2\) and \(\Psi, x : \sigma \vdash x \triangleq C_1\).
By inversion on \(\text{DeclSub}\), \(\Psi, x : \sigma \vdash x \rightarrow \sigma\) and \(\Psi \vdash \sigma \leq C_1\).
By \(\leq \rightarrow\), \(\Psi, x : \sigma \vdash C_1 \rightarrow C_2 \leq \sigma \rightarrow \tau\).
Hence by Lemma [6] (Transitivity of Declarative Subtyping), \(\Psi, x : \sigma \vdash C \leq \sigma \rightarrow \tau\).
Hence \(\Psi \vdash C \leq \sigma \rightarrow \tau\).
Hence by Lemma [6] (Transitivity of Declarative Subtyping), \(\Psi \vdash C \leq A\).
By \(\text{DeclSub}\), \(\Psi \vdash e \triangleq A\). \(\square\)

D' Properties of Context Extension

D'.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If \(\Gamma \rightarrow \Delta\), and \(u\) is a variable or marker \(\triangleright_\Delta\) declared in \(\Gamma\), then \(u\) is declared in \(\Delta\).

Proof. By a routine induction on \(\Gamma \rightarrow \Delta\). \(\square\)

Lemma 16 (Declaration Order Preservation). If \(\Gamma \rightarrow \Delta\) and \(u\) is declared to the left of \(v\) in \(\Gamma\), then \(u\) is declared to the left of \(v\) in \(\Delta\).

Proof. By induction on the derivation of \(\Gamma \rightarrow \Delta\).

Case \(\rightarrow\text{id}\)
This case is impossible.

27
There are two cases, depending on whether or not \(v = x \).

- **Case** \(v = x \):
 Since \(u \) is declared to the left of \(v \), \(u \) is declared in \(\Gamma \).
 By Lemma 15 (Declaration Preservation), \(u \) is declared in \(\Delta \).
 Hence \(u \) is declared to the left of \(x \) in \(\Delta, x : A \).

- **Case** \(v \neq x \):
 Then \(v \) is declared in \(\Gamma \), and \(u \) is declared to the left of \(v \) in \(\Gamma \).
 By induction, \(u \) is declared to the left of \(v \) in \(\Delta \).
 Hence \(u \) is declared to the left of \(v \) in \(\Delta, x : A \).

Proof. It is given that \(u \) and \(v \) are declared in \(\Gamma \). Either \(u \) is declared to the left of \(v \) in \(\Gamma \), or \(v \) is declared to the left of \(u \). Suppose the latter (for a contradiction). By Lemma 16 (Declaration Order Preservation), \(v \) is declared to the left of \(u \) in \(\Delta \). But we know that \(u \) is declared to the left of \(v \) in \(\Delta \): contradiction.

Therefore \(u \) is declared to the left of \(v \) in \(\Gamma \). \(\Box \)
Lemma 18 (Substitution Extension Invariance). If $\Theta \vdash A$ and $\Theta \rightarrow \Gamma$ then $[\Gamma]A = [\Gamma][\Theta]A$ and $[\Gamma]A = ([\Theta][\Gamma]A)$.

Proof. To show that $[\Gamma]A = [\Theta][\Gamma]A$, observe that $\Theta \vdash A$, and that by definition of $\Theta \rightarrow \Gamma$, every solved variable in Θ is solved in Γ. Therefore $[\Theta][\Gamma]A = [\Gamma]A$, since unsolved($[\Gamma]A$) contains no variables that Θ solves.

To show that $[\Gamma]A = [\Gamma][\Theta]A$, we proceed by induction on $[\Gamma]A$.

- **Case** $\alpha \in \Theta$

 $\Theta \vdash \alpha$

 Note that $[\Gamma]\alpha = \alpha = [\Gamma][\Theta]\alpha$.

- **Case** $\Theta \vdash A$

 $\Theta \vdash B$

 $\Theta \vdash A \rightarrow B$

 Then

 $[\Gamma](A \rightarrow B) = [\Gamma]A \rightarrow [\Gamma]B$ By definition of substitution

 $= [\Gamma][\Theta]A \rightarrow [\Gamma][\Theta]B$ By induction hypothesis (twice)

 $= [\Gamma][\Theta][\Gamma]A \rightarrow [\Theta]B$ By definition of substitution

 $= [\Gamma][\Theta](A \rightarrow B)$ By definition of substitution

- **Case** $\Theta, \alpha \vdash A$

 $\Theta \vdash \forall \alpha. A$

 By inversion, we have $\Theta, \alpha \vdash A$.

 By rule $\rightarrow \forall \text{Uvar}$, $\Theta, \alpha \rightarrow \Gamma, \alpha$.

 By induction, $[\Gamma, \alpha]A = [\Gamma, \alpha][\Theta, \alpha]A$.

 Then

 $[\Gamma]\forall \alpha. A = \forall \alpha. [\Gamma]A$ By definition

 $= \forall \alpha. [\Gamma][\Theta]A$ By conclusion above

 $= [\Gamma]\forall \alpha. [\Theta]A$ By definition

 $= [\Gamma][\Theta]\forall \alpha. A$ By definition

 $= [\Gamma, \alpha][\Theta, \alpha](\forall \alpha. A)$ By definition

- **Case**

 $\Theta_0, \hat{\alpha}, \Theta_1 \vdash \hat{\alpha}$

 Θ

 Note that $[\Theta]\hat{\alpha} = \hat{\alpha}$.

 Hence $[\Gamma]\hat{\alpha} = [\Gamma]\hat{\alpha}$.

- **Case**

 $\Theta_0, \hat{\alpha} = \tau, \Theta_1 \vdash \hat{\alpha}$

 From $\Theta \rightarrow \Gamma$, By a nested induction we get $\Gamma = \Gamma_0, \hat{\alpha} = \tau', \Gamma_1$, and $[\Gamma]\tau' = [\Gamma]\tau$.

 Note that $[\Theta]\tau < [\Theta]\hat{\alpha}$.

 By induction, $[\Gamma]\tau = [\Gamma][\Theta]\tau$.

 Hence

 $[\Gamma]\hat{\alpha} = [\Gamma]\tau'$ By definition

 $= [\Gamma]\tau$ From the extension judgment

 $= [\Gamma][\Theta]\tau$ From the induction hypothesis

 $= [\Gamma][\Theta]\hat{\alpha}$ By definition
Lemma 19 (Extension Equality Preservation).
If \(\Gamma \vdash A \) and \(\Gamma \vdash B \) and \([\Gamma]A = [\Gamma]B \) and \(\Gamma \rightarrow \Delta \), then \([\Delta]A = [\Delta]B \).

Proof. By induction on the derivation of \(\Gamma \rightarrow \Delta \).

- Case \(\Gamma \rightarrow \Delta \)
 \(\Gamma \rightarrow \Delta \rightarrow \text{ID} \)
 We have \([\Gamma]A = [\Gamma]B \), but \(\Gamma = \Delta \), so \([\Delta]A = [\Delta]B \).

- Case \(\Gamma' \rightarrow \Delta' \)
 \(\Gamma', x : C \rightarrow \Delta', x : C \rightarrow \text{Var} \)
 We have \([\Gamma', x : C]A = [\Gamma', x : C]B \).
 By definition of substitution, \([\Gamma']A = [\Gamma']B \).
 By i.h., \([\Delta']A = [\Delta']B \).
 By definition of substitution, \([\Delta', x : C]A = [\Delta', x : C]B \).

- Case \(\Gamma' \rightarrow \Delta' \)
 \(\Gamma', \alpha \rightarrow \Delta', \alpha \rightarrow \text{Uvar} \)
 We have \([\Gamma', \alpha]A = [\Gamma', \alpha]B \).
 By definition of substitution, \([\Gamma']A = [\Gamma']B \).
 By i.h., \([\Delta']A = [\Delta']B \).
 By definition of substitution, \([\Delta', \alpha]A = [\Delta', \alpha]B \).

- Case \(\Gamma' \rightarrow \Delta' \)
 \(\Gamma', \hat{\alpha} \rightarrow \Delta', \hat{\alpha} \rightarrow \text{Unsolved} \)
 Similar to the \(\rightarrow \text{Uvar} \) case.

- Case \(\Gamma' \rightarrow \Delta' \)
 \(\Gamma', \hat{\alpha} \rightarrow \Delta', \hat{\alpha} \rightarrow \text{Marker} \)
 Similar to the \(\rightarrow \text{Uvar} \) case.

- Case \(\Gamma \rightarrow \Delta' \)
 \(\Gamma \rightarrow \Delta', \hat{\alpha} \rightarrow \text{Add} \)
 We have \([\Gamma]A = [\Gamma]B \).
 By i.h., \([\Delta']A = [\Delta']B \).
 By definition of substitution, \([\Delta', \hat{\alpha}]A = [\Delta', \hat{\alpha}]B \).

- Case \(\Gamma \rightarrow \Delta' \)
 \(\Gamma \rightarrow \Delta', \hat{\alpha} = \tau \rightarrow \text{AddSolved} \)
 We have \([\Gamma]A = [\Gamma]B \).
 By i.h., \([\Delta']A = [\Delta']B \).
 We implicitly assume that \(\Delta \) is well-formed, so \(\hat{\alpha} \notin \text{dom}(\Delta') \).
 Since \(\Gamma \rightarrow \Delta' \) and \(\hat{\alpha} \notin \text{dom}(\Delta') \), it follows that \(\hat{\alpha} \notin \text{dom}(\Gamma) \).
 We have \(\Gamma \vdash A \) and \(\Gamma \vdash B \), so \(\hat{\alpha} \notin (\text{FV}(A) \cup \text{FV}(B)) \).
 Therefore, by definition of substitution, \([\Delta', \hat{\alpha} = \tau]A = [\Delta', \hat{\alpha} = \tau]B \).
By induction on the derivation of Lemma 21

Lemma 20 (Reflexivity). If \(\Gamma \) is well-formed, then \(\Gamma \rightarrow \Gamma \).

Proof. By induction on the structure of \(\Gamma \).

- **Case** \(\Gamma \rightarrow \Delta \):
 - Apply rule \(\rightarrow \Pi \).
- **Case** \(\Delta \rightarrow \Theta \):
 - By rule \(\rightarrow \Pi \).
- **Case** \(\Gamma \rightarrow \Delta \):
 - By i.h., \(\Gamma \rightarrow \Delta \). By rule \(\leftarrow \Pi \), we get \(\Gamma \rightarrow \Delta \).
- **Case** \(\Gamma \rightarrow \Delta \):
 - By i.h., \(\Gamma \rightarrow \Delta \). By rule \(\rightarrow \Pi \), we get \(\Gamma \rightarrow \Delta \).

By i.h., \(\Delta \rightarrow \Theta \).

Hence \(\Gamma \rightarrow \Delta \) suffices.

Lemma 21 (Transitivity). If \(\Gamma \rightarrow \Delta \) and \(\Delta \rightarrow \Theta \), then \(\Gamma \rightarrow \Theta \).

Proof. By induction on the derivation of \(\Delta \rightarrow \Theta \).

- **Case** \(\rightarrow \Pi \):
 - In this case \(\Theta = \Delta \).
 - Hence \(\Gamma \rightarrow \Delta \) suffices.
- **Case** \(\Delta \rightarrow \Theta \):
 - By rule \(\rightarrow \Pi \).

We have \(\Delta = (\Delta', \alpha) \) and \(\Theta = (\Theta', \alpha) \).

By inversion on \(\Gamma \rightarrow \Delta \), we have \(\Gamma = (\Gamma', \alpha) \) and \(\Gamma' \rightarrow \Delta' \).

By i.h., \(\Gamma' \rightarrow \Theta' \).

Applying rule \(\rightarrow \Pi \) gives \(\Gamma', \alpha \rightarrow \Theta', \alpha \).
• Case \(\Delta' \rightarrow \Theta' \)
\(\Delta', \hat{\alpha} \rightarrow \Theta', \hat{\alpha} \rightarrow \text{Unvar} \)

We have \(\Delta = (\Delta', \hat{\alpha}) \) and \(\Theta = (\Theta', \hat{\alpha}) \).

Either of two rules could have derived \(\Gamma \rightarrow \Delta \):

- Case \(\Gamma' \rightarrow \Delta' \)
 \(\Gamma', \hat{\alpha} \rightarrow \Delta', \hat{\alpha} \rightarrow \text{Unsolved} \)

 Here we have \(\Gamma = (\Gamma', \hat{\alpha}) \) and \(\Gamma' \rightarrow \Delta' \).
 By i.h., \(\Gamma' \rightarrow \Theta' \).
 Applying rule \(\rightarrow \text{Unsolved} \) gives \(\Gamma', \hat{\alpha} \rightarrow \Theta', \hat{\alpha} \).

- Case \(\Gamma \rightarrow \Delta' \)
 \(\Gamma \rightarrow \Delta', \hat{\alpha} \rightarrow \text{Add} \)

 By i.h., \(\Gamma \rightarrow \Theta' \).
 By rule \(\rightarrow \text{Add} \), we get \(\Gamma \rightarrow \Theta', \hat{\alpha} \).

• Case \(\Delta' \rightarrow \Theta' \)
 \([\Theta']\tau_1 = [\Theta']\tau_2 \rightarrow \text{Solved} \)
 \(\Delta', \hat{\alpha} = \tau_1 \rightarrow \Theta', \hat{\alpha} = \tau_2 \rightarrow \text{Solved} \)

In this case \(\Delta = (\Delta', \hat{\alpha} = \tau_1) \) and \(\Theta = (\Theta', \hat{\alpha} = \tau_2) \).

One of three rules must have derived \(\Gamma \rightarrow \Delta', \hat{\alpha} = \tau \):

- Case \(\Gamma' \rightarrow \Delta' \)
 \([\Delta']\tau_0 = [\Delta']\tau_1 \rightarrow \text{Solved} \)

 Here, \(\Gamma = (\Gamma', \hat{\alpha} = \tau_0) \) and \(\Delta = (\Delta', \hat{\alpha} = \tau_1) \).
 By i.h., we have \(\Gamma' \rightarrow \Theta' \).
 The premises of the respective \(\rightarrow \) derivations give us \([\Delta']\tau_0 = [\Delta']\tau_1 \) and \([\Theta']\tau_1 = [\Theta']\tau_2 \).
 We know that \(\Gamma' \vdash \tau_0 \) and \(\Delta' \vdash \tau_1 \) and \(\Theta' \vdash \tau_2 \).
 By extension weakening (Lemma 25 [Extension Weakening]), \(\Theta' \vdash \tau_0 \).
 By extension weakening (Lemma 25 [Extension Weakening]), \(\Theta' \vdash \tau_1 \).
 Since \([\Delta']\tau_0 = [\Delta']\tau_1 \), we know that \([\Theta'] [\Delta']\tau_0 = [\Theta'] [\Delta']\tau_1 \).
 By Lemma 18 [Substitution Extension Invariance], \([\Theta'] [\Delta']\tau_0 = [\Theta'] [\Delta']\tau_1 \).
 By Lemma 18 [Substitution Extension Invariance], \([\Theta'] [\Delta']\tau_1 = [\Theta'] \tau_1 \).
 So \([\Theta']\tau_0 = [\Theta']\tau_1 \).

 Hence by transitivity of equality, \([\Theta']\tau_0 = [\Theta']\tau_1 = [\Theta']\tau_2 \).
 By rule \(\rightarrow \text{Solved} \), \(\Gamma', \hat{\alpha} = \tau \rightarrow \Theta', \hat{\alpha} = \tau_2 \).

- Case \(\Gamma \rightarrow \Delta' \)
 \(\Gamma \rightarrow \Delta', \hat{\alpha} = \tau_1 \rightarrow \text{AddSolved} \)

 By induction, we have \(\Gamma \rightarrow \Theta' \).
 By rule \(\rightarrow \text{AddSolved} \), we get \(\Gamma \rightarrow \Theta', \hat{\alpha} = \tau_2 \).

- Case \(\Gamma' \rightarrow \Delta' \)
 \(\Gamma' \rightarrow \Delta', \hat{\alpha} = \tau_1 \rightarrow \text{Solve} \)

 We have \(\Gamma = (\Gamma', \hat{\alpha}) \).
 By induction, \(\Gamma' \rightarrow \Theta' \).
 By rule \(\rightarrow \text{Solve} \), we get \(\Gamma', \hat{\alpha} \rightarrow \Theta', \hat{\alpha} = \tau_2 \).
• Case \(\Delta' \rightarrow \Theta' \)

\[
\begin{array}{c}
\Delta', \alpha \rightarrow \Theta', \alpha \\
\rightarrow \text{Marker}
\end{array}
\]

In this case we know \(\Delta = (\Delta', \alpha) \) and \(\Theta = (\Theta', \alpha) \).
Since \(\Delta = (\Delta', \alpha) \), only \(\rightarrow \text{Marker} \) could derive \(\Gamma \rightarrow \Delta \), so by inversion, \(\Gamma = (\Gamma', \alpha) \) and \(\Gamma' \rightarrow \Delta' \).
By induction, we have \(\Gamma' \rightarrow \Theta' \).
Applying rule \(\rightarrow \text{Marker} \) gives \(\Gamma', \alpha \rightarrow \Theta', \alpha \).

• Case \(\Delta \rightarrow \Theta' \)

\[
\begin{array}{c}
\Delta \rightarrow \Theta', \alpha \\
\rightarrow \text{Add}
\end{array}
\]

In this case, we have \(\Theta = (\Theta', \alpha) \).
By induction, we get \(\Gamma \rightarrow \Theta' \).
By rule \(\rightarrow \text{Add} \), we get \(\Gamma \rightarrow \Theta' \).

• Case \(\Delta \rightarrow \Theta', \alpha = \tau \)

\[
\begin{array}{c}
\Delta \rightarrow \Theta', \alpha = \tau \\
\rightarrow \text{AddSolved}
\end{array}
\]

In this case, we have \(\Theta = (\Theta', \alpha = \tau) \).
By induction, we get \(\Gamma \rightarrow \Theta' \).
By rule \(\rightarrow \text{AddSolved} \), we get \(\Gamma \rightarrow \Theta' \).

• Case \(\Delta' \rightarrow \Theta' \)

\[
\begin{array}{c}
\Delta', \alpha \rightarrow \Theta', \alpha = \tau \\
\rightarrow \text{Solve}
\end{array}
\]

In this case, we have \(\Delta = (\Delta', \alpha) \) and \(\Theta = (\Theta', \alpha = \tau) \).
One of two rules could have derived \(\Gamma \rightarrow \Delta', \alpha \):

- Case \(\Gamma' \rightarrow \Delta' \)

\[
\begin{array}{c}
\Gamma', \alpha \rightarrow \Delta', \alpha \\
\rightarrow \text{Unsolved}
\end{array}
\]

In this case, we have \(\Gamma = (\Gamma', \alpha) \) and \(\Gamma' \rightarrow \Delta' \) and \(\Delta' \rightarrow \Theta' \).
By induction, we have \(\Gamma' \rightarrow \Theta' \).
By rule \(\rightarrow \text{Solve} \), we get \(\Gamma', \alpha \rightarrow \Theta', \alpha = \tau \).

- Case \(\Gamma \rightarrow \Delta' \)

\[
\begin{array}{c}
\Gamma \rightarrow \Delta', \alpha \\
\rightarrow \text{Add}
\end{array}
\]

In this case, we have \(\Gamma \rightarrow \Delta' \) and \(\Delta' \rightarrow \Theta' \).
By induction, we have \(\Gamma \rightarrow \Theta' \).
By rule \(\rightarrow \text{Solve} \), we get \(\Gamma \rightarrow \Theta', \alpha = \tau \). \(\square \)

Lemma 22 (Right Softness). If \(\Gamma \rightarrow \Delta \) and \(\Theta \) is soft (and \(\Delta, \Theta \) is well-formed) then \(\Gamma \rightarrow \Delta, \Theta \).

\(\text{Proof.} \) By induction on \(\Theta \), applying rules \(\rightarrow \text{Add} \) and \(\rightarrow \text{AddSolved} \) as needed. \(\square \)

Lemma 23 (Evar Input).
If \(\Gamma, \alpha \rightarrow \Delta \) then \(\Delta = (\Delta_0, \Delta_\alpha, \Theta) \) where \(\Gamma \rightarrow \Delta_0 \), and \(\Delta_\alpha \) is either \(\alpha \) or \(\alpha = \tau \), and \(\Theta \) is soft.

\(\text{Proof.} \) By induction on the given derivation.

• Cases \(\rightarrow \text{ID}, \rightarrow \text{Var}, \rightarrow \text{Uvar}, \rightarrow \text{Solved}, \rightarrow \text{Marker} \):

Impossible: the left-hand context cannot have the form \(\Gamma, \alpha \).
• Case \(\Gamma \rightarrow \Delta_0 \)
 \(\Gamma, \Delta \rightarrow \Delta_0, \Delta \)
 \(\Delta \rightarrow \text{Unsolved} \)

Let \(\Theta = \cdot \), which is vacuously soft. Therefore \(\Delta = (\Delta_0, \Delta) = (\Delta_0, \Delta, \Theta) \); the subderivation is the rest of the result.

• Case \(\Gamma \rightarrow \Delta_0 \)
 \(\Gamma, \Delta \rightarrow \Delta_0, \Delta \)
 \(\Delta \rightarrow \text{Solve} \)

Let \(\Theta = \cdot \), which is vacuously soft. Therefore \(\Delta = (\Delta_0, \Delta) = (\Delta_0, \Delta, \Theta) \); the subderivation is the rest of the result.

• Case \(\Gamma, \Delta \rightarrow \Delta_0 \)
 \(\Gamma, \Delta \rightarrow \Delta_0, \Delta \)
 \(\Delta \rightarrow \text{Add} \)

Suppose \(\Delta = \cdot \).

We have \(\Gamma, \Delta \rightarrow \Delta_0 \). By Lemma 15 (Declaration Preservation), \(\Delta \) is declared in \(\Delta_0 \).

But then \((\Delta_0, \Delta) = (\Delta_0, \Delta) \) with multiple \(\Delta \) declarations,

which violates the implicit assumption that \(\Delta \) is well-formed. Contradiction.

Therefore \(\Delta = \cdot \).

By i.h., \(\Delta' = (\Delta_0, \Delta, \Theta') \) where \(\Gamma \rightarrow \Delta_0 \) and \(\Theta' \) is soft.

Let \(\Theta = (\Theta', \Delta) \). Therefore \((\Delta', \Delta) = (\Delta_0, \Delta, \Theta', \Delta) \). As \(\Theta' \) is soft, \((\Theta', \Delta) \) is soft. Since \(\Delta = (\Delta', \Delta) \),

this gives \(\Delta = (\Delta_0, \Delta, \Theta) \).

• Case \(\rightarrow \text{AddSolved} \): Similar to the case for \(\rightarrow \text{Add} \).

\[\square \]

Lemma 24 (Extension Order).

(i) If \(\Gamma_L, \alpha, \Gamma_R \rightarrow \Delta \) then \(\Delta = (\Delta_L, \alpha, \Delta_R) \) where \(\Gamma_L \rightarrow \Delta_L \).

Moreover, if \(\Gamma_R \) is soft then \(\Delta_R \) is soft.

(ii) If \(\Gamma_L, \Delta, \Gamma_R \rightarrow \Delta \) then \(\Delta = (\Delta_L, \Delta, \Delta_R) \) where \(\Gamma_L \rightarrow \Delta_L \).

Moreover, if \(\Gamma_R \) is soft then \(\Delta_R \) is soft.

(iii) If \(\Gamma_L, \alpha, \alpha, \Gamma_R \rightarrow \Delta \) then \(\Delta = (\Delta, \Delta, \Theta, \Delta) \) where \(\Gamma_L \rightarrow \Delta_L \) and \(\Theta \) is either \(\alpha \) or \(\Delta = \tau \) for some \(\tau \).

(iv) If \(\Gamma_L, \Delta, \alpha, \Gamma_R \rightarrow \Delta \) then \(\Delta = (\Delta_L, \alpha, \Delta, \Delta_R) \) where \(\Gamma_L \rightarrow \Delta_L \) and \(\Delta_L \) is soft and only if \(\Delta_R \) is soft.

\[\rightarrow \text{AddSolved} \): Similar to the case for \(\rightarrow \text{Add} \).

\[\square \]

Proof.

(i) By induction on the derivation of \(\Gamma_L, \alpha, \Gamma_R \rightarrow \Delta \).

• Case \(\rightarrow \text{ID} \)

This case is impossible since \(\Gamma_L, \alpha, \Gamma_R \) cannot have the form \(\cdot \).

• Cases \(\rightarrow \text{Uvar} \):

We have two cases, depending on whether or not the rightmost variable is \(\alpha \).

 - Case \(\Gamma \rightarrow \Delta' \)
 \(\Gamma, \alpha \rightarrow \Delta', \alpha \)

 Let \(\Delta_L = \Delta' \), and let \(\Delta_R = \cdot \) (which is soft).

 We have \(\Gamma \rightarrow \Delta' \), which is \(\Gamma_L \rightarrow \Delta_L \).

