Sound and Complete Bidirectional Typechecking
for Higher-Rank Polymorphism
with Existentials and Indexed Types:
Full definitions, lemmas and proofs

Jana Dunfield Neelakantan R. Krishnaswami

August 15, 2020

The first part (Sections[TH2) of this supplementary material contains rules, figures and definitions omitted
in the main paper for space reasons, and a list of judgment forms (Section [2).

The remainder (Sections includes statements of all lemmas and theorems, along with full proofs.
as well as statements of theorems and a few selected lemmas.

Contents
1 Figures 8
|2 List of Judgments| 18
Properties of the Declarative Syste 19
[[Lemma (Declarative Well-foundedness)] o v v v v v v i i 19
2 [Lemma (Declarative Weakening)| 19
] [Lemma (Declarative Term SUDSHEULION)| . . .« » « v v v v v e e e e e e e e e e e 19
4 [Lemma (Reflexivity of Declarative Subtyping)| 19
Lemma (Subtyping Inversion)| o o v v v i e e e e e e e e e e 19
[[Lemma (Subtyping Polarity FIip)] ovvi vt 19
[[Lemma (Transitivity of Declarative SUBtypIng)|. . . . « v v v v v v o e e e e e e e e 20
[B__Substitution and Well-formedness Properties| 20
B [Lemma (Substitution—Well-formedness)|. . . « « « v v v v v v e e 20
9 [Lemma (Uvar Preservation)| o v v v v vttt e e e e e e 20
10| [Lemma (Sorting Implies Typing)| 20
11l _ |[Lemma (Right-Hand Substitution for Sorting), 20
12 |[Lemma (Right-Hand Substitution for Propositions)| 20
@3 [Lemma (Right-Hand Substitution for Typing)| 20
M4 JLemma (Substitution for Sorting)] . . . « « « v v v v vt 20

|I§| |Lemma (Substitution for Prop Well-Formedness)| 20
|l §l |Lemma (Substitution for Type Well-Formedness)|o v v 20

@7 [Lemma (Substitution Stability)] 20
I8 [emma (EqualDomains)|.o v vttt 20
[C_Properties of Extension| 20
[[9] [Lemma (Declaration Preservation)] . - « « « « v v v v v v m e e e e e e 20
20 [Lemma (Declaration Order Preservation)|. « v v v v v v v i v et e e e e 20
(21] [Lemma (Reverse Declaration Order Preservation)| 20
22 ILemma (Extension Inversion)| v o i e e e e e e e e e e e e 21

CONTENTS 2
[23] [Lemma (Deep Evar Introduction)| 21

B4 TLemma (Soft EXtension)] . . . « v v v v v o e e e e e e e 21

[26] [Lemma (Parallel Admissibility)] 22
27 TLemma (Paralle]l Extension SOIUGON)| . . « « & v v v v v v v e e e e e e e e e 22

28] [Lemma (Parallel Variable Update)] 22

29 |Lemma (Substitution MONoOtonicity)| v v v v v v e e e e e e e e e e e 22

30| |Lemma (Substitution Invariance)| o . it e e e e e e e e e e 22
BT [Lemma (SPHtERIENSION)|. - « - « « v e e e oeee e e e e e 22

IC.1 Reflexivity and TransSitivity]. v v v v e 23
|E§Z] |Lemma (Extension Reflexivity)| 23

B3 [Lemma (Extension Transitivity)] o v vv v v v vt e 23

[C2 Weakening] 23
B4 [Lemma (Suffix Weakening)|o vt 23

B5 [Lemma (Suffix Weakening)| 23

B& [Lemma (Extension Weakening (SOMS))] . - - - - . -« v oo oo 23

B7 [Lemma (Extension Weakening (Props))| 23

B8 [Lemma (Extension Weakening (Types))] - « « v v v v v v v v v v v e 23

|C.3 Principal Typing Properties|. 0 e e e e e e e 23
|E§2] |Lemma (Pr1nc1pa1 Agreement)|. 23

. 23
Wmm 23
Lemma (Inversion of Principal Typing)| 23

C.4 Instantiation Extends|. e e e e e e e 23
143 [Lemma (Instantiation Extension)| e e e e e e 23

[C.5 Equivalence Extends| 24
B4 [Lemma (Elimeq EXENSION)] . « « « ¢ v v v v v vt e e 24

M5 [Lemma (EDmprop EXtension)]« v v oot e et 24

46| [Lemma (Checkeq Extension)| 24

47 Lemma (Checkprop EXtension)| v v v v v v v e e e e e e e e e e e e e e 24

48| Lemma (Prop Equivalence Extension)| @ v v v i i i i e 24

M9 [Lemma (Equivalence EXtension)]vvv v vttt 24

[C6 Subtyping Extends| 24
50| [Lemma (Subtyping EXtensiom)] v v v v v v it e e e 24

IC.7 Typing Extends| e e e 24
Lemma (Typing EXtension)| oo v vt i it ii et 24

[C8 Unfiledl. 24
(02l [Lemma (Context Partitioning)] v o v v v it 24

54] |Lemma (Completing Stability)] 24

55| Lemma (Completing Completeness)| 24

56| Lemma (Confluence of Completeness)|« o v v i v v i 24

57| [Lemma (Multiple Confluence)|. 24

B [Lemma (Canonical COMPIEHON)]. - . . . -+« « « o e oo oo e 25
60 [emma (Split Solutions)|ottt 25
[D_Internal Properties of the Declarative System 25
Lemma (Interpolating With and Exists)|. 25

62 JLemma (Case Invertibility)] . . . « ¢ v v v v i e e e e e e e 25
[E_Miscellaneous Properties of the Algorithmic System| 25
63 [Lemma (Well-Formed Outputs of Typing)] v v v vt vvv v i 25

August 15, 2020

CONTENTS

[F Decidability of Instantiation|

[64] [Lemma (Left Unsolvedness Preservation)]. . . . « v v v v v v v v e e e e e e e et

65| [Lemma (Left Free Variable Preservation)| o v v v v v v v i e v

66l [Lemma (Instantiation Size Preservation)| o o i it e

67 [Lemma (Decidability of Instantiation)|,

Lemma (Transitivity of Separation)| v v v v v v i e e e e e e

|@2] |Lernrna (Separation TTUNCATION)| . « + « v v v v e v e e e et e e e e e

70 [Lemma (Separation for Auxiliary Judgments)|

|Z || |Lemma (Separation for Subtyping)| L
|Zg] [Cemma (Separation—MaiI)| v v v v v v e e e e e e e e e

Decidability of Algorithmic Sub
H.1 Lemmas for Decidability of Su

in

|Z§] |Lemma (Substitution Isn’t Large)l

[74 TLemma (InStantiation SOIVES)| . « « v v v v v e e e e e e e e e e e

(/5] [Lemma (Checkeq Solving)

76| [Lemma (Prop Equiv Solving)| e

|Z Zl |Lemma (Equiv Solving)|

Lemma (Decidability of Propositional Judgments)|.

|22] [Cemma (Decidability of Equivalence)| v

[H.2 Decidability of Subtyping| e

il [Theorem (Decidability of SUBLypIng)] « « « « v v v v v v e e e e e e
[H.3 Decidability of Matching and Coverage]
Lemma (Decidability of Guardedness Judgment)|

B [Lemma (Decidability of Expansion Judgments)|

EZ] |Le1n1na (Expansion Shrinks Size)| o oo L

[[Theorem (Decidability of Coverage)]

H.4 Decidability of Typing| o . o e e e e e e e e e e e e

[3l [Theorem (Decidability Of TypINg)| . . « « « v v v v v e e e e e e e e e e

[Determinacy]

B3 [Lemma (Determinacy of Auxiliary Judgments)].

84 [Lemma (Determinacy of Equivalence)]ttt

M [Theorem (Determinacy of Subtyping)]ot

[Theorem (Determinacy of TyPINE)| . . « « v v v v v v e e e e e e e e e e e

_Soundness|

85) [Lemma (Soundness of Instantiation)|ttt e e e e e e e e

J.2 Soundness of Checkeq| e

[86] [Lemma (Soundness of Checkeq)],

J.3 Soundness of Equivalence (Propositions and Types)|

87 Lemma (Soundness of Propositional Equivalence)|.

|§§] [Lemma (Soundness of Algorithmic Equivalence)]

PJ.4 Soundness of Checkprop| L

89 [Lemma (Soundness of Checkprop)] o i i

J.5 Soundness of Eliminations (Equality and Proposition)|.

[Lemma (Soundness of Equality Eimination)] v v v v v ..

.6 Soundnessof Subtyping| e

6] [Theorem (Soundness of Algorithmic Subtyping)|. oo ..

P.7 Soundness Of TyPING| o v i e e

|ZI [l f_leorem (Soundness of Match Coverage)|
[Tl [CLemma (Well-formedness of Algorithmic Typing)] v v v v v v v e e

August 15, 2020

CONTENTS 4
8l [Theorem (Eagerness of Types)|.o v i ittt 33

[[Theorem (Soundness of Algorithmic Typing)|. « v v v v v v v v e ee e e e e a 34
[K_Completeness| 34
[K.1 Completeness of Auxiliary Judgments|. 34
EZ] |Lemma (Completeness of Instantiation)] 34

03] Lemma (Completeness of Checkeq)|. o i v i i i e 34

94 Lemma (Completeness of Elimeqg)|., 34

O5] |Lemma (Substitution Upgrade)| 34

96 Lemma (Completeness of Propequiv)|. o e 35

E Zl [CLemma (Completeness of Checkprop)] v o v v i v i i i i e 35

[K.2 Completeness of Equivalence and Subtyping|, 35
|E§] |Lemrna (Completenessof Equiv)] 35

[0 [Theorem (Completeness of Subtyping)| o o v v vt v it 35

[K.3 Completeness of TypINg| o i i it e e e e e e e e e e e e e e e 35
Eg] |Lemma (Variable Decomposition)|. v v v it e e e e e . 35

|] ZIZII |Lemma (Pattern Decomposition and Substitution)|. 35

101] [Lemma (Pattern Decomposition Functionality)| 36

[[02 [Lemma (Decidability of Variable Removal)] - . . -« o oo oo 36

[I03] Lemma (Variable INVETSIOM)| . . + + « « v v v v v e e e e e et e e e e e e 36

(11 [Theorem (Completeness of Match Coverage)] 36

eorem (Completeness of Algorithmic Typing)| 36

[Proofs| 38
|A” Properties of the Declarative System| 38
il [Proof of Lemma (Declarative Well-foundedness)|. 38

|2] |Proof of Lemma (Declarative WeaEening)l 40

[Proof of Lemma (Declarative Term SUDSEItUtION)] . . .+ « « v v v v v e e e e e e e e 41

4 [Proof of Lemma (Reflexivity of Declarative Subtyping)[. 41

Proof of Lemma (Subtyping Inversion)| e 41

6] [Proof of Lemma (Subtyping Polarity Flip)] 42

[7 [Proof of Lemma (Transitivity of Declarative Subtyping)] 42

[B” Substitution and Well-formedness Properties| 45
8] [Proof of Lemma (Substitution—Well-formedness)] 45

O [Proof of Lemma (Uvar Preservation)] . - « « « v v v v v v v e e e e e e e 45

[Proof of Lemma (Sorting Implies Typing)[. 45

@I [Proof of Lemma (Right-Hand Substitution for Sorting)] 45

12 [Proof of Lemma (Right-Hand Substitution for Propositions)] 46

|| 3] |Proof of Lemma (Right-Hand Substitution for Typing)| 46

|lﬂ |Proof of Lemma (Substitution for Sorting)| 46

|I §| |Proof of Lemma (Substitution for Prop Well-Formedness)|. 47

Proof of Lemma (Substitution for Type Well-Forme ness)|. 48

L7 [Proof of Lemma (Substitution Stability)] 49

I8 [Proof of Lemma (EqualDomains)].ttt v it 49

|C” Properties of Extension| 49
[Proof of Lemma (Declaration Preservation)] . . - . « « v v v v v v e e e e e e e e 49

20! [Proof of Lemma (Declaration Order Preservation)| 50

(21l [Proof of Lemma (Reverse Declaration Order Preservation)| 51

B2l [Proof of Lemma (EXteNnsion INVEISION)| . . « v v v v v v v e e e e e e e e e e e 51

(23] [Proof of Lemma (Deep Evar Introduction)] 62

[Proof of Lemma (Parallel Admissibility)] 66

27 TProof of Lemma (Parallel Extension SOMUtION)| . . + « « v v v v v v v e e e e e 67

August 15, 2020

CONTENTS 5
[28] [Proof of Lemma (Parallel Variable Update)|. 67

29| Proof of Lemma (Substitution MonotoniCity)|. v v v v v v v v e e e e 67

B0 [Proof of Lemma (Substitution Invariance)] v v v v vt v v e e e 70

(24| [Proof of Lemma (Soft Extension)] o o i v e e e e e e e 70

31 |Proof of Lemma (Split Extension)|. 70

[C71 Reflexivity and Transitivity] . - « « « « o v v v oo e e e e e e 71
B2 [Proof of Lemma (Extension Reflexivity)] 71
[Proof of Lemma (Extension Transitivity)] v v v v v i e e e 72

[C".2 Weakening] e 74
B4 [Proof of Lemma (Suffix Weakening)] 74
[Proof of Lemma (Suffix Weakening)| 74

36 Eroof of Lemma (Extension Weakening (Sorts))| 74

[BZ [Proof of Lemma (Extension Weakening (Props))|. « « « « « « v v v v v v v v oo . 74
[Proof of Lemma (Extension Weakening (Types))|. . . . « v v v v v v v e e e e 75

C’.3 Principal Typing Properties|. o v i i it e e e e e e e e e e e 75
B9 [Proof of Lemma (Principal Agreement)].ttt 75

400 [Proof of Lemma (Right-Hand Subst. for Principal Typing)] 76

E || |Proof of Lemma (Extension Weakening for Principal Typing)| 76

Proof of Lemma (Inversion of Principal Typing)| 77

C’.4 Instantiation Extends| e e e e e 78
[43| Proof of Lemma (Instantiation Extension)| 78
[C75 Equivalence EXtends| v v vt i e e e e e e 78
@4 [Proof of Lemma (Elimeq Extension)] 78

M5 [Proof of Lemma (Eimprop EXteNnSIOn)| v v v v v vttt 79

48 [Proof of Lemma (Checkeq Extension)]. 80

@7 [Proof of Lemma (Checkprop Extension)] 80
[Proof of Lemma (Prop Equivalence EXtension)|. 81
[Proof of Lemma (Equivalence EXtension)]. « v v v v v v v v ot 81
[C76 Subtyping Extends| i 82
50 [Proof of Lemma (Subtyping EXtENSION)|. . . « « v v v v v e e e e e e e 82

IC".7 Typing Extends| o i e e e e e e e e e e 83
[BI [Proof of Lemma (Iyping EXtENSIOM)|. . . .« o o vovvvv v e e e e e oo e e e 83

C.8 Unfiled|. e e e e e e e e e e 84
[Proof of Lemma (Context Partitioning)|o 84

EE |Proof of Lemma (Completing Stability)[. 84

B5 [Proof of Lemma (Completing Completeness)]. . . « « « « « v e v oo eeeeen . 85

|E§| |Proof of Lemma (Confluence of Completeness)] 86

57 [Proof of Lemma (Multiple Confluence)] 86

|§2] |Proof of Lemma (Canonical Completion)|. 86

[60 [Proof of Lemma (Split Solutions)] 86

[D” Internal Properties of the Declarative System| 87
BI_ [Proof of Lemma (Interpolating With and EXISE)] . - « - « « o v v oo e e een . 87

62 [Proof of Lemma (Case Invertibility)] v o v vttt 87

[E” Miscellaneous Properties of the Algorithmic System| 88
631 [Proof of Lemma (Well-Formed Outputs of Typing)]. . . « « « ¢ v v v v v v v oo e .. 88

[F" Decidability of Instantiation| 89
4] [Proof of Lemma (Left Unsolvedness Preservation)] 89
[65] TProof of Lemma (Left Free Variable Preservation)] o v v v v v v v v .. 89

66! [Proof of Lemma (Instantiation Size Preservation)|« v v v v v v v v v v .. 91

[67] [Proof of Lemma (Decidability of Instantiation)|. 92

August 15, 2020

CONTENTS 6
93
|§§] [Proof of Lemma (Transitivity of Separation)] 93

69 Proof of Lemma (Separation Truncation)|. v v v v v v v v v e e e 94

[Z0_ [Proof of Lemma (Separation for Auxiliary Judgments)] 94

Eroof of Lemma (Separation for Subtyping)| oL, 95

[72 [Proof of Lemma (Separation—Main)] v oot vt e e 95

[H” Decidability of Algorithmic Subtyping] 103
H’.1 Lemmas for Decidability of Subtyping|. 103
/3| [Proof of Lemma (Substitution Isn’t Large)| 103

[74] [Proof of Lemma (Instantiation SOIVES)| . . + « v v v v v e e e e e e e 103

[75] |Proof of Lemma (Checkeq Solving)| 104

[Z8 [Proof of Lemma (Prop Equiv Solving)]o 105

[7Z_ Proof of Lemma (EquivSolving)| 105

/8] [Proof of Lemma (Decidability of Propositional Judgments)] 106

[Proof of Lemma (Decidability of Equivalence)] 107

[H'.2 Decidability of Subtyping| e e e 108
M [Proof of Theorem (Decidability of Subtyping)]o 108

[H'.3 Decidability of Matching and Coverage| 110
B0 [Proof of Lemma (Decidability of Guardedness Judgment)] 110

[BI [Proof of Lemma (Decidability of Expansion Judgments)] 110

EZ] |Proof of Lemma (Expansion Shrinks Size)| 110

E] |Proof of Theorem (DeciaaEility of Coverage)l 111

[H".4 Decidability of Typing| i 113
B [Proof of Theorem (Decidability of Typing)| vt v v vt 113

[Determinacy| 115
B3] [Proof of Lemma (Determinacy of Auxillary Judgments)] 115

Eﬂ |Proof of Lemma (_Determinacz of Equivalence)| 116

4 [Proof of Theorem (Determinacy of Subtyping)|. 116

Al [Proof of Theorem (Determinacy of Typing)|. v v it 117

119
U1 INStantiation] . . « & v v v v v e 119
85 [Proof of Lemma (Soundness of Instantiation)| v v v v vt o 119

186 [Proof of Lemma (Soundness of Checkeq)[. 120

|§ Zl |Proof of Lemma (Soundness of Propositional Equivalence)| 121

@ [Proof of Lemma (Soundness of Algorithmic Equivalence)|. 122

PJ’.2 Soundness of Checkprop| e e e e e 123
[Proof of Lemma (Soundness of Checkprop)]« o v v v i i i 123

’.3 Soundness of Eliminations (Equality and Proposition)|. 124

90 Proof of Lemma (Soundness of Equality Elimination)| 124

[[Proof of Theorem (Soundness of Algorithmic Subtyping)] 127

U’.4 Soundness of TYPING| o v v vt it e 129

|ZI |Proof of Tl_leorem (Soundness of Match Coverage)| 129

E I| |Proof of Lemma (Well-formedness of Algorithmic Typing)| 130

|§] |Proof of Tl_leorern (Eagernessof Types)[. 131

[O [Proof of Theorem (Soundness of Algorithmic Typing)| v v« v v v v v v v v v 134

[K” Completeness| 149
[K”.1 Completeness of Auxiliary Judgments|. 149
02 [Proof of Lemma (Completeness of Instantiation)] o.vvv v .. . 149

[Proof of Lemma (Completeness of Checkeq)] 151

Eﬂ |Proof of Lemma (Completeness of Elimeqg)|. 153

|E§| |Proof of Lemma (Substitution Upgraae)| 155

August 15, 2020

CONTENTS 7
96 [Proof of Lemma (Completeness of Propequiv)]o oo 156

E Zl |Proof of Lemma (Completeness of Checkprop)|. 156

K’.2 Completeness of Equivalence and Subtyping| 157
08 Proof of Lemma (Completeness of Equiv)| 157

[0 [Proof of Theorem (Completeness of Subtyping)] 160

[K’.3 Completeness of TYPING| o v v v v i e 165
Proof of Lemma (Variable Decomposition)| 165

[[Proof of Lemma (Pattern Decomposition and Substitution)] 165

|IZI || |Proof of Lemma (Pattern Decomposition Functionality)|. 165
[[02_[Proof of Lemma (Decidability of Variable Removal)]o oo oo 166

03 [Proof of Lemma (Variable INVEISiON)] . . . « « v v v v v v v e e e e e e e e 166

(11 [Proof of Theorem (Completeness of Match Coverage)|. 166

Proof of Theorem (Completeness of Algorithmic Typing)| 169

August 15, 2020

1 Figures 8

1 Figures

We repeat some figures from the main paper. In Figures[6a and [I4h, we include rules omitted from the main
paper for space reasons.

Y | P true| Under context ¥, check P
—— DeclCheckpropEq
e

YE(t=t)tru

YEe& A P | Under context ¥, expression e checks against input type A
YEe= A P | Under context ¥, expression e synthesizes output type A

x:Ap eV Yhe=Aq VYkAINPIERMg
———— DeclVar DeclSub
YEx=Ap Yi-e&Bp
YA W Al Yx:ApF A
bpe < DeclAnno X APV E pDecIRec ———— Declll
YE(e:A)= Al YErecx.v&EAD YEO &1p
hk-I Wio:khk A Y1 Y A
ve XKEVEAP b ToK e = [W/aA &l
YEv&E (Va:ik.A)p YEe& (Ju:k.A)p
hk-I Y/PH Al YIEPt Y A
ve [PEVEAL G e € AP peclnl
YEve (POA)! Yie=(AAP)p
Y x:ApFe&Bp Yie=Ap YiEs:Ap> Clq|
Decl—| Decl—E
YEAX.e&A—=Byp YEes=Cq
Yhe&sAp Yier &Arp Yihe &Ap
— Decl+ly Declx|
YEinjpe&s A1 +A2p Y (er,e2) EA1 XAz p
Yier &Ap
Y I t = zero true . YEt=succ(ty) true YEe, & (Vecta A) Y
DeclINil DeclCons
YEO &< (VectA)p Yie ey & (VectA)p
YEe=Aq YETT:Al&Cp VB.if W e= B qthen ¥ TT covers B q
DeclCase
Y I case(e,TT) & Cp
\Pl—S:Ap > C q Under context ¥,
YA C passing spine s to a function of type A synthesizes type C;
SIAPp > [(ﬂ in the [q] form, recover principality in q if possible
YihEt:k WYhes:[t/a]AY>Cq . YEPtrue VYhHes:Ap>Cq .
DeclVSpine DeclD>Spine
YiEes: (Va:k.A)p>Cq YEes:(PDA)p>Cq
Y A YiEs:Bp>C
— DeclEmptySpine cEAP PP q Decl—Spine
YE-:Ap>Ap YEes:A—=Bp>Cq
for all C’.
if YFs:Al>>C'Y
YiEs:Al>C then C' = C YiEs:Ap>C
Y DeclSpineRecover P d DeclSpinePass
YEs:Al>C[!] YEs:Ap>C[q]

Y/Pre&C P | Under context ¥, incorporate proposition P and check e against C

mgu(o,T) =0
=1 CICIRC) 0(C
meu(o, 7) DeclCheck L ®) () =0C)p DeclCheckUnify
Y/(c=1)Fe&Cp Y/(c=1)Fe&Cp

Figure @1: Declarative typing, including rules omitted from main paper

August 15, 2020

1 Figures

Under input context I', expression e checks against input type A,

I'-e & A p - A with output context A

'Fe= A P — A | Under input context I', expression e synthesizes output type A,
with output context A

(x:Ap)eTl v TFe=AqH0 @FA<:j°i"(P°1[B)‘P°1(A])B%AS :
Tex= MApAT o FFe=BpdA v
'+ Altype Fl—e<:[F]A!—|AA F,x:Apl—v#Ap—iA,x:Ap,@R

nn
TF(e:A) = AATHA ° FrecxveApdA e
— 1 11a
r- 0O &1p4r FMa:«F O & 4AT@:x=1]
v chk-I F,oc:KI—v<:Ap%A,oc:|<,®v| e chk-I N&:kke< [@/«JA _|AEII
Fr'CFveva:k Ap A lNFe&sda:kApHA
v chk-I e not a case
Lep /PO ' Ptrue 10
OFv&[OAIHA »p, A’ N v chk-T r,>p/P4LDu OFes=[@ApP-A
r’FvePDOAIHA rFvePDOANAT r’FesAAPP-HA
I",x:Apl—e<:Bp—|A,x:Ap,®Hl T[&1:%, Raix, Rk =R1—®2],x: % Fe& &y 1A, x:&1,A’ &
'-Ax.e&<A—-Bp-HA Na:+xFAx.e&a 4A
l'-e=Ap-0 OFTT=z[OAq&<BICpdA
@I—s:Ap>>C[q]—|AHE lFe=Aq-10 A F TT covers [A]A g c
ase
l'-es=Cq-A 't case(e,IT) & Cp-A
lN-esAcp-dA L M&i: %R i x, R:x=01+R2] F e & & 4A+|&
FTEinje = Al +A,pdA M&:+ Finje<a 1A .
MRk, 1ok, Bex =R xR Fer &1 10
l'-eg A pd10 @I—ez<:[®]Azp—|AX| OF e & [Ol&; 1A li
F}—<e1,e2><:A1><A2p—|A r[&:*}l—<€],ez>¢& RAY
Nea,&:NFt=succ(R) true 4T’
MNFer=[MApH0O
It =zerotrue 4 A N OFe; & [O(Vec&A) Y4 A pa, A c
i ons
-« (VectA)p A lFerzex & (VectA)pHA
I SZAp > C q 4 A Under input context I,
. passing spine s to a function of type A synthesizes type C;
FEs:Ap>C |—q-| 4A in the [q] form, recover principality in q if possible
Na:xkFes:[&/a«A >Cq-A . I'EPtrue40© OFes:[OIAp>Cq-A .
VSpine DSpine
lFes:Va:k. Ap>Cqg-A l'es:PODAp>Cqg-A
) l-e&Ap-0 OFs:OBp>Cq-As .
EmptySpine —Spine
Nr=-:Ap>Ap-rmr 'Fes:A—=Bp>Cq-A
MRox, Ryok, Rk =R1—=R2] Fes: (&1 — &) >C HA .
aSpine
NMNa:+xlFes:& >C 4A
F'Es:A!'>CYHA lFs:Ap>Cqg-A
FEV(C) =0 . ((p=yor(g="1or (FEV(C)#0)) _ .
SpineRecover SpinePass
F'Es:Al!>C[!HA lEs:Ap>Clql-dA

Figure : Algorithmic typing, including rules omitted from main paper

August 15, 2020

1 Figures

10

W F t: K| Under context ¥, term t has sort k

(x:k) eV . YEt:x YEtr:x .
——— UvarSort — UnitSort BinSort
YEo:k YE1:x YEt dtr:x

Y-t:N
— ZeroSort ———— SuccSort
Y zero: N Y succ(t) : N

Under context ¥, proposition P is well-formed

YEt:N Yt :N

EqDeclP
Y+t=t'prop darecrop
W= A type| Under context ¥, type A is well-formed
(x:x) eV)
— DeclUvarWF —— DeclUnitWF
Y o type Y1 type
W A type Wt B type € {—, x N-t:N ' A type
P P Deim ot DeclBinWF op DeclVecWF
Y A & Btype ' Vec t A type
Yiax:kkEA Yiax:kkHA
XK OP€ beclAIWE XK OPC DeclExistsWF
YE (Va: k. A) type Y (Jox: k. A) type
Y+ P pro Y A type Y+ P pro Y A type
PToP P DeclimpliesWF PTop op DeclWithWF
YEPDAtype YEAANP type
Y K types | Under context ¥, types in A are well-formed
for all A € A.
Y+ A type
ﬂityp DeclTypevecWF
W A types
Declarative context ¥ is well-formed
W ctx x ¢ dom(V¥ WY A type
—— EmptyDeclCtx z *) vp HypDeclCtx
- ctx Yx: A ctx

Y ctx o ¢ dom(V¥)
W x: kctx

VarDeclCtx

Figure 16: Sorting; well-formedness of propositions, types, and contexts in the declarative system

August 15, 2020

1 Figures 11

[T : K| Under context I, term T has sort «

(u:x)erm (@:xk=1) €Tl .
————— VarSort ———— SolvedVarSort —— UnitSort
NFu:«k NEa:«k NE1:%
| I S | e S N'-t:N
BinSort —— ZeroSort ——— SuccSort
Nt @1 'k zero: N [+ succ(t) : N

" = P prop | Under context T', proposition P is well-formed

N-t:N Nt :N

EqP
M-t=t'prop arroe
"= A type| Under context T, type A is well-formed
(u:x)er (@:x=1)eTl .
— VarWF —— SolvedVarWF — UnitWF
' u type ' & type 't 1 type
A I'-B € N'-t:N A
Ope bpe @€ i+ BinWF bpe VecWF
I'-A ® B type ' Vect A type
Da:kFA Da:kHA
XK OPC orallwF XK OPC istsWE
I'FVa: k. A type ' Ja: k. A type
P r=A =P N=A
prop bpe ImpliesWF prop bpe WithWF
I'=P DA type ' A AP type

A P type | Under context I, type A is well-formed and respects principality p

rEA FEV([TIA) = reA
type (MA) =0 PrincipalWF L TADPe NonPrincipal WF
I A!type =AY type

A [p] types | Under context T, types in A are well-formed [with principality p]

forall A € A. T+ A type forallAcA. THAptype
= TypevecWF = Principal TypevecWF
' A types '~ A p types
Algorithmic context I" is well-formed
x ¢ dom(T) x & dom(T)
letx T A type Fetx THAtype FEV([MA)=0
—— EmptyCtx vP HypCtx op ((riA) Hyp!Ctx
- ctx Lx:A) ctx Nx:A!ctx
I" ctx u ¢ dom(T) I ctx & ¢ dom(IN) N-t:x
VarCtx SolvedCtx
Nu:«kctx L&:k=tctx
I" ctx kel =—)¢Tl Ne-T: I" ctx I
XK (x i ThK EqnVarCtx A MarkerCtx
I ou="1ctx [T py ctx

Figure 17: Well-formedness of types and contexts in the algorithmic system

August 15, 2020

1 Figures

12

’ [+ P true - A| Under context I', check P, with output context A

'Ft1=t,:N-HA
Nt =t true 41 A

CheckpropEq

r/PpP- A" | Incorporate hypothesis P into I', producing A or inconsistency L

I/t =t,: NA4AL
I/t =t, 4A+

ElimpropEq

Figure 18: Checking and assuming propositions

"1t =t,: kK 1 A| Check that t; equals t», taking T to A

o CheckeqVar ——————— CheckeqUnit
Nu=u:xk-4Tl FrE1=1:%x4T

Nty =17:%40 OF [Olt; = [O]t):x 1A
ME(t®12) = (1) 1) :x1A

CheckegBin

Nty =t :NHA
D CheckeqZero 0 CheckeqSucc
't zero =zero: N AT '+ succ(ty) =succ(ty) :NHA

Na:klFa:=t:k4A & ¢ FV(t)
NMNa:klFa=t:k4A

CheckeqlnstL

Na:klFa:=t:k4A * & FV(t)
NMa:klFt=a:k4A

CheckeqlnstR

Figure 19: Checking equations

t; # 1| t1 and t, have incompatible head constructors

D1 # D2

zero # succ(t) succ(t) # zero 1# (11 @ 12) (1 ®T2) #1 (o7 ®111) # (02 D2 T2)

Figure 20: Head constructor clash

August 15, 2020

1 Figures

13

ro=t:k4At

Unify o and 7, taking I' to A, or to inconsistency L

S ElimeqUvarRefl
Na=o:k4T

r/o=t:N4At

Eli Z Eli S
I/ zero = zero : N T imeazsere I/ succ(o) = succ(t) : N 4 A+ imeqoucc
x ¢ FV(T) (o=—)¢T o ¢ FV(7) (x=—) &T
Eli UvarL SR UvarR
Noa=t:k4ALa=1 medRvar F/tT2a:k4Lax=1 imeqvar
tra «ePV() t#x acFV(1)
Eli UvarlL L] El UvarRL
LI ENn imeqUvar VeI EN imeqUvar
r/m=1:x40 0 /[0lT; = [O)T) : % 4 A+
—————— ElimeqUnit — - .
F/1=1:xAT Fr/mmeéetn=Tmaetn):x4A

M/t =11:%x- 1L
r/metwn) =t o) «4L1

ElimegBinBot

o#T
N/o=t:x-1L

ElimeqClash

Figure 21: Eliminating equations

ElimeqBin

August 15, 2020

1 Figures 14

- A<:”B-A|under input context T, type A is a subtype of B, with output context A

A not headed by V/3
B not headed by V/3 T’FA=BHA .
- <:Equiv
'FA<:"BHA
B not headed by V
ra,&:kE[@/x]JA<:7 B4A»s,0O L LR:kFA<:TBHAAB: k0O VR
<: <:
NEVa:k.A<:” B-HA I'FA<:"VR:k.BHA
A not headed by 3
NarkbA< BAAa:NO Neg,BixEA<T[B/BIBAA»;,0 -
<: <:
FMNF3dx:k. A<:TBHA Fr’FA<:T3:x.B4A
neg(A) nonpos(A)
'FA<:"B-HA nonpos(B) 'FA<:"BAHA neg(B)
<:JL <:7R
FTFA<:TBHA FT’FA<:TBHA
pos(A) nonneg(A)
Fr’FA<:*"BHA nonneg(B) Fr’FA<:TBHA pos(B)
<:TL <:TR
rNFA<:"BHA I'FA<:"BHA
Under input context T,
\FF P=0Q —|A‘ check that P is equivalent to Q
with output context A
M-t =t,:N40 OF[Olt] =[O]t; :N-HA
T 7 =PropEq
FEtr=t))=(t2=t;) 1A
Under input context T,
‘rl—AE B —|A‘ check that A is equivalent to B
with output context A
Y - =F — =Uni
FFa=adr o rFa=a-r FFi=t14r
'FA;=B; 10 @"[@}AzE[@}BZ—{Ai@ N'Ft1=t, 10 CH)'_[@]A]E[@]AZ_{A,V
F (A @A, = (B ®By) 1A = TE (Vect; Aj) = (Vect, As) dA o
Na:kFA=BHA a:k A’ _y Na:kFA=BAAa:kA"
M- (Vo:k. A) = (Va: k. B)4A M- (Gx:k.A)=(Gx:k.B)H4A —
r’FP=Q-H0© OF[BIA=[O]BHA rkP=Q-0O OF[BIA=[O]BHA N
=D =
r'E(P>A)=(Q>B)HA Fr'F(AAP)=(BAQ)HA
& ¢ FV(t) ralFa:=7v:x4A & ¢ FV(t1) MkFa:=7t:x4A
=Instantiatel =lInstantiateR
MiFra=t1A fetantiate MiFrrt=a-A

Figure 22: Algorithmic subtyping and equivalence

August 15, 2020

1 Figures 15

1. Under input context T,
’ FrFa:=t:xk44 instantiate & such that & = t with output context A

loFT:k
l,&: kM FE&:=1: kAT, &: k=1,

InstSolve

B € unsolved(I'[& : k][B : k)

7 =~ = InstReach
FMa:«klp:klFa:=p:xkAT@R:k][p:k=2&]

&
MGy iR :x, B:k=R DR & =171 : %10 OF & :=[Olty:x4A

InstBi
NMa:xFRi=11 ®T1:x4A nstem

MN&; :N,&:N=succ(&)]F& :=t1:NHA
InstZero InstSucc

IN&:N]F & := zero: N A T[& : N=zero] IN&:N]F & :=succ(ty) :NHA

Figure 23: Instantiation

August 15, 2020

1 Figures

16

A Under context T,
FEmm=A q <= C p s check branches TT with patterns of type A and bodies of type C

NM-n:Aq&eCpH40@ OFM:zOAgeCpHA

= MatchEmpty = MatchSeq
l--:Aq&CpHT FrEnrlsAqeCpHA
rFf=ezAqeCpdA
fFecCpda MatchBase p_, q—» P MatchUnit
lF(=e)z-q&Cp-A r-O,p=>exl,Ag&Cp-iA
Na:kkFp=e:zAA Cp-HAa:k© r/Prp=e:AAl&CpHA
XK P ’ q<:_, P X5 Match3 / P= L <L MatchA
l-p=e:(Jax:xk.A)yAq&CpdA lr'Fp=e:AANPA!l&ECpHA
TFp=exAA Cp-HA
qp:> ’ fy,<: P MatchA ¥
l'Ep=e:AANPA)Y&CpHA
MEp1,p2,p=eiAAAqeCp A
- — Match x
F'E(p1,p2),f=ezA; xA,Aq&Cp-A
Tp,p=e:AgA Cp-A
— Py F: =e Ky q <:_' P Match—i—k
Mk (injp)hp=ezA1+A,Aq&CpHA
A not headed by A or 3 Nz:Albpg=e sAq&eCpdAz:ALA’
- = MatchNeg
l-z,p=>e:A/Aq&CpdA
A not headed by N or 3 rFg=e:A Cp-HA
y_’ — P= a<tp MatchWild
- ,p=>etA/Aq&CpdA
r/(t= Fi=ezAl&CpHA
/1 zero) Fp = e = <L MatchNil
r-M,p=e=z(VectA),Al<=CpdA
F,oc:N/(t:succ(oc))}—p1,pz,6=>e::A,(VecaA),}_(!<:Cp—|A,oc:N,®
MatchCons