34
\[\text{Case } \begin{array}{c}
\Gamma_L, \alpha, \Gamma'_R \rightarrow \Delta' \\
\Gamma_L, \alpha, r_{\Gamma'_R} \beta \rightarrow \Delta', \beta \\
\Delta
\end{array} \rightarrow \text{Uvar} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Hence \(\Delta = (\Delta_L, \alpha, \Delta_R, \beta) \).
(Since \(\beta \in \Gamma_R \), it cannot be the case that \(\Gamma_R \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, r_{\Gamma'_R} \rightarrow \Delta' \\
\Gamma_L, \alpha, r_{\Gamma'_R} x : A \rightarrow \Delta', x : A \\
\Delta
\end{array} \rightarrow \text{Var} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Hence \(\Delta = (\Delta_L, \alpha, \Delta'_R, x : A) \).
(Since \(x : A \in \Gamma_R \), it cannot be the case that \(\Gamma_R \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, r_{\Gamma'_R} \rightarrow \Delta' \\
\Gamma_L, \alpha, r_{\Gamma'_R} \delta \rightarrow \Delta', \delta \\
\Gamma_R
\end{array} \rightarrow \text{Unsolved} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Hence \(\Delta = (\Delta_L, \alpha, \Delta'_R, \delta) \).
(If \(\Gamma_R \) is soft, by i.h. \(\Delta'_R \) is soft, so \(\Delta_R = (\Delta'_R, \delta) \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, r_{\Gamma'_R} \rightarrow \Delta' \\
\Gamma_L, \alpha, r_{\Gamma'_R} \vec{\beta} \rightarrow \Delta', \vec{\beta} \\
\Gamma_R
\end{array} \rightarrow \text{Marker} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Hence \(\Delta = (\Delta_L, \alpha, \Delta'_R, \vec{\beta}) \).
(Since \(\vec{\beta} \in \Gamma_R \), it cannot be the case that \(\Gamma_R \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, r_{\Gamma'_R} \rightarrow \Delta' \\
\Gamma_L, \alpha, r_{\Gamma'_R} \hat{\alpha} \tau \rightarrow \Delta', \hat{\alpha} = \tau' \\
\Gamma_R
\end{array} \rightarrow \text{Solved} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Hence \(\Delta = (\Delta_L, \alpha, \Delta'_R, \hat{\alpha} = \tau') \).
(If \(\Gamma_R \) is soft, by i.h. \(\Delta'_R \) is soft, so \(\Delta_R = (\Delta'_R, \hat{\alpha} = \tau) \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, r_{\Gamma'_R} \rightarrow \Delta' \\
\Gamma_L, \alpha, r_{\Gamma'_R} \hat{\alpha} \rightarrow \Delta', \hat{\alpha} = \tau \\
\Gamma_R
\end{array} \rightarrow \text{Solve} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Therefore \(\Delta = (\Delta_L, \alpha, \Delta_R, \hat{\alpha} = \tau) \).
(If \(\Gamma_R \) is soft, by i.h. \(\Delta'_R \) is soft, so \(\Delta_R = (\Delta'_R, \hat{\alpha} = \tau) \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, \Gamma_R \rightarrow \Delta' \\
\Gamma_L, \alpha, \Gamma_R \rightarrow \Delta', \hat{\alpha} \\
\Gamma_R
\end{array} \rightarrow \text{Add} \]

By i.h., \(\Delta' = (\Delta_L, \alpha, \Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Therefore \(\Delta = (\Delta_L, \alpha, \Delta'_R, \hat{\alpha}) \).
(If \(\Gamma_R \) is soft, by i.h. \(\Delta'_R \) is soft, so \(\Delta_R = (\Delta'_R, \hat{\alpha}) \) is soft.)

- Case
 \[\begin{array}{c}
\Gamma_L, \alpha, \Gamma_R \rightarrow \Delta' \\
\Gamma_L, \alpha, \Gamma_R \rightarrow \Delta', \hat{\alpha} = \tau \\
\Gamma_R
\end{array} \rightarrow \text{AddSolved} \]
In this case, we know that \(\Delta = (\Delta', \hat{\alpha} = \tau) \).

By i.h., \(\Delta' = (\Delta_L,\alpha,\Delta'_R) \) where \(\Gamma_L \rightarrow \Delta_L \).
Hence \(\Delta = (\Delta_L,\alpha,\Delta'_R,\hat{\alpha} = \tau) \).

(If \(\Gamma_R \) is soft, by i.h. \(\Delta_R \) is soft, so \(\Delta_R = (\Delta'_R,\hat{\alpha} = \tau) \) is soft.)

(ii) Similar to the proof of (i), except that the \(\rightarrow \text{Marker} \) and \(\rightarrow \text{Uvar} \) cases are swapped.

(iii) Similar to (i), with \(\Theta = \hat{\alpha} \) in the \(\rightarrow \text{Unsolved} \) case and \(\Theta = (\hat{\alpha} = \tau) \) in the \(\rightarrow \text{Solve} \) case.

(iv) Similar to (iii).

(v) Similar to (i), but using the equality premise of \(\rightarrow \text{Var} \).

\[\text{Lemma 25 (Extension Weakening). If } \Gamma \vdash A \text{ and } \Gamma \rightarrow \Delta \text{ then } \Delta \vdash A. \]

\[\text{Proof. By induction on } \Gamma \vdash A. \]

In the \(\text{UvarWF} \) case, we use Lemma 24 (\text{Extension Order}) (i). In the \(\text{EvarWF} \) case, use Lemma 24 (\text{Extension Order}) (iii). In the \(\text{SolvedEvarWF} \) case, use Lemma 24 (\text{Extension Order}) (iv).

In the other cases, apply the i.h. to all subderivations, then apply the rule. \(\Box \)

\[\text{Lemma 26 (Solution Admissibility for Extension). If } \Gamma_L \vdash \tau \text{ then } \Gamma_L, \hat{\alpha}, \Gamma_R \rightarrow \Gamma_L, \hat{\alpha} = \tau, \Gamma_R. \]

\[\text{Proof. By induction on } \Gamma_R. \]

- Case \(\Gamma_R = : \)
 By Lemma 20 (\text{Reflexivity}) (reflexivity), \(\Gamma_L \rightarrow \Gamma_L \).
 Applying rule \(\rightarrow \text{Solve} \) gives \(\Gamma_L^1, \hat{\alpha} \rightarrow \Gamma_L, \hat{\alpha} = \tau. \)

- Case \(\Gamma_R = (\Gamma'_R, x : A) \):
 By i.h., \(\Gamma_L, \hat{\alpha}, \Gamma'_R \rightarrow \Gamma_L, \hat{\alpha} = \tau, \Gamma'_R \).
 Applying rule \(\rightarrow \text{Var} \) gives \(\Gamma_L, \hat{\alpha}, \Gamma'_R, x : A \rightarrow \Gamma_L, \hat{\alpha} = \tau, \Gamma_R \).

- Case \(\Gamma_R = (\Gamma'_R, \beta) \):
 By i.h. and rule \(\rightarrow \text{Add} \).

- Case \(\Gamma_R = (\Gamma'_R, \beta' = \tau') \):
 By i.h. and rule \(\rightarrow \text{AddSolved} \).

- Case \(\Gamma_R = (\Gamma'_R, \uparrow \beta) \):
 By i.h. and rule \(\rightarrow \text{Marker} \). \(\Box \)

\[\text{Lemma 27 (Solved Variable Addition for Extension). If } \Gamma_L \vdash \tau \text{ then } \Gamma_L, \hat{\alpha}, \Gamma_R \rightarrow \Gamma_L, \hat{\alpha} = \tau, \Gamma_R. \]

\[\text{Proof. By induction on } \Gamma_R. \] The proof is exactly the same as the proof of Lemma 26 (\text{Solution Admissibility for Extension}), except that in the \(\Gamma_R = : \) case, we apply rule \(\rightarrow \text{AddSolved} \) instead of \(\rightarrow \text{Solve} \). \(\Box \)

\[\text{Lemma 28 (Unsolved Variable Addition for Extension). We have that } \Gamma_L, \Gamma_R \rightarrow \Gamma_L, \hat{\alpha}, \Gamma_R. \]

\[\text{Proof. By induction on } \Gamma_R. \] The proof is exactly the same as the proof of Lemma 26 (\text{Solution Admissibility for Extension}), except that in the \(\Gamma_R = : \) case, we apply rule \(\rightarrow \text{Add} \) instead of \(\rightarrow \text{Solve} \). \(\Box \)

\[\text{Lemma 29 (Parallel Admissibility).} \]
If \(\Gamma_L \rightarrow \Delta_L \) and \(\Gamma_L, \Gamma_R \rightarrow \Delta_L, \Delta_R \) then:

(i) \(\Gamma_L, \hat{\alpha}, \Gamma_R \rightarrow \Delta_L, \hat{\alpha}, \Delta_R \)

(ii) \(\Delta_L \vdash \tau' \text{ then } \Gamma_L, \hat{\alpha}, \Gamma_R \rightarrow \Delta_L, \hat{\alpha} = \tau', \Delta_R. \)

(iii) \(\Gamma_L \vdash \tau \text{ and } \Delta_L \vdash \tau' \text{ and } |\Delta_L|\tau = |\Delta_L|\tau', \text{ then } \Gamma_L, \hat{\alpha} = \tau, \Gamma_R \rightarrow \Delta_L, \hat{\alpha} = \tau', \Delta_R. \)

\[\text{Proof. By induction on } \Delta_R. \] As always, we assume that all contexts mentioned in the statement of the lemma are well-formed. Hence, \(\hat{\alpha} \notin \text{dom}(\Gamma_L) \cup \text{dom}(\Gamma_R) \cup \text{dom}(\Delta_L) \cup \text{dom}(\Delta_R). \)
(i) We proceed by cases of \(\Delta_R \). Observe that in all the extension rules, the right-hand context gets smaller, so as we enter subderivations of \(\Gamma_L, \Gamma_R \rightarrow \Delta_L, \Delta_R \), the context \(\Delta_R \) becomes smaller.

The only tricky part of the proof is that to apply the i.h., we need \(\Gamma_L \rightarrow \Delta_L \). So we need to make sure that as we drop items from the right of \(\Gamma_R \) and \(\Delta_R \), we don't go too far and start decomposing \(\Gamma_L \) or \(\Delta_L \). It's easy to avoid decomposing \(\Gamma_L \): when \(\Delta_R = \cdot \), we don't need to apply the i.h. anyway. To avoid decomposing \(\Gamma_L \), we need to reason by contradiction, using Lemma 32 (Instantiation Extension).

- **Case** \(\Delta_R = : \)
 We have \(\Gamma_L \rightarrow \Delta_L \). Applying \(\rightarrow \) Unsolved to that derivation gives the result.

- **Case** \(\Delta_R = (\Delta'_R, \beta) \): We have \(\beta \neq \alpha \) by the well-formedness assumption.
 The concluding rule of \(\Gamma_L, \Gamma_R \rightarrow \Delta_L, \Delta'_R, \beta \) must have been \(\rightarrow \) Unsolved or \(\rightarrow \) Add. In both cases, the result follows by i.h. and applying \(\rightarrow \) Unsolved or \(\rightarrow \) Add.

 Note: In \(\rightarrow \) Add, the left-hand context doesn't change, so we clearly maintain \(\Gamma_L \rightarrow \Delta_L \). In \(\rightarrow \) Unsolved, we can correctly apply the i.h. because \(\Gamma_R \neq \cdot \). Suppose, for a contradiction, that \(\Gamma_R = \cdot \). Then \(\Gamma_L = (\Gamma'_L, \beta) \). It was given that \(\Gamma_L \rightarrow \Delta_L \), that is, \(\Gamma'_L, \beta \rightarrow \Delta_L \). By Lemma 15 (Declaration Preservation), \(\Delta_L \) has a declaration of \(\beta \). But then \(\Delta = (\Delta_L, \Delta'_R, \beta) \) is not well-formed: contradiction. Therefore \(\Gamma_R \neq \cdot \).

- **Case** \(\Delta_R = (\Delta'_R, \beta = \tau) \): We have \(\beta \neq \alpha \) by the well-formedness assumption.
 The concluding rule must have been \(\rightarrow \) Solved, \(\rightarrow \) Solve or \(\rightarrow \) AddSolved. In each case, apply the i.h. and then the corresponding rule. (In \(\rightarrow \) Solved and \(\rightarrow \) Solve, use Lemma 15 (Declaration Preservation) to show \(\Gamma_R \neq \cdot \).

- **Case** \(\Delta_R = (\Delta'_R, x : A) \): Similar to the previous case, with rule \(\rightarrow \) Marker.

- **Case** \(\Delta_R = (\Delta'_R, \beta) \): Similar to the previous case, with rule \(\rightarrow \) Var.

(ii) Similar to part (i), except that when \(\Delta_R = \cdot \), apply rule \(\rightarrow \) Solve.

(iii) Similar to part (i), except that when \(\Delta_R = \cdot \), apply rule \(\rightarrow \) Solved, using the given equality to satisfy the second premise.

\[\textbf{Lemma 30 (Parallel Extension Solution).} \]
\[\text{If } \Gamma_L, \alpha, \Gamma_R \rightarrow \Delta_L, \alpha = \tau', \Delta_R \text{ and } \Gamma_L \vdash \tau \text{ and } [\Delta_L] \tau = [\Delta_L] \tau' \text{ then } \Gamma_L, \alpha = \tau, \Gamma_R \rightarrow \Delta_L, \alpha = \tau', \Delta_R. \]

\[\textbf{Proof.} \] By induction on \(\Delta_R \).

 In the case where \(\Delta_R = (\Delta'_R, \alpha = \tau') \), we know that rule \(\rightarrow \) Solve must have concluded the derivation (we can use Lemma 15 (Declaration Preservation) to get a contradiction that rules out \(\rightarrow \) AddSolved); then we have a subderivation \(\Gamma_L \rightarrow \Delta_L \), to which we can apply \(\rightarrow \) Solved.

\[\textbf{Lemma 31 (Parallel Variable Update).} \]
\[\text{If } \Gamma_L, \alpha, \Gamma_R \rightarrow \Delta_L, \alpha = \tau_0, \Delta_R \text{ and } \Gamma_L \vdash \tau_1 \text{ and } \Delta_L \vdash \tau_2 \text{ and } [\Delta_L] \tau_0 = [\Delta_L] \tau_1 = [\Delta_L] \tau_2 \text{ then } \Gamma_L, \alpha = \tau_1, \Gamma_R \rightarrow \Delta_L, \alpha = \tau_2, \Delta_R. \]

\[\textbf{Proof.} \] By induction on \(\Delta_R \). Similar to the proof of Lemma 30 (Parallel Extension Solution), but applying \(\rightarrow \) Solved at the end.

\[D'.2 \text{ Instantiation Extends} \]

\[\textbf{Lemma 32 (Instantiation Extension).} \]
\[\text{If } \Gamma \vdash \alpha : \Delta \text{ or } \Gamma \vdash \tau : \Delta \text{ then } \Gamma \rightarrow \Delta. \]

\[\textbf{Proof.} \] By induction on the given instantiation derivation.
By Lemma 24 (Extension Order) (ii), \(\Gamma, \hat{\alpha}, \Gamma' \longrightarrow \Gamma, \hat{\alpha} = \tau, \Gamma' \).

By the definition of well-formedness, \(\Gamma, \hat{\alpha}, \Gamma' \rightarrow \Gamma, \hat{\alpha} = \tau, \Gamma' \).

Hence by Lemma 26 (Solution Admissibility for Extension), we can solve \(\hat{\alpha} \), giving \(\Gamma, \hat{\alpha}, \Gamma_0, \hat{\alpha}, \Gamma_1, \hat{\beta}, \Gamma_2 \rightarrow \Gamma, \hat{\alpha}, \Gamma_1, \hat{\beta} = \hat{\alpha}, \Gamma_2 \).

By Lemma 28 (Unsolved Variable Addition for Extension) again, \(\Gamma, \hat{\alpha}, \Gamma_0, \hat{\alpha}, \Gamma_1, \hat{\alpha} \rightarrow \Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\alpha}_2 \).

Then by transitivity (Lemma 21 (Transitivity)), \(\Gamma, \hat{\alpha} \rightarrow \Gamma, \hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2 \).

By i.h. on the second subderivation, \(\Gamma, \hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2 \longrightarrow \Gamma' \).

By Lemma 26 (Solution Admissibility for Extension), we can solve \(\hat{\alpha} \), giving \(\Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\alpha}_2 \longrightarrow \Gamma, \hat{\alpha}, \tau, \Gamma' \).

By Lemma 28 (Unsolved Variable Addition for Extension) again, \(\Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\alpha}_2 \rightarrow \Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\alpha}_2 \rightarrow \Delta \).

By transitivity (Lemma 21 (Transitivity)), \(\Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\alpha}_2 \rightarrow \Delta \).

By transitivity (Lemma 21 (Transitivity)), \(\Gamma, \hat{\alpha} \rightarrow \Delta \).

By Lemma 24 (Extension Order) (i), we have \(\Gamma, \hat{\alpha} \rightarrow \Delta \).

By Lemma 26 (Solution Admissibility for Extension), we can solve \(\hat{\alpha} \), giving \(\Gamma, \hat{\alpha}, \tau, \Gamma' \longrightarrow \Gamma, \hat{\alpha} = \tau, \Gamma' \).

By Lemma 26 (Solution Admissibility for Extension), we can solve \(\hat{\alpha} \), giving \(\Gamma, \hat{\alpha}, \Gamma_0, \hat{\alpha}, \Gamma_1, \hat{\beta}, \Gamma_2 \rightarrow \Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\beta}, \Gamma_2 \rightarrow \Gamma, \hat{\alpha}, \hat{\alpha}_1, \hat{\beta} = \hat{\alpha}, \Gamma_2 \).

Because the contexts here are the same as in InstLArr, this is the same as the InstLArr case.

By Lemma 24 (Extension Order) (ii), \(\Gamma, \hat{\alpha} \longrightarrow \Delta \).
D’.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If $\Gamma \vdash A <: B \rightarrow \Delta$ then $\Gamma \rightarrow \Delta$.

Proof. By induction on the given derivation.
For cases $::<\text{Var}$, $::<\text{Unit}$, $::<\text{Exvar}$, we have $\Delta = \Gamma$, so Lemma 20 (Reflexivity) suffices.

• Case $\Gamma \vdash B_1 <: A_1 \rightarrow \Theta$ \[\Theta \vdash [\Theta]A_2 <: [\Theta]B_2 \rightarrow \Delta \]
By IH on each subderivation, $\Gamma \rightarrow \Theta$ and $\Theta \rightarrow \Delta$.

• Case $\Gamma,\triangleright^\alpha,\triangleright^\alpha \vdash [\triangleright^\alpha/\alpha]A <: B \rightarrow \Delta$
By Lemma 24 (Extension Order) (ii) with $\Gamma_L = \Gamma$ and $\Gamma'_L = \Delta$ and $\Gamma_R = \triangleright^\alpha$ and $\Gamma'_R = \Theta$, we obtain $\Gamma \rightarrow \Delta$

• Case $\Gamma,\beta \vdash A <: B \rightarrow \Delta,\beta,\Theta$
By IH, we have $\Gamma,\beta \rightarrow \Delta,\beta,\Theta$.

• Cases $::<\text{Instantiate}_L$, $::<\text{Instantiate}_R$: In each of these rules, the premise has the same input and output contexts as the conclusion, so Lemma 32 (Instantiation Extension) suffices.

E’ Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If $\Gamma_0,\triangleright^\alpha,\Gamma_1 \vdash \triangleright^\alpha : \Delta_0 \leq \Delta$ or $\Gamma_0,\triangleright^\alpha,\Gamma_1 \vdash A : \Delta_0 \leq \Delta$, and $\hat{\beta} \in \text{unsolved}(\Gamma_0)$, then $\hat{\beta} \in \text{unsolved}(\Delta)$.

Proof. By induction on the given derivation.

• Case $\Gamma_0 \vdash \tau$
By IH, $\Gamma_0,\triangleright^\alpha,\Gamma_1 \vdash \triangleright^\alpha : \Delta_0 \leq \Delta,\triangleright^\alpha = \tau,\Gamma_1$

Immediate, since to the left of \triangleright^α, the contexts Δ and Γ are the same.

• Case $\Gamma[\triangleright^\alpha/\beta] \vdash \triangleright^\alpha : \Delta_0 \leq \Delta,\triangleright^\alpha = \hat{\beta}$

Immediate, since to the left of \triangleright^α, the contexts Δ and Γ are the same.

• Case $\Gamma[\triangleright^\alpha_2,\triangleright^\alpha_1,\triangleright^\alpha = \triangleright^\alpha_1 \rightarrow \triangleright^\alpha_2] \vdash A_1 : \Delta_0 \leq \Delta, \Gamma' \vdash \triangleright^\alpha_2 : \Delta_0[\Gamma']A_2 \rightarrow \Delta$

Immediate, since to the left of \triangleright^α, the contexts Δ and Γ are the same.
We have $\hat{\beta} \in \text{unsolved}(\Gamma_0)$. Therefore $\hat{\beta} \in \text{unsolved}(\Gamma_0, \hat{\alpha}_2)$.

Clearly, $\hat{\alpha}_2 \in \text{unsolved}(\Gamma_0, \hat{\alpha}_2)$.

We have two subderivations:

$$\Gamma_0, \hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2, \Gamma_1 \vdash A_1 \triangleq \hat{\alpha}_1 \rightarrow \Gamma'$$ \hspace{1cm} (1)

$$\Gamma' \vdash \hat{\alpha}_2 \triangleq [\Gamma']A_2 \rightarrow \Delta$$ \hspace{1cm} (2)

By induction on (1), $\hat{\beta} \in \text{unsolved}(\Gamma')$.

Also by induction on (1), with $\hat{\alpha}_2$ playing the role of $\hat{\beta}$, we get $\hat{\alpha}_2 \in \text{unsolved}(\Gamma')$.

Since $\hat{\beta} \in \Gamma_0$, it is declared to the left of $\hat{\alpha}_2$ in $\Gamma_0, \hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2, \Gamma_1$.

Hence by Lemma 16 (Declaration Order Preservation), $\hat{\beta}$ is declared to the left of $\hat{\alpha}_2$ in Γ'. That is, $\Gamma' = (\Gamma_0, \hat{\alpha}_2, \Gamma_1)$, where $\hat{\beta} \in \text{unsolved}(\Gamma_0)$.

By induction on (2), $\hat{\beta} \in \text{unsolved}(\Delta)$.

- **Case** $\Gamma_0, \hat{\alpha}, \Gamma_1, \beta \vdash \hat{\alpha} : \triangleq B \rightarrow \Delta, \beta, \Delta'$

$$\frac{}{\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash \hat{\alpha} : \exists \forall B \rightarrow \Delta} \quad \text{InstLAllR}$$

We have $\hat{\beta} \in \text{unsolved}(\Gamma_0)$.

By induction, $\hat{\beta} \in \text{unsolved}(\Delta, \beta, \Delta')$.

Note that $\hat{\beta}$ is declared to the left of β in $\Gamma_0, \hat{\alpha}, \Gamma_1, \beta$.

By Lemma 16 (Declaration Order Preservation), $\hat{\beta}$ is declared to the left of β in (Δ, β, Δ'), that is, in Δ. Since $\hat{\beta} \in \text{unsolved}(\Delta, \beta, \Delta')$, we have $\hat{\beta} \in \text{unsolved}(\Delta)$.

- **Cases** InstR, InstRReach: Similar to the InstL, Solve and InstR, Reach cases.

- **Case** $\Gamma[\hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2] \vdash \hat{\alpha}_1 : \triangleq A_1 \rightarrow \Gamma' \quad \Gamma' \vdash [\Gamma']A_2 \triangleq \hat{\alpha}_2 \rightarrow \Delta$

$$\frac{}{\Gamma[\hat{\alpha}] \vdash A_1 \rightarrow A_2 \triangleq \hat{\alpha} \rightarrow \Delta} \quad \text{InstRArr}$$

Similar to the InstL case.

- **Case** $\Gamma[\hat{\alpha}], v \vdash [\hat{\alpha}]B \triangleq \hat{\alpha} \rightarrow \Delta, v, \Delta'$

$$\frac{}{\Gamma[\hat{\alpha}] \vdash \forall B, B \triangleq \hat{\alpha} \rightarrow \Delta} \quad \text{InstRArr}$$

We have $\hat{\beta} \in \text{unsolved}(\Gamma_0)$.

By induction, $\hat{\beta} \in \text{unsolved}(\Delta, \beta, \Delta')$.

Note that $\hat{\beta}$ is declared to the left of v in $\Gamma_0, \hat{\alpha}, \Gamma_1, v, \hat{\alpha}$.

By Lemma 16 (Declaration Order Preservation), $\hat{\beta}$ is declared to the left of v in $\Delta, v, \hat{\alpha}, \Delta'$. Hence $\hat{\beta}$ is declared in Δ, and we know it is in $\text{unsolved}(\Delta, v, \hat{\alpha}, \Delta')$, so $\hat{\beta} \in \text{unsolved}(\Delta)$. \Box

Lemma 35 (Left Free Variable Preservation). If $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash \hat{\alpha} : \triangleq A \rightarrow \Delta$ or $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash A \triangleq \hat{\alpha} \rightarrow \Delta$, and $\Gamma \vdash B$ and $\alpha \notin \text{FV}(\Gamma[B])$ and $\hat{\beta} \in \text{unsolved}(\Gamma_0)$ and $\hat{\beta} \notin \text{FV}(\Gamma[B])$, then $\hat{\beta} \notin \text{FV}(\Delta[B])$.

Proof. By induction on the given instantiation derivation.

- **Case** $\Gamma_0 \vdash \tau$

$$\frac{}{\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash \tau \triangleq \Delta} \quad \text{InstL}$$

We have $\hat{\alpha} \notin \text{FV}(\Gamma[B])$. Since Δ differs from Γ only in $\hat{\alpha}$, it must be the case that $[\Gamma]B = [\Delta]B$. It is given that $\hat{\beta} \notin \text{FV}(\Gamma[B])$, so $\hat{\beta} \notin \text{FV}(\Delta[B])$.

- **Case** $\Gamma'[\hat{\alpha}]B \vdash \hat{\alpha} : \triangleq [\hat{\alpha}]B = \hat{\alpha}$

$$\frac{}{\Gamma \vdash \hat{\alpha} : \triangleq \Delta} \quad \text{InstRReach}$$

Since Δ differs from Γ only in solving $\hat{\alpha}$ to $\hat{\alpha}$, applying Δ to a type will not introduce a $\hat{\beta}$. We have $\hat{\beta} \notin \text{FV}(\Gamma[B])$, so $\hat{\beta} \notin \text{FV}(\Delta[B])$.

40
Since we have $\alpha \neq \alpha_2$, we know that β is declared to the left of α_2 in Γ_0, α_2. Therefore, $\beta \in \text{unsolved}(\Gamma_0, \alpha_2)$. Hence $\beta \in \Delta_0$. Furthermore, by Lemma 32 (Instantiation Extension), we have $\Gamma' \vdash \Delta$.

Then by Lemma 25 (Extension Weakening), we have $\Delta \vdash B$. Using induction on the second premise, $\beta \notin \text{FV}(\Delta \vdash B)$.

Case $\Gamma_0, \alpha, \Gamma_1, \gamma \vdash \alpha : \leq \forall \gamma. C \vdash \Delta, \gamma, \Delta'$

$\Gamma_0, \alpha, \Gamma_1 \vdash \alpha : \leq \forall \gamma. C \vdash \Delta, \gamma, \Delta'$

InstLAllR

We have $\Gamma \vdash B$ and $\Delta \neq \text{FV}(\Gamma \vdash B)$ and $\beta \notin \Gamma_0$ and $\beta \notin \text{FV}(\Gamma \vdash B)$.

By weakening, $\Gamma, \gamma, \gamma \vdash B$; by the definition of substitution, $[\Gamma, \gamma]B = [\Gamma]B$.

Substituting equals for equals, $\alpha \neq \text{FV}(\Gamma, \gamma)B$ and $\beta \neq \text{FV}(\Gamma, \gamma)B$.

By induction, $\beta \notin \text{FV}(\Delta, \gamma, \Delta' \vdash B)$.

Since β is declared to the left of γ in $[\Gamma, \gamma]$, we can use Lemma 16 (Declaration Order Preservation) to show that β is declared to the left of γ in $[\Delta, \gamma, \Delta']$, that is, in Δ.

We have $\Gamma \vdash B$, so $\gamma \notin \text{FV}(B)$. Thus each free variable u in B is in Γ, to the left of γ in $[\Gamma, \gamma]$. Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in Δ.

Therefore $[\Delta, \gamma, \Delta' \vdash B = [\Delta]B$.

Earlier, we obtained $\beta \notin \text{FV}(\Delta \vdash B)$, so substituting equals for equals, $\beta \notin \text{FV}(\Delta \vdash B)$.

Similar to the InstL case.

Case $\Gamma_0, \alpha_2, \alpha_1, \alpha = \alpha_1 \rightarrow \alpha_2, \Gamma_1 \vdash A_1 : \leq \alpha_1 \vdash \Delta \quad \Gamma' \vdash [\Delta]A_2 : \leq \alpha_2 \vdash \Delta$

InstRArr

Similar to the InstL case.

Case $\Gamma [\alpha_1] \vdash \beta \vdash [\gamma] \gamma \vdash \beta : \leq \forall \gamma. C \vdash \Delta, \gamma, \Delta'$

InstRArr

We have $\Gamma \vdash B$ and $\alpha \neq \text{FV}(\Gamma \vdash B)$ and $\beta \notin \Gamma_0$ and $\beta \notin \text{FV}(\Gamma \vdash B)$.

By weakening, $\Gamma, \gamma \vdash B$; by the definition of substitution, $[\Gamma, \gamma]B = [\Gamma]B$.

We have $\Gamma \vdash B$ and $\Delta \neq \text{FV}(\Gamma \vdash B)$ and $\beta \notin \Gamma_0$ and $\beta \notin \text{FV}(\Gamma \vdash B)$.

By weakening, $\Gamma, \gamma \vdash B$; by the definition of substitution, $[\Gamma, \gamma]B = [\Gamma]B$.

We have $\Gamma \vdash B$ and $\Delta \neq \text{FV}(\Gamma \vdash B)$ and $\beta \notin \Gamma_0$ and $\beta \notin \text{FV}(\Gamma \vdash B)$.
Substituting equals for equals, \(\alpha \notin \text{FV}(\Gamma, \triangleleft, \triangleright, B) \) and \(\beta \notin \text{FV}(\Gamma, \triangleleft, \triangleright, B) \).

By induction, \(\hat{\beta} \notin \text{FV}(\Delta, \triangleleft, \triangleright, \Delta') \).

Note that \(\hat{\beta} \) is declared to the left of \(\triangleleft \) in \(\Gamma, \triangleright, \triangleright \).

By Lemma 16 (Declaration Order Preservation), \(\hat{\beta} \) is declared to the left of \(\triangleleft \) in \(\Delta, \triangleright, \Delta' \).

So \(\hat{\beta} \) is declared in \(\Delta \).

Now, note that each free variable \(u \) in \(B \) is in \(\Gamma \), which is to the left of \(\triangleright \) in \(\Gamma, \triangleright, \triangleright \). Therefore, by Lemma 16 (Declaration Order Preservation), each free variable \(u \) in \(B \) is in \(\Delta \).

Therefore, \(\Delta, \triangleright, \Delta' B = \Delta' \).

Earlier, we obtained \(\hat{\beta} \notin \text{FV}(\Delta, \triangleright, \Delta'[B]) \), so substituting equals for equals, \(\hat{\beta} \notin \text{FV}(\Delta[B]) \).

\[\square \]

Lemma 36 (Instantiation Size Preservation). If \(\Gamma_0, \alpha, \Gamma_1 \vdash \alpha : \cong A \rightarrow \Delta \) or \(\Gamma_0, \alpha, \Gamma_1 \vdash A \cong \alpha \rightarrow \Delta \), and \(\Gamma \vdash B \) and \(\alpha \notin \text{FV}(\Gamma[B]) \), then \(||\Gamma[B]|| = ||\Delta[B]|| \), where \(|C| \) is the plain size of the term \(C \).

Proof. By induction on the given derivation.

- **Case**
 \[
 \begin{array}{c}
 \Gamma_0 \vdash \tau \\
 \Gamma_0, \alpha, \Gamma_1 \vdash \alpha : \cong \tau \rightarrow \Gamma_0, \alpha = \tau, \Gamma_1 \\
 \end{array}
 \]
 \(\text{InstL} \text{Solve} \)

 Since \(\Delta \) differs from \(\Gamma \) only in solving \(\alpha \), and we know \(\alpha \notin \text{FV}(\Gamma[B]) \), we have \(|\Delta|B = |\Gamma|B \); therefore \(||\Delta|B| = ||\Gamma|B|| \).

- **Case**
 \[
 \begin{array}{c}
 \Gamma[\hat{\alpha}] \vdash \hat{\alpha} : \cong \hat{\beta} \rightarrow \Gamma[\hat{\alpha}] [\hat{\beta} = \hat{\alpha}] \\
 \end{array}
 \]
 \(\text{InstL} \text{Reach} \)

 Here, \(\Delta \) differs from \(\Gamma \) only in solving \(\hat{\beta} \) to \(\hat{\alpha} \). However, \(\hat{\alpha} \) has the same size as \(\hat{\beta} \), so even if \(\hat{\beta} \notin \text{FV}(\Gamma[B]) \), we have \(||\Delta|B|| = ||\Gamma|B|| \).

- **Case**
 \[
 \begin{array}{c}
 \Gamma', \alpha_2, \alpha_1, \alpha = \alpha_1 \rightarrow \alpha_2, \Gamma_1 \vdash A_1 \cong \alpha_1 \rightarrow \Theta \\
 \Theta \vdash \alpha_2 : \cong \Theta[A_2] \rightarrow \Delta \\
 \end{array}
 \]
 \(\text{InstL} \text{Arr} \)

 We have \(\Gamma \vdash B \) and \(\hat{\alpha} \notin \text{FV}(\Gamma[B]) \). Since \(\hat{\alpha}_1, \hat{\alpha}_2 \notin \text{dom}(\Gamma) \), we have \(\hat{\alpha}, \hat{\alpha}_1, \hat{\alpha}_2 \notin \text{FV}(\Gamma[B]) \). It follows that \(||\Gamma'|B| = ||\Gamma|B|| \).

 By weakening, \(\Gamma' \vdash B \).

 By induction on the first premise, \(||\Gamma'|B|| = ||\Theta|B|| \).

 By Lemma 16 (Declaration Order Preservation), since \(\hat{\alpha}_2 \) is declared to the left of \(\hat{\alpha}_1 \) in \(\Gamma' \), we have that \(\hat{\alpha}_2 \) is declared to the left of \(\hat{\alpha}_1 \) in \(\Theta \).

 By Lemma 34 (Left Unsolvedness Preservation), since \(\hat{\alpha}_2 \) is unsolved(\(\Gamma' \)), it is unsolved in \(\Theta \); that is, \(\Theta = (\Theta_0, \alpha_2, \Theta_1) \).

 By Lemma 32 (Instantiation Extension), we have \(\Gamma' \rightarrow \Theta \).

 By Lemma 25 (Extension Weakening), \(\Theta \vdash B \).

 Since \(\hat{\alpha}_2 \notin \text{FV}(\Gamma'[B]) \), Lemma 35 (Left Free Variable Preservation) gives \(\hat{\alpha}_2 \notin \text{FV}(\Theta[B]) \).

 By induction on the second premise, \(||\Theta[B]| = ||\Delta[B]| \), and by transitivity of equality, \(||\Gamma'[B]| = ||\Delta[B]| \).

- **Case**
 \[
 \begin{array}{c}
 \Gamma_0, \alpha, \Gamma_1, \beta \vdash \alpha : \cong A_0 \rightarrow \Delta, \beta, \Delta' \\
 \end{array}
 \]
 \(\text{InstL} \text{AllR} \)

 We have \(\Gamma \vdash B \) and \(\hat{\alpha} \notin \text{FV}(\Gamma'[B]) \).

 By weakening, \(\Gamma, \beta \vdash B \).

 From the definition of substitution, \(||\Gamma|B|| = ||\Gamma, \beta|B|| \). Hence \(\hat{\alpha} \notin \text{FV}(\Gamma'[B]) \).

 The input context of the premise is \((\Gamma_0, \alpha, \Gamma_1, \beta) \), which is \((\Gamma, \beta) \), so by induction, \(||\Gamma, \beta|B|| = ||\Delta, \beta, \Delta'|B|| \).

 Suppose \(u \) is a free variable in \(B \). Then \(u \) is declared in \(\Gamma \), and so occurs before \(\beta \) in \(\Gamma, \beta \).
By Lemma [16] (Declaration Order Preservation), \(u \) is declared before \(\beta \) in \(\Delta, \beta, \Delta' \).

So every free variable \(u \) in \(B \) is declared in \(\Delta \).

Hence \([\Gamma]B = [\Gamma; \beta]B \), so \(||\Gamma]B || = ||[\Gamma; \beta]B || \); by transitivity of equality, \(||\Gamma]B || = ||[\Delta]B || \).

- **Case**

 \[
 \Gamma_0 \vdash \tau
 \]

 \[
 \Gamma_0, \alpha, \Gamma_1 \vdash \tau \triangleleft_\Delta \alpha \triangleleft_\Delta \Gamma_0, \alpha = \tau, \Gamma_1
 \]

 Similar to the InstLSolve case.

- **Case**

 \[
 \Gamma_1 \vdash \beta \triangleleft_\Delta \alpha \triangleleft_\Delta \Gamma]
 \]

 Similar to the InstLRsolve case.

- **Case**

 \[
 \Gamma_1 \vdash \alpha \triangleleft_\Delta \Gamma_2
 \]

 \[
 \Gamma, \alpha_1 \vdash \alpha_1 : \forall \alpha A_2 \triangleleft_\Delta A_1 \implies \Theta \vdash \alpha \triangleleft_\Delta \Delta
 \]

 \[
 \Gamma_0, \alpha, \Gamma_1 \vdash A_1 \triangleleft_\Delta A_2 \triangleleft_\Delta \alpha \triangleleft_\Delta \Delta
 \]

 InstRArr

 Similar to the InstLArr case.

- **Case**

 \[
 \Gamma' \vdash \beta \triangleleft_\Delta \alpha \triangleleft_\Delta \Gamma
 \]

 \[
 \Gamma' [\alpha] | \beta_{\beta} : \beta / \beta \vdash \beta / \beta \Delta, \beta, \Delta' \triangleleft_\Delta \Gamma
 \]

 \[
 \Gamma' \vdash \forall \beta, A_0 \triangleleft_\Delta \alpha \triangleleft_\Delta \Delta
 \]

 InstRAll

 We have \(\Gamma \vdash B \) and \(\alpha \notin \text{FV}(\Gamma]B \).

 By weakening, \(\Gamma, \beta_{\beta} : \beta / \beta \vdash B \).

 From the definition of substitution, \([\Gamma]B = [\Gamma, \beta]B \). Hence \(\alpha \notin \text{FV}(\Gamma, \beta]B \).

 By induction, \([\Gamma, \beta]B, \beta]B \) is declared in \(\Delta, \beta, \Delta' \).

 Suppose \(u \) is a free variable in \(B \).

 Then \(u \) is declared in \(\Gamma \), and so occurs before \(\beta_{\beta} \) in \(\Gamma, \beta_{\beta} : \beta / \beta \).

 By Lemma [16] (Declaration Order Preservation), \(u \) is declared before \(\beta_{\beta} \) in \(\Delta, \beta, \Delta' \).

 So every free variable \(u \) in \(B \) is declared in \(\Delta \).

 Hence \([\Delta, \beta, \Delta']B = [\Delta]B \).

 Since \([\Gamma]B = [\Gamma, \beta]B \), we have \(||\Gamma]B || = ||[\Gamma, \beta]B || \); by transitivity of equality, \(||\Gamma]B || = ||[\Delta]B || \).

\[\square \]

Theorem 7 (Decidability of Instantiation). If \(\Gamma = \Gamma_0 [\alpha] \) and \(\Gamma \vdash A \) such that \([\Gamma]A = A \) and \(\alpha \notin \text{FV}(A) \), then:

1. Either there exists \(\Delta \) such that \(\Gamma_0 [\alpha] \vdash \alpha \triangleleft_\Delta A \), or not.
2. Either there exists \(\Delta \) such that \(\Gamma_0 [\alpha] \vdash \alpha \triangleleft_\Delta A \), or not.

Proof. By induction on the derivation of \(\Gamma \vdash A \).

1. \(\Gamma \vdash \alpha \triangleleft_\Delta A \) is decidable.

 - **Case**

 \[
 \Gamma_{1\alpha}, \alpha \Gamma_{1\alpha} \vdash \alpha \quad \text{UvarWF}
 \]

 \[
 \Gamma_{1\alpha}, \alpha \Gamma_{1\alpha} \vdash \alpha \quad \text{UvarWF}
 \]

 If \(\alpha \in \Gamma_{1\alpha} \), then by UvarWF we have \(\Gamma_{1\alpha} \vdash \alpha \), and by rule InstLSolve we have a derivation.

 Otherwise no rule matches, and so no derivation exists.

 - **Case** **UnitWF:** By rule InstLSolve.
• Case
\[
\Gamma, \delta, \Gamma' \vdash \beta \quad \text{EvarWF}
\]
By inversion, we have \(\hat{\beta} \in \Gamma\), and \(\left[\Gamma\right]\hat{\beta} = \hat{\beta}\). Since \(\alpha \notin \text{FV}(\left[\Gamma\right]\hat{\beta}) = \text{FV}(\hat{\beta}) = \{\hat{\beta}\}\), it follows that \(\hat{\alpha} \neq \hat{\beta}\). Either \(\hat{\beta} \in \Gamma_1\) or \(\hat{\beta} \in \Gamma_2\).
If \(\hat{\beta} \in \Gamma_1\), then we have a derivation by InstLSolve.
If \(\hat{\beta} \in \Gamma_2\), then we have a derivation by InstLReach.

• Case
\[
\Gamma' = \Gamma \vdash \beta \quad \text{SolvedEvarWF}
\]
It is given that \(\left[\Gamma\right]\hat{\beta} = \hat{\beta}\), so this case is impossible.

• Case
\[
\Gamma \vdash A_1 \quad \Gamma \vdash A_2 \quad \Gamma_1, \delta, \Gamma_2 \vdash A_1 \rightarrow A_2 \quad \text{ArrowWF}
\]
By assumption, \(\left[\Gamma\right](A_1 \rightarrow A_2) = A_1 \rightarrow A_2\) and \(\alpha \notin \text{FV}(\left[\Gamma\right](A_1 \rightarrow A_2))\).
If \(A_1 \rightarrow A_2\) is a monotone and is well-formed under \(\Gamma_1\), we can apply InstLSolve.
Otherwise, the only rule with a conclusion matching \(\Gamma\) is \(\text{InstLArr}\).
First, consider whether \(\Gamma_1, \delta_2, \delta_1, \delta = \delta_1 \rightarrow \delta_2, \Gamma_2 \vdash A \quad \text{\Solve}\); \(\delta_1 \vdash -\) is decidable.
By definition of substitution, \(\left[\Gamma\right](A_1 \rightarrow A_2) = (\left[\Gamma\right]A_1) \rightarrow (\left[\Gamma\right]A_2)\). Since \(\left[\Gamma\right]A_1 \rightarrow A_2\) is \(\left[\Gamma\right]A_1 = A_1 \rightarrow A_2\), we have \(\left[\Gamma\right]A_1 = \delta_1\) and \(\left[\Gamma\right]A_2 = \delta_2\).
By weakening, \(\Gamma_1, \delta_2, \delta_1, \delta = \delta_1 \rightarrow \delta_2, \Gamma_2 \vdash A \rightarrow A_2\).
Since \(\Gamma \vdash A_1\) and \(\Gamma \vdash A_2\), we have \(\delta_1, \alpha \notin \text{FV}(A_1) \cup \text{FV}(A_2)\).
Since \(\alpha \notin \text{FV}(A) \supseteq \text{FV}(A_1)\), it follows that \(\left[\Gamma\right]A_1 = A_1\).
By i.h., either there exists \(\Theta\) such that \(\Gamma_1, \delta_2, \delta_1, \delta = \delta_1 \rightarrow \delta_2, \Gamma_2 \vdash \delta_1 \leq \Theta; \delta_1 \vdash -\Theta\), or not.
If not, then no derivation by InstLArr exists.
If so, then we have \(\Gamma_1, \delta_2, \delta_1, \delta = \delta_1 \rightarrow \delta_2, \Gamma_2 \vdash \delta_1 \leq \Theta, \delta_1 \vdash -\Theta\).
By Lemma 34 [Left Unsolvedness Preservation], we know that \(\alpha_2 \in \text{unsolved}(\Theta)\).
By Lemma 35 [Left Free Variable Preservation], we know that \(\delta_2 \notin \text{FV}(\left[\Theta\right]A_2)\).
Clearly, \(\left[\Theta\right]A_2 = \left[\Theta\right]A_2\).
Hence by i.h., either there exists \(\Delta\) such that \(\delta_2 \vdash -\delta_2, \left[\Theta\right]A_2 \vdash \Delta\), or not.
If not, then no derivation by InstLArr exists.
If it does, then by rule InstLArr, we have \(\Gamma \vdash \alpha : \leq \Delta\).

• Case
\[
\Gamma, \alpha \vdash A_0 \quad \Gamma \vdash \forall \alpha. A_0 \quad \text{ForallWF}
\]
We have \(\forall \alpha. A_0 = \left[\Gamma\right](\forall \alpha. A_0)\). By definition of substitution, \(\left[\Gamma\right](\forall \alpha. A_0) = \forall \alpha. \left[\Gamma\right]A_0\), so \(A_0 = \left[\Gamma\right]A_0\).
By definition of substitution, \(\left[\Gamma\right]A_0 = \left[\Gamma\right]A_0\).
We have \(\alpha \notin \text{FV}(\left[\Gamma\right](\forall \alpha. A_0))\). Therefore \(\alpha \notin \text{FV}(\left[\Gamma\right]A_0) = \text{FV}(\left[\Gamma\right]A_0)\).
By i.h., either there exists \(\Theta\) such that \(\Gamma, \alpha \vdash \alpha : \leq A_0 \vdash -\Theta\), or not.
Suppose \(\Gamma, \alpha \vdash \alpha : \leq A_0 \vdash -\Theta\).
By Lemma 32 [Instatiation Extension], \(\Gamma \rightarrow -\Theta\);
by Lemma 24 [Extension Order] (i), \(\Theta = \Delta, \alpha, \Delta'\).
Hence by rule InstLAllR, \(\Gamma \vdash \alpha : \leq \forall \alpha. A_0 \vdash \Delta\).
Suppose not.
Then there is no derivation, since InstLAllR is the only rule matching \(\forall \alpha. A_0\).

(2) \(\Gamma \vdash A : \leq \alpha \vdash -\Delta\) is decidable.

• Case UvarWF:
Similar to the UvarWF case in part (1), but applying rule InstRSolve instead of InstLSolve.
• Case UnitWF: Apply InstRSolve.

• Case
\[
\Gamma, \Delta, \Gamma R \vdash \beta \quad \text{EvarWF}
\]
Similar to the EvarWF case in part (1), but applying InstRSolve/InstRReach instead of InstLSolve/InstLReach.

• Case SolvedEvarWF:
Impossible, for exactly the same reasons as in the SolvedEvarWF case of part (1).

• Case
\[
\Gamma \vdash A_1 \quad \Gamma \vdash A_2 \quad \text{ArrowWF}
\]
As the ArrowWF case of part (1), except applying InstRArr instead of InstLArr.

• Case
\[
\Gamma, \Delta, \Gamma R \vdash B \quad \text{ForallWF}
\]
By assumption, \(|\Gamma| (\forall \beta. B) = \forall \beta. B.\) With the definition of substitution, we get \(|\Gamma B = B.\) Hence \(|\Gamma| B = B.
\]
Hence \(\hat{\beta}/\beta|\Gamma| B = |\Gamma|\hat{\beta}/\beta|B.\) Since \(\hat{\beta}\) is fresh, \(|\Gamma|\hat{\beta}/\beta|B = |\Gamma|\hat{\beta}/\beta|B,\) which by transitivity of equality is \(|\Gamma|\hat{\beta}/\beta|B.\)

We have \(\hat{\alpha} \notin \text{FV}(|\Gamma| (\forall \beta. B))\), so \(\hat{\alpha} \notin \text{FV}(|\Gamma, \beta\beta| B).\)

Therefore, by induction, either \(\Gamma, \Delta, \beta, \beta \vdash |\hat{\beta}/\beta|B \leq: \hat{\alpha} \dashv \Theta\) or not.

Suppose \(\Gamma, \Delta, \beta, \beta \vdash |\hat{\beta}/\beta|B \leq: \hat{\alpha} \dashv \Theta.\)

By Lemma 32 (Instantiation Extension), \(\Gamma, \Delta, \beta, \beta \dashv: \hat{\Theta};\)

by Lemma 24 (Extension Order) (ii), \(\Theta = \Delta, \beta, \Delta'.\)

Hence by rule InstRAllL, \(\Gamma \vdash \forall \beta. B \leq: \hat{\alpha} \dashv \Delta.\)

Suppose not.

Then there is no derivation, since InstRAllL is the only rule matching \(\forall \beta. B.\)

\[\square\]

\textbf{F’ Decidability of Algorithmic Subtyping}

\textbf{F’1 Lemmas for Decidability of Subtyping}

\textbf{Lemma 37 (Monotypes Solve Variables).} If \(\Gamma \vdash \hat{\alpha} : \leq \tau \dashv \Delta\) or \(\Gamma \vdash \tau \leq: \hat{\alpha} \dashv \Delta,\) then if \(|\Gamma|\tau = \tau\) and \(\hat{\alpha} \notin \text{FV}(|\Gamma|\tau),\) then \(\text{unsolved}(\Gamma) = \text{unsolved}(\Delta) + 1.\)

\textit{Proof.} By induction on the given derivation.

• Case
\[
\Gamma L \vdash \tau \quad \Gamma L, \Delta, \Gamma R \vdash \hat{\alpha} : \leq \tau \dashv \Gamma L, \Delta = \tau, \Gamma R \quad \text{InstLSolve}
\]
It is evident that \(|\text{unsolved}(\Gamma L, \Delta, \Gamma R)| = |\text{unsolved}(\Gamma L, \Delta, \tau, \Gamma R)| + 1.

• Case
\[
\Gamma \hat{\alpha}|\beta| \vdash \hat{\alpha} : \leq \beta \dashv \Gamma \hat{\alpha}|\beta| \hat{\beta} = \hat{\alpha} \quad \text{InstLReach}
\]
Similar to the previous case.

45
Lemma 39 (Substitution Decreases Size)

Proof. By induction on the given derivation.

- **Case** $\Gamma_0[\hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2] \vdash \tau_1 \equiv \hat{\alpha}_1 \vdash \Theta \vdash \hat{\alpha}_2 : \equiv [\Theta] \tau_2 \vdash \Delta \ 	ext{InstLArr}

 $\Gamma_0[\hat{\alpha}] \vdash \hat{\alpha} : \equiv \tau_1 \rightarrow \tau_2 \vdash \Delta$

 $|\text{unsolved}(\Gamma_0[\hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2])| = |\text{unsolved}(\Gamma_0[\hat{\alpha}])| + 1$ Immediate

 $|\text{unsolved}(\Gamma_0[\hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2])| = |\text{unsolved}(\Theta)| + 1$ By i.h.

 $|\text{unsolved}(\Gamma)| = |\text{unsolved}(\Theta)|$ Subtracting 1

 $|\text{unsolved}(\Delta)| + 1$ By i.h.