M- (p1zp2),p=>ex: (VectA),/i!<=Cp—|A

FrFp=ezA)y&=CpHA
M-[1,f=ex(VectA),AY<CpA

MatchNil ¥

Noa:NFpp,pf=exA (VecxA)AY<Cp-dAa:N,O
M (prup2),p=ex(VectA),AY<Cp-A

MatchCons }

X Under context I', incorporate proposition P while checking branches TT
. | > R
r/prm=Al<=Cp-HA with patterns of type A and bodies of type C

No=t:xk4L

- = Match L
No=1kp=ez:Al&Cp-TmT

Tep/0=2T:k40 OFpf=ezAl&Cp-HArp,A
N/o=tkpg=ezAl&Cp-A

MatchUnify

Figure 24: Algorithmic pattern matching

August 15, 2020

1 Figures 17
"= 1T covers A q Under context T, patterns TT cover the types A
" / P =TI covers A !| Under context I, patterns TT cover the types A assuming P
TT guard ed Pattern list TT contains a list pattern constructor at the head position
m I+ T1’ covers A q
CoversEmpty = CoversVar
I'E(-=ej) | TTcovers - q '+ TT covers A, A q
m-d 11’ covers A q Mm-S I+’ covers A1, Az, A q
= Coversl = Coversx
' TTcovers 1,A q I'FTT covers (A1 X Az),A q
m<m | TTx I TTy covers Ahﬁq I TTg covers Az,ﬁq
= Covers+
I'FTT covers (A + Az),A q
F,oc:Kl—Tlcovers/iq F/t1:t2}—ﬁcoversAo,,i!
= Covers3d —— Covers/\
' TT covers (o : k. A),A q I TT covers (Ao A (t1 =t2)),A!
T Ao, A covers T
—— Covers/\)
Tl covers (Ao A (t1 =t2)),A)}
'/ t = zero - TTj covers Al
IT guarded X Ty || TT.. m:N/t=succ(n) - TI. covers (A,Vecn A, A) !
= CoversVec
I" =TT covers Vec t A, A !
"= TTp covers AY
TT guarded m e Ty || T, n:NFTI covers (A,Vecn A,A) ¥
= CoversVec /)
' TT covers Vect A, A Y
/Mt =Mtk 4A A [A]TT covers [A]/?\ q /Mty =0ty k4L
= CoversEq —— CoversEqBot
I'/ti =ty FTTcovers A ! I'/ti =ty FTTcovers A'!
T guarded T guarded
(1,7 = e | T guarded p=p’,P = el T guarded _,p = e | IT guarded x,p = e | T guarded

Figure 25: Algorithmic match coverage

August 15, 2020

2 List of Judgments

18

2 List of Judgments

Judgment

YEt:k
W P prop
Y A type
‘Pl—;\types
Y ctx

Yr-A<PB
Y+ Ptrue

Yi-e&Ap
Y-e=Ap
YEs:Ap>Cq
YiEs:Ap>Clq]

YETT:Al&<Cp
W/Pl—ﬂ::/z\'H:Cp

Y- TT covers A !

N-7t:k
'+ P prop
'+ A type
I" ctx

MA

I'EPtrued A
r/p4at
lEs=t: kA
s#t
M/s=t:xk-A+

rFA<:PBHA
r/PFA<:BHA

FrEP=Q-4HA
I'FA=BHA
Fr’Ea:=t:xk4A
e chk-1

lFe&ApHA
lNe=Ap-A
NEs:Ap>CqHA
N-s:Ap>Cjlq]HA

M-MmzAqeCpHA

r/Pr=zAl&Cp-HA

I+ 1T covers A q
r—A
[QIr

For convenience, we list all the judgment forms:

Description

Index term/monotype is well-formed
Proposition is well-formed

Type is well-formed

Type vector is well-formed
Declarative context is well-formed

Declarative subtyping
Declarative truth

Declarative checking

Declarative synthesis

Declarative spine typing

Declarative spine typing, recovering principality

Declarative pattern matching
Declarative proposition assumption

Declarative match coverage

Index term/monotype is well-formed
Proposition is well-formed

Polytype is well-formed

Algorithmic context is well-formed

Applying a context, as a substitution, to a type

Check proposition

Assume proposition

Check equation

Head constructors clash
Assume/eliminate equation

Algorithmic subtyping
Assume/eliminate proposition
Equivalence of propositions
Equivalence of types
Instantiate

Checking intro form

Algorithmic checking

Algorithmic synthesis

Algorithmic spine typing

Algorithmic spine typing, recovering principality

Algorithmic pattern matching

Algorithmic pattern matching (assumption)
Algorithmic match coverage

Context extension

Apply complete context

Location

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure

August 15, 2020

A Properties of the Declarative System

19

A Properties of the Declarative System
Lemma 1 (Declarative Well-foundedness).

The inductive definition of the following judgments is well-founded:
(i) synthesisW+e= Bp

(ii) checking¥hFe & Ap

(iii) checking, equality elimination¥ / P+ e < Cp

(iv) ordinary spine¥+s:Ap>Bq
(v) recovery spineV¥+ s:Ap> B J[q]

(vi) pattern matchingW+TI= Al < Cp

(vii) pattern matching, equality elimination ¥ /PF Tz Al <& Cp

Lemma 2 (Declarative Weakening).
() IfWo, ¥ Ft: k then Wo, ¥, W; F t: .
(i) If¥Yo,¥; - P prop then ¥y, ¥,V F P prop.
(iii) If Yo, Y1 - P true then ¥y, ¥, ¥, F P true.
(iv) If Vo,V I A type then Wo, ¥, ¥ F A type.

Lemma 3 (Declarative Term Substitution).
Suppose ¥ |t : k. Then:

1. IfVYy, o : k,¥7 Ft': k then Wy, [t/c¥q F [t/adt’ : k.

2. If Yo, 00 : k, ¥y + P prop then W, [t/o]¥; F [t/«]P prop.

3. If Yo, k, ¥y + A type then Yo, [t/o]¥; F [t/a]A type.

4. If Vo, x: k,¥1 F A <P B then ¥y, [t/o]¥; F [t/«]A <P [t/a]B.
5. IfWo, o : k,¥1 - P true then Yo, [t/a]V; F [t/«]P true.

Lemma 4 (Reflexivity of Declarative Subtyping).
Given ¥ - A type, we have that V- A <P A.
Lemma 5 (Subtyping Inversion).

o IfYFdx:k. A< BthenV¥,x:xFA <" B.

o IfWH-A< VB:k.Bthen¥,p:xkF A< B.

Lemma 6 (Subtyping Polarity Flip).

e Ifnonpos(A) and nonpos(B) and¥ - A <™ B
then ¥ + A <~ B by a derivation of the same or smaller size.

e Ifnonneg(A) and nonneg(B) and¥+ A <™ B
then¥ - A <* B by a derivation of the same or smaller size.

e Ifnonpos(A) and nonneg(A) and nonpos(B) and nonneg(B) and W - A <¥ B
then A = B.

August 15, 2020

B Substitution and Well-formedness Properties 20

Lemma 7 (Transitivity of Declarative Subtyping).
Given Y + A type and ¥ + B type and ¥ + C type:

i) IfDy 2 VY+FA<PBandD, z:¥Y+B<P C
then¥+ A <P C.

Property 1. We assume that all types mentioned in annotations in expressions have no free existential vari-
ables. By the grammar, it follows that all expressions have no free existential variables, that is, FEV(e) = (.

B Substitution and Well-formedness Properties

Definition 1 (Softness). A context © is soft iff it consists only of & : k and & : k =7 declarations.

Lemma 8 (Substitution—Well-formedness).
(@) IfTHAptype and T+ T p type then T I [t/x]A p type.

(ii) IfT - P prop and T'+- T p type thenT - [1/odP prop.
Moreover, if p = ! and FEV(['P) = 0 then FEV([I'[t/a]P) = 0.

Lemma 9 (Uvar Preservation).
If A — Q then:

(1) If(ec: k) € Q then (x: k) € [Q]A.
(i) If (x:Ap) € Q then (x:[Q]Ap) € [Q]A.

Lemma 10 (Sorting Implies Typing). IfTFt:xthenT It type.
Lemma 11 (Right-Hand Substitution for Sorting). IfT+t:k thenT F [Tt : k.

Lemma 12 (Right-Hand Substitution for Propositions). IfT = P prop thenT I [T'P prop.
Lemma 13 (Right-Hand Substitution for Typing). IfT - A type then T |- [T]A type.
Lemma 14 (Substitution for Sorting). IfQFt:kthen [Q)QF [Qlt: k.

Lemma 15 (Substitution for Prop Well-Formedness).
If QO P prop then [Q]Q F [Q]P prop.

Lemma 16 (Substitution for Type Well-Formedness). IfQ + A type then [Q]Q F [Q]A type.

Lemma 17 (Substitution Stability).
If (Q, Q) is well-formed and Q7 is soft and Q F A type then [Q]A = [Q, Q7]A.

Lemma 18 (Equal Domains).
IfQq F A type and dom(Q) = dom(Q;) then Q; + A type.

C Properties of Extension

Lemma 19 (Declaration Preservation). IfT — A and u is declared in T, then u is declared in
A.

Lemma 20 (Declaration Order Preservation). IfT — A and u is declared to the left of v in T,
then u is declared to the left of v in A.

Lemma 21 (Reverse Declaration Order Preservation). IfT — A and u and v are both declared
in " and u is declared to the left of v in A, then u is declared to the left of v inT.

An older paper had a lemma

August 15, 2020

C Properties of Extension 21

“Substitution Extension Invariance”
If©F A type and ® — T then [TA = [T]([O]JA) and [INA = [B]([I'A).

For the second part, [I'NA = [B]([T]A), use Lemma (Substitution Monotonicity)) (i) or (iii) instead. The
first part [I'A = [I'][@]A hasn’t been proved in this system.

Lemma 22 (Extension Inversion).

@) IfD =Ty, : k, T — A
then there exist unique Ay and A,
such that A = (Ao, x: k,A7) and D’ :: Ty — Ay where D’ < D.

Moreover, if Ty is soft, then Ay is soft.

(ii) IfD = Ty, ey, 1 — A
then there exist unique Ay and A,
such that A = (Ag,»v, A1) and D' : Ty — Ay where D' < D.

Moreover, if Ty is soft, then Ay is soft.
Moreover, if dom(Ty, »y, 1) = dom(A) then dom(Iy) = dom(Ap).
(i) If D = Ty, x=71,I1 — A

then there exist unique Ay, t/, and Aq
such that A = (Ao, x=71',A7) and D' : Ty — Ao and [Ap]T = [Ap]T’ where D’ < D.

(iv) IfD =Ty, &: k=1, — A
then there exist unique Ay, t/, and A4
such that A = (A, & : k=71',Ay) and D’ =: Ty — A¢ and [A¢lt = [Ag]t’ where D’ < D.

) IfD =Ty, x: A, T — A
then there exist unique Ay, A’, and Aq
such that A = (Ag,x: A/, A7) and D' :: Ty — Ao and [Ag]A = [Ag]A’ where D' < D.

Moreover, if Ty is soft, then A is soft.
Moreover, if dom (T, x : A,T1) = dom(A) then dom(Ty) = dom(Ap).
(vi) If D : Ty, &: k, 1 — A then either
e there exist unique Ay, T/, and Aq

such that A = (Ao, & : k=71',A1) and D’ : Ty — Ay where D' < D,
or

e there exist unique Ay and A
such that A = (Ao, & : k,A1) and D’ :: Ty — Ao where D’ < D.

Lemma 23 (Deep Evar Introduction).

(i) IfTy, Ty is well-formed and & is not declared in Ty, Ty then Iy, 7 — Ty, & : K, Ty.
(i) IfTy, & : k, Ty is well-formed and T+ t: x then Ty, & : k, [T — o, & : k=1, 7.

(iii) If Ty, Ty is well-formed and T+t : k then Ty, T — Ty, & : k=1, T7.

Lemma 24 (Soft Extension).
IfT — A and T, © ctx and © is soft, then there exists Q) such that dom(0) = dom(Q) andT,© — A, Q.

Definition 2 (Filling). The filling of a context |I'| solves all unsolved variables:

August 15, 2020

C Properties of Extension 22
|| = .
IBx:A| = IN,x:A
T o : K| = Nya:k
INx=t| = M=t
Na:k=t = [IN,&: k=t
Il = Il,»a
& : | = N,&a:x=1
L&:N| = |I'l,&:N=zero
Lemma 25 (Filling Completes). If ' — Q and (T, ©) is well-formed, then ;0 — Q, 0.
Proof. By induction on ©, following the definition of |—| and applying the rules for —. O

Lemma 26 (Parallel Admissibility).

IfTy — Ay and T, TR — Ay, Ag then:
@ T, &:k,TR — AL R K AR
(i) IfAr 1/ :kthenT,&:k, TR — Ar,&: k=1, Ag.
(iii) IfTL Ft:x and AL F 1/ type and [Ar]t = [AL]T/, then T, & : k =T,k — AL, &: k=1',Ag.

Lemma 27 (Parallel Extension Solution).
Ifr[_, & Ky FR — A[_, Q: KZT/,AR and r]_ FT:kand [A[_]T = [A]_]T/
thenT,&:k=1,TR — AL, &: k=1, Ar.

Lemma 28 (Parallel Variable Update).
If FI_, Q: K, FR — AL, Qx: K:To,AR and r]_ F T . K and A]_ H T2 . K and [AL}TO = [AL}T] = [A[_]Tz
then r]_,&: K=11,lR — A[_,&: K="T2,Ag.

Lemma 29 (Substitution Monotonicity).
(i) IfT — A andT F t: k then [A][T]t = [A]t.

(ii) IfT — A and T + P prop then [A][T]P = [A]P.
(iii) IfT — A and T'+ A type then [A][T]A = [A]A.

Lemma 30 (Substitution Invariance).

(i) IfT — A and T+ t: k and FEV([T]t) = 0 then [A][T]t = [I't.

(i) IfT — A and T + P prop and FEV([T']P) = () then [A][T]P = [I']P.
(iii) IfT — A and T + A type and FEV([I'1A) = () then [A][T]A = [T]A.

Definition 3 (Canonical Contexts). A (complete) context Q is canonical iff, for all (& : k =t) and (x=1) € Q,

the solution t is ground (FEV(t) = ().

Lemma 31 (Split Extension).
IfA— Q

and & € unsolved(A)

and Q = O [&: k=1t4]

and Q is canonical (Definition[3)
and Q Ft;:k

then A — QO [&: k=t,].

August 15, 2020

C.1 Reflexivity and Transitivity 23

C.1 Reflexivity and Transitivity
Lemma 32 (Extension Reflexivity).

IfT ctx thenT — T..

Lemma 33 (Extension Transitivity).
IfD:T— ©andD’':© — Athenl — A.

C.2 Weakening

The “suffix weakening” lemmas take a judgment under I and produce a judgment under (I; ®). They do not
require ' — T} ©.

Lemma 34 (Suffix Weakening). IfTHt:kthen[OF t:«k.
Lemma 35 (Suffix Weakening). IfT - A type thenT,© I A type.

The following proposed lemma is false.

“Extension Weakening (Truth)”
IfTF P true 4 A and ' — T’ then there exists A’ such that A — A’ and '’ - P true 4 A’.

Counterexample: Suppose &+ & = 1true 1 & = 1and & — (& =(1—1)). Then there does not exist such
aA'.
Lemma 36 (Extension Weakening (Sorts)).[Go to prooff If T+ t:k and I — A then A+t : k.
Lemma 37 (Extension Weakening (Props)). IfT + P prop and T — A then A - P prop.

Lemma 38 (Extension Weakening (Types)). IfT - A type and T — A then A - A type.

C.3 Principal Typing Properties
Lemma 39 (Principal Agreement).
() IfTH A !'type and " — A then [A]JA = [T]A.
(i) IfT + P prop and FEV(P) = () and " — A then [A]P = [T]P.

Lemma 40 (Right-Hand Subst. for Principal Typing). IfT = A p type thenT F [T]A p type.

Lemma 41 (Extension Weakening for Principal Typing).[Go to prooff IfT + A p type and ' — A then
AF Aptype.

Lemma 42 (Inversion of Principal Typing).
(1) IfTH(A—B)ptypethenT - A p type and '+ B p type.

(2) IfTE (P D> A) p type thenT | P prop and ' F A p type.
3) IfTH(AAP)ptypethenT + P prop and T+ A p type.

C.4 Instantiation Extends

Lemma 43 (Instantiation Extension).
IfTF&:=71:xk4AthenT — A.

August 15, 2020

C.5 Equivalence Extends

24

C.5 Equivalence Extends

Lemma 44 (Elimeq Extension).

IfT"/ s = t: k - A then there exists © such that ;0 — A.

Lemma 45 (Elimprop Extension).
IfT' / P - A then there exists © such that ;0 — A.

Lemma 46 (Checkeq Extension).
IfTEFA=BAAthenT — A.

Lemma 47 (Checkprop Extension).
IfT'+ P true 4 A thenT — A.

Lemma 48 (Prop Equivalence Extension).
IfTFP=QdAthenT — A.

Lemma 49 (Equivalence Extension).
IfTFA=B-HAthenl" — A.

C.6 Subtyping Extends
Lemma 50 (Subtyping Extension). IfTFA<:TB-AthenT — A.

C.7 Typing Extends

Lemma 51 (Typing Extension).
IfTFe&Ap-HA

orTFe=Ap-A
orlTFs:Ap>Bq-dA
orFl—ﬂ::/iq@Cp—(A
orT/PFTIzAl&CpHA
then" — A.

C.8 Unfiled
Lemma 52 (Context Partitioning).

IfA » 4,0 — Q,»s, Q7 then there is aV¥ such that [Q,»g, Q7](A,»&,©O) = [Q]A, V.

Lemma 53 (Softness Goes Away).
IfFA,© — Q,Q7 where A — Q and © is soft, then [Q, Q7](A, ©) = [Q]A.

Proof. By induction on ©, following the definition of [Q]T.

Lemma 54 (Completing Stability).
IfT — Q then [Q]T = [Q]Q.

Lemma 55 (Completing Completeness).
@ IfQ — Q" and Q| t: «k then [Q]t = [Q']t.
(i) If Q — Q' and Q + A type then [Q]A = [Q]A.
(iii) If Q — Q' then [Q]Q = [Q']Q.
Lemma 56 (Confluence of Completeness).
IfA7 — Q and A, — Q then [Q]A; = [Q]A;.

Lemma 57 (Multiple Confluence).
IfFA— Qand Q — Q' and A’ — Q' then [Q]A = [Q']A’.

August 15, 2020

D Internal Properties of the Declarative System 25

Lemma 58 (Bundled Substitution for Sorting). If '+t : k and ' — Q then [Q]T" I [Q]t : k.