 \Rightarrow

- **Case** $\Gamma, \beta \vdash \hat{\alpha} : \equiv B \vdash \Delta, \beta, \Delta'$

 $\Gamma \vdash \hat{\alpha} : \equiv \forall \beta. B \vdash \Delta$ InstLAllR

 This case is impossible, since a monotype cannot have the form $\forall \beta. B$.

- **Cases** InstR Solve, InstR Reach: Similar to the InstL Solve and InstL Reach cases.

- **Case** InstRArr: Similar to the InstL Arr case.

- **Case** $\Gamma[\hat{\alpha}], \beta \vdash B \equiv \hat{\alpha} \vdash \Delta, \beta, \Delta'$

 $\Gamma[\hat{\alpha}] \vdash \forall \beta. B \equiv \hat{\alpha} \vdash \Delta$ InstRAllL

 This case is impossible, since a monotype cannot have the form $\forall \beta. B$. □

Lemma 38 (Monotype Monotonicity). If $\Gamma \vdash \tau_1 \prec \tau_2 \vdash \Delta$ then $|\text{unsolved}(\Delta)| \leq |\text{unsolved}(\Gamma)|$.

Proof. By induction on the given derivation.

- **Cases** \prec: Var, \prec:Exvar:

 In these rules, $\Delta = \Gamma$, so $|\text{unsolved}(\Delta)| = |\text{unsolved}(\Gamma)|$; therefore $|\text{unsolved}(\Delta)| \leq |\text{unsolved}(\Gamma)|$.

- **Case** \prec: We have an intermediate context Θ.

 By inversion, $\tau_1 = \tau_{11} \rightarrow \tau_{12}$ and $\tau_2 = \tau_{21} \rightarrow \tau_{22}$. Therefore, we have monotypes in the first and second premises.

 By induction on the first premise, $|\text{unsolved}(\Theta)| \leq |\text{unsolved}(\Gamma)|$. By induction on the second premise, $|\text{unsolved}(\Delta)| \leq |\text{unsolved}(\Theta)|$. By transitivity of \leq, $|\text{unsolved}(\Delta)| \leq |\text{unsolved}(\Gamma)|$, which was to be shown.

- **Cases** \prec:∀L, \prec:∀R: We are given a derivation of subtyping on monotypes, so these cases are impossible.

- **Cases** \prec:InstantiateL, \prec:InstantiateR: The input and output contexts in the premise exactly match the conclusion, so the result follows by Lemma 37 (Monotypes Solve Variables). □

Lemma 39 (Substitution Decreases Size). If $\Gamma \vdash A$ then $|\Gamma \vdash [\Gamma] A| \leq |\Gamma \vdash A|$.

Proof. By induction on $|\Gamma \vdash A|$. If $A = 1$ or $A = \alpha$, or $A = \hat{\alpha}$ and $\hat{\alpha} \in \text{unsolved}(\Gamma)$ then $|\Gamma\! | A = A$.

 Therefore, $|\Gamma \vdash [\Gamma] A| = |\Gamma \vdash A|$.

 If $A = \hat{\alpha}$ and $(\hat{\alpha} = \tau) \in \Gamma$, then by induction hypothesis, $|\Gamma \vdash [\Gamma] \tau| \leq |\Gamma \vdash \tau|$. Of course $|\Gamma \vdash \tau| \leq |\Gamma \vdash \tau| + 1$. By definition of substitution, $[\Gamma] \tau = [\Gamma] \hat{\alpha}$, so

 $$|\Gamma \vdash [\Gamma] \hat{\alpha}| \leq |\Gamma \vdash \tau| + 1$$

 By the definition of type size, $|\Gamma \vdash \hat{\alpha}| = |\Gamma \vdash \tau| + 1$, so

 $$|\Gamma \vdash [\Gamma] \hat{\alpha}| \leq |\Gamma \vdash \hat{\alpha}|$$

 which was to be shown.

 If $A = A_1 \rightarrow A_2$, the result follows via the induction hypothesis (twice).

 If $A = \forall \alpha. A_0$, the result follows via the induction hypothesis. □
Lemma 40 (Monotype Context Invariance).
If $\Gamma \vdash \tau <: \tau' \vdash \Delta$ where $|\Gamma|\tau = \tau$ and $|\Gamma|\tau' = \tau'$ and $|\text{unsolved}(\Gamma)| = |\text{unsolved}(\Delta)|$ then $\Gamma = \Delta$.

Proof. By induction on the derivation of $\Gamma \vdash \tau <: \tau' \vdash \Delta$.

- **Cases $<:\text{Var}$, $<:\text{Unit}$, $<:\text{Exvar}$:**
 In these rules, the output context is the same as the input context, so the result is immediate.

- **Case**

 $\Gamma \vdash \tau'_1 <: \tau_1 \vdash \Theta \quad \Theta \vdash |\Theta|\tau_2 <: |\Theta|\tau'_2 \vdash \Delta$

 We have that $|\Gamma|\tau_1 = \tau_1$ and $|\Gamma|\tau_2 = \tau_2$. By definition of substitution, $|\Gamma|\tau_1 = \tau_1$ and $|\Gamma|\tau_2 = \tau_2$. Similarly, $|\Gamma|\tau'_1 = \tau'_1$ and $|\Gamma|\tau'_2 = \tau'_2$.

 By i.h., $\Theta = \Gamma$. Since Θ is predicative, $|\Theta|\tau_2$ and $|\Theta|\tau'_2$ are monotypes.

 Substitution is idempotent: $|\Theta|(|\Theta|\tau_2) = |\Theta|\tau_2$ and $|\Theta|(|\Theta|\tau'_2) = |\Theta|\tau'_2$.

 By i.h., $\Delta = \Theta$. Hence $\Delta = \Gamma$.

- **Cases $<:\forall$, $<:\exists$: Impossible, since τ and τ' are monotypes.**

- **Case**

 $\exists \alpha \notin \text{FV}(A) \quad \Gamma_0[\alpha] \vdash \exists \alpha \check: A \vdash \Delta$

 By Lemma 37 (Monotypes Solve Variables), $|\text{unsolved}(\Delta)| < |\text{unsolved}(\Gamma_0[\alpha])|$, but it is given that $|\text{unsolved}(\Gamma_0[\alpha])| = |\text{unsolved}(\Delta)|$, so this case is impossible.

- **Case $<:\text{InstantiateR}$:** Impossible, as for the $<:\text{InstantiateL}$ case.

F'.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that $\Gamma \vdash A$ and $\Gamma \vdash B$ and $|\Gamma|A = A$ and $|\Gamma|B = B$, it is decidable whether there exists Δ such that $\Gamma \vdash A <: B \vdash \Delta$.

Proof. Let the judgment $\Gamma \vdash A <: B \vdash \Delta$ be measured lexicographically by

- **(S1)** the number of \forall quantifiers in A and B;
- **(S2)** $|\text{unsolved}(\Gamma)|$, the number of unsolved existential variables in Γ;
- **(S3)** $|\Gamma|A| + |\Gamma|B|$.

For each subtyping rule, we show that every premise is smaller than the conclusion. The condition that $|\Gamma|A = A$ and $|\Gamma|B = B$ is easily satisfied at each inductive step, using the definition of substitution.

- **Rules $<:\text{Var}$, $<:\text{Unit}$ and $<:\text{Exvar}$ have no premises.**

- **Case**

 $\Gamma \vdash B_1 <: A_1 \vdash \Theta \quad \Theta \vdash |\Theta|A_2 <: |\Theta|B_2 \vdash \Delta$

 If A_2 or B_2 has a quantifier, then the first premise is smaller by (S1). Otherwise, the first premise shares an input context with the conclusion, so it has the same (S2). The types B_1 and A_1 are subterms of the conclusion’s types, so the first premise is smaller by (S3).

 If B_1 or A_1 has a quantifier, then the second premise is smaller by (S1). Otherwise, by Lemma 38 (Monotype Monotonicity) on the first premise, $|\text{unsolved}(\Theta)| \leq |\text{unsolved}(\Gamma)|$.

 - If $|\text{unsolved}(\Theta)| < |\text{unsolved}(\Gamma)|$, then the second premise is smaller by (S2).
If $\text{unsolved}(\Theta) = \text{unsolved}(\Gamma)$, we have the same (S2).

However, by Lemma 40 (Monotype Context Invariance), $\Theta = \Gamma$, so $|\Theta \vdash [\Theta]A_2| = |\Gamma \vdash [\Gamma]A_2|$, which by Lemma 39 (Substitution Decreases Size) is less than or equal to $|\Gamma \vdash A_2|$.

By the same logic, $|\Theta \vdash [\Theta]B_2| \leq |\Gamma \vdash B_2|$.

Therefore,

$$|\Theta \vdash [\Theta]A_2| + |\Theta \vdash [\Theta]B_2| \leq |\Gamma \vdash (A_1 \rightarrow A_2)| + |\Gamma \vdash (B_1 \rightarrow B_2)|$$

and the second premise is smaller by (S3).

- **Cases $< : \forall L, < : \forall R$:** In each of these rules, the premise has one less quantifier than the conclusion, so the premise is smaller by (S1).
- **Cases $< : \text{Instantiate}_L, < : \text{Instantiate}_R$:** Follows from Theorem 7.

G' Decidability of Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e,

it is decidable whether there exist a type A and a context Δ such that

$$\Gamma \vdash e \Rightarrow A \mid \Delta.$$

(ii) Checking: Given a context Γ, a term e, and a type B such that $\Gamma \vdash B$,

it is decidable whether there is a context Δ such that

$$\Gamma \vdash e \Leftrightarrow B \mid \Delta.$$

(iii) Application: Given a context Γ, a term e, and a type A such that $\Gamma \vdash A$,

it is decidable whether there exist a type C and a context Δ such that

$$\Gamma \vdash A \bullet e \Rightarrow \Rightarrow C \mid \Delta.$$

Proof. For rules deriving judgments of the form

$$\Gamma \vdash e \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$$

and (where we write “\Rightarrow” for parts of the judgments that are outputs), the following induction measure on such judgments is adequate to prove decidability:

$$\langle e, \Rightarrow, |\Gamma \vdash B| \Rightarrow, |\Gamma \vdash A| \rangle$$

where (\ldots) denotes lexicographic order, and where (when comparing two judgments typing terms of the same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second line), which in turn is considered smaller than the application judgment (bottom line). That is,

$$\Rightarrow < \Leftrightarrow < \Rightarrow$$

Note that this measure only uses the input parts of the judgments, leading to a straightforward decidability argument.

We will show that in each rule, every synthesis/checking/application premise is smaller than the conclusion.

- **Case Var:** No premises.
Case Sub: The first premise has the same subject term e as the conclusion, but the judgment is smaller because the measure considers a synthesis judgment to be smaller than a checking judgment.

The second premise is a subtyping judgment, which by Theorem 8 is decidable.

Case Anno: It is easy to show that the judgment $\Gamma \vdash A$ is decidable. The second premise types e, but the conclusion types $(e : A)$, so the first part of the measure gets smaller.

Case 1I: No premises.

Case \rightarrowI: In the premise, the term is smaller.

Case \rightarrowE: In both premises, the term is smaller.

Case \forallI: Both the premise and conclusion type e, and both are checking; however, $|\Gamma, \alpha \vdash A| < |\Gamma \vdash \forall \alpha. A|$, so the premise is smaller.

Case \rightarrowApp: Both the premise and conclusion type e, but the premise is a checking judgment, so the premise is smaller.

Case Subst$: Both the premise and conclusion type e, and both are checking; however, since we can apply this rule only when Γ has a solution for $^\alpha$—that is, when $\Gamma = \Gamma_0[\alpha = \tau]$—we have that $|\Gamma \vdash [\Gamma]A| < |\Gamma \vdash A|$, making the last part of the measure smaller.

Case SubstApp: Similar to Subst$\,\Rightarrow$.

Case \forallApp: Both the premise and conclusion type e, and both are application judgments; however, by the definition of $|\Gamma |-|$, the size of the type in the premise $[\Gamma/^\alpha]A$ is smaller than $\forall \alpha. A$.

Case $^\alpha$App: Both the premise and conclusion type e, but we switch to checking in the premise, so the premise is smaller.

Case 1I\Rightarrow: No premises.

Case \rightarrow1\Rightarrow: In the premise, the term is smaller.

\[\textbf{H’} \quad \text{Soundness of Subtyping}\]

\[\textbf{H’}.1 \quad \text{Lemmas for Soundness}\]

\[\textbf{Lemma 42} \quad \text{(Variable Preservation)} \]
If $(x : A) \in \Delta$ or $(x : A) \in \Omega$ and $\Delta \rightarrow \Omega$ then $(x : [\Omega]A) \in [\Omega]\Delta$.

\[\textbf{Proof}. \quad \text{By mutual induction on } \Delta \text{ and } \Omega.\]

Suppose $(x : A) \in \Delta$. In the case where $\Delta = (\Delta', x : A)$ and $\Omega = (\Omega', x : A_{\Omega})$, inversion on $\Delta \rightarrow \Omega$ gives $[\Omega']A = [\Omega']A_{\Omega}$; by the definition of context application, $[\Omega', x : A_{\Omega}]/(\Delta', x : A) = [\Omega']\Delta', x : [\Omega']A_{\Omega}$, which contains $x : [\Omega']A_{\Omega}$, which is equal to $x : [\Omega']A$. By well-formedness of Ω, we know that $[\Omega']A = [\Omega]A$.

Suppose $(x : A) \in \Omega$. The reasoning is similar, because equality is symmetric.

\[\textbf{Lemma 43} \quad \text{(Substitution Typing)} \]
If $\Gamma \vdash A$ then $\Gamma \vdash [\Gamma]A$.

\[\textbf{Proof}. \quad \text{By induction on } |\Gamma \vdash A| \text{ (the size of } A \text{ under } \Gamma).\]

Cases UvarWF, UnitWF: Here $A = \alpha$ or $A = 1$, so applying Γ to A does not change it: $A = [\Gamma]A$. Since $\Gamma \vdash A$, we have $\Gamma \vdash [\Gamma]A$, which was to be shown.
• **Case** EvarWF: In this case $\Lambda = \emptyset$, but $\Gamma = \Gamma_0[\emptyset]$, so applying Γ to Λ does not change it, and we proceed as in the UnitWF case above.

• **Case** SolvedEvarWF: In this case $\Lambda = \emptyset$ and $\Gamma = \Gamma_1, \emptyset = \tau, \Gamma_1$. Thus $[\Gamma]\Lambda = [\Gamma]\emptyset = [\Gamma_1]\tau$. We assume contexts are well-formed, so all free variables in τ are declared in Γ_1. Consequently, $[\Gamma_1] = [\Gamma + \emptyset]$, which is less than $[\Gamma + \emptyset]$. We can therefore apply the i.h. to τ, yielding $\Gamma + [\Gamma]\tau$. By the definition of substitution, $[\Gamma]\tau = [\Gamma]\emptyset$, so we have $\Gamma + [\Gamma]\emptyset$.

• **Case** ArrowWF: In this case $\Lambda = A_1 \rightarrow A_2$. By i.h., $\Gamma + [\Gamma]A_1$ and $\Gamma + [\Gamma]A_2$. By ArrowWF, $\Gamma + ([\Gamma]A_1) \rightarrow ([\Gamma]A_2)$, which by the definition of substitution is $\Gamma + [\Gamma](A_1 \rightarrow A_2)$.

• **Case** ForallWF: In this case $\Lambda = \forall \alpha. A_0$. By i.h., $\Gamma, \alpha + [\Gamma, \alpha]A_0$. By the definition of substitution, $[\Gamma, \alpha]A_0 = [\Gamma]A_0$, so by ForallWF, $\Gamma + \forall \alpha. [\Gamma]A_0$, which by the definition of substitution is $\Gamma + [\Gamma](\forall \alpha. A_0)$. □

Lemma 44 (Substitution for Well-Formedness). If $\Omega \vdash A$ then $[\Omega] \Omega \vdash [\Omega]\Lambda$.

Proof. By induction on $[\Omega] \Lambda$, the size of Λ under Ω (Definition\[2\]).

We consider cases of the well-formedness rule concluding the derivation of $\Omega \vdash A$.

- **Case**

 \[
 \Omega \vdash 1
 \]

 By DeclUnitWF

- **Case**

 \[
 \Omega \vdash [\alpha]1
 \]

 By definition of substitution

- **Case**

 \[
 \Omega \vdash [\alpha]
 \]
 \[
 \Omega \rightarrow \Omega
 \]

 By Lemma\[20\] (Reflexivity)

- **Case**

 \[
 \alpha \in [\Omega]\Omega
 \]
 \[
 \Omega \vdash [\alpha]
 \]

 By DeclUnitWF

- **Case**

 \[
 \Omega \vdash [\alpha]
 \]

 By definition of substitution

- **Case**

 \[
 \Omega \vdash [\alpha]
 \]
 \[
 \Omega \rightarrow [\alpha]
 \]

 Given

- **Case**

 \[
 \Omega \vdash [\alpha]
 \]

 By Lemma\[20\] (Reflexivity)

- **Case**

 \[
 \Omega \vdash [\alpha]
 \]

 By Lemma\[43\] (Substitution Typing)

- **Case**

 \[
 [\Omega] \Omega \vdash [\alpha]
 \]

 Follows from definition of type size

- **Case**

 \[
 [\Omega] \Omega \vdash [\alpha]
 \]

 By i.h.

- **Case**

 \[
 [\Omega] \Omega \vdash [\alpha]
 \]

 By Lemma\[18\] (Substitution Extension Invariance)

- **Case**

 \[
 [\Omega] \Omega \vdash [\alpha]
 \]

 Applying equality

- **Case**

 \[
 \Omega \vdash A_1 \rightarrow A_2
 \]

 ArrowWF

Impossible: the grammar for Ω does not allow unsolved declarations.
Lemma 45 (Substitution Stability).
For any well-formed complete context $\langle \Omega, \Omega \rangle$, if $\Gamma \vdash \Delta$ then $\Gamma \vdash [\Omega]A = [\Omega, \Omega]A$.

Proof. By induction on Ω_Z. If $\Omega_Z = \emptyset$, the result is immediate. Otherwise, use the i.h. and the fact that $\Gamma \vdash \Delta$ implies $\text{FV}(A) \cap \text{dom}(\Omega_Z) = \emptyset$.

Lemma 46 (Context Partitioning).
If $\Delta, \Theta \vdash \Omega, \varphi, \Omega_Z$ then there is a Ψ such that $\langle \Omega, \varphi, \Omega_Z \rangle[\Delta, \Theta, \Theta] = [\Omega]A, \Psi$.

Proof. By induction on the given derivation.

- **Case** $\rightarrow\text{ID}$: Impossible; Δ, Θ cannot have the form \vdash.

- **Case** $\rightarrow\text{Var}$: We have $\Omega_Z = (\Omega_Z, x : A)$ and $\Theta = (\Theta', x : A')$. By i.h., there is Ψ' such that $\langle \Omega, \varphi, \Omega_Z \rangle[\Delta, \Theta, \Theta'] = [\Omega]A, \Theta'$. Then by the definition of context application, $\langle \Omega, \varphi, \Omega_Z, x : A \rangle[\Delta, \Theta, \Theta', x : A'] = [\Omega]A, \Theta', x : [\Omega]A$. Let $\Psi = (\Psi', x : [\Omega]A)$.

- **Case** $\rightarrow\text{Uvar}$: Similar to the $\rightarrow\text{Var}$ case, with $\Psi = (\Psi', A)$.

- **Cases** $\rightarrow\text{Unsolved}, \rightarrow\text{Solve}, \rightarrow\text{Marker}, \rightarrow\text{Add}, \rightarrow\text{AddSolved}$: Broadly similar to the $\rightarrow\text{Uvar}$ case, but since the rightmost context element is soft it disappears in context application, so we let $\Psi = \Psi'$.

Lemma 49 (Stability of Complete Contexts).
If $\Gamma \vdash \Omega$ then $[\Omega]\Gamma = [\Omega]\Omega$.

Proof. By induction on the derivation of $\Gamma \vdash \Omega$.

- **Case** $\rightarrow\text{ID}$: Impossible; $\Gamma = \emptyset$.

In this case, $\Omega = \emptyset = \emptyset$.

By definition, $[\cdot] = \cdot$, which gives us the conclusion.
• Case $\Gamma' \rightarrow \Omega'\quad [\Omega']A_{\Gamma} = [\Omega']A_{\Gamma}$
 $\Gamma', x : A_{\Gamma} \rightarrow \Omega', x : A_{\Gamma}$

 $[\Omega']\Gamma' = [\Omega']\Omega'$
 By i.h.

 $[\Omega']A_{\Gamma} = [\Omega']A_{\Gamma}$
 Premise

 $[\Omega]\Gamma = [\Omega', x : A]\{\Gamma', x : A_{\Gamma}\}$
 Expanding Ω and Γ

 $= [\Omega']\Gamma', x : [\Omega']A_{\Gamma}$
 By definition of context application

 $= [\Omega']\Omega', x : [\Omega']A_{\Gamma}$
 (using $[\Omega']A_{\Gamma} = [\Omega']A_{\Gamma}$)

 $= [\Omega]\Omega$
 By above equalities

 $\Gamma', \alpha \rightarrow \Omega', \alpha$
 Expanding Ω and Γ

• Case $\Gamma' \rightarrow \Omega'$

 $\Gamma', \alpha \rightarrow \Omega', \alpha$
 Expanding Ω and Γ

 $[\Omega]\Gamma = [\Omega', \alpha]([\Gamma', \alpha])$
 By definition of context application

 $= [\Omega']\Gamma', \alpha$
 By i.h.

 $= [\Omega', \alpha]([\Omega', \alpha])$
 By definition of context application

 $= [\Omega]\Omega$
 By definition of context application

• Case $\Gamma' \rightarrow \Omega'$

 $\Gamma', \alpha \rightarrow \Omega', \alpha$
 Expanding Ω and Γ

 $[\Omega]\Gamma = [\Omega', \alpha]([\Gamma', \alpha])$
 By definition of context application

 $= [\Omega']\Gamma', \alpha$
 By i.h.

 $= [\Omega']\Omega'$
 By $\Omega = (\Omega', \alpha)$

• Case $\Gamma \rightarrow \Omega'$

 $\Gamma \rightarrow \Omega', \alpha = \tau$
 Expanding Ω

 $[\Omega]\Gamma = [\Omega', \alpha = \tau]\Gamma$
 Expanding Ω

 $= [\Omega']\Gamma$
 By $\alpha \notin \text{dom}(\Gamma)$

 $= [\Omega']\Omega'$
 By i.h.

 $= \Omega', \alpha = \tau$
 By definition of context application

 $= [\Omega]\Omega$
 By $\Omega = (\Omega', \alpha = \tau)$

• Case $\Gamma' \rightarrow \Omega'$

 $\Gamma', \alpha = \tau_{\Gamma} \rightarrow \Omega', \alpha = \tau$
 Expanding Ω and Γ

 $[\Omega]\Gamma = [\Omega', \alpha = \tau](\Gamma', \alpha = \tau)$
 Expanding Ω and Γ

 $= [\Omega']\Gamma'$
 By definition of context application

 $= [\Omega']\Omega'$
 By i.h.

 $= \Omega', \alpha = \tau$
 By definition of context application

 $= [\Omega]\Omega$
 By $\Omega = (\Omega', \alpha = \tau)$

• Case $\Gamma' \rightarrow \Omega'$

 $\Gamma', \alpha \rightarrow \Omega', \alpha = \tau$
 Expanding Ω and Γ

 $[\Omega]\Gamma = [\Omega', \alpha = \tau](\Gamma', \alpha)$
 Expanding Ω and Γ

 $= [\Omega']\Gamma'$
 By definition of context application

 $= [\Omega']\Omega'$
 By i.h.

 $= \Omega', \alpha = \tau$
 By definition of context application

 $= [\Omega]\Omega$
 By $\Omega = (\Omega', \alpha = \tau)$

• Case $\Gamma \rightarrow \Delta$

 $\Gamma, \alpha \rightarrow \Delta, \alpha$
 Expanding Ω and Γ
Impossible: Ω cannot have the form Δ, $\hat{\alpha}$.

- **Case** $\Gamma \rightarrow \Delta$

 $\Gamma \rightarrow \Delta, \hat{\alpha} \rightarrow$ Add

 Impossible: Ω cannot have the form $\Delta, \hat{\alpha}$.

Lemma 50 (Finishing Types).

If $\Omega \rightarrow \Lambda$ and $\Lambda \rightarrow \Omega'$ then $[\Omega]\Lambda = [\Omega']\Lambda$.

Proof. By Lemma [18] (Substitution Extension Invariance), $[\Omega']\Lambda = [\Omega']\Omega[A]$.

If $FEV(C) = \emptyset$ then $[\Omega']C = C$.

Since Ω is complete and $\Omega \vdash \Lambda$, we have $FEV([\Omega]\Lambda) = \emptyset$. Therefore $[\Omega']\Omega[A] = [\Omega]A$. \square

Lemma 51 (Finishing Completions).

If $\Omega \rightarrow \Omega'$ then $[\Omega]\Omega = [\Omega']\Omega'$.

Proof. By induction on the given derivation of $\Omega \rightarrow \Omega'$.

Only cases \rightarrowId, \rightarrowVar, \rightarrowUVar, \rightarrowSolved, \rightarrowMarker and \rightarrowAddSolved are possible. In all of these cases, we use the i.h. and the definition of context application; in cases \rightarrowVar and \rightarrowSolved, we also use the equality in the premise of the respective rule. \square

Lemma 52 (Confluence of Completeness).

If $\Delta_1 \rightarrow \Omega$ and $\Delta_2 \rightarrow \Omega$ then $[\Omega]\Delta_1 = [\Omega]\Delta_2$.

Proof.

$\Delta_1 \rightarrow \Omega$ Given

$[\Omega]\Delta_1 = [\Omega]\Omega$ By Lemma 49 (Stability of Complete Contexts)

$\Delta_2 \rightarrow \Omega$ Given

$[\Omega]\Delta_2 = [\Omega]\Omega$ By Lemma 49 (Stability of Complete Contexts)

$[\Omega]\Delta_1 = [\Omega]\Delta_2$ By transitivity of equality \square

H’.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).

Given $\Delta \rightarrow \Omega$ and $\Gamma\Psi = \emptyset$ and $\hat{\lambda} \notin FV(B)$:

1. If $\Gamma \vdash \hat{\lambda} : \hat{\tau} \rightarrow \Delta$ then $[\Omega]\Delta \vdash [\Omega]\hat{\lambda} \leq [\Omega]\Psi$.
2. If $\Gamma \vdash B \hat{\lambda} \rightarrow \Delta$ then $[\Omega]\Delta \vdash [\Omega]B \leq [\Omega]\hat{\lambda}$.

Proof. By induction on the given instantiation derivation.

1. **Case** $\Gamma_0 \vdash \tau$

 $\Gamma_0, \hat{\alpha}, \Gamma_1 \vdash : \hat{\lambda} \rightarrow \Delta \Gamma_0, \hat{\alpha} = \tau, \Gamma_1$

 We have $\Delta = \Gamma[\hat{\alpha}] \hat{\beta} = \hat{\alpha}$. Therefore $[\Delta]\hat{\alpha} = \hat{\alpha} = [\Delta]\hat{\beta}$.

 By reflexivity of subtyping (Lemma 3 (Reflexivity of Declarative Subtyping)), $[\Omega]\Delta \vdash [\Delta]\hat{\alpha} \leq [\Delta]\hat{\beta}.$
• Case

\[
\begin{align*}
\Gamma \vdash \bar{\alpha} : \Delta_1 \rightarrow \Delta_2 & \quad \text{InstLArr} \\
\Gamma \vdash \bar{\alpha} : \Delta_1 \rightarrow \Delta_2 & \quad \text{InstLArr} \\
\end{align*}
\]

Therefore \(\Gamma \Delta \vdash (\bar{\alpha}_1 \rightarrow \bar{\alpha}_2) \).

Since \((\bar{\alpha} = \bar{\alpha}_1 \rightarrow \bar{\alpha}_2) \in \Gamma_1 \) and \(\Gamma_1 \rightarrow \Delta_\), we know that \(\Delta \bar{\alpha} = \Delta(\bar{\alpha}_1 \rightarrow \bar{\alpha}_2) \).

By the definition of context application, \(\Delta \bar{\alpha} \in [\Delta] \bar{\alpha} \).

Since \(\bar{\alpha} \in \text{FV}(\bar{\beta}) \) and by definition, \(\bar{\alpha} \in \text{FV}(\bar{\beta}) \).

By Lemma 48 (Filling Completes), \(\Delta, \bar{\beta}, \Delta' \rightarrow \Omega, \bar{\beta}, \Delta' \).

By induction, \(\Omega, \bar{\beta}, |\Delta| \rightarrow \Omega, \bar{\beta}, |\Delta'| \rightarrow \Omega, \bar{\beta}, |\Delta'| \).

Each free variable in \(\bar{\alpha} \) and \(\bar{\beta} \) is declared in \(\Omega, \bar{\beta} \), so \(\Omega, \bar{\beta}, |\Delta| \) behaves as \(\Omega, \bar{\beta} \) on \(\bar{\alpha} \) and on \(\bar{\beta} \).

By Lemma 46 (Context Partitioning) and thinning, \(\Omega, \bar{\beta}, |\Delta, \bar{\beta}, \Delta'| \rightarrow \Omega, \bar{\beta}, \Delta' \bar{\alpha} \leq \Omega, \bar{\beta}, B_0 \).

Since \(\bar{\alpha} \) is declared to the left of \(\bar{\beta} \), we have \(\bar{\beta} \notin \text{FV}([\Delta], \bar{\alpha}) \).

Applying rule \(\leq \forall L \) gives \(\Omega, \Delta \vdash \Omega, \bar{\beta} \leq \forall \beta, [\Delta] \bar{\beta} \).

(2) Case

\[
\begin{align*}
\Gamma_0 \vdash \tau & \quad \text{InstRSolve} \\
\Gamma_0, \bar{\alpha}, \Gamma_1 \vdash \tau & \quad \text{InstRReach} \\
\end{align*}
\]

Similar to the InstLSolve case.

• Case

\[
\begin{align*}
\Gamma[\bar{\alpha}] \vdash \bar{\beta} : \Delta_1 & \quad \text{InstRRReach} \\
\Gamma[\bar{\alpha}] \vdash \bar{\alpha} : \Delta_2 & \quad \text{InstRRReach} \\
\end{align*}
\]

Similar to the InstLReach case.

• Case

\[
\begin{align*}
\Gamma[\bar{\alpha}_1, \bar{\beta}] \vdash \bar{\beta} : \Delta_1 & \quad \text{InstRArr} \\
\Gamma[\bar{\alpha}] \vdash \bar{\alpha} : \Delta_2 & \quad \text{InstRArr} \\
\end{align*}
\]

Similar to the InstLArr case.

• Case

\[
\begin{align*}
\Gamma[\bar{\alpha}] \vdash \forall \beta, \bar{\alpha} : \Delta_1 & \quad \text{InstRAll} \\
\end{align*}
\]

Similar to the InstLAll case.
By Lemma 23 (Evar Input), we know that

\[\Gamma[\hat{\alpha}] \vdash B_0 \]

Given

\[\Gamma[\hat{\alpha}] \models B_0 \]

\[\Gamma[\hat{\alpha}] \models B_0 \]

\[\Gamma[\hat{\alpha}] \models B_0 \]

\[[\Gamma][\Delta](\forall \beta. B_0) = \forall \beta. B_0 \]

\[\Delta \rightarrow \Omega \]

\[\Delta, \beta, \Delta' \rightarrow \Omega, \beta, [\Delta'] \]

By Lemma 48 (Filling Completes)

\[\Delta, \beta, \Delta' \rightarrow \Omega, \beta, [\Delta'] \]

\[\hat{\alpha} \not\in \text{FV}(\forall \beta. B_0) \]

Given

\[\hat{\alpha} \not\in \text{FV}(B_0) \]

By definition of \text{FV}(\cdot)

\[\Gamma[\hat{\alpha}], \beta, \Delta' \models [\beta/\beta]B_0 \leq \hat{\alpha} \vdash \Delta, \beta, \Delta' \]

Subderivation

\[\Gamma[\hat{\alpha}], \beta, \Delta' \models [\beta/\beta]B_0 \leq \hat{\alpha} \vdash \Delta, \beta, \Delta' \]

By i.h.

\[\Gamma[\hat{\alpha}], \beta, \Delta' \models \Delta, \beta, \Delta' \]

By Lemma 32 (Instantiation Extension)

By Lemma 16 (Declaration Order Preservation), \(\hat{\alpha} \) is declared before \(\beta \), that is, in \(\Omega \).

Thus, \([\Omega, \beta, \Delta'] = [\Omega, \beta] \)

By Lemma 23 (Evar Input), we know that \(\Delta' \) is soft, so by Lemma 47 (Softness Goes Away),

\[[\Omega, \beta, \Delta'] = [\Omega, \beta] \]

Applying these equalities to the derivation above gives

\[[\Omega, \Delta] \vdash [\Omega, \beta, [\Delta']][\beta/\beta]B_0 \leq [\Omega, \hat{\alpha}] \]

By distributivity of substitution,

\[[\Omega, \Delta] \vdash [\Omega, \beta, [\Delta']][\beta/\beta]B_0 \leq [\Omega, \hat{\alpha}] \]

Furthermore, \([\Omega, \beta, [\Delta']][\beta/\beta]B_0 = [\Omega, \hat{\alpha}]\), since \(B_0 \)'s free variables are either \(\beta \) or in \(\Omega \), giving

\[[\Omega, \Delta] \vdash [\Omega, \beta, [\Delta']][\beta/\beta][\Omega, \hat{\alpha}] \]

Now apply \(\leq \forall \text{L} \) and the definition of substitution to get \([\Omega, \Delta] \vdash [\Omega, \forall \beta, B_0] \leq [\Omega, \hat{\alpha}] \).

\(\square \)

H’.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).

If \(\Gamma \vdash A <: B \vdash \Delta \) where \([\Gamma][\Delta] = A \) and \([\Gamma][\beta] = B \) and \(\Delta \rightarrow \Omega \) then \([\Omega][\Delta] \vdash [\Omega][\beta] \leq [\Omega][\hat{\alpha}] \).

Proof. By induction on the derivation of \(\Gamma \vdash A <: B \vdash \Delta \).

- **Case** \(\vdash <: \text{Var} \)

\[
\frac{\Gamma'[\alpha]}{\Gamma[\alpha] \vdash \alpha <: \alpha \vdash \Gamma'[\alpha]} \quad \alpha \in \Delta
\]

\[\alpha \in [\alpha] \Delta \]

\[\alpha \in [\Omega][\Delta] \]

Follows from definition of context application

\[[\Omega][\Delta] \vdash \alpha \leq [\Omega][\alpha] \]

By \(\leq \text{Var} \)

\[[\Omega][\Delta] \vdash [\alpha] \leq [\Omega][\alpha] \]

By def. of substitution

- **Case** \(\vdash <: \text{Unit} \)

Similar to the \(\vdash <: \text{Var} \) case, applying rule \(\leq \text{Unit} \) instead of \(\leq \text{Var} \).

- **Case** \(\vdash <: \text{Evar} \)

\[
\frac{\Gamma_L, \hat{\alpha}, \Gamma_R \vdash \hat{\alpha} <: \hat{\alpha} \vdash \hat{\Gamma_L, \hat{\alpha}, \hat{\Gamma_R}}} {\vdash <: \text{Evar} \}
\]

\[[\Omega, \hat{\alpha}] \text{ defined} \]

Follows from definition of context application

\[[\Omega][\Delta] \vdash [\Omega, \hat{\alpha}] \]

Assumption that \([\Omega][\Delta] \) is well-formed

\[[\Omega][\Delta] \vdash [\Omega][\hat{\alpha}] \]

By Lemma 3 (Reflexivity of Declarative Subtyping)
• Case \[
\Gamma \vdash B_1 <: A_1 \rightarrow \Theta \quad \Theta \vdash [\Theta]A_2 <: [\Theta]B_2 \rightarrow \Delta
\]
\[
\Gamma \vdash A_1 \rightarrow A_2 \quad \Gamma \vdash B_1 \rightarrow B_2 \rightarrow \Delta
\]
\[
\begin{align*}
\Gamma \vdash B_1
\Delta \rightarrow \Theta \\
\Theta \rightarrow \Theta \\
\end{align*}
\]
\[
[\Omega] \Theta \vdash [\Omega]B_1 \leq [\Omega]A_1 \\
[\Omega] \Delta \vdash [\Omega]B_1 \leq [\Omega]A_1
\]
\[
\Theta \vdash [\Theta]A_2 <: [\Theta]B_2 \rightarrow \Delta
\]
\[
[\Omega] \Delta \vdash [\Omega][\Theta]A_2 \leq [\Omega][\Theta]B_2
\]
\[
[\Omega] \Delta \vdash ([\Omega]A_1) \rightarrow ([\Omega]A_2) \leq ([\Omega]B_1) \rightarrow ([\Omega]B_2)
\]
Subderivation
Given
By Lemma 21 (Transitivity)
By i.h.
By Lemma 52 (Confluence of Completeness)
Subderivation
By i.h.
By Lemma 18 (Substitution Extension Invariance)
By Lemma 18 (Substitution Extension Invariance)
Above equations
By \(\leq \rightarrow \)
By def. of substitution

• Case \[
\Gamma \vdash A <: B \vdash \Delta, \Theta
\]
\[
\Gamma \vdash \forall \alpha. A_0 <: B \vdash \Delta
\]
\[
\begin{align*}
\Gamma \vdash \forall \alpha. A_0 \vdash \Delta, \Theta
\end{align*}
\]
\[
\begin{align*}
\Delta \rightarrow \Omega \\
(\Delta, \Theta) \rightarrow \Omega' \\
\end{align*}
\]
\[
\begin{align*}
[\Omega'][\Delta, \Theta] \vdash [\Omega'][\forall \alpha. A_0] \leq [\Omega'][B] \\
[\Omega'][\Delta, \Theta] \vdash [\Omega'][\forall \alpha. A_0] \leq [\Omega][B] \\
[\Omega'][\Delta, \Theta] \vdash [\Omega'[\forall \alpha. A_0] \leq [\Omega][B]
\end{align*}
\]
Subderivation
Given
By Lemma 48 (Filling Completes)
By i.h.
By Lemma 33 (Subtyping Extension)
By Lemma 25 (Extension Weakening)
Above
By Lemma 44 (Substitution for Well-Formedness)
By Lemma 49 (Stability of Complete Contexts)
By \(\leq \forall \lambda \)
By Lemma 45 (Substitution Stability)
By Lemma 45 (Substitution Stability)
By def. of substitution
By def. of substitution
By def. of substitution

• Case \[
\Gamma, \alpha \vdash A <: B_0 \vdash \Delta, \Theta
\]
\[
\Gamma \vdash \forall \alpha. B_0 \vdash \Delta
\]
By def. of substitution
By def. of substitution
By def. of substitution
\[\Gamma, \alpha \vdash A <: B_0 \vdash \Delta, \alpha, \Theta\]

Subderivation

Let \(\Omega_Z = [\Theta]\).

Let \(\Omega' = (\Omega, \alpha, \Omega_Z)\).

\((\Delta, \alpha, \Theta) \rightarrow \Omega'\)

By Lemma 48 (Filling Completes)

\([\Omega'][(\Delta, \alpha, \Theta)] \vdash [\Omega']A \leq [\Omega']B_0\)

By i.h.

\([\Omega, \alpha][(\Delta, \alpha)] \vdash [\Omega, \alpha]A \leq [\Omega, \alpha]B_0\)

By Lemma 45 (Substitution Stability)

\([\Omega, \alpha][(\Delta, \alpha)] \vdash [\Omega]A \leq [\Omega](\forall \alpha. B_0)\)

By \(\leq \forall R\)

Case \(\alpha / \notin \text{FV}(B)\):

\[\Gamma \vdash \alpha : B \vdash \Delta\]

\[\frac{\Gamma \vdash \alpha : \leq B \vdash \Delta}{\subderivation}\]

\([\Omega] \Delta \vdash [\Omega]A \leq [\Omega](\forall \alpha. B_0)\)

By Theorem 10

Case \(\alpha : \leq B \vdash \Delta\):

Similar to the case for \(\alpha : \leq B \vdash \Delta\).

\[\boxdot\]

Corollary 53 (Soundness, Pretty Version). If \(\Psi \vdash A <: B \vdash \Delta\), then \(\Psi \vdash A \leq B\).

Proof. By reflexivity (Lemma 20 (Reflexivity)), \(\Psi \rightarrow \Psi\).

Since \(\Psi\) has no existential variables, it is a complete context \(\Omega\).

By Theorem 11, \([\Psi] \Psi \vdash [\Psi]A \leq [\Psi]B\).

Since \(\Psi\) has no existential variables, \([\Psi] \Psi = \Psi\), and \([\Psi]A = A\), and \([\Psi]B = B\).

Therefore \(\Psi \vdash A \leq B\).

\[\boxdot\]

I’ Typing Extension

Lemma 54 (Typing Extension).

If \(\Gamma \vdash e \leftarrow A \vdash \Delta\) or \(\Gamma \vdash e \Rightarrow A \vdash \Delta\) or \(\Gamma \vdash A \bullet e \Rightarrow C \vdash \Delta\) then \(\Gamma \rightarrow \Delta\).

Proof. By induction on the given derivation.

- Cases Var, 1I, 1I:\

 Since \(\Delta = \Gamma\), the result follows by Lemma 20 (Reflexivity).

- Case \(\Gamma \vdash e \Rightarrow B \vdash \Theta\)

 \(\Theta \vdash [\Theta]B <: [\Theta]A \vdash \Delta\)

 Sub\:

 \[\frac{\Gamma \rightarrow \Theta \vdash e \leftarrow A \vdash \Delta}{\subderivation}\]

 By i.h.

- Case \(\Gamma \rightarrow \Delta\)

 By Lemma 33 (Subtyping Extension)

 \(\vdash \subderivation\)

- Case \(\Gamma \vdash A\)

 \(\Gamma \vdash e \leftarrow A \vdash \Delta\)

 Anno\:

 \[\frac{\Gamma \vdash e \leftarrow A \vdash \Delta}{\subderivation}\]

 By i.h.

- Case \(\Gamma, \alpha \vdash e \leftarrow A_0 \vdash \Delta, \alpha, \Theta\)

 \(\Gamma \vdash e \leftarrow \forall \alpha. A_0 \vdash \Delta\)

 \(\forall I\)

 \(\Gamma, \alpha \rightarrow \Delta, \alpha, \Theta\)

 By i.h.

 \(\boxdot\)

- Case \(\Gamma \rightarrow \Delta\)

 By Lemma 24 (Extension Order) (i)
J’ Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given \(\Delta \rightarrow \Omega \):

(i) If \(\Gamma \vdash e \Leftrightarrow A \rightarrow \Delta \) then \([\Omega]A \vdash e \Leftrightarrow [\Omega]A\).

(ii) If \(\Gamma \vdash e \Rightarrow A \rightarrow \Delta \) then \([\Omega]A \vdash e \Rightarrow [\Omega]A\).

(iii) If \(\Gamma \vdash A \bullet e \Rightarrow C \rightarrow \Delta \) then \([\Omega]A \bullet e \Rightarrow [\Omega]C\).

Proof. By induction on the given algorithmic typing derivation.
\[(x : A) \in \Gamma\] \hspace{1cm} \text{Premise}
\[(x : A) \in \Delta\] \hspace{1cm} \text{By } \Gamma = \Delta
\[\Delta \rightarrow \Omega\] \hspace{1cm} \text{Given}
\[(x : [\Omega]\Gamma)A \in [\Omega]\Gamma\] \hspace{1cm} \text{By Lemma 42 (Variable Preservation)}

\[\vdash [\Omega]\Gamma \vdash x \Rightarrow [\Omega]A\] \hspace{1cm} \text{By DeclVar}

\[\Gamma \vdash e \Rightarrow A \rightarrow \Theta \quad \Theta \vdash [\Theta]A \lll [\Theta]B \rightarrow \Delta\] \hspace{1cm} \text{Sub}

\[\Gamma \vdash e \Rightarrow A \rightarrow \Theta\] \hspace{1cm} \text{Subderivation}
\[\Theta \vdash (\Theta)A \lll [\Theta]B \rightarrow \Delta\] \hspace{1cm} \text{Subderivation}
\[\Theta \rightarrow \Delta\] \hspace{1cm} \text{By Lemma 54 (Typing Extension)}
\[\Delta \rightarrow \Omega\] \hspace{1cm} \text{Given}
\[\Theta \rightarrow \Omega\] \hspace{1cm} \text{By Lemma 21 (Transitivity)}
\[[\Omega]\Theta \vdash e \Rightarrow [\Omega]A\] \hspace{1cm} \text{By i.h.}
\[[\Omega]\Theta = [\Omega]\Delta\] \hspace{1cm} \text{By Lemma 52 (Confluence of Completeness)}
\[[\Omega]\Delta \vdash e \Rightarrow [\Omega]A\] \hspace{1cm} \text{By above equalities}

\[\Theta \vdash (\Theta)A \lll [\Theta]B \rightarrow \Delta\] \hspace{1cm} \text{Subderivation}
\[[\Omega]\Delta \vdash (\Omega)[\Theta]A \leq [\Omega]B\] \hspace{1cm} \text{By Theorem 11}
\[[\Omega]\Theta[A = [\Omega]A\] \hspace{1cm} \text{By Lemma 18 (Substitution Extension Invariance)}
\[[\Omega]\Theta[B = [\Omega]B\] \hspace{1cm} \text{By Lemma 18 (Substitution Extension Invariance)}
\[[\Omega]\Delta \vdash [\Omega]A \leq [\Omega]B\] \hspace{1cm} \text{By above equalities}

\[\vdash [\Omega]\Delta \vdash e \Leftarrow [\Omega]B\] \hspace{1cm} \text{By DeclSub}

\[\Gamma \vdash A\] \hspace{1cm} \text{Subderivation}
\[\Gamma \vdash e_0 \Leftarrow A \rightarrow \Delta\] \hspace{1cm} \text{By i.h.}
\[\Gamma \vdash A\] \hspace{1cm} \text{Subderivation}
\[\Gamma \rightarrow \Delta\] \hspace{1cm} \text{By Lemma 54 (Typing Extension)}
\[\Delta \rightarrow \Omega\] \hspace{1cm} \text{Given}
\[\Gamma \rightarrow \Omega\] \hspace{1cm} \text{By Lemma 21 (Transitivity)}
\[\Omega \vdash A\] \hspace{1cm} \text{By Lemma 25 (Extension Weakening)}
\[[\Omega]\Omega \vdash [\Omega]A\] \hspace{1cm} \text{By Lemma 44 (Substitution for Well-Formedness)}
\[[\Omega]\Delta = [\Omega]\Omega\] \hspace{1cm} \text{By Lemma 49 (Stability of Complete Contexts)}
\[[\Omega]\Delta \vdash [\Omega]A\] \hspace{1cm} \text{By above equality}

\[[\Omega]\Delta \vdash (e_0 : [\Omega]A) \Rightarrow [\Omega]A\] \hspace{1cm} \text{By DeclAnno}
\[\text{A contains no existential variables}\hspace{1cm}\text{Assumption about source programs}\]
\[[\Omega]A = A\] \hspace{1cm} \text{From definition of substitution}

\[\vdash [\Omega]\Delta \vdash (e_0 : A) \Rightarrow [\Omega]A\] \hspace{1cm} \text{By above equality}

\[\Gamma \vdash () \Leftarrow 1 \rightarrow \Gamma\] \hspace{1cm} \text{Subderivation}
\[\vdash [\Omega]\Delta \vdash () \Leftarrow 1\] \hspace{1cm} \text{By Decl11}

\[\vdash [\Omega]\Delta \vdash () \Leftarrow [\Omega]1\] \hspace{1cm} \text{By definition of substitution}

\[\Gamma, x : A_1 \vdash e_0 \Leftarrow A_2 \rightarrow \Delta, x : A_1, \Theta\] \hspace{1cm} \text{Subderivation}
\[\Gamma \vdash \lambda x, e \Leftarrow A_1 \rightarrow A_2 \rightarrow \Delta\] \hspace{1cm} \text{By definition of substitution}

59
\[\Delta \rightarrow \Omega \]
\[\Delta, x : A_1 \rightarrow \Omega, x : [\Omega]A_1 \]
\[\Gamma, x : A_1 \rightarrow \Delta, x : A_1, \Theta \]
\[\Theta \text{ is soft} \]
\[\Delta, x : A_1, \Theta \rightarrow \Omega, x : [\Omega]A_1, [\Theta] \]
\[\Gamma, x : A_1 \vdash e_0 \Leftarrow A_2 \rightarrow \Delta' \]
\[[\Omega']\Delta' \vdash e_0 \Leftarrow [\Omega']A_2 \]
\[[\Omega']A_2 = [\Omega]A_2 \]
\[[\Omega']\Delta' \vdash e_0 \Leftarrow [\Omega]A_2 \]
\[\Delta, x : A_1, \Theta \rightarrow \Omega, x : [\Omega]A_1, [\Theta] \]
\[\Theta \text{ is soft} \]
\[[\Omega']\Delta' = [\Omega]\Delta, x : [\Omega]A_1 \]
\[[\Omega]\Delta \vdash \lambda x. e_0 \Leftarrow ([\Omega]A_1) \rightarrow ([\Omega]A_2) \]
\[\text{By } \text{Decl} \rightarrow \text{I} \]
\[\Rightarrow [\Omega]\Delta \vdash \lambda x. e_0 \Leftarrow [\Omega]([A_1 \rightarrow A_2]) \]
\[\text{By definition of substitution} \]

Case
\[\Gamma \vdash e_1 \Rightarrow A_1 \rightarrow \Theta \]
\[\Theta \vdash A_1 \rightarrow e_2 \Rightarrow A_2 \rightarrow \Delta \rightarrow E \]
\[\Gamma \vdash e_1, e_2 \Rightarrow A_2 \rightarrow \Delta \]
\[\text{Subderivation} \]
\[\Theta \vdash A_1 \leftarrow \Theta \]
\[\text{Subderivation} \]
\[\Theta \rightarrow \Delta \]
\[\text{Given} \]
\[\Delta \rightarrow \Omega \]
\[\Theta \rightarrow \Omega \]
\[[\Omega]\Theta \rightleftharpoons e_1 \Rightarrow [\Omega]A_1 \]
\[[\Omega]\Theta = [\Omega]\Delta \]
\[[\Omega]\Delta \rightleftharpoons e_1 \Rightarrow [\Omega]A_1 \]
\[\text{By i.h.} \]
\[[\Omega]\Delta \rightleftharpoons \lambda x. e_0 \Leftarrow [\Omega]([A_1 \rightarrow A_2]) \]
\[\text{By above equality} \]
\[\Theta \rightarrow A_1 \rightarrow e_2 \Rightarrow A_2 \rightarrow \Delta \rightarrow E \]
\[\text{Subderivation} \]
\[\Delta \rightarrow \Omega \]
\[[\Omega]A_2 \rightarrow [\Omega]A_1 \]
\[\text{By above equality} \]
\[[\Omega]A_2 \rightarrow [\Omega]A_1 \]
\[\text{By definition of substitution} \]