Proof.
NEt:k Given
QkFt:x By Lemma Extension Weakening (Sorts)|)
[QJOF[Q]t:kx ByLemma Substitution for Sorting[)
QO—Q By Lemma Extension Reflexivity)
[Q]lQ = [Q]T By Lemma Confluence of Completeness[)
= [QII' - [Q]t: k By above equality

Lemma 59 (Canonical Completion).
Ifr —Q

then there exists Qanon Such that ' — Qcanon aNd Qcanon — Q and dom(Qeanon) = dom(T) and, for all
& : k=7 and =1 in Qcmon, we have FEV (1) = 0.

The completion Qunon is “canonical” because (1) its domain exactly matches I" and (2) its solutions T
have no evars. Note that it follows from Lemma (Multiple Confluence]) that [Qcgnen] T = [QIT.
Lemma 60 (Split Solutions).
If A — Q and & € unsolved(A)
then there exists O = Q1[&: k=ty] such that Q; — Q and Q, = Q}[&: k=t;] where A — Q, and
ty # t1 and Q; is canonical.

D Internal Properties of the Declarative System

Lemma 61 (Interpolating With and Exists).

(D IfD:YHTTzAl& Cpand¥ i Py true
thenD' :¥YFTT:A! & CAPyp.

(2) FD:YFT Al & [t/alCopand ¥tk
thenD’ =Y HTT =A< (Ja: k. Co) p.

In both cases, the height of D’ is one greater than the height of D. .
Moreover, similar properties hold for the eliminating judgmentV¥ /P T Al & Cp.

Lemma 62 (Case Invertibility).
IfV I case(ep,IT) & Cp

thenVkey=Aland¥FTT:Al < CpandV¥tTT covers Al
where the height of each resulting derivation is strictly less than the height of the given derivation.

E Miscellaneous Properties of the Algorithmic System

Lemma 63 (Well-Formed Outputs of Typing).

(Spines) If TFs:Aq>Cp-dAorTHFs:Aq>Clp]lHA
andT + A q type
then A+ C p type.

(Synthesis) IfTHFe=Ap 1A
then A + p type.

August 15, 2020

F Decidability of Instantiation 26

F Decidability of Instantiation

Lemma 64 (Left Unsolvedness Preservation).
IfTo,&, T F&:=A:k A andp € unsolved(T,) then B € unsolved(A).

r

r

——
Lemma 65 (Left Free Variable Preservation).|Go to proof IfTy,& :k, 1 F& :=t:k 1A andT + s: k' and
& ¢ FV([T's) and B € unsolved(Ty) and B ¢ FV([Ts), then p ¢ FV([Als).

r

—T
Lemma 66 (Instantiation Size Preservation).|Go to prooff If To,&, 1 F & := t:k 1 AandT + s : k' and
& ¢ FV([I'ls), then |[I"s| = |[Als|, where |C| is the plain size of the term C.

Lemma 67 (Decidability of Instantiation). IfT =Tyl : k']l and T + t: k such that [t = t and
& ¢ FV(t), then:

(1) Either there exists A such that Ty[& : k'] - & :=t: k4 A, or not.

G Separation

Definition 4 (Separation).
An algorithmic context I" is separable and written 't = 'z if (1) T = (I't,Tr) and (2) for all (& : k=1) € Ik it
is the case that FEV(t) C dom(TR).

Any context I' is separable into, at least, -« ' and T * -.

Definition 5 (Separation-Preserving Extension).
The separated context T * 'z extends to Ap * g, written

(T * TR) =7 (AL * Ag)

if(FL,FR) — (A}_,AR) and dom(FL) - dom(AL) and dom(FR) - dom(AR).

Separation-preserving extension says that variables from one half don’t “cross” into the other half. Thus,
A may add existential variables to I, and Agr may add existential variables to ', but no variable from I't
ends up in Ag and no variable from 'z ends up in Ar.

It is necessary to write (I't * k) = (AL * Ag) rather than (I'L x Tr) — (AL * Ag), because only —
includes the domain conditions. For example, (& * [AS) — (&, B =@&) * -, but the variable B has “crossed over”
to the left of * in the context (&, B=@&)* -

Lemma 68 (Transitivity of Separation).
If (T + Tr) =7 (OL * Og) and (O x Or) 7 (AL * Ag)
then (T * Tr) 5 (AL * AR).

Lemma 69 (Separation Truncation).

If H has the form « : k or w4 or wp Or x:Ap
and (T = (Tr,H)) =7 (AL * Ag)
then (Ty * Tr) = (AL * Ag) where Ag = (Ao, H,©).

Lemma 70 (Separation for Auxiliary Judgments).

@ Iy *TrFo=T1:kHA
and FEV (o) UFEV(t1) C dom(I'R)
then A = (Ar * Ag) and (I'L * TR) =2 (AL * AR).

(i) IfTy * TR F Ptrue 4 A
and FEV(P) C dom(I'gr)
then A = (A = Ar) and (Ty * Tr) = (Ar * AR).

August 15, 2020

H Decidability of Algorithmic Subtyping

27

i) IfTy xTg /o=71:k4A

and FEV/(
then A =

o)UFEV(T) =10

(AL * (Ag,©)) and (T * (Tk, ©))

Gv) IfTy +Tr /P4 A

and FEV (P

then A =

) =10
(AL * (Ag,©)) and (I * (T, ©))

W) IfTyxTgRF&:=T:k4A

and (FEV
then A =

(1) u{&}) € dom(IR)
(AL * AR) and (r]_ * FR) (A]_

i) T+ TR FP=QHA

and FEV(P
then A =

JUFEV(Q) C dom(FR)
(AL * Ag) and (T * TR) 5 (AL

(i) IfT * TRk FA=B 4 A

and FEV(A

then A =

JUFEV(B) C dom(TR)
(AL * Ag) and (T * TR) 5 (AL

7 (AL * AR).

5 (A[_ * AR).

*AR)

*AR)

*AR)

Lemma 71 (Separation for Subtyping).
IfT xR FA<:PBHA
and FEV(A) C
and FEV(B) C dom(TR)
then A = (Ar *

Lemma 72 (Separation—Main). [Go to proof
(Spines) If L x TR Fs:Ap>Cq-A

orIy = FR

dom(FR)

AR) and (FL*FR) (AL*AR)

Fs:Ap>Clq|HA

and 'L « TR - A p type

and FEV (A
(A1 * Ag) and (T * Tr) 5 (A1 * Ar) and FEV(C) C dom(AgR).

then A =

) € dom(TR)

(Checking) IfTy x TR Fe& Cp 1A
and Iy g - C p type

and FEV(C
then A =

) € dom(TR)
(A]_ * AR) and (r[_ * FR) (A]_

(Synthesis) IfTy « TR Fe=Ap-dA

then A =

(A]_ * AR) and (r[_ * FR) (A]_

(Match) IfTy « TR =TT Aq<:Cp—|A

and FEV (A
and FEV(C
then A =

A) =10
) € dom(TR)
(AL * AR) and (r[_ * FR) (AL

(Match Elim.) If Ty x T /PFTT A'@Cp%A

H

and FEV(
and FEV(
and FEV/(
then A =

Decidability of Algorithmic Subtyping

P)=10
A)=0

C) € dom(TR)
(AL * Ag) and (L * TR) —57 (AL

* AR).

*AR)

*AR)

*AR)

Definition 6. The following connectives are large:

v o> A

August 15, 2020

H.1 Lemmas for Decidability of Subtyping 28

A type is large iff its head connective is large. (Note that a non-large type may contain large connectives,
provided they are not in head position.)
The number of these connectives in a type A is denoted by #large(A).

H.1 Lemmas for Decidability of Subtyping

Lemma 73 (Substitution Isn’t Large).
For all contexts ©, we have #large([O]A) = #large(A).

Lemma 74 (Instantiation Solves).
IfTF&:=71:k4A and [It=7and & ¢ FV([I'T) then |unsolved(T")| = |unsolved(A)| + 1.

Lemma 75 (Checkeq Solving).[Go to proof IfT + s =t : k 4 A then either A = T or |unsolved(A)| <
|unsolved(T)].

Lemma 76 (Prop Equiv Solving).
IfT'= P =Q + A then either A =T or |unsolved(A)| < |unsolved(T")].

Lemma 77 (Equiv Solving).
IfT' = A =B - A then either A =T or |unsolved(A)| < |unsolved(T")].

Lemma 78 (Decidability of Propositional Judgments).
The following judgments are decidable, with A as output in (1)-(3), and A+ as output in (4) and (5).

We assume ¢ = ['lo and t = [T'|t in (1) and (4). Similarly, in the other parts we assume P = [['|P and (in
part (3)) Q =[I'Q.

(D TrRo=t: k1A
2) TEPtrued A
B TEP=QHA
AT /o=t:k4AL
(5 T/PAAt

Lemma 79 (Decidability of Equivalence).
Given a context I' and types A, B such that T - A type and I' + B type and [T]A = A and [T|B = B, it is

decidable whether there exists A such thatT - A =B H A.

H.2 Decidability of Subtyping

Theorem 1 (Decidability of Subtyping).
Given a context I' and types A, B such that ' - A type and ' - B type and [TJA = A and [T'|B = B, it is

decidable whether there exists A such thatT + A <:7 B 4 A.

H.3 Decidability of Matching and Coverage

Lemma 80 (Decidability of Guardedness Judgment).
For any set of branches T1, the relation TT guarded is decidable.

Lemma 81 (Decidability of Expansion Judgments).
Given branches 11, it is decidable whether:

(1) there exists a unique T1’ such that T T

(2) there exist unique TTy and TTg such that T1 N | TTr;

var

(3) there exists a unique T’ such that TT ~» T1/;

August 15, 2020

H.4 Decidability of Typing 29

(4) there exists a unique T’ such that TT Lo

(5) there exist unique T and T1.. such that TT Yes My || TT...

Lemma 82 (Expansion Shrinks Size).

We define the size of a pattern |p| as follows:

x| =0

|| =0

(p, ")l = T+Ipl+Ip’l
[O] = 0

linj;pl = T+Ipl
linjpl = T+Ipl

|] = 1

pup’l = T+Ipl+Ipl

We lift size to branches m = = e as follows:
P1,.-spn = el =Ip1l+... +Ipnl
We lift size to branch listsTT =m | ... | ., as follows:
I | Pl =Ml + .o+ 7
Now; the following properties hold:
1. IfTT 2 T then || = [TT'].
. IfTT 5 11 then [TT] = [IT/].

L IFTT S5 T then |TT] < |TT/|.

Vec

2

3

4. IfTT ~5 TI || Mg then [TT| < [Ty and 11| < [TT,].

5. IfTT "5 T || M. then M| < M| and [TT..| < |T7.
6

. IfTT guarded and TT X5 TTgy || TT.; then || < [1T] and |IT.| < [TT].
Theorem 2 (Decidability of Coverage).

Given a context I, branches TT and types A, it is decidable whether I' - TT covers A q is derivable.

H.4 Decidability of Typing
Theorem 3 (Decidability of Typing).

(i) Synthesis: Given a context I', a principality p, and a term e,
it is decidable whether there exist a type A and a context A such that
lFe=Ap-A.

(ii) Spines: Given a context I', a spine s, a principality p, and a type A such that '+ A type,
it is decidable whether there exist a type B, a principality q and a context A such that
lEs:Ap>Bq-A.

(iii) Checking: Given a context I', a principality p, a term e, and a type B such that " - B type,
it is decidable whether there is a context A such that
N-e&Bp-A.

(iv) Matching: Given a context I', branchesTI, a list of types A, a type C, and a principality p, it is decidable
whether there exists A such thatTHTT:: A q & Cp HA.

Also, if given a proposition P as well, it is decidable whether there exists A such thatT /P Tl A | &
Cp-HA.

August 15, 2020

I Determinacy 30

I Determinacy

Lemma 83 (Determinacy of Auxiliary Judgments).
(1) Elimeq: GivenT, o, t, k such that FEV(c) UFEV(t) =0 and Dy =T /o =t:k 1A and D, =T / 0 = t:
k1A,
it is the case that A{ = Ay
(2) Instantiation: Given T, &, t, k such that & € unsolved(T') and '+t : k and & ¢ FV(t)
and Dy :TF&:=t:kHd1AjandDy :TF&R:=t: k1A,
it is the case that A1 = A,.
(3) Symmetric instantiation:

GivenT, &, B, such that &, € unsolved(I") and & # B
and D, ::FI—&:=[§:K—|A1 and D ::I’I—[@:z R:k A,
it is the case that A1 = A,.

(4) Checkeq: GivenT, o,t,ksuchthatD; :TFo=t:k4AjandD; :THo=t: k1A,
it is the case that A1 = A,.

(5) Elimprop: GivenT, P such thatD; =T /P -+ Ay and D, =T /P - Ay
it is the case that A1 = A;.

(6) Checkprop: GivenT, P such that Dy :: T+ P true 4 Ay and D2 =T F P true 4 A,
it is the case that A1 = A,.

Lemma 84 (Determinacy of Equivalence).

(1) Propositional equivalence: Given T, P, Q such thatD; = THFP=Q H4A;andD, =:THFP=Q 4 A,
it is the case that A1 = A,.

(2) Type equivalence: GivenT, A, B suchthatD; :THFA=BHdA;andD, :THFA=B-A,,
it is the case that A1 = A,.

Theorem 4 (Determinacy of Subtyping).

(1) Subtyping: GivenT, e, A, Bsuchthat Dy :THA<:PB4A;andD, :T+A<:P BHA,,
it is the case that A1 = A;.

Theorem 5 (Determinacy of Typing).

(1) Checking: GivenT, e, A,p suchthatDy :TFe&Ap-dAjandD;=TFe< Ap Ay,
it is the case that A1 = A,.

(2) Synthesis: GivenT, e such that Dy :T+e= By p; 1A;and D, =T+ e= By p2 4A,,
it is the case that By = B, and p1 = p2 and A = A;.
(3) Spine judgments:
GivenT, e, A,psuchthatD; :Tte:Ap>Cyqi 1A andD;, :TkHe:Ap > Cyqz 1A,
it is the case that Cy = C; and q1 = q2 and Ay = A;.
The same applies for derivations of the principality-recovering judgmentsT e : A p > Cy [qx] 1 Ak.

(4) Match judgments:
GivenF,ﬂ,K,p,CsuchthatD1 ::Fl—ﬂ::f(q & CpHa andDZ::Fl—ﬂ::/iq & Cp Ay,
it is the case that A1 = A;.
GivenT, P, TI, A, p, C B B
such thatD; =T /PHTT:Al & CpHdAyandD, =T /PHEIT:zA!l & Cp Ay,
it is the case that A1 = A,.

August 15, 2020

J Soundness 31

J Soundness

J.1 Soundness of Instantiation

Lemma 85 (Soundness of Instantiation).
IfTF&:=71:k4Aand& ¢ FV([I't) and [Tt =t and A — Q then [Q]& = [Q]T.

J.2 Soundness of Checkeq

Lemma 86 (Soundness of Checkeq).
IfTFo=1t:x A where A — Q then [Q]o = [Q]t.

J.3 Soundness of Equivalence (Propositions and Types)

Lemma 87 (Soundness of Propositional Equivalence).
IfT'HP=Q A where A — Q then [Q]P = [Q]Q.

Lemma 88 (Soundness of Algorithmic Equivalence).
IfT+-A =B - A where A — Q then [Q]A = [Q]B.

J.4 Soundness of Checkprop

Lemma 89 (Soundness of Checkprop).
IfTFPtrue4 A and A — Q thenV I~ [Q]P true.

J.5 Soundness of Eliminations (Equality and Proposition)

Lemma 90 (Soundness of Equality Elimination).
IflTlo=candTlt=tandT+o:xandT+t:« and FEV(c) U FEV(t) = 0, then:

(1) fT/Jo=t: kA
then A = (I,0) where © = (¢ =ty,..., 0, =tn) and
for all Q such thatT — Q
and all t’ such that Q -t : k/,
it is the case that [Q, @]t’ = [0][Q]t’, where 6 = mgu(o,t).

(2) IfT /o =+t:k - L then mgu(o,t) = L (that is, no most general unifier exists).

J.6 Soundness of Subtyping

Theorem 6 (Soundness of Algorithmic Subtyping).
IfFMA = Aand [ITB = BandT - A type andT - B type and A — Q and T - A <:7 B - A then

[QIA - [Q]A <7 [Q]B.
J.7 Soundness of Typing

Theorem 7 (Soundness of Match Coverage).
1. IfT F TT covers A qandT + A q types and [F]f\ — A andT — Q then [Q]T - TT covers A q-

2. IfT /P F Mcovers A ' andT — Q and T K!types and TJA = A and [P = P then [QIr / P+
T covers A !.

Lemma 91 (Well-formedness of Algorithmic Typing).
Given T ctx:

August 15, 2020

J.7 Soundness of Typing 32

(i) IfT-e= Ap-dAthen A+ A p type.
(i) fTFs:Ap>Bq-H4AandTl"+ A p type then A+ B q type.

Definition 7 (Measure). Let measure M on typing judgments be a lexicographic ordering:

1. first, the subject expression e, spine s, or matches IT—regarding all types in annotations as equal in
size;

2. second, the partial order on judgment forms where an ordinary spine judgment is smaller than a
principality-recovering spine judgment—and with all other judgment forms considered equal in size;
and,

3. third, the derivation height.

ordinary spine judgment
<e/s/ﬂ, < , height(D)>
recovering spine judgment

Note that this definition doesn’t take notice of whether a spine judgment is declarative or algorithmic.

This measure works to show soundness and completeness. We list each rule below, along with a 3-tuple.
For example, for [Sublwe write (=, =, <), meaning that each judgment to which we need to apply the i.h. has
a subject of the same size (=), a judgment form of the same size (=), and a smaller derivation height (<).
We write “—” when a part of the measure need not be considered because a lexicographically more significant
part is smaller, as in the rule, where the premise has a smaller subject: (<, —, —).

Algorithmic rules (soundness cases):

. and [Nill have no premises, or only auxiliary judgments as premises.
e [Sub} (=,=,<)

. (<)

* [[7Spind B} AL (=, =, <)

e D (==<)

e [OIJhas only an auxiliary judgment, to which we need not apply the i.h., putting it in the same class as
the rules with no premises.

« 5558 (=,
. (6]

, (= <)

. (=<-)

e [=Spind [+1i} & [xT [xT&} [Const (<, —, —)

. (==,<)

. (<=-)

Declarative rules (completeness cases):

o [DeclVar] [DeclTl| [DeclEmptySpinel and [DecINil have no premises, or only auxiliary judgments as premises.
« D58, (<=, <)

: -

August 15, 2020

J.7 Soundness of Typing

o [DeclVl], [DeclVSpine, [DeclTl, [DeclAl}, [Declol}, [DeclSSpine: (=, =, <)
o |Decl— ||, [Decl—E| [DeclRec; (<, —,—)

e |DeclSpineRecover} (=, <, —)

e |DeclSpinePasst (=, <,—)
e |Decl—Spine, [Decl+Iy} [Decl x I}, [DeclCase}, [DeclCons, (<, —, —)

Definition 8 (Eagerness).
A derivation D whose conclusion is J is eager if:

D J=TrFe&Ap-HA
ifT'+Aptypeand A =[TA
implies that
every subderivation of D is eager.
i) J=TrFe=Ap-A
if A = [AJA
and every subderivation of D is eager.
(i) J=TkFs:Ap>Bq-A
ifT'+ A ptypeand A = [TA
implies that
B = [A]B
and every subderivation of D is eager.
(iv) J=Tks:Ap>BJq] 1A

ifT'+Aptypeand A =[TA

implies that

B = [A]B

and every subderivation of D is eager.