Case
\[\Gamma, \alpha \vdash e \Leftarrow A_0 \rightarrow \Delta, \alpha, \Theta \]
\[\Gamma \vdash e \Leftarrow \forall \alpha. A_0 \rightarrow \Delta \]
\[\forall \]

(Similar to \(\rightarrow \text{I} \), using a different subpart of Lemma \[24 \text{ (Extension Order)} \] and applying \(\text{Decl} \forall \text{I} \); written out anyway.)
\[\Delta \rightarrow \Omega \quad \text{Given} \]
\[\Delta, \alpha \rightarrow \Omega, \alpha \quad \text{By } \rightarrow \text{Uvar} \]
\[\Gamma, \alpha \rightarrow \Delta, \alpha, \Theta \quad \text{By Lemma 54 (Typing Extension)} \]
\[\Theta \text{ is soft} \quad \text{By Lemma 24 (Extension Order) (i) (with } \Gamma_R = \cdot, \text{ which is soft)} \]
\[\Delta, \alpha, \Theta \rightarrow \Omega, \alpha, \Theta \quad \text{By Lemma 48 (Filling Completes)} \]
\[\Gamma, \alpha \vdash e \leftrightarrow A_0 \rightarrow \Delta' \quad \text{Subderivation} \]
\[[\Omega']\Delta' \vdash e \leftrightarrow [\Omega']A_0 \quad \text{By i.h.} \]
\[[\Omega']A_0 = [\Omega]A_0 \quad \text{By Lemma 45 (Substitution Stability)} \]
\[[\Omega']\Delta' \vdash e \leftrightarrow [\Omega]A_0 \quad \text{By above equality} \]
\[[\Omega']\Delta' \rightarrow [\Omega]\Delta, \alpha \quad \text{By Lemma 47 (Softness Goes Away)} \]
\[[\Omega]\Delta, \alpha \vdash e \leftrightarrow [\Omega]A_0 \quad \text{By above equality} \]
\[[\Omega]\Delta \vdash e \leftrightarrow \forall \alpha. [\Omega]A_0 \quad \text{By Decl\forall} \]
\[[\Omega]\Delta \vdash e \leftrightarrow [\Omega](\forall \alpha. A_0) \quad \text{By definition of substitution} \]

\textbf{Case} \[\Gamma, \hat{\alpha} \vdash [\hat{\alpha}/\alpha]A_0 \bullet e \Rightarrow C \rightarrow \Delta \quad \forall \text{App} \]
\[\Gamma \vdash \forall \alpha. A_0 \bullet e \Rightarrow C \rightarrow \Delta \quad \text{Subderivation} \]
\[\Delta \rightarrow \Omega \quad \text{Given} \]
\[[\Omega]\Delta \vdash [\Omega][\hat{\alpha}/\alpha]A_0 \bullet e \Rightarrow [\Omega]C \quad \text{By i.h.} \]
\[[\Omega]\Delta \vdash [\Omega][\hat{\alpha}/\alpha] \bullet e \Rightarrow [\Omega]C \quad \text{By distributivity of substitution} \]
\[\Gamma, \hat{\alpha} \rightarrow \Delta \quad \text{By Lemma 54 (Typing Extension)} \]
\[\Gamma, \hat{\alpha} \rightarrow \Omega \quad \text{By Lemma 21 (Transitivity)} \]
\[\Gamma, \hat{\alpha} \vdash \hat{\alpha} \quad \text{By EvarWF} \]
\[\Omega \vdash \hat{\alpha} \quad \text{By Lemma 25 (Extension Weakening)} \]
\[[\Omega]\Omega \vdash [\Omega]\hat{\alpha} \quad \text{By Lemma 44 (Substitution for Well-Formedness)} \]
\[[\Omega]\Omega = [\Omega]\Delta \quad \text{By Lemma 49 (Stability of Complete Contexts)} \]
\[[\Omega]\Delta \vdash [\Omega]\hat{\alpha} \quad \text{By above equality} \]
\[[\Omega]\Delta \vdash \forall \alpha. [\Omega]A_0 \bullet e \Rightarrow [\Omega]C \quad \text{By Decl\forall App} \]
\[[\Omega]\Delta \vdash [\Omega](\forall \alpha. A_0) \bullet e \Rightarrow [\Omega]C \quad \text{By definition of substitution} \]

\textbf{Case} \[\Gamma \vdash e \leftrightarrow B \rightarrow \Delta \quad \rightarrow \text{App} \]
\[\Gamma \vdash B \rightarrow C \bullet e \Rightarrow C \rightarrow \Delta \quad \text{Subderivation} \]
\[\Gamma \vdash e \leftrightarrow B \rightarrow \Delta \quad \text{Given} \]
\[[\Omega]\Delta \vdash e \leftrightarrow [\Omega]B \quad \text{By i.h.} \]
\[[\Omega]\Delta \vdash [\Omega]B \rightarrow ([\Omega]C) \bullet e \Rightarrow [\Omega]C \quad \text{By Decl\rightarrow App} \]
\[[\Omega]\Delta \vdash [\Omega](B \rightarrow C) \bullet e \Rightarrow [\Omega]C \quad \text{By definition of substitution} \]

\textbf{Case} \[\Gamma_0[\hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha} = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2] \vdash e \leftrightarrow \hat{\alpha}_1 \rightarrow \Delta \quad \hat{\alpha}\text{App} \]
\[\Gamma_0[\hat{\alpha}] \vdash \hat{\alpha} \bullet e \Rightarrow \hat{\alpha}_2 \rightarrow \Delta \quad \hat{\alpha}\text{App} \]
\[\Gamma' \]

\[\Gamma_0[\hat{\alpha}_2, \hat{\alpha}_1, \hat{\alpha}] = \hat{\alpha}_1 \rightarrow \hat{\alpha}_2] \vdash e \leftarrow \hat{\alpha}_1 \vdash \Delta \]

Subderivation

\[\Delta \longrightarrow \Omega \]

Given

\[[\Omega]\Delta \vdash e \leftarrow [\Omega]\hat{\alpha}_1 \]

By i.h.

\[[\Omega]\Delta \vdash ([\Omega]\hat{\alpha}_1) \rightarrow ([\Omega]\hat{\alpha}_2) \rightarrow e \rightarrow [\Omega]\hat{\alpha}_2 \]

By \text{Decl} \rightarrow \text{App}

\[\Gamma' \longrightarrow \Delta \]

By Lemma \text{54 (Typing Extension)}

\[\Delta \longrightarrow \Omega \]

Given

\[\Gamma' \longrightarrow \Omega \]

By Lemma \text{21 (Transitivity)}

\[[\Gamma'][\hat{\alpha} = [\Gamma'][\hat{\alpha}_1 \rightarrow \hat{\alpha}_2]) \]

By definition of \text{[\Gamma'][\hat{\alpha}_1 \rightarrow \hat{\alpha}_2]}

\[[\Omega][\Gamma'][\hat{\alpha} = [\Omega][\Gamma'][\hat{\alpha}_1 \rightarrow \hat{\alpha}_2] \]

Applying \(\Omega \) to both sides

\[[\Omega]\hat{\alpha} = [\Omega][\hat{\alpha}_1 \rightarrow \hat{\alpha}_2] \]

By Lemma \text{18 (Substitution Extension Invariance)}, twice

\[([\Omega]\hat{\alpha}_1) \rightarrow ([\Omega]\hat{\alpha}_2) \]

By definition of substitution

\[\Rightarrow \]

\[[\Omega]\Delta \vdash [\Omega]\hat{\alpha} \quad e \Rightarrow [\Omega]\hat{\alpha}_2 \]

By above equality

\[\bullet \text{ Case} \]

\[\Gamma \vdash () \Rightarrow 1 \vdash _\Delta \]

\[\Rightarrow \]

\[[\Omega]\Delta \vdash () \Rightarrow [\Omega]1 \]

By Decl\(1\Rightarrow \) and definition of substitution

\[\bullet \text{ Case} \]

\[\Gamma, \hat{\alpha}, \hat{\beta}, x : \hat{\alpha} \vdash e_0 \leftarrow \hat{\beta} \vdash \Delta, x : \hat{\alpha}, \Theta \]

\[\Gamma \vdash \lambda x. e_0 \Rightarrow \hat{\alpha} \rightarrow \hat{\beta} \vdash \Delta \]

\[\Rightarrow \]

\[\Gamma, \hat{\alpha}, \hat{\beta}, x : \hat{\alpha} \rightarrow \Delta, x : \hat{\alpha}, \Theta \]

By Lemma \text{54 (Typing Extension)}

\[\Theta \text{ is soft} \]

By Lemma \text{24 (Extension Order)} \(\triangleright \) (v) \(\text{ (with } \Gamma_K = \cdot, \text{ which is soft) } \)

\[\Gamma, \hat{\alpha}, \hat{\beta} \longrightarrow \Delta \]

\[\Delta \longrightarrow \Omega \]

Given

\[\Delta, x : \hat{\alpha} \longrightarrow \Delta, x : [\Omega]\hat{\alpha}_1 \]

By \longrightarrow \text{Var}

\[\Delta, x : [\Omega]\hat{\alpha}_1 \longrightarrow \Delta, x : [\Omega]\hat{\alpha}_1, [\Theta] \]

By Lemma \text{48 (Filling Completes)}

\[\Gamma, \hat{\alpha}, \hat{\beta}, x : \hat{\alpha} \vdash e \leftarrow \hat{\beta} \vdash \Delta, x : \hat{\alpha}, \Theta \]

Subderivation

\[[\Omega'][\Delta'] \vdash e_0 \leftarrow [\Omega'][\hat{\beta}] \]

By i.h.

\[[\Omega'][\hat{\beta} = [\Omega, x : [\Omega]\hat{\alpha}] \hat{\beta} \]

By Lemma \text{45 (Substitution Stability)}

\[= [\Omega]\hat{\beta} \]

By definition of substitution

\[[\Omega'][\Delta'] = [\Omega, x : [\Omega]\hat{\alpha} \vdash [\Delta, x : \hat{\alpha}] \]

By Lemma \text{47 (Softness Goes Away)}

\[= [\Omega]\Delta, x : [\Omega]\hat{\alpha} \]

By definition of context substitution

\[[\Omega]\Delta, x : [\Omega]\hat{\alpha} \vdash e_0 \leftarrow [\Omega]\hat{\beta} \]

By above equalities

\[\Gamma, \hat{\alpha}, \hat{\beta} \longrightarrow \Delta \]

Above

\[\Gamma, \hat{\alpha}, \hat{\beta} \longrightarrow \Omega \]

By Lemma \text{21 (Transitivity)}

\[\Gamma, \hat{\alpha}, \hat{\beta} \vdash \hat{\alpha} \]

By EvarWF

\[\Omega \vdash \hat{\alpha} \]

By Lemma \text{25 (Extension Weakening)}

\[[\Omega]\Delta \vdash [\Omega]\hat{\alpha} \]

By Lemma \text{44 (Substitution for Well-Formedness)} and Lemma \text{49 (Stability of Complete Contexts)}

\[[\Omega]\Delta \vdash [\Omega]\hat{\beta} \]

By similar reasoning

\[[\Omega]\Delta \vdash ([\Omega]\hat{\alpha}) \rightarrow ([\Omega]\hat{\beta}) \]

By \text{Decl} \rightarrow \text{I} \Rightarrow

\[[\Omega]\Delta \vdash \lambda x. e_0 \Rightarrow [\Omega]([\hat{\alpha} \rightarrow \hat{\beta}) \]

By definition of substitution \(\square \)
K’ Completeness

K’.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given $\Gamma \rightarrow \Omega$ and $A = [\Gamma]A$ and $\alpha \in \text{unsolved}(\Gamma)$ and $\alpha \notin \text{FV}(A)$:

1. If $[\Omega]\Gamma \vdash [\Omega]\alpha \leq [\Omega]A$
 then there are Δ, Ω' such that $\Omega \rightarrow \Omega'$ and $\Delta \rightarrow \Omega'$ and $\Gamma \vdash \alpha : \Delta A \rightarrow A$.

2. If $[\Omega]\Gamma \vdash [\Omega]A \leq [\Omega]\alpha$
 then there are Δ, Ω' such that $\Omega \rightarrow \Omega'$ and $\Delta \rightarrow \Omega'$ and $\Gamma \vdash A \Delta \vdash \alpha \rightarrow A$.

Proof. By mutual induction on the given declarative subtyping derivation.

1. We have $[\Omega]\Gamma \vdash [\Omega]A$. We now case-analyze the shape of A.

 • Case $A = \beta$:
 It is given that $\alpha \notin \text{FV}(\beta)$, so $\alpha \neq \beta$.
 Since $A = \beta$, we have $[\Omega]\Gamma \vdash [\Omega]\alpha \leq [\Omega]\beta$.
 Since Ω is predicative, $[\Omega]\alpha = \tau_1$ and $[\Omega]\beta = \tau_2$, so we have $[\Omega]\Gamma \vdash \tau_1 \leq \tau_2$.
 By Lemma 9 (Monotype Equality), $\tau_1 = \tau_2$.
 We have $A = \beta$ and $[\Gamma]A = A$, so $[\Gamma]\beta = \beta$. Thus $\beta \in \text{unsolved}(\Gamma)$.
 Let Ω' be Ω. By Lemma 20 (Reflexivity), $\Omega \rightarrow \Omega$.
 Now consider whether α is declared to the left of β, or vice versa.

 - Case $\Gamma = (\Gamma_0, \alpha, \Gamma_1, \beta, \Gamma_2)$:
 Let Δ be $\Gamma_0, \alpha, \Gamma_1, \beta = \beta, \Gamma_2$.
 By rule InstLSolve, $\Gamma \vdash \alpha : \Delta \beta \rightarrow \Delta$.
 It remains to show that $\Delta \rightarrow \Omega$.
 We have $[\Omega]\alpha = [\Omega]\beta$. Then by Lemma 30 (Parallel Extension Solution), $\Delta \rightarrow \Omega$.

 - Case $\Gamma = (\Gamma_0, \beta, \Gamma_1, \alpha, \Gamma_2)$:
 Let Δ be $\Gamma_0, \beta, \Gamma_1, \alpha = \beta, \Gamma_2$.
 By rule InstLSolve, $\Gamma \vdash \alpha : \Delta \beta \rightarrow \Delta$.
 It remains to show that $\Delta \rightarrow \Omega$.
 We have $[\Omega]\beta = [\Omega]\alpha$. Then by Lemma 30 (Parallel Extension Solution), $\Delta \rightarrow \Omega$.

 • Case $A = \alpha$:
 Since $A = \alpha$, we have $[\Omega]\Gamma \vdash [\Omega]A \leq [\Omega]A$.
 Since $[\Omega]A = \alpha$, we have $[\Omega]\Gamma \vdash [\Omega]A \leq \alpha$.
 By inversion, $\leq \text{Var}$ was used, so $[\Omega]A = \alpha$; therefore, since Ω is well-formed, α is declared to the left of α in Ω.
 We have $\Gamma \rightarrow \Omega$.
 By Lemma 17 (Reverse Declaration Order Preservation), we know that α is declared to the left of α in Γ; that is, $\Gamma = \Gamma_0[\alpha][\alpha]$.
 Let $\Delta = \Gamma_0[\alpha][\alpha] = \alpha$ and $\Omega' = \Omega$.
 By InstLSolve, $\Gamma_0[\alpha][\alpha] \vdash \alpha : \Delta \alpha \rightarrow \Delta$.
 By Lemma 30 (Parallel Extension Solution), $\Gamma_0[\alpha][\alpha] \rightarrow \Omega$.

 • Case $A = A_1 \rightarrow A_2$:
 By the definition of substitution, $[\Omega]A = ([\Omega]A_1) \rightarrow ([\Omega]A_2)$.
 Therefore $[\Omega]\Gamma \vdash [\Omega]A \leq ([\Omega]A_1) \rightarrow ([\Omega]A_2)$.
 Since we have an arrow as the supertype, only $\leq \text{Var}$ or $\leq \rightarrow$ could have been used, and the subtype $[\Omega]A$ must be either a quantifier or an arrow. But Ω is predicative, so $[\Omega]A$ cannot be a quantifier. Therefore, it is an arrow: $[\Omega]A = \tau_1 \rightarrow \tau_2$, and $\leq \rightarrow$ concluded the derivation.
 Inverting $\leq \rightarrow$ gives $[\Omega]\Gamma \vdash [\Omega]A_2 \leq \tau_2$ and $[\Omega]\Gamma \vdash \tau_1 \leq [\Omega]A_1$.
 Since $\alpha \in \text{unsolved}(\Gamma)$, we know that Γ has the form $\Gamma_0[\alpha]$.
 By Lemma 28 (Unsolved Variable Addition for Extension) twice, inserting unsolved variables
\(\alpha_2 \) and \(\alpha_1 \) into the middle of the context extends it, that is: \(\Gamma_0[\alpha] \rightarrow \Gamma_3[\alpha_2, \alpha_1, \alpha] \).

Clearly, \(\alpha_1 \rightarrow \alpha_2 \) is well-formed in \((\ldots, \alpha_2, \alpha_1) \), so by Lemma 26 (Solution Admissibility for Extension), solving \(\alpha \) extends the context: \(\Gamma_0[\alpha_2, \alpha_1, \alpha] \rightarrow \Gamma_0[\alpha_2, \alpha_1, \alpha = \alpha_1 \rightarrow \alpha_2] \). Then by Lemma 31 (Transitivity), \(\Gamma_0[\alpha] \rightarrow \Gamma_0[\alpha_2, \alpha_1, \alpha = \alpha_1 \rightarrow \alpha_2] \).

Since \(\alpha \in \text{unsolved}(\Gamma) \) and \(\Gamma \rightarrow \Omega \), we know that \(\Omega \) has the form \(\Omega_0[\alpha = \tau_0] \). To show that we can extend this context, we apply Lemma 27 (Solved Variable Addition for Extension) twice to introduce \(\alpha_2 = \tau_2 \) and \(\alpha_1 = \tau_1 \), and then Lemma 26 (Solution Admissibility for Extension) to overwrite \(\tau_0 \):

\[
\Omega_0[\alpha = \tau_0] \rightarrow \Omega_0[\alpha_2 = \tau_2, \alpha_1 = \tau_1, \alpha = \alpha_1 \rightarrow \alpha_2]
\]

We have \(\Gamma \rightarrow \Omega \), that is,

\[
\Gamma_0[\alpha] \rightarrow \Omega_0[\alpha = \tau_0]
\]

By Lemma 29 (Parallel Admissibility) (i) twice, inserting unsolved variables \(\alpha_2 \) and \(\alpha_1 \) on both contexts in the above extension preserves extension:

\[
\Gamma_0[\alpha_2, \alpha_1, \alpha] \rightarrow \Omega_0[\alpha_2 = \tau_2, \alpha_1 = \tau_1, \alpha = \tau_0] \\
\Gamma_0[\alpha_2, \alpha_1, \alpha = \alpha_1 \rightarrow \alpha_2] \rightarrow \Omega_0[\alpha_2 = \tau_2, \alpha_1 = \tau_1, \alpha = \alpha_1 \rightarrow \alpha_2]
\]

By Lemma 29 (Parallel Admissibility) (ii) twice

By Lemma 31 (Transitivity)

Since \(\alpha \notin \text{FV}(A) \), it follows that \(\Gamma_1 \vdash A = \Gamma_2 A = A \).

Therefore \(\alpha_1 \notin \text{FV}(A_1) \) and \(\alpha_1, \alpha_2 \notin \text{FV}(A_2) \).

By Lemma 51 (Finishing Completions) and Lemma 50 (Finishing Types), \(\Omega_1 \Gamma_1 = [\Omega_1] \Gamma \) and \(\Omega_1 \Gamma_1 = \tau_1 \).

By i.h., there are \(\Delta_2 \) and \(\Omega_2 \) such that \(\Gamma_1 \vdash A_1 \leq \; \alpha_1 \vdash \Delta_2 \) and \(\Delta_2 \rightarrow \Omega_2 \) and \(\Omega_1 \rightarrow \Omega_2 \).

Next, note that \(\Delta_2 \Delta_2 A_2 = [\Delta_2] A_2 \).

By Lemma 34 (Left Unsolvedness Preservation), we know that \(\alpha_2 \in \text{unsolved}(\Delta_2) \).

By Lemma 35 (Left Free Variable Preservation), we know that \(\alpha_2 \notin \text{FV}([\Delta_2] A_2) \).

By Lemma 21 (Transitivity), \(\Omega \rightarrow \Omega_2 \).

We know \([\Delta_2] A_2 = [\Omega_1] \Gamma \) because:

\[
[\Delta_2] A_2 = [\Omega_2] \Omega_2 \quad \text{By Lemma 49 (Stability of Complete Contexts)}
\]

\[
= [\Omega_2] \Gamma \quad \text{By Lemma 51 (Finishing Completions)}
\]

\[
= [\Omega_1] \Gamma \quad \text{By Lemma 49 (Stability of Complete Contexts)}
\]

By Lemma 50 (Finishing Types), we know that \([\Omega_2] [\alpha_2 = [\Omega_1] \alpha_2 = \tau_2] \).

By Lemma 50 (Finishing Types), we know that \([\Delta_2] A_2 = [\Omega_1] A_2 \).

Hence we know that \([\Omega_2] A_2 = [\Omega_1] A_2 \).

By i.h., we have \(\Delta \) and \(\Omega' \) such that \(\Delta_2 \vdash \alpha_2 : \leq [\Delta_2] A_2 \vdash \Delta \) and \(\Delta_2 \rightarrow \Omega' \) and \(\Delta \rightarrow \Omega' \).

By rule InstLArr, \(\Gamma \vdash \alpha : \leq A \vdash \Delta \).

By Lemma 21 (Transitivity), \(\Omega \rightarrow \Omega' \).

Case A = 1:

We have \(A = 1 \), so \([\Omega] \Gamma \vdash [\Omega] \alpha \leq [\Omega] 1 \).

Since \([\Omega] 1 = 1 \), we have \([\Omega] \Gamma \vdash [\Omega] \alpha \leq 1 \).

The only declarative subtyping rules that can have 1 as the supertype in the conclusion are \(\leq \text{Unit} \) and \(\leq \text{Unit} \). However, since \(\alpha \) is predicative, \([\Omega] \alpha \) cannot be a quantifier, so \(\leq \text{Unit} \) cannot have been used. Hence \(\leq \text{Unit} \) was used and \([\Omega] \alpha = 1 \).

Let \(\Delta = [\Gamma] (\alpha = 1) \) and \(\Omega' = \Omega \).

By InstLSolve, \([\Gamma] \alpha \vdash \alpha : \leq 1 \vdash \Delta \).

By Lemma 30 (Parallel Extension Solution), \([\Gamma] (\alpha = 1) \rightarrow \Omega \).

Case A = \text{v} \beta, B:

We have \([\Omega] \Gamma \vdash [\Omega] \alpha \leq [\Omega] (\text{v} \beta, B) \).

By definition of substitution, \([\Omega] (\text{v} \beta, B) = \text{v} \beta, [\Omega] B \), so we have \([\Omega] \Gamma \vdash [\Omega] \alpha \leq \text{v} \beta, [\Omega] B \).

The only declarative subtyping rules that can have a quantifier as supertype are \(\leq \text{v} \text{L} \) and \(\leq \text{v} \text{R} \).

However, since \(\alpha \) is predicative, \([\Omega] \alpha \) cannot be a quantifier, so \(\leq \text{v} \text{L} \) cannot have been used. Hence \(\leq \text{v} \text{R} \) was used, and we have a subderivation of \([\Omega] \Gamma, \beta \vdash [\Omega] \alpha \leq [\Omega] B \).
Let $\Omega_1 = (\Omega, \beta)$ and $\Gamma_1 = (\Gamma, \beta)$.
By the definition of substitution, $[\Omega_1]B = [\Omega]B$ and $[\Omega_1|\alpha = [\Omega]|\alpha$.
Note that $[\Omega_1]|\Gamma_1 = [\Omega]|\Gamma$.
Since $\alpha \in \text{unsolved}(\Gamma_1)$, we have $\alpha \in \text{unsolved}(\Gamma_1)$.
By i.h., there are Ω_2 and Δ_2 such that $\Gamma_1 \vdash \alpha : \tau \Delta_2$ and $\Delta_2 \rightarrow \Omega_2$ and $\Omega_1 \rightarrow \Omega_2$.
By Lemma 32 [Instantiation Extension], $\Gamma_1 \rightarrow \Delta_2$, that is, $\Gamma_1, \beta \rightarrow \Delta_2$.
Therefore by Lemma 24 [Extension Order], $\Delta_2 = (\Delta', \beta, \Omega''')$ where $\Gamma' \rightarrow \Delta'$.
By equality, we know $\Delta', \beta, \Omega'' \rightarrow \Omega_2$.
By Lemma 24 [Extension Order], $\Omega_2 = (\Omega', \beta, \Omega''')$ where $\Rightarrow \Delta' \rightarrow \Omega'$.
We have $\Omega_1 \rightarrow \Omega_2$, that is, $\Omega, \beta \rightarrow \Omega', \beta, \Omega'''$, so Lemma 24 [Extension Order] gives $\Rightarrow \Omega \rightarrow \Omega'$.
By rule InstRALL, $\Gamma \vdash \alpha : \forall \beta. B \rightarrow \Delta'$.