V) J=THFNzAq&CpHA

ifT+ A qtypes and [TJA = A and T + C p type and C = [IC
implies that
every subderivation of D is eager.

i) T=T/PFTzAl&Cp-HA

ifT+ A ! types and T+ P prop and [MA = A and '+ C p type and C = [I'|C
implies that
every subderivation of D is eager.

Theorem 8 (Eagerness of Types).
(i) IfD derivesTFe < Ap-dAandT+ A ptype and A = [I']A then D is eager.
(ii) If D derivesT + e = A p 4 A then D is eager.
(iii) If D derivesT'Fs:Ap>Bq-dAandTlt A ptype and A = [I'|A then D is eager.
(iv) If D derivesT+s:Ap>B[q] 1A andT+ A p type and A = [I'|A then D is eager.

(v) If D derivesTHTTzA q< CpH4AandT+ A q types and [T]A = A and T+ C p type
then D is eager.

August 15, 2020

K Completeness 34

(vi) IfD derivesT /P+T =A< Cp-AandT + P prop and FEV(P) = () and [T]P = P
andT + A ! types and T - C p type
then D is eager.

Theorem 9 (Soundness of Algorithmic Typing).
Given A — Q:

(i) IfTFe&<Ap-dAandT+ A ptype and A = [T|A then [Q]A [Q]e & [Q]A p.

(ii) IfTHe= Ap A then [QJAF [Q]e = [Q]A p.

(iii) fTFs:Ap>Bq-1AandT+ A ptype and A = [T]A then [QJAF [Q]s : [Q]JA p > [Q]B q.
(iv) fTFs:Ap>B[q] 1AandT+ A p type and A = [I'A then [Q]A F [Q]s : [Q]JA p > [Q]B [q].

(V) fFTFTTzAq<Cp-AandTH A ! types and [TA = A and T+ C p type
thenp - [Q]A = [Q]TT ! < [Q]A q[QIC.

(vi) IfF/PI—ﬂ::/?K'!<:Cp—|AandFl—PpropandFEV(P):Q)and[F}P:P
andFl—/i!typesandFl—Cpre
then [Q]A / [Q]P F [Q]TT = [Q]A | & [Q]C p.

K Completeness

K.1 Completeness of Auxiliary Judgments

Lemma 92 (Completeness of Instantiation).

Given ' — Q and dom(I") = dom(Q) and '+ 7t : k and T = [t and & € unsolved(I") and & ¢ FV(r):
IflQl& =[Q]t

then there are A, Q' such that QO — Q' and A — Q' and dom(A) =dom(Q’) andT F & := T: k 4 A.

Lemma 93 (Completeness of Checkeq).
Given ' — Q and dom(T') = dom(Q)

andTHo:kandTFT1:«k

and [Q]o = [Q]T

thenTHF[To=[Tt:x41A

where A — Q' and dom(A) = dom(Q’) and QO — Q.

Lemma 94 (Completeness of Elimeq).
IflMlo=cand[MNt=tandTFo:xandTl - t:k and FEV (o) UFEV(t) = (then:

(1) If mgu(o,t) =0
thenT' /o =t:k - ([JA)
where A has the form oy =tq,..., 0, =1ty
and for all w such that T+ w : k, it is the case that [T, Alu = 6([I"u).

(2) If mgu(o,t) = L (that is, no most general unifier exists) thenT" / o =t:k - L.

Lemma 95 (Substitution Upgrade).

If A has the form o1 =t1,...,00, =1n
and, for all u such that ' - u : k, it is the case that [T, Alu = 0([I"u),
then:

() IfT F A type then [T, AJA = 0([T]A).
(i) IfT — Q then [QIT = B([QII).
(i) IfT — Q then [Q, Al(T,A) = 0([QIT).

August 15, 2020

K.2 Completeness of Equivalence and Subtyping 35

(iv) IfT — Q then [Q, Ale = 6([Q]e).

Lemma 96 (Completeness of Propequiv).

GivenT — Q

and T+ P prop and T+ Q prop
and [Q]P = [Q]Q

thenT - [MP=[T]Q A
where A — Q' and QO — Q.

Lemma 97 (Completeness of Checkprop).
IfT — Q and dom(T") = dom(Q)

and T+ P prop

and P =P

and [QIT F [Q]P true

thenT P true 4 A

where A — Q' and Q — Q' and dom(A) = dom(Q’).

K.2 Completeness of Equivalence and Subtyping

Lemma 98 (Completeness of Equiv).
IfT'— Q and T+ A type and " - B type

and [Q]A = [Q]B
then there exist A and Q' such that A — Q' and Q — Q" andT F [MNA =B 4 A.

Theorem 10 (Completeness of Subtyping).
IfT'— Q and dom(T") = dom(Q) and T+ A type and " - B type

and [Q]T - [QJA < [Q]B

then there exist A and Q' such that A — Q'
and dom(A) = dom(Q’)

and Q — Q'

andTF [MA <:7 [INB 4 A.

K.3 Completeness of Typing
Lemma 99 (Variable Decomposition). If 11 X8 11, then

1. ifTT 4 117 thenT1” =TT".

2. if T <5 T1"" then there exists T1” such that T1”” *& T1” and 1" *& 11/,

var var

3. ifTT ~5 TI || T then TT. & 117 and TTg ~5 11/,
4. if 10X T || 1., then TV =TT,
Lemma 100 (Pattern Decomposition and Substitution).
1. If 1 & 11 then [QITT & [Q]TT".
2. IfTT -5 T1 then [QITT ~ [QIT.
3. IfTT <5 TU then [Q]TT < [QIIT'.
4. IfTT <5 10y || TT, then [QITT <5 [QITT; || [QITT,.

5. IFTT X 1T, || T, then [QITT X5 [QITT || [QITT,.

var

6. IF[QITT & T1’ then there is T1” such that [Q]TT” =TI’ and TT & T1”.

August 15, 2020

K.3 Completeness of Typing 36

7. If[QITT L, T then there is 1" such that QI =T1" and TT Lo,
8. If[QITT < T1/ then there is T1” such that [QTT” =TI’ and TT < T1”.
9. IFIQITT TT; || 715 then there areTT; and TT, such that [Q]TT; =TI} and [Q]TT, =TT} and TT 5 Ty || M.

10. If [Q]TT Yes TT{ || TT, then there are T1; and T1, such that [Q]TT; = Ty and [Q]TT, =TT, and TT Yes
Ty || TT5.

Lemma 101 (Pattern Decomposition Functionality).
1. IfTT & 11 and T %5 T1” then T =T1".
2. IfTT -5 11" and 1T ~5 17 then T/ =T1".
3. IfTT 5 T and 1T <5 T1” then T1' =T1".
4. IfTT <5 TTy || Ty and TT -5 1) || TT5 then Ty =TT} and T, =TT},

5. IFTT XS Ty || Ty and TT X5 1Ty || 1T, then TT; =TT] and TT, =TT,

Lemma 102 (Decidability of Variable Removal). For all T1, either there exists a TI" such that

T %3 11’ or there does not.

Lemma 103 (Variable Inversion).
1. IfTT & T and ¥ - TT covers A, A q then ¥ +T1/ covers A q.
2. IfT & 11 and T+ TT covers A, A q then T - T1/ covers A q.

Theorem 11 (Completeness of Match Coverage).

1. IfTHA q types and [F]K — A and (for all Q such that ' — Q, we have [Q]T" I [Q]TT covers [Q}f\ q)
thenT F TT covers A q.

2. IfTMA = A and [TIP = P and T - A ! types and (for all Q such that T —s Q, we have [Q]T" / [Q]P +
[Q]TT covers [Q]/K)
thenT / P TI covers Al

Theorem 12 (Completeness of Algorithmic Typing). Given T — Q such that dom(T") = dom(Q):

@ ITr-Aptypeand [QII' [Qle = [QJApandp’ Cp
then there exist A and Q'
such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andTHe & [MAp' HA.

(i) IfT - A p type and [QIT F [Qle = A p
then there exist A, Q', A/, andp’ C p
such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andTFe= A"p’4Aand A’ =[AJA" and A = [Q']A’.

(iii) THAptypeand [QITF [Q]s: [QJAp>Bqandp’' Cp
then there exist A, Q', B’ and q' C ¢
such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andTFs:[MMAp’>B'q' 1A and B’ =[A]B’ and B = [Q']B’.

(iv) IfT A ptype and [QITF [Q]s : [QJA p > B [q] andp' Cp
then there exist A, Q’, B/, and q' C q
such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andTHs:[TJAp’> B’ [q'] 1A and B’ = [A]B’ and B = [Q']B’.

August 15, 2020

K.3

Completeness of Typing

37

(v) IfT = AV types and T+ C p type and [QIT F [Q]TT = [QJA q < [QIC p andp’ C p

(vi)

then there exist A, Q’, and C
such that A — Q' and dom(A) = dom(Q’) and Q — Q'

andT FTT:[MA q &« [NCp’ HA.

IfT + A ! types and T+ P prop and FEV(P) = () and T' - C p type
and [QIT / [QIP F [QITT = [QJA | « [Q]C p

andp’ Cp

then there exist A, Q’, and C

such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andT /[TIPHTT=[MA < [TCp' HA.

August 15, 2020

A" Properties of the Declarative System 38

Proofs

In the rest of this document, we prove the results stated above, with the same sectioning.

A’ Properties of the Declarative System

Lemma 1 (Declarative Well-foundedness).
The inductive definition of the following judgments is well-founded:

(i) synthesisV+e= Bp
(ii) checkingV¥te < Ap
(iii) checking, equality elimination¥ /P+Fe & Cp
(iv) ordinary spine¥+s:Ap>Bq
(v) recovery spineV¥+ s:Ap> B J[q]
(vi) pattern matchingW+TT= A< Cp
(vii) pattern matching, equality elimination ¥ /PFTI: Al <& Cp

Proof. Let |e| be the size of the expression e. Let [s| be the size of the spine s. Let |TT| be the size of the branch
list TT. Let #large(A) be the number of “large” connectives V, 3, D, /A in A.

First, stratify judgments by the size of the term (expression, spine, or branches), and say that a judgment
is at n if it types a term of size n. Order the main judgment forms as follows:

synthesis judgment at n
checking judgments at n
ordinary spine judgment at n
recovery spine judgment at n
match judgments at n

A ANANNANA

synthesis judgment at n + 1

Within the checking judgment forms at n, we compare types lexicographically, first by the number of
large connectives, and then by the ordinary size. Within the match judgment forms at n, we compare using

a lexicographic order of, first, #large(A); second, the judgment form, considering the match judgment to be
smaller than the matchelim judgment; third, the size of A. These criteria order the judgments as follows:

synthesis judgment at n
< (checking judgment at n with #large(A) =1
< checkelim judgment at n with #large(A) =1
< checking judgment at n with #large(A) = 2
< checkelim judgment at n with #large(A) =2
<)

< (match judgment at n with #large(A) = 1 and A of size 1
match judgment at n with #large(A) = 1 and A of size 2

-

matchelim judgment at n with #large(A) =1
match judgment at n with #large(A) = 2 and A of size 1
match judgment at n with #Iarge(/i) =2 and A of size 2

-

matchelim judgment at n with #large(A) = 2

Proof of |Lemma 1| qDeclarative Well-foundedness]) lem:declarative-well-founded

Proof of|[Lemma 1| (Declarative Well-foundedness]) lem:declarative-well-founded 39

The class of ordinary spine judgments at 1 need not be refined, because the only ordinary spine rule applicable
to a spine of size 1 is[DeclEmptySpine], which has no premises; rules[DeclVSpine| [Decl>Spine] and [Decl—Spine]
are restricted to non-empty spines and can only apply to larger terms.

Similarly, the class of match judgments at 1 need not be refined, because only DecIMatchEmpty is appli-
cable.

Note that we distinguish the “checkelim” form ¥ / P - e & A p of the checking judgment. We also define
the size of an expression e to consider all types in annotations to be of the same size, that is,

l(e:A)] = le]+1

Thus, |6(e)| = |e|, even when e has annotations. This is used for |[DeclCheckUnify} see below.
We assume that coverage, which does not depend on any other typing judgments, is well-founded. We

likewise assume that subtyping, ¥ F A type, ¥ - T : k, and ¥ I~ P prop are well-founded.
We now show that, for each class of judgments, every judgment in that class depends only on smaller
judgments.

e Synthesis judgments
Claim: For all n, synthesis at n depends only on judgments at n — 1 or less.

Proof. Rule has no premises.
Rule depends on a premise at a strictly smaller term.

Rule depends on (1) a synthesis premise at a strictly smaller term, and (2) a recovery spine
judgment at a strictly smaller term.

e Checking judgments
Claim: For all n > 1, the checking judgment over terms of size n with type of size m depends only on

(1) synthesis judgments at size n or smaller, and

(2) checking judgments at size n — 1 or smaller, and

(3) checking judgments at size n with fewer large connectives, and
(4) checkelim judgments at size n with fewer large connectives, and

(5) match judgments at size n — 1 or smaller.

Proof. Rule [DeclSub|depends on a synthesis judgment of size n. (1)

Rule [Decl1l|has no premises.

Rule [DeclVl[depends on a checking judgment at n with fewer large connectives. (3)

Rule [Decl3l{depends on a checking judgment at n with fewer large connectives. (3)

Rule [DeclAl|depends on a checking judgment at n with fewer large connectives. (3)

Rule [Declol|depends on a checkelim judgment at n with fewer large connectives. (4)

Rules [Decl— 1} [DeclRed, [Decl+Iy] [Decl x1, and [DeclCons|depend on checking judgments at size < n. (2)
Rule [DecINil|depends only on an auxiliary judgment.

Rule [DeclCase|depends on:

- a synthesis judgment at size n (1),
— a match judgment at size < n (5), and

- a coverage judgment.

Checkelim judgments

Claim: For all n > 1, the checkelim judgment V¥ / P | e & A p over terms of size n depends only on
checking judgments at size n, with a type A’ such that #large(A’) = #large(A).

Proof. Rule|DeclCheck 1|has no nontrivial premises.
Rule [DeclCheckUnify| depends on a checking judgment: Since |6(e)| = |e|, this checking judgment is at
n. Since the mgu 6 is over monotypes, #large(0(A)) = #large(A).

Proof of |Lemma 1| qDeclarative Well-foundedness]) lem:declarative-well-founded

Proof of|[Lemma 1| (Declarative Well-foundedness]) lem:declarative-well-founded 40

e Ordinary spine judgments
An ordinary spine judgment at 1 depends on no other judgments: the only spine of size 1 is the empty
spine, so only|DeclEmptySpine|applies, and it has no premises.

Claim: For all n > 2, the ordinary spine judgment ¥ - s : A p > C ¢ over spines of size n depends
only on

(a) checking judgments at size n — 1 or smaller, and
(b) ordinary spine judgments at size n — 1 or smaller, and

(c) ordinary spine judgments at size n with strictly smaller #large(A).

Proof. Rule depends on an ordinary spine judgment of size n, with a type that has fewer
large connectives. (c)

Rule depends on an ordinary spine judgment of size n, with a type that has fewer large
connectives. (c)

Rule [DeclEmptySpine| has no premises.

Rule [Decl—Spine| depends on a checking judgment of size n — 1 or smaller (a) and an ordinary spine
judgment of size n — 1 or smaller (b).

¢ Recovery spine judgments

Claim: For all n, the recovery spine judgment at n depends only on ordinary spine judgments at n.

Proof. Rules|DeclSpineRecover| and |DeclSpinePass|depend only on ordinary spine judgments at n.

e Match judgments
Claim: For all n > 1, the match judgment ¥ + TT:: A | < C p over IT of size n depends only on

(a) checking judgments at size n — 1 or smaller, and

(b) match judgments at size n — 1 or smaller, and

(c) match judgments at size n with smaller /Z_(, and

(d) matchelim judgments at size n with fewer large connectives in A.

Proof. Rule|DeclMatchEmpty|has no premises.

Rule DeclMatchSeq depends on match judgments at n — 1 or smaller (b).

Rule DeclMatchBase depends on a checking judgment at n — 1 or smaller (a).

Rules DeclMatchUnit, DeclMatch x, DeclMatch+y, DecIMatchNeg, and DeclMatchWild depend on match
judgments at n — 1 or smaller (b).

Rule DecIMatch3 depends on a match judgment at size n with smaller A (c).

Rule DecIMatchA depends on an matchelim judgment at n, with fewer large connectives in A. (d)

e Matchelim judgments

Claim: For all n > 1, the matchelim judgment ¥ /TT+ P : A | < C p over ¥ of size n depends only on
match judgments with the same number of large connectives in A.

Proof. Rule DeclMatch L has no nontrivial premises.
Rule DeclMatchUnify depends on a match judgment with the same number of large connectives (similar

to[DeclCheckUnify} considered above). O
Lemma 2 (Declarative Weakening).
() IfWo,W; F t: k then Wo, W, ¥; F t: k.
(i) IfYo, ¥ - P prop then ¥y, ¥,¥; F P prop.
(iii) If Yo,V P true then Wy, ¥, ¥, - P true.
(iv) If Yo,V A type then Wy, ¥, ¥ F A type.

August 15, 2020

A’ Properties of the Declarative System 41

Proof. By induction on the derivation. O
Lemma 3 (Declarative Term Substitution). Suppose ¥ - t : k. Then:

1. If Yy, x: k,¥Y1 Ft': « then Wy, [t/a]¥; F [t/alt’ : k.

2. If Yo, o : k, W = P prop then W, [t/x]¥; - [t/«]P prop.

3. If Yo, : k,¥q |+ A type then Yo, [t/o]¥; F [t/«]A type.

4. If Yo, «: k, Wy - A <P B then Vo, [t/od¥; F [t/x]A < [t/aB.

5. If Yo, o : k, ¥y P true then Yo, [t/o]¥; F [t/«]P true.
Proof. By induction on the derivation of the substitutee. O

Lemma 4 (Reflexivity of Declarative Subtyping).
Given V¥ - A type, we have that V- A <7 A.