(2) $[\Omega]|\Gamma \vdash [\Omega]|A \leq [\Omega]|\alpha$
These cases are mostly symmetric. The one exception is the one connective that is not treated symmetrically in the declarative subtyping rules:

- **Case A = $\forall \alpha. B$**
 Since $\alpha = \forall \alpha. B$, we have $[\Omega]|\Gamma \vdash [\Omega]|\forall \beta. B \leq [\Omega]|\alpha$.
 By symmetric reasoning to the previous case (the last case of part (1) above), $\leq \forall \Lambda$ must have been used, with a subderivation of $[\Omega]|\Gamma \vdash [\Omega]|\forall \beta. B \leq [\Omega]|\alpha$.
 Since $[\Omega]|\Gamma \vdash \tau$, the type τ has no existential variables and is therefore invariant under substitution: $\tau = [\Omega]\tau$. Therefore $[\tau/\beta]|\Omega]B = ([\Omega]|\tau/\beta]|\Omega]B$.
 By distributivity of substitution, this is $[\Omega]|\tau/\beta]B$. Interposing β, this is equal to $[\Omega]|\tau/\beta]B$.
 Therefore $[\Omega]|\Gamma \vdash [\Omega]|\alpha \leq [\Omega]|\tau/\beta]|\beta/\beta]B$.
 Let Ω_1 be $\Omega, \beta, \beta = \tau$ and let Γ_1 be Γ, B.
 - By the definition of context application, $[\Omega_1]|\Gamma_1 = [\Omega]|\Gamma$.
 - From the definition of substitution, $[\Omega_1]|\alpha = [\Omega]|\alpha$.
 - It follows from the definition of substitution that $[\Omega]|\tau/\beta]C = [\Omega_1]|C$ for all C. Therefore $[\Omega]|\tau/\beta]|\beta/\beta]B = [\Omega_1]|\beta/\beta]B$.

Applying these three equalities, $[\Omega_1]|\Gamma_1 \vdash [\Omega_1]|\alpha \leq [\Omega_1]|\beta/\beta]B$.
By the definition of substitution, $[\Gamma, B]|\beta/\beta]B = [\Gamma]B = B$, so $\alpha \notin \text{FV}([\Gamma_1]B)$.
Since $\alpha \notin \text{unsolved}(\Gamma_1)$, we have $\alpha \notin \text{unsolved}(\Gamma_1)$.
By i.h., there exist Δ_2 and Ω_2 such that $\Gamma_1 \vdash B \Rightarrow \alpha \Delta_2$ and $\Omega_1 \rightarrow \Omega_2$ and $\Delta_2 \rightarrow \Omega_2$.
By Lemma 32 [Instantiation Extension], $\Gamma_1 \rightarrow \Delta_2$, which is, $\Gamma, \beta \rightarrow \Delta_2$.
By Lemma 24 [Extension Order], $\Delta_2 = (\Delta', \beta, \Omega''')$ and $\Gamma' \rightarrow \Delta'$.
By equality, $\Delta', \beta, \Omega''' \rightarrow \Omega_2$.
By Lemma 24 [Extension Order], $\Omega_2 = (\Omega', \beta, \Omega''')$ and $\Rightarrow \Delta' \rightarrow \Omega'$.
By equality, $\Omega, \beta, \Omega'' \rightarrow \Omega'$.
By Lemma 24 [Extension Order], $\Omega \rightarrow \Omega'$.
By InstRALL, $\Gamma \vdash \forall \beta. B \Rightarrow \alpha \Delta'$.
K'.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If \(\Gamma \rightarrow \Omega \) and \(\Gamma \vdash A \) and \(\Gamma \vdash B \) and \([\Omega]|\Gamma \vdash [\Omega]\alpha \leq [\Omega]\beta \) then there exist \(\Delta \) and \(\Omega' \) such that \(\Delta \rightarrow \Omega' \) and \(\Omega \rightarrow \Omega' \) and \(\Gamma \vdash [\Gamma]A <: [\Gamma]B \rightarrow \Delta \).

Proof. By induction on the derivation of \([\Omega]|\Gamma \vdash [\Omega]\alpha \leq [\Omega]\beta \).

We distinguish cases of \([\Gamma]B \) and \([\Gamma]A \) that are *impossible*, fully written out, and similar to fully-written-out cases.

<table>
<thead>
<tr>
<th>([\Gamma]B)</th>
<th>([\Gamma]A)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(B \rightarrow B')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall \alpha. A')</td>
<td>(\exists)</td>
<td>(\exists)</td>
<td>(\exists)</td>
<td>(\exists)</td>
</tr>
<tr>
<td>(1) (B poly)</td>
<td>(2) (Poly)</td>
<td>(2) (Poly)</td>
<td>(2) (Poly)</td>
<td>(2) (Poly)</td>
</tr>
<tr>
<td>([\Gamma]A)</td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(B_1 \rightarrow B_2)</td>
<td></td>
</tr>
<tr>
<td>(\exists)</td>
</tr>
</tbody>
</table>

The impossibility of the “impossible” entries follows from inspection of the declarative subtyping rules.

We first split on \([\Gamma]B \).

- **Case 1 (B poly):** \([\Gamma]B \) polymorphic: \([\Gamma]B = \forall \beta. B' \):

 \[B = \forall \beta. B_0 \]
 \[B' = [\Gamma]B_0 \]
 \[[\Omega]B = [\Omega][\forall \beta. B_0] \]
 \[= \forall \beta. [\Omega]B_0 \]
 \[\text{Applying } \Omega \text{ to both sides} \]
 \[\text{By definition of substitution} \]
 \[\mathcal{D} :: [\Omega]|\Gamma \vdash [\Omega]|\Gamma \alpha \leq [\Omega]|\Gamma \beta \]
 \[\text{Given} \]
 \[\mathcal{D} :: [\Omega]|\Gamma \vdash [\Omega]|\Gamma \alpha \leq \forall \beta. [\Omega]|\Gamma \beta \]
 \[\text{By above equality} \]
 \[\mathcal{D}' :: [\Omega]|\Gamma \vdash [\Omega]|\Gamma \alpha \leq [\Omega]|\Gamma \beta \]
 \[\text{By Lemma 7 (Invertibility)} \]
 \[\mathcal{D}' < \mathcal{D} \]
 \[\mathcal{D}' :: [\Omega]|\Gamma \beta \vdash [\Omega]|\Gamma \alpha \leq [\Omega]|\Gamma \beta \]
 \[\text{By definitions of substitution} \]
 \[\Gamma, \beta \vdash [\Gamma]B_0 \rightarrow \Delta' \]
 \[\text{By i.h.} \]
 \[\Delta' \rightarrow [\Omega]'_0 \]
 \[\text{By definition of substitution} \]
 \[\Gamma, \beta \vdash [\Gamma]A <: [\Gamma]B_0 \rightarrow \Delta' \]
 \[\text{By above equality} \]
 \[\Omega, \beta \rightarrow [\Omega]'_0 \]
 \[\text{By above equality} \]
 \[[\Omega]'_0 = [\Omega]', [\beta], [\Omega]'_R \]
 \[\text{By above equality} \]
 \[\Delta \rightarrow [\Omega]' \]
 \[\text{By above equality} \]
 \[\Gamma \vdash [\Gamma]A <: [\forall \beta. [\Gamma]B_0 \rightarrow \Delta] \]
 \[\text{By } \leq \forall \mathcal{R} \]
 \[\Gamma \vdash [\Gamma]A <: [\forall \beta. B' \rightarrow \Delta] \]
 \[\text{By above equality} \]
• Cases 2.*: \([\Gamma]B\) not polymorphic:
 We split on the form of \([\Gamma]A\).

 \[
 A = \forall \alpha. A_0 \\
 A' = [\Gamma]A_0 \\
 [\Omega]A = [\Omega](\forall \alpha. A_0) \\
 [\Omega]A = \forall \alpha. [\Omega]A_0 \\
 [\Omega]A \vdash [\Omega]A \leq [\Omega]B \\
 [\Omega]A \vdash \forall \alpha. [\Omega]A_0 \leq [\Omega]B \\
 [\Gamma]B \neq (\forall \beta, \ldots) \\
 B \neq (\forall \beta, \ldots) \\
 [\Omega]A \vdash [\tau/\alpha][\Omega]A_0 \leq [\Omega]B \\
 [\Omega]A \vdash \tau \\
 \Gamma \rightarrow \Omega \\
 \Gamma, \triangleright_\alpha \rightarrow \Omega, \triangleleft_\alpha \\
 \Gamma, \triangleright_\alpha, \triangleleft_\alpha \rightarrow \Omega, \triangleright_\alpha, \triangleleft_\alpha = \tau \\
 \Omega_0 \\
 [\Omega]A = [\Omega_0]([\Gamma, \triangleright_\alpha, \triangleleft_\alpha]) \\
 \text{By definition of context application (lines 16, 13)}
 \]
 \[
 [\Omega]A \vdash [\tau/\alpha][\Omega]A_0 \leq [\Omega]B \\
 [\Omega_0]A \vdash [\tau/\alpha][\Omega]A_0 \leq [\Omega]B \\
 [\Omega_0]A \vdash [\Omega]A_0 \leq [\Omega]B \\
 \text{By definition of substitution} \\
 [\Omega_0]A \vdash [\tau/\alpha][\Omega]A_0 \leq [\Omega_0]B \\
 \text{By definition of substitution} \\
 \text{By distributivity of substitution} \\
 \]
 \[
 \Gamma, \triangleright_\alpha, \triangleleft \vdash [\Gamma, \triangleright_\alpha, \triangleleft_\alpha][\Delta/\alpha]A_0 <: [\Gamma, \triangleright_\alpha, \triangleleft_\alpha]B \vdash \Delta_0 \\
 \text{By i.h.} \\
 \]
 \[
 \Delta_0 \rightarrow \Omega'' \\
 \Omega_0 \rightarrow \Omega'' \\
 \Gamma, \triangleright_\alpha, \triangleleft \rightarrow [\Gamma, \triangleright_\alpha, \triangleleft_\alpha]A_0 <: [\Gamma]B \vdash \Delta_0 \\
 \text{By definition of substitution} \\
 \]
 \[
 \Gamma, \triangleright_\alpha, \triangleleft \rightarrow \Delta_0 \\
 \Delta_0 = (\Delta, \triangleright_\alpha, \Theta) \\
 \Gamma \rightarrow \Delta \\
 \Omega'' = (\Omega', \triangleright_\alpha, \Omega_Z) \\
 \]
 \[
 \Delta \rightarrow \Omega' \\
 \Omega_0 \rightarrow \Omega'' \\
 \Omega, \triangleright_\alpha, \triangleleft = \tau \rightarrow \Omega, \triangleright_\alpha, \Omega_Z \\
 \text{By above equalities} \\
 \]
 \[
 \Gamma, \triangleright_\alpha, \triangleleft \vdash [\Gamma, \triangleright_\alpha, \triangleleft_\alpha]A_0 <: [\Gamma]B \vdash \Delta, \triangleright_\alpha, \Theta \\
 \Gamma, \triangleright_\alpha, \triangleleft \vdash [\Delta/\alpha][\Gamma]A_0 <: [\Gamma]B \vdash \Delta, \triangleright_\alpha, \Theta \\
 \Gamma \vdash \forall \alpha. A' <: [\Gamma]B \vdash \Delta \\
 \text{By above equality} \\
 \]

 - Case 2.AEx: A is an existential variable \([\Gamma]A = \triangleleft_\alpha\):
 We split on the form of \([\Gamma]B\).
 * Case 2.AExSameEx: \([\Gamma]B\) is the same existential variable \([\Gamma]B = \triangleleft_\alpha\):
\[
\Gamma \vdash \alpha <: \bar{\alpha} \rightarrow \Gamma \quad \text{By } <: \text{Exvar}
\]

Case 2.AEx.Unit: If \(\Gamma \vdash \beta = \bar{\beta}\) and \(\alpha \notin \text{FV}(\bar{\beta})\).

- \(\alpha \in \text{FV}(\bar{\beta})\):
 - We have \(\alpha \leq \bar{\beta}\).
 - Therefore, \(\alpha = \bar{\beta}\), or \(\alpha < \bar{\beta}\).
 - But we are in Case 2.AEx.OtherEx, so the former is impossible.
 - Therefore, \(\alpha < \bar{\beta}\).
 - Since \(\Gamma\) is predicative, \(\bar{\beta}\) cannot have the form \(\forall \beta \ldots\); so the only way that \(\bar{\alpha}\) can be a proper subterm of \(\bar{\beta}\) is if \(\bar{\beta}\) has the form \(B_1 \rightarrow B_2\) such that \(\alpha\) is a subterm of \(B_1\) or \(B_2\), that is: \(\alpha \not< \bar{\beta}\).
 - Then by a property of substitution, \([\Omega] \alpha \not< [\Omega] \bar{\beta}\).
 - By Lemma 18 (Substitution Extension Invariance), \([\Omega][\bar{\beta}] = [\Omega] \bar{\beta}\), so \([\Omega] \alpha \not< [\Omega] \bar{\beta}\).
 - We have \([\Omega] \alpha \not= [\Omega] \bar{\beta}\), and we know that \([\Omega] \bar{\alpha}\) is a monotype, so we can use Lemma 8 (Occurrence) to show that \([\Omega] \alpha \not< [\Omega] \bar{\beta}\), a contradiction.

- \(\alpha \notin \text{FV}(\bar{\beta})\):
 - \(\Gamma \vdash \alpha \leq \bar{\beta} \rightarrow \Delta\) By Theorem 13 (1)

Case 2.AEx.OtherEx: If \(\Gamma \vdash \beta \neq \bar{\beta}\) where \(\beta\) is a different existential variable.

- \(\alpha \in \text{FV}(\bar{\beta})\):
 - We have \(\alpha \leq \bar{\beta}\).
 - Therefore, \(\alpha = \bar{\beta}\), or \(\alpha < \bar{\beta}\).
 - But we are in Case 2.AEx.OtherEx, so the former is impossible.
 - Therefore, \(\alpha < \bar{\beta}\).
 - Since \(\Gamma\) is predicative, \(\bar{\beta}\) cannot have the form \(\forall \beta \ldots\); so the only way that \(\bar{\alpha}\) can be a proper subterm of \(\bar{\beta}\) is if \(\bar{\beta}\) has the form \(B_1 \rightarrow B_2\) such that \(\alpha\) is a subterm of \(B_1\) or \(B_2\), that is: \(\alpha \not< \bar{\beta}\).
 - Then by a property of substitution, \([\Omega] \alpha \not< [\Omega] \bar{\beta}\).
 - By Lemma 18 (Substitution Extension Invariance), \([\Omega][\bar{\beta}] = [\Omega] \bar{\beta}\), so \([\Omega] \alpha \not< [\Omega] \bar{\beta}\).
 - We have \([\Omega] \alpha \not= [\Omega] \bar{\beta}\), and we know that \([\Omega] \bar{\alpha}\) is a monotype, so we can use Lemma 8 (Occurrence) to show that \([\Omega] \alpha \not< [\Omega] \bar{\beta}\), a contradiction.

Case 2.AEx.Arrow: If \(\Gamma \vdash B_1 \rightarrow B_2\).

- Since \(\Gamma \vdash B_1 \rightarrow B_2\), it cannot be exactly \(\alpha\).
 - Suppose, for a contradiction, that \(\alpha \in \text{FV}(\bar{\beta})\).
\[\hat{\alpha} \preceq [\Gamma]B \quad \hat{\alpha} \in \text{FV}(\Gamma|B) \]

\[[\Omega]\hat{\alpha} \preceq [\Omega][\Gamma]B \quad \text{By a property of substitution} \]

\[\Gamma \leadsto \Omega \quad \text{Given} \]

\[[\Omega][\Gamma]B = [\Omega]B \quad \text{By Lemma 18 (Substitution Extension Invariance)} \]

\[[\Omega]\hat{\alpha} \preceq [\Omega]B \quad \text{By above equality} \]

\[[\Gamma]B \neq \hat{\alpha} \quad \text{Given (2.AEx.Arrow)} \]

\[[\Omega][\Gamma]B \neq (\hat{\alpha})B \quad \text{By a property of substitution} \]

\[[\Omega]B \neq (\hat{\alpha})B \quad \text{By Lemma 18 (Substitution Extension Invariance)} \]

\[[\Omega]\hat{\alpha} \preceq (\hat{\alpha})B \quad \text{Follows from } \preceq \text{ and } \neq \]

\[[\Omega]B \preceq (\hat{\alpha})B \quad \text{[\Omega]A has the form } \ldots \rightarrow \ldots \]

\[[\Omega]\hat{\alpha} \preceq (\hat{\alpha})B \quad \text{Given} \]

\[[\Omega]B \text{ is a monotype} \quad \Omega \text{ is predicative} \]

\[[\Omega]\hat{\alpha} \preceq (\hat{\alpha})B \quad \text{By Lemma 8 (Occurrence) (ii)} \]

\[\Rightarrow \leftarrow \]

\[\hat{\alpha} \notin \text{FV}(\Gamma|B) \quad \text{By contradiction} \]

\[\Gamma \vdash \hat{\alpha} : \preceq [\Gamma]B \rightarrow \Delta \quad \text{By Theorem 13 (1)} \]

\[\checkmark \quad \Delta \rightarrow \Omega' \quad " \]

\[\checkmark \quad \Omega \rightarrow \Omega' \quad " \]

\[\checkmark \quad \Gamma \vdash \hat{\alpha} : \preceq [\Gamma]B \rightarrow \Delta \quad \text{By } \vdash \text{: Instantiate} \]

\[\vdash \text{B}_1 \rightarrow \text{B}_2 \]

– **Case 2.BEx:** \([\Gamma]A \text{ is not polymorphic and } [\Gamma]B \text{ is an existential variable: } [\Gamma]B = \hat{\beta} \)

We split on the form of \([\Gamma]A \).

* Case 2.BEx.Unit \((\Gamma|A = 1)\),
 * Case 2.BEx.Uvar \((\Gamma|A = \alpha)\),
 * Case 2.BEx.Arrow \((\Gamma|A = A_1 \rightarrow A_2)\):

Similar to Cases 2.AEx.Unit, 2.AEx.Uvar and 2.AEx.Arrow, but using part (2) of Theorem 13 instead of part (1), and applying \(\vdash \text{: InstantiateR} \) instead of \(\vdash \text{: InstantiateL} \) as the final step.

– **Case 2.Units:** \([\Gamma]A = [\Gamma]B = 1:\)

\[\checkmark \quad [\Gamma] \vdash 1 \rightleftharpoons 1 : 1 \quad \text{By } \vdash \text{: Unit} \]

\[\Gamma \rightarrow \Omega \quad \text{Given} \]

\[\checkmark \quad \Delta \rightarrow \Omega \quad \Delta = \Gamma \]

\[\checkmark \quad \Omega \rightarrow \Omega' \quad \text{By Lemma 20 (Reflexivity) and } \Omega' = \Omega \]

– **Case 2.Uvars:** \([\Gamma]A = [\Gamma]B = \alpha:\)

\[\alpha \in \Omega \quad \text{By inversion on } \preceq \text{Var} \]

\[\Gamma \rightarrow \Omega \quad \text{Given} \]

\[\alpha \in \Gamma \quad \text{By Lemma 24 (Extension Order)} \]

\[\checkmark \quad [\Gamma] \vdash \alpha \preceq \alpha : \alpha \rightarrow \Gamma \quad \text{By } \vdash \text{: Var} \]

\[\checkmark \quad \Delta \rightarrow \Omega \quad \Delta = \Gamma \]

\[\checkmark \quad \Omega \rightarrow \Omega' \quad \text{By Lemma 20 (Reflexivity) and } \Omega' = \Omega \]

– **Case 2.Arrows:** \(A = A_1 \rightarrow A_2 \) and \(B = B_1 \rightarrow B_2\):

Only rule \(\preceq \rightarrow \) could have been used.
\[[\Omega] \Gamma \vdash [\Omega] B_1 \leq [\Omega] A_1 \quad \text{Subderivation} \]

\[\Gamma \vdash [\Gamma] B_1 <: [\Gamma] A_1 \rightarrow \Theta \quad \text{By i.h.} \]

\[\Theta \rightarrow \Omega_0 \]

\[\Omega \rightarrow \Omega_0 \]

\[\Gamma \rightarrow \Omega \quad \text{Given} \]

\[\Gamma \rightarrow \Omega_0 \quad \text{By Lemma 21 (Transitivity)} \]

\[\Theta \rightarrow \Omega_{\Theta} \]

\[\Omega_{\Theta} \rightarrow \Omega_0 \quad \text{By Lemma 52 (Confluence of Completeness)} \]

\[[\Omega] \Gamma = [\Omega] \Theta \quad \text{By Lemma 52 (Confluence of Completeness)} \]

\[[\Omega] \Gamma \vdash [\Omega] A_2 \leq [\Omega] B_2 \quad \text{Subderivation} \]

\[[\Omega] \Theta \vdash [\Omega] A_2 \leq [\Omega] B_2 \quad \text{By above equality} \]

\[[\Omega] A_2 = [\Omega] [\Gamma] A_2 \quad \text{By Lemma 18 (Substitution Extension Invariance)} \]

\[[\Omega] B_2 = [\Omega] [\Gamma] B_2 \quad \text{By Lemma 18 (Substitution Extension Invariance)} \]

\[[\Omega] \Theta \vdash [\Omega] [\Gamma] A_2 \leq [\Omega] [\Gamma] B_2 \quad \text{By above equalities} \]

\[\Theta \rightarrow [\Theta] [\Gamma] A_2 <: [\Theta] [\Gamma] B_2 \rightarrow \Delta \quad \text{By i.h.} \]

\[\Delta \rightarrow \Omega' \]

\[\Omega_0 \rightarrow \Omega' \]

\[\Gamma \vdash ([\Gamma] A_1) \rightarrow ([\Gamma] A_2) <: ([\Gamma] B_1) \rightarrow ([\Gamma] B_2) \rightarrow \Delta \quad \text{By } \rightarrow \leftrightarrow \]

\[\Gamma \vdash [\Gamma] (A_1 \rightarrow A_2) <: [\Gamma] (B_1 \rightarrow B_2) \rightarrow \Delta \quad \text{By definition of substitution} \]

\[\Omega \rightarrow \Omega' \quad \text{By Lemma 21 (Transitivity)} \]

Corollary 55 (Completeness of Subtyping). If \(\Psi \vdash A \leq B \) then there is a \(\Delta \) such that \(\Psi \vdash A <: B \rightarrow \Delta \).

Proof. Let \(\Omega = \Psi \) and \(\Gamma = \Psi \).

By Lemma 20 (Reflexivity), \(\Psi \rightarrow \Psi \), so \(\Gamma \rightarrow \Omega \).

By Lemma 4 (Well-Formedness), \(\Psi \vdash A \) and \(\Psi \vdash B \); since \(\Gamma = \Psi \), we have \(\Gamma \vdash A \) and \(\Gamma \vdash B \).

By Theorem 14, there exists \(\Delta \) such that \(\Gamma \vdash [\Gamma] A <: [\Gamma] B \rightarrow \Delta \).

Since \(\Gamma = \Psi \) and \(\Psi \) is a declarative context with no existentials, \([\Psi] C = C \) for all \(C \), so we actually have \(\Psi \vdash A <: B \rightarrow \Delta \), which was to be shown. \(\square \)
Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given $\Gamma \rightarrow \Omega$ and $\Gamma \vdash A$:

(i) If $[\Omega] [\Omega] \rightarrow \Gamma \vdash e \iff [\Omega] A$
then there exist Δ and Ω' such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash e \iff [\Gamma] A \vdash A$.

(ii) If $[\Omega] [\Omega] \rightarrow \Gamma \vdash e \Rightarrow A$
then there exist Δ, Ω', and A' such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash e \Rightarrow A'$ and $A = [\Omega'] A$.

(iii) If $[\Omega] [\Omega] \rightarrow [\Omega] A \bullet e \Rightarrow \Rightarrow C$
then there exist Δ, Ω', and C' such that $\Delta \rightarrow \Omega'$ and $\Omega \rightarrow \Omega'$ and $\Gamma \vdash e \Rightarrow \Rightarrow C'$ and $C = [\Omega'] C$.

Proof. By induction on the given declarative derivation.

- **Case** $(x : A) \in [\Omega] [\Omega] [\Gamma]$
 DeclVar
 $(x : A) \in [\Omega] [\Omega] [\Gamma]$
 Premise
 $\Gamma \rightarrow \Omega$
 Given
 $(x : A') \in \Gamma$ where $[\Omega] A' = [\Omega] A$
 From definition of context application
 Let $\Delta = \Gamma$.
 Let $\Omega' = \Omega$.