Proof. By induction on A, writing p for the sign of the subtyping judgment.
Our induction metric is the number of quantifiers on the outside of A, plus one if the polarity of A and
the subtyping judgment do not match up (that is, if neg(A) and P = +, or pos(A) and P = —).

e Case nonpos(A),nonneg(A):
By rule <ReflP.

e Case A=Jb:k.Band P = +:

Yb:kFB<B By i.h. (one less quantifier)
Yb:kkEb:k Byrule
Y.b:kFB<"3Jb:k.B By rule <3R

Yi3b:k.B<T Jb:k.B Byrule <L

Case A=3db:k.Band P = —:

Y3b:k.B <" Jb:k.B Byih. (polarities match)
YEJdb:k.B<™ db:k.B Bygf

Case A=Vb:k.Band P = +:

YEVb:k.B <™ V¥b:k.B Byih. (polarities match)
YEVb:k.B<TVb:k.B By<

Case A=Vb:k.Band P = —:

Yb:xkFB< B By i.h. (one less quantifier)
Yb:kkFb:k Byrule
Ybo:kFVb:k.B<™ B By rule <VL

YEVb:k.B<" V¥b:k.B Byrule <VR

Lemma 5 (Subtyping Inversion).
o IfYFdx:k.A<" BthenV¥,x:kFA <" B.
e fYFA< VB:«k.BthenV¥,Bf:xkFA <™ B.

August 15, 2020

A’ Properties of the Declarative System 42

Proof. By a routine induction on the subtyping derivations. O
Lemma 6 (Subtyping Polarity Flip).

e Ifnonpos(A) and nonpos(B) and¥ - A <™ B
then ¥ - A <~ B by a derivation of the same or smaller size.

e Ifnonneg(A) and nonneg(B) and¥+ A <™ B
then¥ - A <* B by a derivation of the same or smaller size.

e Ifnonpos(A) and nonneg(A) and nonpos(B) and nonneg(B) and V- A <7 B
then A = B.

Proof. By a routine induction on the subtyping derivations. O

Lemma 7 (Transitivity of Declarative Subtyping).
Given Y + A type and ¥ + B type and ¥ + C type:

@) IfD; = VYHFA<PBandD, :Y+B<FC
then¥+ A <P C.

Proof. By lexicographic induction on (1) the sum of head quantifiers in A, B, and C, and (2) the size of the
derivation.

We begin by case analysis on the shape of B, and the polarity of subtyping:
e Case B =Vf : ky. B, polarity = —:

We case-analyze Dj:

-Case yi .y, Wh[t/oA' < B

L
VYEFVa:ki. A< B

Y1k Subderivation
Y+[t/aJA’ <~ B Subderivation
YEB < C Given

YE[t/aJA’ <~ C Byi.h. (A lost a quantifier)

YEALZSC Byrule

-Case ., -A< B
- <VR
YEA<L VB:ky.B'

We case-analyze D;:

*Case yy o, WE[r/BIB < C

<VL
YIVYB:k.B < C

Y B:ky A< B’ By Lemma qSubtyping Inversion[) on D
Y1k Subderivation
Y+ [t/BIB’ <~ C Subderivation of D,
YEA <™ [t/BIB’ ByLemma (]Declarative Term Substitutionl)
YA C By i.h. (B lost a quantifier)

Proof of [Lemma 7| (Transitivity of Declarative Subtyping) lem:declarative-transitivity

Proof of|Lemma 7| (Transitivity of Declarative Subtyping)) lem:declarative-transitivity

43

* Case -~

Ye:k3FB< C
= ER

YEB< Ve:ksz.C

YA B Given
Y,ec:k3FAL B By Lemma (]Declarative Weakening[)

Ye:k3HFB<L< C/ Subderivation

Ye:ksHFAL C/ By i.h. (C lost a quantifier)

YFB <" Veiks.C' By[<vR

e Case nonpos(B), polarity = +:

Now we case-analyze Ds:

-Case y .0 A'<tB —
YiE3u: k. A< B
—_———

A

You:THFA' <" B
Yoa:tTHFB LT C
Yo:THFA' <t C

Subderivation
By Lemma (]Declarative Weakening[) (D)
By i.h. (A lost a quantifier)

YEJa: k. Al <F C By

- Case y A < B nonpos(A) nonpos(B)

—
YEA<"B
Now we case-analyze D;:
* Case + /
Y1k YEB<T' [t/c]C
3 k < [//]
YEB<"dc:«k3.C
—_——
C
YEFA<TB Given
Yi1:k3 Subderivation of D,
YIEB <" [t/c]C’ Subderivation of D,
YEA < [t/c]C’ By i.h. (C lost a quantifier)

YEA <" 3c:k;.C’ By

* Case | g <" C nonpos(B) nonpos(C)

YEB<tC
YFA< B Subderivation of D;
YEB <™ C Subderivation of D,
YEFAL™ C By i.h. (D; and D, smaller)
nonpos(A) Subderivation of D,
nonpos(C) Subderivation of D,
YEA<YC By[<]]

Proof of [Lemma 7| (Transitivity of Declarative Subtyping) lem:declarative-transitivity

Proof of|Lemma 7| (Transitivity of Decla

rative Subtyping) lem:declarative-transitivity

44

e Case B =3f: k. B’, polarity = +:

Now we case-analyze D>:

- Case YET1:k3

Y B <t [t/«]C’

YIB<"Ju:ks.
—_——

C
Yh1:ik3

C/

Subderivation of D,

VIB <" [t/aJC’ Subderivation of D,

YHEFA<ZTB Given

YA <t [t/aJC’ Byih. (Clost a quantifier)

YEALTC

-Case g, B <t C

By rule

<dL

WE3B:kaB <" C

Now we case-analyze D;:

* Case Y1k

YEA< [t/B]B

<3dR

YEA<T3IB: k. B =
—_———

Y R:k B <t C
YET1:k
YEA < [t/B]B’
YI[t/BIB' <t C
YEFALTC

*Case .0 -A<tB

B

Subderivation of D,

Subderivation of D;

Subderivation of D;

By Lemma QDeclarative Term Substitution[)
By i.h. (B lost a quantifier)

-<3L
YEdu: k. A'<TBE
—_——

A
YEB<TC
Y.x:ki FA’ <t B
Yx:k FA'<T B
Yo:k FA' <P C
YEIa: k. ALt

e Case nonneg(B), polarity = —:
We case-analyze D;:

— Case Yc:kzFB<TC’
YEB<T3c:k3.C' &=
C
Ye:kz3 BT C/
Yc:k3FALTB
Ye:ksFALT C!
YEA <" Vc:ks. C’

Given

Subderivation of D

By Lemma (IDeclarative Weakening[)
By i.h. (A lost a quantifier)

<VR

Subderivation of D,
By Lemma (]Declarative Weakening[)
By i.h. (C lost a quantifier)

B[R

Proof of [Lemma 7| (Transitivity of Declarative Subtyping) lem:declarative-transitivity

Proof of|Lemma 7] (Transitivity of Declarative Subtyping) lem:declarative-transitivity 45

- Case g <t C nonneg(B) nonneg(C)

<+
YEB< C =

We case-analyze Dq:

«Case yi o Yk r/adA’ < B -
YEVa:ki.A'< B =
———

A
YEB < C Given

YiE1:K Subderivation of D,
YE[t/0JA' <™ B Subderivation of D,
YER/aJA' < C By i.h. (A lost a quantifier)
YiEVYa:k A< C By[<vl]

x Case i A <t B nonpos(A) nonpos(B)

-
YA B

YEA<STB Subderivation of D,

YE-B<tC Subderivation of D,

YEA<TC By i.h. (D7 and D, smaller)
nonneg(A) Subderivation of D,
nonneg(C) Subderivation of D,

YEA<TC o By[<]]

B’ Substitution and Well-formedness Properties

Lemma 8 (Substitution—Well-formedness).
(@) IfT - AptypeandT - tp type thenT [t/a]A p type.

(i) If T+ P prop and '+t p type then T I [t/«]P prop.
Moreover, if p = and FEV([I']P) = 0 then FEV([I'][t/«]P) = (.

Proof. By induction on the derivations of I' = A p type and ' F P prop. O

Lemma 9 (Uvar Preservation).
If A — Q then:

(@) If(ec: k) € Q then (x: k) € [Q]A.

(i) If (x:Ap) € Q then (x:[Q]Ap) € [Q]A.
Proof. By induction on Q, following the definition of context application (Figure[13). O
Lemma 10 (Sorting Implies Typing). If ' -t : x then I I- t type.
Proof. By induction on the given derivation. All cases are straightforward. O
Lemma 11 (Right-Hand Substitution for Sorting). If '+t : k then T+ [Tt : k.

Proof. By induction on |I" -t| (the size of t under I').

Proof of [Lemma 11| (Right-Hand Substitution for Sorting) lem:substitution-sort

Proof of|Lemma 11| (Right-Hand Substitution for Sorting) lem:substitution-sort 46

e Cases Here t = 1, so applying I' to t does not change it: t = [I't. Since ' - t : k, we have
I' = [Tt : k, which was to be shown.

e Case If t is an existential variable &, then I' = TI'y[&], so applying T to t does not change it,
and we proceed as in the case above.

If t is a universal variable « and I has no equation for it, then proceed as in the [UnitSort case.
Otherwise, t = v and (x=71) € T

r= (M,oe:k,e=1,TR)

By the implicit assumption that I' is well-formed, ', ot : kK, m F T: K.
By Lemma (Suffix Weakening)), I' - 7 : k. Since |I" F1| < [I" F«l, we can apply the i.h., giving

N=t:k
By the definition of substitution, [t = [I'«, so we have I' - [« : .

e Case In this case t = @ and " = (I, & =7, r). Thus [t = [I'& = []t. We assume
contexts are well-formed, so all free variables in T are declared in .. Consequently, [l k1| = T 1,
which is less than |I" -&|. We can therefore apply the i.h. to T, yielding I - [T']t : k. By the definition of
substitution, [I't = [I'&, so we have I' - [I'& : k.

e Case In this case t = t; & to. By ih, '+ [ty : x and T + [[t, : k. By [BinSort]
' (IMt1) @ (['t2) : k, which by the definition of substitution is I' - [T](t; & t3) : k. O

Lemma 12 (Right-Hand Substitution for Propositions). If I' - P prop then T" - [T']P prop.

Proof. Use inversion (EqProp)), apply Lemma (Right-Hand Substitution for Sorting) to each premise, and
apply [EqProp| again. O

Lemma 13 (Right-Hand Substitution for Typing). If ' - A type then I" - [T]A type.

Proof. By induction on |I" FA]| (the size of A under I').
Several cases correspond to cases in the proof of Lemma|l1| (Right-Hand Substitution for Sorting]):

e the case for[UnitWF]is like the case for [UnitSort}

e the case for[SolvedVarSort]is like the cases for [VarWF and [SolvedVarWF]

o the case for[VarSort]is like the case for[VarWF] but in the last subcase, apply Lemma [10] (Sorting Tmplies
to move from a sorting judgment to a typing judgment.

e the case for[BinWFlis like the case for[BinSortl

Now, the new cases:

e Case |[ForallWFf In this case A = V& : k. Ap. By ih,, Ta:k F [[[a:k]Agy type. By the definition
of substitution, [I[; & : k]Ag = [NAy, so by [ForallWF, " - V. [IAy type, which by the definition of
substitution is I' + [T (Vo. Ap) type.

e CaselExistsWF} Similar to the [Foral[WH case.

e Case [ImpliesWF| Use the i.h. and Lemma (Right-Hand Substitution for Propositions),
then apply [[mpliesWF]| or [WithWF| O

Lemma 14 (Substitution for Sorting). If Q -t : k then [Q]Q F [Q]t : k.

Proof. By induction on |Q Ft| (the size of t under Q).

Proof of|Lemma 14| (]Substitution for Sorting[) lem:completion-sort

Proof of|Lemma 14 (Substitution for Sorting) lem:completion-sort 47

o Case u:keQ

Lk O o
u: K

We have a complete context (), so u cannot be an existential variable: it must be some universal
variable «.

If O lacks an equation for «, use Lemma [9] ([Uvar Preservation)) and apply rule

Otherwise, (x=1 € Q, so we need to show Q F [Q]t : k. By the implicit assumption that Q is well-
formed, plus Lemma (Suffix Weakening)), Q + Tt : k. By Lemma (Right-Hand Substitution for|

Sorting), O - [Ql: k.

e Case 3.v=1cQ

W SolvedVarSort
oK

R:k=1€ Subderivation
Q= (Qr,&:k=1,Qr) Decomposing Q
QrbkT:k By implicit assumption that Q is well-formed
Qr,&:k=1,QrkFT:K By Lemma Suffix Weakening)
QF[Q]t:k By Lemma Right-Hand Substitution for Sorting[)
= QIO F[Q]a: « [Q]t =[Q]a

e Case

Oy Unitsort
Lk

Since 1 = [Q]1, applying[UnitSort] gives the result.

o Case QFTy:x% QFTy:i%x
AQFT P 12ix

By i.h. on each premise, rule and the definition of substitution.

e Case

—— |ZeroSort
QF zero: N
Since zero = [Q]zero, applying[ZeroSort] gives the result.

e Case (.

QFsucc(t) : N

By i.h., rule and the definition of substitution. O

Lemma 15 (Substitution for Prop Well-Formedness).
If Q P prop then [Q]Q F [Q]P prop.

Proof. Only one rule derives this judgment form:

eCase 1 {.N QFt:N
QFt=t'prop

Proof of [Lemma 15| (Substitution for Prop Well-Formedness|) lem:completion-prop

Proof of|Lemma 15| (Substitution for Prop Well-Formedness) lem:completion-prop 48

QFt:N Subderivation
[QIQF[Q]t: N By Lemma 14| (Substitution for Sorting)
QFt':N Subderivation
QIO F[OQJt': N By Lemma qSubstitution for Sorting|)
[Q1Q - ([Qt) = ([Q]t") prop By|EqProp
w [QIQF[Q](t=1t') prop By def. of subst.

Lemma 16 (Substitution for Type Well-Formedness). If Q - A type then [Q]Q F [Q]A type.

Proof. By induction on [Q FA].
Several cases correspond to those in the proof of Lemma [14| (Substitution for Sorting):

e the[UnitWF]case is like the case (using [DeclUnitWF]instead of [UnitSort);
e the case is like the case (using[DeclUvarWF]instead of [UvarSort));
o the[SolvedVarWF] case is like the [SolvedVarSort] case.

However, uses of Lemma (Right-Hand Substitution for Sorting) are replaced by uses of Lemma
(Right-Hand Substitution for Typing).
Now, the new cases:

o Case) .k Ao type

ForallWF|
QFVYoa: k. Ap type
Q,:kFAp: k' Subderivation
[Q, o k(Q,o: k) FIQJAg : k' By i.h.
[Q]O, o : k F[Q]A, : k! By definition of completion
[Q]Q FVYo: k. [QAg : K/ By
= QIO F[Q](Vx : k. Ag) : k’ By def. of subst.

Case Similar to the [ForallWF|case, using [DeclExistsWF|instead of [DeclAIIWF

Case QF Aq type QF A; type W
QOFAT DAL type

By i.h. on each premise, rule [DecIBinWF|, and the definition of substitution.
Case Similar to the [BinWF case.

Case L pPprop QF Ao type

ImpliesWF|
QFPDAptype
QP prop Subderivation
[Q]Q F[Q]P prop By Lemma (]Substitution for Prop Well-Formedness[)
QFAy type Subderivation
[Q]Q F[Q]A, type By i.h.
[Q]O F ([Q]P) D ([QJAo) type By|DecllmpliesWF
w [QJOF[Q](P D Ap) type By def. of subst.

Proof of [Lemma 16| (Substitution for Type Well-Formedness) lem:completion-wf

Proof of|Lemma 16 (Substitution for Type Well-Formedness) lem:completion-wf 49

e Case
QF Pprop QF Ap type
WithWF!
QF Ao /AP type _

Similar to the [I[mpliesWF| case. O

Lemma 17 (Substitution Stability).
If (Q, Q) is well-formed and Q7 is soft and Q + A type then [Q]A = [Q, Q7]A.

Proof. By induction on Q.

Since Qy is soft, either (1) Qz = - (and the result is immediate) or (2) Q7 = (Q',& : k) or (3)
Q7 = (Q',&: k=t). However, according to the grammar for complete contexts such as Qz, (2) is impossible.
Only case (3) remains.

By i.h., [QJA = [Q, Q’]A. Use the fact that Q F A type implies FV(A) Ndom(Qz) = (. O

Lemma 18 (Equal Domains).
If Q1+ A type and dom(Q;) = dom(Q>) then Q; A type.

Proof. By induction on the given derivation. O

C’ Properties of Extension

Lemma 19 (Declaration Preservation). If ' — A and u is declared in T, then u is declared in A.

Proof. By induction on the derivation of ' — A.

e Case
— —ld

This case is impossible, since by hypothesis u is declared in T

e Case 1, A [AJA=[AJA’

—V
Nx:A—Ax:A’ o

— Case u = x: Immediate.

— Case u # x: Since u is declared in (I} x : A), it is declared in I'. By i.h., u is declared in A, and
therefore declared in (A,x: A’).

e Case r—3 A

—Uvar
Mok — Aja:k

Similar to the case.

e Case r—3 A
NR:k — ARk

—Unsolved

Similar to the case.

eCase A A=At/

—Solved
Na:k=t — A&: k=t ove

Similar to the case.

Proof ofILeInma 19| ([Declaration Preservation]) lem:declaration-preservation

Proof of|[Lemma 19 (Declaration Preservation) lem:declaration-preservation 50

Case 1, A [Alt=[A]t/
La=t— Aja=t’

—Eqn

It is given that u is declared in (I; x =t). Since o=t is not a declaration, u is declared in T".
By i.h., uis declared in A, and therefore declared in (A, x=t'.

e Case r—5 A

Bra — Apg

Similar to the case.

e Case

—Marker

r— A

F@'K’—)A @'Klzt —Solve
) .) .

Similar to the ==Varl case.

e Case r—A

— —Add
M—A&:k

It is given that u is declared in I'. By i.h., u is declared in A, and therefore declared in (A, & : k).

e Case r— A
—AddSolved
N—A&: k=t
Similar to the —=Add] case. O

Lemma 20 (Declaration Order Preservation). If ' — A and u is declared to the left of v in T, then u is
declared to the left of v in A.

Proof. By induction on the derivation of ' — A.

e Case
—|—d

This case is impossible, since by hypothesis u and v are declared in T

eCase A [AJA=[AJA

V
Tx:A—Ax:A’

Consider whether v = x:

- Casev=x:
It is given that u is declared to the left of v in (I;x : A), so u is declared in T
By Lemma [19| (Declaration Preservation)), u is declared in A.
Therefore u is declared to the left of vin (A,x: A’).

— Case v # x:

Here, v is declared in I'. By i.h., u is declared to the left of v in A.
Therefore u is declared to the left of vin (A,x: A’).

e Case r— A

Dok — Ajox:k

Similar to the case.

Proof oflLemma 20| ([Declaration Order Preservation]) lem:declaration-order-preservation

Proof of|Lemma 20| (Declaration Order Preservation|) lem:declaration-order-preservation 51

e Case r—A
Na:k — AR«

—Unsolved

Similar to the case.

e Case A [Alt=[A]/

Solved
Na: k=t — A&:xk=t’ —oone

Similar to the case.

e Case r—A
NB:x — ARk =t

Similar to the case.

eCase A [Alt=|Alt
La=t — Aja=t’

The equation & =t does not declare any variables, so u and v must be declared in T
By i.h., uis declared to the left of v in A.
Therefore u is declared to the leftof vin A, & : k =1'.

e Case r— A

Bra — Ayps

Similar to the case.

e Case
[— A
7-—>Add
N—A&:«

By i.h., uis declared to the left of v in A.
Therefore u is declared to the left of v in (A, & : k).

e Case
[—A
AddSolved
- y—
Similar to the ==Add] case. O

Lemma 21 (Reverse Declaration Order Preservation). If ' — A and u and v are both declared in T and u is
declared to the left of v in A, then u is declared to the left of v inT.

Proof. It is given that u and v are declared in TI'. Either u is declared to the left of v in T, or v is declared to
the left of u. Suppose the latter (for a contradiction). By Lemma (Declaration Order Preservation)), v is
declared to the left of u in A. But we know that u is declared to the left of v in A: contradiction. Therefore
u is declared to the left of vin T O

Lemma 22 (Extension Inversion).

@) IfD =Ty, : k, Ty — A
then there exist unique Ay and A,
such that A = (Ag,x: k,A7) and D’ :: Ty — Ay where D’ < D.

Moreover, if Ty is soft, then Ay is soft.

August 15, 2020

C' Properties of Extension

52

(i) IfD =Ty, eyu, 1 — A
then there exist unique Ay and A,
such that A = (Ag,»u,A7) and D’ ::

Moreover, if Ty is soft, then A, is soft.

Iy — Ao where D' < D.

Moreover, if dom(Ty, »y, 1) = dom(A) then dom(Iy) = dom(Ap).

(i) If D = Ty, x=71,I7 — A
then there exist unique Ay, T/, and Aq
such that A = (Ag,x=1',Aq) and D’ ::
(iv) IfD =Ty, &: k=1, — A
then there exist unique Ay, t’, and Aq
such that A = (Ao, & : k=1',Ay) and D’ :
) IfD =Ty, x: A, T — A
then there exist unique Ay, A’, and A,
such that A = (Ag,x: A', A7) and D’ :
Moreover, if Ty is soft, then A7 is soft.

r() — Ao and [Ao]A = [Ao]A/

Iy — Ag and [Ag]t = [Ap]t’ where D’ < D.

Iy — Ap and [Ao]T = [Aplt’ where D’ < D.

where D’ < D.

Moreover, if dom (T, x : A, T7) = dom(A) then dom(Ty) = dom(Ap).

(vi) If D : Ty, &: k, 1 — A then either

e there exist unique Ay, T/, and Aq
such that A = (Ao, & : k=7',A1) and D’
or

e there exist unique Ay and Aq
such that A = (Ap, & : k, A1) and D’ ::

Proof.
Note that in each part, the case is impossible.

In each part, we proceed by induction on the derivation of I, ...

2 To — Ao where D' < D,

Iy — Ag where D’ < D.

,F1 — A

Throughout this proof, we shadow A so that it refers to the largest proper prefix of the A in the statement

of the lemma. For example, in the case of part (i), we really have A =

“A”

(i) We have Iy, oc: k, 7 — A.

eCase P, A [AJA=[AA’
Nx:A — Ax:A’
=

o,k
(Bx:A) = (To,ot:k,T7)
= (To, sk, I{,x: A)
(Gx: A) (Toy sk, T{,x:A)
= (lo, & K»r{)

r— A
To, ik, T — A
A= (AO»(X: K)A1)
= ro — Ao
if I soft then Ay soft

= (Ayx:A) =
w if I, x: A soft then Ay, x: A’ soft

(Agyx: Kk, A1,x: A)

(Ago,x : A'), but we call Ay

Given

Since the last element must be equal
By transitivity

By injectivity of syntax

Subderivation

By equality
By i.h.

"

"

By congruence
Since I'/,x : A is not soft

Proof ofILemma 22| qutension Inversion]) lem:extension-inversion

Proof of|[Lemma 22| (Extension Inversion)) lem:extension-inversion

53

e Case r—A

—Uvar
RB:KIHA,B:K,

o,k

There are two cases:
—Casex:k=p:k'":
= (To:k)= (Toyo:k,I7)
= (Ayoc: k) = (Agy i kK, Aq)
== if I soft then A; soft

- Case o # f3:
(KB k) = (To,o: Kk T7)
= (To,ot: Kk, Ty, B : k)
I'= (To, ok, TY)

r— A
Toyx:k, T — A
A= (AO)CX: K)A1)
= ro — Ao
if '/ soft then A; soft

= (AB: k') = (Agyx: kK, A1, B k')
w if I, : k' soft then Ay, : k’ soft

e Case

r— A
—Unsolved
T AR | —Unsolved
> —
ro,OCZK,r]

(Ra:k") = (To,ax:k,I7)
= (To, sk, I{,&: k)
I'= (To, otk TY)

r— A
To, ik, T — A
A= (AO>(X: K>A1)
= ro — Ao
if '] soft then A; soft

= (Ay&: k') = (Apyo: kK, A, &: k')

Suppose T, & : k’ soft.

I soft
A7 soft
A7 soft
= if I/, & : k" soft then A, & : ' soft
e Case ’
r— A [Alt = [A]lt
Solved
I8t AR KT
>
ro,KXZK,r1

where Iy =T and I} = -
where Ag = Aand Ay = -
since - is soft

Given
Since the last element must be equal
By injectivity of syntax

Subderivation

By equality
By i.h.

"

"

By congruence
Since I'{, 3 : k' is not soft

Given
Since the last element must be equal
By injectivity of syntax

Subderivation

By equality
By i.h.

"

"

By congruence

By definition of softness
By induction

By definition of softness
Implication introduction

Proof ofILemma 22| qutension Inversion[) lem:extension-inversion

Proof of|[Lemma 22| (Extension Inversion)) lem:extension-inversion 54

Similar to the——=Unsolved] case.

eCase A [Alt=[At/

E
NB=t — A B=t
——

o,k
(Gp=t)=(To,x:k,T7) Given
= (o, x:x,I{,p=t) Since the last element must be equal
I'= (To,ec:k,TY) By injectivity of syntax
r— A Subderivation
To, o : gk, T — A By equality
A= (Ap,x:Kk,A7) By i.h.
= r() — Ao "
if T soft then Ay soft "
= (A p=t") = (Ao,x:k,A1,p=1') By congruence
w if [, p =t soft then A, 3 =t’ soft Since I'{, p =t is not soft
e Case
r— A
Marki
it
\.\/_/
o,k
(Gwa) = (To,x:x,I7) Given
= (To,x:k,I{,»a) Since the last element must be equal
I'= (To,o: k1Y) By injectivity of syntax
r—A Subderivation
To,x: Kk, T — A By equality
A= (Ag,x:K,A7) By i.h.
= ro — Ao "
if I soft then Ay soft "’
= Ayps = (Ao, x:K,A1,»a) By congruence
w if I, »4 soft then Ay, »4 soft Since I'{, » & is not soft
e Case
r—A
Add
r — AR K
~—
TFo,oc:k’, T
A= (Ag,oc: kA7) By i.h.
= ro — Ao "
if Ty soft then A; soft "
= ARk’ = (Ap,x: KA1, &: k') By congruence of equality
Suppose T soft.
A7 soft By i.h.
A, k' soft By definition of softnesss
= if Ty soft then Ay, & : k’ soft Implication introduction

Proof ofILemma 22| qutension Inversion[) lem:extension-inversion

Proof of|[Lemma 22| (Extension Inversion)) lem:extension-inversion

55

e Case
r—A
AddSolved
AR K=t
~~
ro,CX:K,r]
A= (Ao, ox: K A7) By i.h.

[=4 ro — Ao "
if Ty soft then A7 soft "

= (A,&:k'=t) = (Ag,x: k,A71,&: k'=t) By congruence of equality

Suppose T soft.

A7 soft By i.h.
(Ay,&:k'=1) soft By definition of softnesss
= if 'y soft then Aq, & : k' =t soft Implication introduction
e Case
r— A
~ ~ —)SO| (S
NB:k —>A,[3:K':t
o,k
(NP :k) = (To,o: K I) Given
= (To, 0t x,TY, B :k’) Since the final elements are equal
I'= (To,oc:k,T7) By injectivity of context syntax
r— A Subderivation
To,x:k, T{ — A By equality
A= (Ag,x:K,Aq) By i.h.
= ro — Ao "
if I'{ soft then Ay soft "
= ARk =Ao,a:k A, Bk’ By congruence

Suppose T/, f : k’ soft.

I soft By definition of softness
Aq soft Using i.h.
A1, B k' =t soft By definition of softness
= if Iy ,B: k’ soft then Aq, B : k' =t soft Implication intro

(i) We have Iy, »,,, 7 — A. This part is similar to part (i) above, except for “if dom(Iy, », 1) = dom(A)
then dom(Ty) = dom(Ag)”, which follows by i.h. in most cases. In the case, either we have
...,»ys Where u’ = u—in which case the i.h. gives us what we need—or we have a matching »,,. In

this latter case, we have I'y = -. We know that dom(Ty, », 1) = dom(A) and A = (Ag, ».). Since I

we have dom(Ty, »,) = dom(Ap, »+,). Therefore dom(Ty) = dom(Ao).

(iii) We have Iy, x =71, — A.

e Case
r—A
—Uvar|
B A e 0
N——
lo,ae=1,T

3

Proof ofILemma 22| qutension Inversion[) lem:extension-inversion

Proof of|Lemma 22| (Extension Inversion]) lem:extension-inversion

56

(Toyx=7,T7) = (B : x)
= (FO»(X:T) r]/’ B : K/)
M= (T, =,

A= (A0> “:T/)A1)
= [Aolt = [Ao]T’
[=4 ro — Ao

= (A)B:K/): (AO)(X:T/)AUB:K/)

Case 1, A [AJA =[AJA/
Nx:A — Ax:A’
=

Fo,o0 =1,
Similar to the case.

Case

r— A

_— —)Marker
Fon 5 A, o Marker
Similar to the[==Uvar] case.

Case r— A

—Unsolved
]‘;&:K/_>A’&:Kl

Similar to the ==Uvar] case.

Case

r—A [Alt = [Alt
Na:k'=t— A a:x'=t'
O M /)) .

Fo,oc =1,

Similar to the[==Uvar] case.

Case

Fo,e =7,

Similar to the ==Uvar] case.

Case 1, A [A]t=[Alt/

E
Lp=t — ApB=t

ro,OC:T,r'|

There are two cases:

— Case o = 3:
T=tand T =-and Ty =T
= ro — Ao
= (A)(x:tl) = (AO)(X:t/)A1)
= [Aolt = [Aolt!
- Case o # f3:

Given

Since the final elements must be equal
By injectivity of context syntax

By i.h.

"

"

By congruence of equality

By injectivity of syntax

Subderivation (Iy = TI" and let Ay = A)
where A} = -

By premise [A]t = [A]t/

Proof 0f|Lemma 22| (]Extension Inversion[) lem:extension-inversion

Proof of|Lemma 22| (Extension Inversion]) lem:extension-inversion 57

(Tyyx=1,T1) = ([R=t) Given
= (lo,a=1,T,p=1) Since the final elements must be equal
I'= (lo,x=1,TY) By injectivity of context syntax
A= (Ao,OLZT’,A]) By1h
= [AolT = [AglT’ "
= ro — Ao "

= (A B=t')= (Ao, x=1",A1,p=1") By congruence of equality

e Case
r— A
Add
r — A& K
~~
Fo,oc:T,I"1
A= (Ao,O(ZT’,A]) By1h
= [Aolt = [AolT’ "
= ro — Ao "

w (A& k)= (Ao,x=1',A1,&:«’) By congruence of equality

e Case

r— A
AddSolved
- _ﬁA&:WZtEHIINE
~—
Fo,x =7,
A= (Ay,x=1",A7) By i.h.

= [Aolt = [AolT’ "
= r() — Ao "

w (AR k'=t) = (Ap,x=1",Aq,&:k’=t) By congruence of equality

(iv) We have Iy, &: k=7,I7 — A.

e Case

r— A
LR:x — AB:«k
——
o, &:k =1,
(To,&:xk=1,I1) = (IR : k') Given
= (T, &:k=1,T{,B : k) Since the final elements must be equal
= (T,&:k=1TY) By injectivity of context syntax
A= (Ao, R:k=1",A1) By i.h.
= [Ao]T = [AolT’ "
= ro — Ao "
= (AB:k')= (Ao, &:k=1",A1,p: k') By congruence of equality

eCase A [AJA=[AJA’

V
Nx:A —Ax:A'

To,&:k =7,

Similar to the ==Uvar] case.

Proof 0f|Lemma 22| (]Extension Inversion[) lem:extension-inversion

Proof of|Lemma 22| (Extension Inversion]) lem:extension-inversion

58

e Case r—A

e — —)I\/Iarker
e
Similar to the ==Uvar] case.

e Case r— A

—~ —~ ——Unsolved
TP w AR [—Unsolved

Similar to the ==Uvar] case.

e Case /
r—A [Alt = [A]lt

~ ~ —)SO' ed

Bk =t —AP: k=t —Solved

o, &:k =1,

There are two cases.

- Case & = p:
k'=kandt=vand Ty =-andI"'=T, By injectivity of syntax
= (AR Kk =t')= (Ao, P: K =1/, A1) where 1/ =t and Ay =-and A = Ap
(=] o — Ag From subderivation ' — A
= [AplT = [Ap]T’ From premise [A]t = [A]t” and x
- Case & # P:
(To,&:k=7,T1) = (B : k' =t) Given
= (T, &: k=m1,TY, B:k’=t) Since the final elements must be equal
M= (T, &:k=1TY) By injectivity of context syntax
A= (Ao,&:KZTI,A1) Byi.h.
= [AolT = [AolT’ "
= ro — Ao "
e (AB:k/=t')=(Ao,&:k=1',A;,B:k’=t') By congruence of equality

eCase r A (A=Al

E
TB=t A pov o
——

ro,&:K:T,r1
(Ty,&:xk=1,1)=(I[p=t) Given
= (T, &:k=1,T{,p=1) Since the final elements must be equal
I'= (o, &:k=m1,T7) By injectivity of context syntax
A:(Ao,&IK:T/,A” By1h
= [AolT = [AolT’ "
= ro — Ao "
= (A p=t")= (Ao, &:k=T',A1,p=1t') By congruence of equality
e Case
r— A
—~ —Add
AR —Add
Io,&:k =7,

Proof 0f|Lemma 22| (]Extension Inversion[) lem:extension-inversion

Proof of|[Lemma 22| (Extension Inversion)) lem:extension-inversion

59

A= (Ap,&:k=T',Ay) By i.h.
= [Ao]T = [AolT’ "
= ro — Ao "