- **Case** $[\Omega] [\Omega] \vdash e \Rightarrow B$
 $[\Omega] [\Omega] \vdash B \leq [\Omega] A$
 DeclSub
 $[\Omega] [\Omega] \vdash e \iff [\Omega] A$
 Subderivation
 $\Gamma \vdash e \Rightarrow B' \cdot \Theta$
 By i.h.
 $B = [\Omega] B'$
 "
 $\Theta \rightarrow \Omega_0$
 "
 $\Omega \rightarrow \Omega_0$
 "
 $\Gamma \rightarrow \Omega$
 Given
 $\Gamma \rightarrow \Omega_0$
 By Lemma 21 (Transitivity)
 $[\Omega] [\Omega] \vdash B \leq [\Omega] A$
 Subderivation
 $[\Omega] [\Omega] = [\Omega] \Theta$
 By Lemma 52 (Equivalence of Completeness)
 $[\Omega] [\Omega] \vdash B \leq [\Omega] A$
 By above equalities
 $\Theta \rightarrow \Omega_0$
 Above
 $\Theta \vdash [\Theta] B' \iff [\Theta] A \vdash A$
 By Theorem 14
 $\Delta \rightarrow \Omega'$
 "
 $\Omega_0 \rightarrow \Omega'$
 "
 $\Delta \rightarrow \Omega'$
 By Lemma 21 (Transitivity)
 $\Omega \rightarrow \Omega'$
 By Lemma 21 (Transitivity)
 $\Gamma \vdash e \iff A \vdash A$
 By Sub
• Case

\[
\begin{array}{c}
[\Omega] \Gamma \vdash A & [\Omega] \Gamma \vdash e_0 \leftarrow A \\
[\Omega] \Gamma \vdash (e_0 : A) \Rightarrow A & \text{DeclAnno}
\end{array}
\]

\[A = [\Omega]A\quad \text{Source type annotations cannot contain evars}
\]
\[= [\Gamma]A\quad \text{"}
\]
\[[\Omega] \Gamma \vdash e_0 \leftarrow A\quad \text{Subderivation}
\]
\[[\Omega] \Gamma \vdash e_0 \leftarrow [\Omega]A\quad \text{By above equality}
\]
\[\Gamma \vdash e_0 \leftarrow [\Gamma]A \vdash \Delta\quad \text{By i.h.}
\]
\[\Phi \Delta \rightarrow \Omega\quad \text{"}
\]
\[\Phi \Omega \rightarrow \Omega'\quad \text{"}
\]
\[\Gamma \vdash A\quad \text{Given}
\]
\[\Gamma \vdash (e_0 : A) \Rightarrow A \vdash \Delta\quad \text{By Anno}
\]
\[A = [\Omega']A\quad \text{Source type annotations cannot contain evars}
\]
\[\Gamma \vdash (e_0 : [\Omega']A) \Rightarrow [\Omega']A \vdash \Delta\quad \text{By above equality}
\]

• Case

\[[\Omega] \Gamma \vdash () \leftarrow 1 \text{ Dec11}
\]

We have \([\Omega]A = 1\). Either \([\Gamma]A = 1\) or \([\Gamma]A = \alpha \in \text{unsolved}(\Gamma)\).

In the former case:

\[\text{Let } \Delta = \Gamma.
\]
\[\text{Let } \Omega' = \Omega.
\]
\[\Phi \Gamma \rightarrow \Omega\quad \text{Given}
\]
\[\Phi \Omega \rightarrow \Omega'\quad \text{By Lemma 20 (Reflexivity)}
\]
\[\Gamma \vdash () \leftarrow 1 \vdash \Gamma\quad \text{By 11l}
\]
\[\Phi \Gamma \vdash () \leftarrow [\Gamma]1 \vdash \Gamma\quad 1 = [\Gamma]1
\]

In the latter case:

\[\Gamma \vdash () \Rightarrow 1 \vdash \Gamma\quad \text{By 11l}\Rightarrow
\]
\[[\Omega] \Gamma \vdash 1 \leq 1\quad \text{By } \leq \text{Unit}
\]
\[1 = [\Omega]1\quad \text{By definition of substitution}
\]
\[= [\Omega][\Gamma] \alpha\quad \text{By } [\Omega]A = 1
\]
\[= [\Omega] \alpha\quad \text{By Lemma 18 (Substitution Extension Invariance)}
\]
\[[\Omega] \Gamma \vdash [\Omega]1 \leq [\Omega] \alpha\quad \text{By above equalities}
\]
\[\Gamma \vdash 1 \leftarrow : [\Omega] \alpha \vdash \Delta\quad \text{By Theorem 13 (1)}
\]
\[1 = [\Gamma]1\quad \text{By definition of substitution}
\]
\[\alpha = [\Gamma] \alpha\quad \text{By } [\Gamma]A = \alpha
\]
\[\Gamma \vdash [\Gamma]1 \leftarrow : [\Gamma] \alpha \vdash \Delta\quad \text{By above equalities}
\]
\[\Phi \Omega \rightarrow \Omega'\quad "
\]
\[\Phi \Delta \rightarrow \Omega'\quad "
\]
\[\Gamma \vdash () \leftarrow \alpha \vdash \Delta\quad \text{By Sub}
\]
\[\Phi \Gamma \vdash () \leftarrow [\Gamma]A \vdash \Delta\quad \text{By } [\Gamma]A = \alpha
\]

• Case

\[[\Omega] \Gamma', \alpha \vdash e \leftarrow A_0, \text{ Dec1vl}
\]
\[\left[\Omega \right] A = \forall \alpha. A \] \quad \text{Given} \\
\[= \forall \alpha. (\left[\Omega \right] A') \] \quad \text{By def. of subst. and predicativity of } \Omega \\
\[A_0 = [\Omega] A' \] \quad \text{Follows from above equality} \\
\[\left[\Omega \right] \Gamma, \alpha \vdash e \iff [\Omega] A' \] \quad \text{Subderivation and above equality} \\
\[\Gamma \rightarrow \Omega \] \quad \text{Given} \\
\[\Gamma, \alpha \rightarrow \Omega, \alpha \] \quad \text{By } \rightarrow \text{Uvar} \\
\[\left[\Omega \right] \Gamma, \alpha = [\Omega, \alpha | \Gamma, \alpha] \] \quad \text{By definition of context substitution} \\
\[\left[\Omega, \alpha | \Gamma, \alpha \right] \vdash e \iff [\Omega] A' \] \quad \text{By above equality} \\
\[\left[\Omega, \alpha | \Gamma, \alpha \right] \vdash e \iff [\Omega, \alpha] A' \] \quad \text{By definition of substitution} \\
\[
\begin{align*}
\Gamma, \alpha \vdash e \iff [\Gamma, \alpha] A' \vdash \Delta' & \quad \text{By i.h.} \\
\Delta' \rightarrow \Omega' & \quad "" \\
\Omega, \alpha \rightarrow \Omega' & \quad "" \\
\Gamma, \alpha \rightarrow \Delta' & \quad \text{By Lemma 54 (Typing Extension)} \\
\Delta' = \Delta, \alpha, \Theta & \quad \text{By Lemma 24 (Extension Order) (i)} \\
\Delta, \alpha, \Theta \rightarrow \Omega' & \quad \text{By above equality} \\
\Omega'_0 = \Omega', \alpha, \Omega Z & \quad \text{By Lemma 24 (Extension Order) (i)} \\
\exists & \quad \Delta \rightarrow \Omega' & \quad "" \\
\exists & \quad \Omega \rightarrow \Omega' & \quad \text{By Lemma 24 (Extension Order) on } \Omega, \alpha \rightarrow \Omega_0' \\
\Gamma, \alpha \vdash e \iff [\Gamma, \alpha] A' \vdash \Delta, \alpha, \Theta & \quad \text{By above equality} \\
\Gamma, \alpha \vdash e \iff [\Gamma] A' \vdash \Delta, \alpha, \Theta & \quad \text{By definition of substitution} \\
\Gamma \vdash e \iff \forall \alpha. [\Gamma] A' \vdash \Delta & \quad \text{By } \forall \text{ by Def. of subst.} \\
\exists & \quad \Gamma \vdash e \iff [\Gamma] (\forall \alpha. A') \vdash \Delta & \quad \text{By definition of substitution} \\
\end{align*}
\]

\textbf{Case} \\
\[
\begin{align*}
\left[\Omega \right] \Gamma \vdash \tau & \quad \text{Subderivation} \\
\left[\Omega \right] \Gamma \vdash (\tau/\alpha) A_0 & \quad \text{By def. of subst. and predicativity of } \Omega \\
\left[\Omega \right] \Gamma \vdash (\forall \alpha. A_0) \cdot e \Rightarrow C & \quad \text{Decl\forall App} \\
\left[\Omega \right] \Gamma \vdash \forall \alpha. A_0 & \quad \text{Given} \\
\left[\Omega \right] \Gamma \vdash [\tau/\alpha] A' \cdot e \Rightarrow C & \quad \text{Decl\forall App} \\
\left[\Omega \right] \Gamma \vdash [\forall \alpha. A_0] A' \cdot e \Rightarrow C & \quad \text{Decl\forall App} \\
\Gamma \rightarrow \Omega & \quad \text{Subderivation and above equality} \\
\Gamma, \hat{\alpha} \rightarrow \Omega, \hat{\alpha} = \tau & \quad \text{By } \rightarrow \text{Solve} \\
\left[\Omega \right] \Gamma = [\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha}] & \quad \text{By definition of context application} \\
\left[\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] \vdash [\tau/\alpha] A' \cdot e \Rightarrow C & \quad \text{By above equality} \\
\left[\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] \vdash [\tau/\alpha] A' \cdot e \Rightarrow C & \quad \text{By def. of subst.} \\
\left([\Omega] \tau / \alpha \right) \left[\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] A' = \left([\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] [\tau/\alpha] A' \right) & \quad \text{By distributivity of substitution} \\
\tau = [\Omega] \tau & \quad \text{FEV(}\tau\text{)} = \emptyset \\
\left([\tau/\alpha \right) \left[\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] A' = \left([\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] [\tau/\alpha] A' \right) & \quad \text{By above equality} \\
\left[\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] \vdash [\Omega, \hat{\alpha} = \tau | \Gamma, \hat{\alpha} \right] [\tau/\alpha] A' \cdot e \Rightarrow C & \quad \text{By above equality} \\
\Gamma, \hat{\alpha} \vdash [\hat{\alpha} / \alpha] A' \cdot e \Rightarrow C' \vdash \Delta & \quad \text{By i.h.} \\
\exists & \quad C = [\Omega] C' & \quad "" \\
\exists & \quad \Delta \rightarrow \Omega' & \quad "" \\
\exists & \quad \Omega \rightarrow \Omega' & \quad "" \\
\exists & \quad \Gamma \vdash \forall \alpha. A' \cdot e \Rightarrow C' \vdash \Delta & \quad \text{By } \forall \text{App} \\
\end{align*}
\]
In the latter case:

\[[\Omega] [\Gamma, x : A'_1 \vdash e_0 \Leftarrow A'_2] \]

We have \([\Omega] A = A'_1 \rightarrow A'_2\). Either \([\Gamma] A = \Lambda_1 \rightarrow \Lambda_2\) where \(A'_1 = [\Omega] A_1\) and \(A'_2 = [\Omega] A_2\)—or \([\Gamma] A = \hat{\alpha}\) and \([\Omega] \hat{\alpha} = A'_1 \rightarrow A'_2\).

In the former case:

\[[\Omega] [\Gamma, x : A'_1 \vdash e_0 \Leftarrow A'_2] \quad \text{Subderivation} \]

\[A'_1 = [\Omega] A_1 \]

\[[\Omega] A'_1 = [\Omega] [\Gamma] A_1 \]

\[[\Omega] A'_1 = [\Omega] A_1 \]

By defining context application

\[[\Omega, x : A'_1]([\Gamma, x : [\Gamma] A_1]) \vdash e_0 \Leftarrow A'_2 \quad \text{By above equality} \]

\[\Gamma \rightarrow \Omega \quad \text{Given} \]

\[\Gamma, x : [\Gamma] A_1 \rightarrow \Omega, x : A'_1 \quad \text{By Var} \]

\[\Gamma, x : [\Gamma] A_1 \vdash e_0 \Leftarrow A_2 \rightarrow \Delta' \quad \text{By i.h.} \]

\[\Delta' \rightarrow \Omega' \quad \text{'} \]

\[\Omega, x : A'_1 \rightarrow \Omega' \quad \text{'} \]

\[\Omega'_0 = \Omega', x : A'_1, \Theta \quad \text{By Lemma 24 (Extension Order) (v)} \]

\[\Omega \rightarrow \Omega' \quad \text{'} \]

\[\Gamma, x : [\Gamma] A_1 \rightarrow \Delta' \quad \text{By Lemma 24 (Typing Extension) (v)} \]

\[\Delta' = \Delta, x : \cdot, \Theta \quad \text{By Lemma 24 (Extension Order) (v)} \]

\[\Delta, x : \cdot, \Theta \rightarrow \Omega', x : A'_1, \Theta \quad \text{By above equalities} \]

\[\Delta \rightarrow \Omega' \quad \text{'} \]

\[\Gamma, x : [\Gamma] A_1 \vdash e_0 \Leftarrow [\Gamma] A_2 \rightarrow \Delta, \alpha, \Theta \quad \text{By above equality} \]

\[\Gamma \vdash \lambda x. e_0 \Leftarrow ([\Gamma] A_1) \rightarrow ([\Gamma] A_2) \rightarrow \Delta \quad \text{By } \rightarrow I \]

\[\Gamma \vdash \lambda x. e_0 \Leftarrow [\Gamma][A_1 \rightarrow A_2] \rightarrow \Delta \quad \text{By definition of substitution} \]

In the latter case:

\[[\Omega] \hat{\alpha} = A'_1 \rightarrow A'_2 \quad \text{Known in this subcase} \]

\[[\Omega][\Gamma, x : A'_1 \vdash e_0 \Leftarrow A'_2] \quad \text{Subderivation} \]

\[\Gamma \rightarrow \Omega \quad \text{Given} \]

\[\Gamma, \hat{\alpha}, \beta \rightarrow \Omega, \hat{\alpha} = A'_1, \beta = A'_2 \quad \text{By } \rightarrow \text{Solve twice} \]

\[[\Omega] \hat{\alpha} = [\Omega] A'_1 \]

\[[\Gamma][\Gamma, x : A'_1 \vdash e_0 \Leftarrow \hat{\beta} \rightarrow \Delta'] \quad \text{By definition of substitution} \]

\[\hat{\alpha}, \beta, x : \hat{\alpha} \rightarrow e_0 \Leftarrow \hat{\beta} \rightarrow \Delta' \quad \text{By i.h. with } \Omega_0 \]

\[\Delta' \rightarrow \Omega'_0 \quad \text{'} \]

\[\Omega_0 \rightarrow \Omega'_0 \quad \text{'} \]

74
Given \(\lambda x. e_0 \leftarrow \hat{\alpha} \rightarrow \hat{\beta} \vdash \Delta \)

\[
\begin{align*}
\Delta' &= \Delta, x : \hat{\alpha}, \Theta \\
\Delta, x : \hat{\alpha}, \Theta &\rightarrow \Omega_0' \\
\Omega_0' &= \Omega'', x : \cdot \cdot \cdot, \Omega_Z \\
\Delta &\rightarrow \Omega'' \\
\Gamma, \hat{\alpha}, \hat{\beta} &\rightarrow \Delta \\
\Gamma, \hat{\alpha}, \hat{\beta} &\rightarrow \Delta \\
\Omega_0 &\rightarrow \Omega''', x : \cdot \cdot \cdot, \Omega_Z
\end{align*}
\]

By above equality

\[\Omega, \hat{\alpha} = A_1', \hat{\beta} = A_2', x : A_1' \rightarrow \Omega'', x : \cdot \cdot \cdot, \Omega_Z \]

By def. of \(\Omega_0 \)

\[
\begin{align*}
\Omega &\rightarrow \Omega' \\
\Gamma &\vdash \lambda x. e_0 \leftarrow \hat{\alpha} \rightarrow \hat{\beta} \vdash \Delta
\end{align*}
\]

By \(\rightarrow I \)

\[
\begin{align*}
[\Gamma] &\vdash \hat{\alpha} \\
[\Gamma] &\vdash \hat{\beta} \\
\Gamma &\vdash \lambda x. e_0 \leftarrow ([\Gamma] \hat{\alpha}) \rightarrow ([\Gamma] \hat{\beta}) \vdash \Delta
\end{align*}
\]

By def. of substitution

\[
\begin{align*}
\Gamma &\vdash \lambda x. e_0 \leftarrow [\Gamma] (\hat{\alpha} \rightarrow \hat{\beta}) \vdash \Delta
\end{align*}
\]

By definition of substitution

Case

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By Lemma 54 (Typing Extension)

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By Lemma 24 (Typing Extension)

\[
\begin{align*}
\alpha &\vdash \Delta' \\
\Delta' &\vdash \Delta, x : \hat{\alpha}, \Theta \\
\Delta, x : \hat{\alpha}, \Theta &\rightarrow \Omega_0' \\
\Omega_0' &\rightarrow \Omega''', x : \cdot \cdot \cdot, \Omega_Z \\
\Delta &\rightarrow \Omega'' \\
\Gamma &\vdash \lambda x. e_0 \leftarrow \hat{\alpha} \rightarrow \hat{\beta} \vdash \Delta
\end{align*}
\]

By above equality

\[
\begin{align*}
\Gamma &\vdash \lambda x. e_0 \leftarrow \hat{\alpha} \rightarrow \hat{\beta} \vdash \Delta
\end{align*}
\]

By \(\rightarrow I \)

\[
\begin{align*}
[\Gamma] &\vdash \hat{\alpha} \\
[\Gamma] &\vdash \hat{\beta} \\
\Gamma &\vdash \lambda x. e_0 \leftarrow ([\Gamma] \hat{\alpha}) \rightarrow ([\Gamma] \hat{\beta}) \vdash \Delta
\end{align*}
\]

By def. of substitution

\[
\begin{align*}
\Gamma &\vdash \lambda x. e_0 \leftarrow [\Gamma] (\hat{\alpha} \rightarrow \hat{\beta}) \vdash \Delta
\end{align*}
\]

By definition of substitution

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0 &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By above equality

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By Lemma 21 (Transitivity)

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By above equality

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By above equality

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By above equality

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By above equality

\[
\begin{align*}
\omega_0 &\vdash B \\
\omega_0' &\vdash B \bullet e_2 \Rightarrow A
\end{align*}
\]

By above equalities

\[
\begin{align*}
\Theta &\vdash [\Theta] B' \bullet e_2 \Rightarrow A' \vdash \Delta
\end{align*}
\]

By i.h. with \(\omega_0' \)

\[
\begin{align*}
A &\vdash [\Omega] A' \\
\Delta &\rightarrow \Omega' \\
\Omega_0' &\rightarrow \Omega' \\
\Omega &\rightarrow \Omega'
\end{align*}
\]

By Lemma 21 (Transitivity)

\[
\begin{align*}
\Gamma &\vdash e_1, e_2 \Rightarrow A' \vdash \Delta
\end{align*}
\]

By \(\rightarrow E \)
• **Case**

\[[\Omega] \Gamma \vdash e \leftrightarrow B \]
\[[\Omega] \Gamma \vdash B \rightarrow C \bullet e \leftrightarrow C \quad \text{Decl} \rightarrow \text{App} \]

We have \([\Omega]A = B \rightarrow C\). Either \([\Gamma]A = B_0 \rightarrow C_0\) where \(B = [\Omega]B_0\) and \(C = [\Omega]C_0\)—or \([\Gamma]A = \&\) where \(\& \in \text{unsolved}(\Gamma)\) and \([\Omega]A = B \rightarrow C\).

In the former case:

\[[\Omega] \Gamma \vdash e \leftrightarrow B \quad \text{Subderivation} \]
\[B = [\Omega]B_0 \quad \text{Known in this subcase} \]
\[0 \quad \text{Given} \]

\[\Gamma \vdash e \leftrightarrow [\Gamma]B_0 \rightarrow \Delta \quad \text{By i.h.} \]
\[\Gamma \vdash ([\Gamma]B_0) \rightarrow ([\Gamma]C_0) \bullet e \leftrightarrow [\Gamma]C_0 \rightarrow \Delta \quad \text{By } \rightarrow \text{App} \]

\[\Delta \quad \leftrightarrow \quad \Omega' \quad \quad " " \]
\[\Omega \vdash \Omega' \quad \quad " " \]

Let \(C' = [\Gamma]C_0\).

\[C = [\Omega]C_0 \quad \quad \text{Known in this subcase} \]
\[= [\Omega][\Gamma]C_0 \quad \quad \text{By Lemma 18 (Substitution Extension Invariance)} \]
\[= [\Omega]C' \quad \quad [\Gamma]C_0 = C' \]

\[\Gamma \vdash [\Gamma](B_0 \rightarrow C_0) \bullet e \leftrightarrow [\Gamma]C_0 \rightarrow \Delta \quad \text{By definition of substitution} \]

In the latter case, \(\& \in \text{unsolved}(\Gamma)\), so the context \(\Gamma\) must have the form \(\Gamma_0[\&]\).

\[\Gamma \quad \leftrightarrow \quad \Omega \quad \quad \text{Given} \]
\[\Gamma_0[\&] \quad \rightarrow \quad \Omega \quad \quad \Gamma = \Gamma_0[\&] \]
\[[\Omega]A = B \rightarrow C \quad \quad \text{Above} \]
\[[\Omega][\&] = B \rightarrow C \quad \quad \text{A} = \& \]
\[\Omega = \Omega_0[\&] = A_0 \quad \quad \Omega = \Omega_0[\&] \rightarrow \Delta \quad \quad \text{Follows from} \quad [\Omega][\&] = B \rightarrow C \]

Let \(\Gamma' = \Gamma_0[\&]_2, \&_1, \& = \&_1 \rightarrow \&_2\).

Let \(\Omega'_0 = \Omega_0[\&_2] = [\Omega]C, \&_1 = [\Omega]B, \& = \&_1 \rightarrow \&_2\).

\[\quad [\Omega] \Gamma \vdash e \leftrightarrow B \quad \quad \text{Subderivation} \]
\[\quad \Omega \rightarrow \Omega'_0 \quad \quad \text{By Lemma 27 (Solved Variable Addition for Extension) (ii) twice} \]
\[\quad [\Omega][\Gamma] = [\Omega][\Omega] \quad \quad \text{then Lemma 29 (Parallel Admissibility) (iii)} \]
\[\quad = [\Omega][\Gamma][\Omega]_0 \quad \quad \text{By Lemma 49 (Stability of Complete Contexts)} \]
\[\quad = [\Omega][\Gamma][\Gamma'] \quad \quad \text{By Lemma 51 (Finishing Completions)} \]
\[\quad B = [\Omega][\&]_0 _1 \quad \quad \text{By definition of} \Omega'_0 \]
\[\quad [\Omega][\Gamma'][\Gamma'] \vdash e \leftrightarrow [\Omega][\&]_0 _1 \quad \quad \text{By above equalities} \]

\[\quad \Gamma' \vdash e \leftrightarrow [\Gamma'][\&]_1 \rightarrow \Delta \quad \quad \text{By i.h.} \]

\[\quad \Delta \rightarrow \Omega' \quad \quad " " \]
\[\quad \Omega'_0 \rightarrow \Omega' \quad \quad " " \]

\[\quad \Omega \rightarrow \Omega' \quad \quad \text{By Lemma 21 (Transitivity)} \]

\[[\Gamma'][\&]_1 = \&_1 \quad \quad \&_1 \in \text{unsolved}(\Gamma') \]
\[\quad \Gamma' \vdash e \leftrightarrow \&_1 \rightarrow \Delta \quad \quad \text{By above equality} \]
Γ ⊢ α • e ⇒ ⇒ α² ⊣ Δ

Let C′ = α².

C = [Ω′]α²

= [Ω′]α²

= [Ω′]C′

By above equality

Γ ⊢ [Γ]A • e ⇒ ⇒ C′ ⊣ Δ

α = [Γ]A and α² = C′

• Case

[Ω][Γ] ⊢ σ → τ

[Ω][Γ], x : σ ⊢ e₀ ⇐ τ

[Ω]Γ ⊢ λx. e₀ ⇒ σ → τ

Decl →⇒

1 = A

Given

Γ ⊢ () ⇒ 1 ⊣ Γ

By 1⇒

Let Λ = Γ.

Γ →→ Ω

Given

Δ →→ Ω

By above equality

Ω →→ Ω′

By Lemma 20 (Reflexivity)

Let A′ = 1.

Γ ⊢ () ⇒ A′ ⊣ Δ

By above equalities

1 = [Ω]A′

By definition of substitution

• Case

[Ω][Γ] ⊢ σ → τ

[Ω][Γ], x : σ ⊢ e₀ ⇐ τ

(σ → τ) = A

Given

[Ω][Γ], x : σ ⊢ e₀ ⇐ τ

Subderivation

Let Γ′ = (Γ, α, β, x : α).

Let Ω₀ = (Ω, α = σ, β = τ, x : σ).

Γ →→ Ω

Given

Γ′ →→ Ω₀

By →→Solve twice, then →→Var

[Ω₀][Γ′] = ([Ω₀][Γ], x : σ)

By definition of context application

τ = [Ω₀][β]

By definition of Ω₀

[Ω₀][Γ′] ⊢ e₀ ⇐ [Ω₀][β]

By above equalities

Γ′ ⊢ e₀ ⇐ β →→ Δ′

By i.h.

Δ′ →→ Ω₀′

By above equalities

Ω₀ →→ Ω₀′

By i.h.

Δ′ = (Δ, x : α, Θ)

By Lemma 24 (Extension Order) (v)

Γ, α, β, x : α ⊢ e₀ ⇐ β →→ Δ, x : α, Θ

By above equalities

[Δ, x : α, Θ] →→ Ω₀′

By above equality

Ω₀′ = Ω′, x : σ, Ω₂

By Lemma 24 (Extension Order) (v)

Δ →→ Ω′

By →→⇒

Γ ⊢ λx. e₀ ⇒ α ⊣ β →→ Δ

By →⇒
Let $A' = (\alpha \to \beta)$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Expression</th>
<th>Context</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma \vdash \lambda x. e_0 \Rightarrow A' \vdash \Delta$</td>
<td>By above equality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma \rightarrow \tau = ([\Omega_0] \alpha \rightarrow ([\Omega_0] \beta)$</td>
<td>By definition of Ω_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma \rightarrow \tau = [\Omega_0] (\alpha \rightarrow \beta)$</td>
<td>By definition of substitution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda = [\Omega_0] A'$</td>
<td>By above equalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A = [\Omega'] A'$</td>
<td>By Lemma [50] (Finishing Types)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma' \rightarrow \Delta'$</td>
<td>By Lemma [54] (Typing Extension)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Omega \rightarrow \Omega'$</td>
<td>By Lemma [21] (Transitivity)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References