= (AB:«)=(Ay,&:k=1',A,P:k’) By congruence of equality

e Case
r—A
—~ ——AddSolved
—
~~~
I,k =1,
AZ(A@&ZKZT’,A]) By'lh

= [AolT = [AolT’ "
[ =4 ro — Ao "

= (AB:k/=t)=(Ao,&:k=1,A;,B:x’=t) By congruence of equality

e Case
r— A
= = —Sol

F)B:K/ HA’B:K/:_t

——
o,k =1,

(B:k)=(To,&:k=m1,T) Given
= (To,&: k=T, F{,@ 1 k') Since the last elements must be equal

= (T, &:k=1,T7) By injectivity of syntax

r—A Subderivation
lo,&: k=1, — A By equality
A= (AQ,&ZK:T/,A1) By'lh
= [AolT = [AolT’ "
= ro — Ao "
= (A,B: k') = (Ao, &:k=1",A1,P:k’) By congruence of equality

(v) We have Iy, x : A, 7 — A. This proof is similar to the proof of part (i), except for the domain condition,

which we handle similarly to part (ii).

(vi) We have Iy, & : k, 7 — A.

e Case
r—A
U
LB:k —)A,[S:K'
ro,&:K,r]
(To,&:x,T7) = (LB :k) Given
= (To,&:x,T{,B:«’) Since the final elements must be equal

I'=(lo,&:k,TY) By injectivity of context syntax

By induction, there are two possibilities:
— ®is not solved:
A= (Ao, R:K,A7) By i.h.
= ro — Ao "
w (AB:k')= (Ao, &:K,A7,B:k’) By congruence of equality

Proof ofILemma 22| qutension Inversion[) lem:extension-inversion




Proof of|Lemma 22| (Extension Inversion]) lem:extension-inversion

60

— @ is solved:
A= (Ao, &: k=1 A7) By i.h.
(=3 ro — Ao "
w (AB:k')= (Ao, &:k=1',A1,f:k’) By congruence of equality

eCase P A [AJA=[AJA’
Nx:A — Ax:A’
<=
ro,&:K,r]

Similar to the case.

—Var

L] Case r‘)A

—— |——Marker
oy — g
Similar to the[==Uvar] case.

e Case /
r—A [Alt = [A]t

-*>E

NB=t — AB=t =

Similar to the case.

eCase A [Alt=[Alt/

= = —Solved
F,B:K/:t—)A,B:K/:t,
| —
ro,&ZK,r1
Similar to the =—=Uvar case.
e Case
r—A
— = —Unsolved
B x AR
\W—/
ro‘&ZK,r]
- Case & # P:
(To,&: k,T7) = ([P : k) Given
= (To,&: kT ,B:«’) Since the final elements must be equal
I'= (o, &: k1Y) By injectivity of context syntax

By induction, there are two possibilities:
* @ is not solved:
A= (Ao,&: K,A]) By'lh
= ro — Ao "
= (AP:k')= (Ao, &:k A1, B: k') By congruence of equality

* Q is solved:
A= (Ap,&:k=1',A7) By i.h.
[ =4 ro — Ao "
w  (AR:k)=(Ag,&:k=1/,A1,B:«’) By congruence of equality

- Case & = p:

Proof 0f|Lemma 22| (]Extension Inversion[) lem:extension-inversion




Proof of|[Lemma 22| (Extension Inversion)) lem:extension-inversion 61

k'=«xandTp=Tand I =- By injectivity of syntax
= (AR k)= (Ao, &K Ap) where Ag = Aand Ay =-
= o — A From premise ' — A
e Case r— A
~—— —Add
r  —SAB:«
~~

o, &k,
By induction, there are two possibilities:

— & is not solved:
A= (Ao,&: K,A]) Byi.h.
= ro — Ao "

A

w  (AB:k/)= (Ao, &:k A1, B:k’) By congruence of equality

— Qis solved:
AZ(A@&ZKZT’,A]) By1h
= ro — Ao "
= (A R:k/)= (Ao, &:k=1/,A;,B:«’) By congruence of equality

e Case

—— AddSolved

~—
ro ,&Z K, I“]
By induction, there are two possibilities:

— ®1is not solved:
A= (Ao,al K,A]) By1h
= ro — Ao "
w  (AB:k'=t)=(Ao,&:k A1, B:k'=t) By congruence of equality

- Qis solved:
A= (Ay,&:k=1',A7) By i.h.
= ro — Ao "
w (A B:k/=t)= (Ao, &:k=1/,A;,B:«k’=t) By congruence of equality

e Case r— A
NR:« —)A,[AS:K':t
o, &:k,
- Case & # P:
(To,&: k1) = (I, B : k") Given
= (To, &k, Ty ,B:«’) Since the final elements must be equal
I'= (o, &:k,TY) By injectivity of context syntax

By induction, there are two possibilities:

Proof ofILemma 22| qutension Inversion[) lem:extension-inversion




Proof of|Lemma 22| (Extension Inversion]) lem:extension-inversion 62

* @ is not solved:
A= (A, R:K,A7) By i.h.
= ro — Ao "
= (AB:k/=t)=(Ao,&:k,A,p:k'=t) By congruence of equality

x @ is solved:
A= (Ao, R:xk=1,A1) By i.h.
= ro — Ao "
w (AR:k/=t)=(As,&:k=1/,A;,B:k'=t) By congruence of equality

- Case & = P:
N'=Tpandk=«"and I =- By injectivity of syntax
= (AB:k'=t)= (Ao, &:k=1",A;) whereAj=Aandt' =tand A; =-
= o — Ao From premise ' — A

O

Lemma 23 (Deep Evar Introduction). (i) IfTy, T is well-formed and & is not declared in Ty, Ty then Ty, I} —
ro, Q: Ky .

(ii) IfTy, & : k, Ty is well-formed and T+ t: « then Ty, & : k, [T — Tp, & : k=1, 7.
(iii) If Ty, Ty is well-formed and T+t : k then Ty, Ty — Ty, & : k =1, T7.
Proof.

(i) Assume that Iy, Iy is well-formed. We proceed by induction on I'y.

e Casel] =
[ ctx Given
& ¢ dom(Tly) Given
lo,&:kctx  Byrule \VarCtx
o — To By Lemma |32 Extension Reﬂexivityb
w [ — o, &:K By rule[—Add

o Case 'l =Ty,x: A:

To, Ty, x : A ctx Given
To, Ty ctx By inversion
x ¢ dom(T,T) By inversion (1)

o, T{ FA type By inversion
& ¢ dom(Ip, I{,x: A) Given
®F#£xX By inversion (2)
To, &: K, T ctx By i.h.

FO,F{ — Fo,&: Ky F{ "
To,&: Kk, T{ FA type By Lemma (]Extension Weakening (Sorts)l)

x ¢ dom(lp, & : k, ) By (1) and (2)

w o, l{,x:A—To,&:kT{,x: A By

Proof of [Lemma 23| (Deep Evar Introduction) lem:deep-existential




Proof of|Lemma 23| (Deep Evar Introduction]) lem:deep-existential

63

e Casely =Ty, :«":

To,T{,PB : k" ctx

I“O,F{ ctx

B ¢ dom(To, )

& ¢ dom(To, I, 3 : k')

R#P

To, & : k, I ctx

l“o,l"{ — ro,&: K,y F{

B & dom(Tp, &: k,TY)

w [, I],B:k" — To,&:k,T{,B:«’

e Case = F{,ﬁ ck
Toy 1Y, B+ K/ ctx
FO,F{ ctx
B ¢ dom(To, 1)
& ¢ dom(To, T{, P : k')
CR
To, &2 K, T ctx
FO,I“{ — Fo,&: Ky F{
B ¢ dom(Io, & : K, )
w o, T, Bk — To,&:k, T, B/

e Casely = (F{,ﬁ (K =1):
To, T/, B : k' =t ctx
FO,F{ ctx
B ¢ dom(Io, 1)
o, Ty Ft: K/

Given

By inversion

By inversion (1)
Given

By inversion (2)
By i.h.

"

By (1) and (2)

B[ e

Given

By inversion

By inversion (1)
Given

By inversion (2)
By i.h.

"

By (1) and (2)

By[Unsobe]

Given

By inversion
By inversion (1)
By inversion

& ¢ dom(To, T, B :x’=t) Given

&#B
To,&: K, T ctx By i.h.
FO,F{ — ro,&i Ky F{ "
Toy &k, T Htox! By Lemma (]Extension Weakening (Sorts)l)

B ¢ dom(Ty, & : & TY)
= I"o,l"{,ﬁ kK'=t— Ty, &: K,F{,/B:K’:t

o Case 'l = (I, p=t):

By inversion (2)

By (1) and (2)

By 5o

Proof of [Lemma 23| (Deep Evar Introduction) lem:deep-existential




Proof of|Lemma 23| (Deep Evar Introduction]) lem:deep-existential

To, T, B=tctx Given
To, Ty ctx By inversion
B ¢ dom(To, TY) By inversion (1)

lo,T{Ft:N By inversion
& ¢ dom(To,T{,p=t) Given
xA£B By inversion (2)
To, &2 K, TY ctx By i.h.

FO,F{ — ro,&l K,r{ "
To,&: Kk, T{Ft:N By Lemma (]Extension Weakening (Sorts)|)

B ¢ dom(To,&: «,T{) By (1) and (2)
w To, T, B=t— To,&:kT],p=t By [—Solved

e Case ) = (I’{,»g):

lo, Ty, > ctx Given
To, Ty ctx By inversion
B ¢ dom(Ty, ) By inversion (1)
& ¢ dom(To,T{,»3) Given
Q;# [AS By inversion (2)
To, & : Kk, T ctx By i.h.

FO,F{ — ro,&i Ky F{ "

B ¢ dom(Tp,&: k,T}) By (1) and (2)

= To,TYymg — To, &1k, T mg By

(i) Assume Iy, &: k, I ctx. We proceed by induction on I'y:

e Casel] = -
[oFt:k Given
o, Ty ctx Given
o ctx Since 7 = -
o — To By Lemma |§| (Extension Reﬂexivityi)

l,&:k— Tp,x: k=t By rule [—Solve
w [, &:k1 — Ty,&: k=t Sincely =-

o Case 'l = (I'{,x: A):

[oFt:k Given
To,&: Kk, I{,x:Actx Given
To, &: K, T ctx By inversion
To,&: Kk, T{ A type By inversion
x ¢dom(Tp, & : Kk, IY) By inversion (1)
Fo,&:K,F{—) lo,&:k=t,I By i.h.
lo,&:k=t,IN FA type By Lemma (]Extension Weakening (Sorts)l)

x ¢dom(Tp, & : k=t,T{) since this is the same domain as (1)
T, &: Kk, T{,x: A — Tp,@:k=t,T7,x: A Byrule

e Case 'l = (I'{,p:k’):

Proof of [Lemma 23| (Deep Evar Introduction) lem:deep-existential




Proof of|Lemma 23| (Deep Evar Introduction]) lem:deep-existential

[oFt:x Given
To,&: Kk, T{,p: k' ctx Given
To, &2 K, T ctx By inversion
B ¢ dom(lp, &: Kk, TY) By inversion (1)
ro,&IK,r{—) lo,&: k=t By i.h.

B ¢dom(Ty, &: k=t,T{) since this is the same domain as (1)

To,&:k, T, : k" — To,&:k=1t,T7,B: K’ Byrule

e Casely = (F{,ﬁ (k')

[oFt:x Given
To, & : K, F{,ﬁ :k’ ctx  Given
To, &2 K, T ctx By inversion
B ¢dom(Ty, & : k, ) By inversion (1)
To, & : Kk, T — To,&: k=t,T By i.h.

B ¢dom(Ty,&:k=t, /)  since this is the same domain as (1)
To,&: K,F{,/B kK —To,&:k=t,,P: K’ Byrule

e Casely = (F{,ﬁ (k' =t'):

Mo Ft':k Given
To, & : K, F{,B :k'=t'ctx Given
To, &1k, T ctx By inversion
To, &k, Tt/ k’ By inversion
B ¢dom(Toy, & : «, ) By inversion (1)
To,&: Kk, I — To,&: k=t,I By i.h.
B ¢dom(lp, &: k= t, ) since this is the same domain as (1)
lo,&:k=t, I Ht':k’ By Lemma (IExtension Weakening (Sorts)[)

To, & : K,F{,B:K’:t’ — To,&:k=t/,I,P: k' =t Byrule

o Casel = (Iy,p=t'):

loFt':k Given
lo,&: Kk, I{,p=t"ctx Given
To, & : k, T ctx By inversion
lo,&:k, T Ft':N By inversion
B ¢ dom(Tp, &: k,T7) By inversion (1)
To,&: Kk, T{ — To,&: k=t,I By i.h.
B ¢dom(lp, &: k=t,TY) since this is the same domain as (1)
M, &:k=t,IH Ft':N By Lemma (]Extension Weakening (Sorts)l)

To,&: Kk, T{,p=t" — To,&: k=t",Ty,=t" Byrule|—Eqgn

e Casely = (F{,»g):

Proof of [Lemma 23| (Deep Evar Introduction) lem:deep-existential




Proof of|Lemma 23| (Deep Evar Introduction]) lem:deep-existential 66

TobFt:k Given
To, &1 Kk, Ty, » 5 ctx Given
To, & : Kk, T ctx By inversion
B¢ dom(To, & : k, TY) By inversion (1)
ro,aiK,r{H o, &: k=1, By i.h.

B ¢dom(ly, &: k=t, /) since this is the same domain as (1)
I“o,&:K,]"1’,>[g—>Fo,62:|<:t,l“1,>@ Byrule

(iii) Apply parts (i) and (ii) as lemmas, then Lemma (Extension Transitivity]). O

Lemma 26 (Parallel Admissibility).
IfTy — Ar and I't, TR — Ar, Ag then:

(1) r[_,&i K,FR —)A]_,&Z K,AR

(i) IfA; F 1’ : k then r]_,&Z K, R — A]_,&I K:TI,AR.

(i) IfTL Ft:k and Ay T/ type and [AL]t = [AL]T/, then T, & : k=1,TR — AL, &: k=1, Ar.

Proof. By induction on Ag. As always, we assume that all contexts mentioned in the statement of the lemma
are well-formed. Hence, & ¢ dom(I't) U dom(Tg) Udom(Ar) U dom(Ag).

(i) We proceed by cases of Ag. Observe that in all the extension rules, the right-hand context gets smaller,
so as we enter subderivations of I't,'rx — Ar, Ag, the context Az becomes smaller.

The only tricky part of the proof is that to apply the i.h., we need [T — A[. So we need to make sure
that as we drop items from the right of 'y and Ag, we don’t go too far and start decomposing 'L or
Ar! It’s easy to avoid decomposing A : when Ag = -, we don’t need to apply the i.h. anyway. To avoid
decomposing I , we need to reason by contradiction, using Lemma[19] (Declaration Preservation).

Case Ag = -:

We have I — Ar. Applying[—Unsolved]to that derivation gives the result.

Case Ag = (Ag, B): We have p # & by the well-formedness assumption.

The concluding rule of I', g — Ar, Ay, B must have been|— Unsolved|or|[—Add| In both cases,
the result follows by i.h. and applying [—Unsolved| or [—Add|

Note: In the left-hand context doesn’t change, so we clearly maintain [T — Ap. In

we can correctly apply the i.h. because Tx # -. Suppose, for a contradiction, that
Tk = - Then I\ = (IY,B). It was given that L — A, that is, FL’,/[?; — Ar. By Lemma
(Declaration Preservation), A; has a declaration of f. But then A = (A, AL, ) is not well-
formed: contradiction. Therefore 'z # -.

Case Ag = (Ag, B:k=t): We have B # & by the well-formedness assumption.

The concluding rule must have been |[—Solved} | —Solve| or | —AddSolved, In each case, apply
the i.h. and then the corresponding rule. (In[—Solved and [—Solve] use Lemma|19|
to show I #

Case Ag = (A}, x): The concluding rule must have been[—Uvar| The result follows by i.h. and
applying

Case Ag = (Af,x=1): The concluding rule must have been The result follows by i.h.
and applying[—Eqn]

Case Ag = (Ag,»p): Similar to the previous case, with rule

Case Ag = (Af,x: A): Similar to the previous case, with rule

(i) Similar to part (i), except that when Ag = -, apply rule

August 15, 2020



C' Properties of Extension 67

(iii) Similar to part (i), except that when Ag = -, apply rule|[—Solved| using the given equality to satisfy
the second premise. O

Lemma 27 (Parallel Extension Solution).
IfI"L,&: K,y FR — AL, Qx: K:T/,AR and r]_ Ft:«kand [A[_]T = [A]_]"C/
thenTy, & : k=1,TR — AL, &: k=1',Ag.

Proof. By induction on Ag.

In the case where Ag = -, we know that rule must have concluded the derivation (we can use
Lemma [19] (Declaration Preservation)) to get a contradiction that rules out[—AddSolved); then we have a
subderivation I — Ay, to which we can apply [——Solved] O

Lemma 28 (Parallel Variable Update).
If FI_, Q: K, FR — A[_, Qx: K:To,AR and r]_ F Ty . K and A]_ H T2 . K and [A]_}To = [AL]T] = [A[_]Tz
then r]_,&: K=11,lR — AL,&: K="1T2,Ag.

Proof. By induction on Ag. Similar to the proof of Lemma (Parallel Extension Solution)), but applying
[=—=Solved at the end. O

Lemma 29 (Substitution Monotonicity).

(i) IfT — A and T | t: k then [A][T]t = [Alt.
(ii) IfT — A and T F P prop then [A][T]P = [A]P.
(iii) IfT — A and T F A type then [A][TA = [A]A.

Proof. We prove each part in turn; part (i) does not depend on parts (ii) or (iii), so we can use part (i) as a
lemma in the proofs of parts (ii) and (iii).

e Proof of Part (i): By lexicographic induction on the derivation of D : ' — Aand I' - t : k. We
proceed by cases on the derivation of I' -t : k.

— Case
x:kel
e
DK
Ta=a Since & is not solved in "
Al& = [Al& Reflexivity

= [A][l'l& By above equality

— Case (x:k)eTl

R T
X : K

Consider whether or not there is a binding of the form («=1) € T.

x Case (a=1) eT:

Proof 0f|Lemma 29| (]Substitution Monotonicity]) lem:substitution-monotonicity




Proof of|Lemma 29| (Substitution Monotonicity) lem:substitution-monotonicity 68

A= (Apya=1" A1)
D’ ro — Ao
D' <D
1) [Aolt’ = [AolT

[
=
[
= [Ao, =T, A4][To)T
= [Ao][TolT
= [AplT’
= [Ag,x=1"]cx
= [Ao, O(—T/,Aﬂo{
= [Alx
x Case (x=71) ¢T
Mo = o By definition of substitution
[AlllMN = [Aloe  Apply [A] to both sides
— Case
SolvedVarS
Similar to the [VarSort case.
— Case

T

[A]l=1=IA][l1 SinceFV(1) =10

— Case
1% ME1oix —
| e SIS T SRR
[A][T]ty = [A]Ty By i.h.
[AlllT2 = [A]T2 By i.h.
(A][Tty @ [Al[T]T2 = [AlTy
[AllM(T1 @ T2) = [A]

— Case

[Alzero = zero = [A][lzero  Since FV(zero) = ()

- Case .

't succ(t) : N

(A][T]t = [A]t By i.h.

By Lemma (]Extension Inversion[) ()
1

"

"

By i.h.

By definition

Since « ¢ dom(I)

By definition of substitution
Since FV([Tplt) Ndom(A;) =0
By (2) and (1)

By definition of substitution
Since FV([Aolt) Ndom(A;) =0
By definition of A

@ [Alt, By congruence of equality
(t1 ® 72)  Definition of substitution

succ([A][l'Tt) = succ([A]t) By congruence of equality
[AlllMsucc(t) = [Alsucc(t) By definition of substitution

Proof 0f|Lemma 29| (]Substitution Monotonicity]) lem:substitution-monotonicity




Proof of|Lemma 29| (Substitution Monotonicity) lem:substitution-monotonicity 69

e Proof of Part (ii): We have a derivation of I' - P prop, and will use the previous part as a lemma.

-Case rp . N THt:N

EqP
I't+t=t'prop

AT = (At By part (i)
ATt = [A]t By part (i)
([AlT]t = [A]T]t") = ([Alt = [Alt’) By congruence of equality
Alr(t=t") =[Al(t=1t') Definition of substitution

e Proof of Part (iii): By induction on the derivation of I' - A type, using the previous parts as lemmas.

- Case (u:x)er

7 " NarWFE
o e VA
Muw:x Byrule

[A][lw = [A]Ju By part (i)

— Case (&:x=T1) €T

SolvedVarWF
T s ome
I'&:x By rule(SolvedVarSort

[All& = [A]& By part (i)

Case

——— |UnitWF|
' 1 type

ME1:% Byrule

[A][T]1 = [A]1 By part (i)

- Case ' Aq type ' Ay type

' A1 @ A type
(AlTA; = [A]JA By i.h.
(AlTIA2 = [A]JA By i.h.
[A][TTA @ [AITA, = [A]A1 @ [AJA; By congruence of equality
[A]TT(A; @ Ay) = [Al(A; ® A;)  Definition of substitution

Case Similar to the [BinWF] case.

— Case Lo:kE Ag type

Fi—Voc:K.Aotype

r— A Given
Na:k— Ajx:k Byrule
(A, o k[T o kK]Ag = [A, o : K]Ag By i.h.
[A][TAy = [AlAp By definition of substitution
Vo: k. [AlMNA) = VY : k. [A]Ap By congruence of equality
[AIT] (Vo : k. Ag) = [Al(Voc: k. Ag) By definition of substitution

Proof 0f|Lemma 29| (]Substitution Monotonicity]) lem:substitution-monotonicity




Proof of|Lemma 29 (Substitution Monotonicity) lem:substitution-monotonicity 70

— Case Similar to the [ForallWF] case.

— Case
"' P prop ' Ap type
ImpliesWF
T

[A][T]P = [A]P By part (ii)
[AlTTAo = [AlAo By i.h.
[A][TIP O [A]T]A = [A]P D [A]JAy By congruence of equality
[A][TI(P D Ap) = [AI(P D Ap) Definition of substitution

— Case
' P prop ' Ap type
WithWF
' Ao /AP type _

Similar to the case. O
Lemma 30 (Substitution Invariance).
(i) fT — A andT +t: k and FEV([T]t) = 0 then [A][l't = [T]t.
(i) IfT — A and T + P prop and FEV([T']P) = () then [A][T]P = [I']P.

(iii) IfT — A and T + A type and FEV([I'1A) = () then [A][T]A = [T]A.

Proof. Each part is a separate induction, relying on the proofs of the earlier parts. In each part, the result
follows by an induction on the derivation of ' — A.

The main observation is that A adds no equations for any variable of t, P, and A that I" does not already
contain, and as a result applying A as a substitution to [I']t does nothing. O

Lemma 24 (Soft Extension).
IfT' — A and T, © ctx and © is soft, then there exists Q such that dom(®) = dom(Q) and 0 — A, Q.

Proof. By induction on ©.
e Case ® =-: Wehavel' — A.Let Q =-. Then ;0 — A, Q.
e Case ©® = (O, &:k=t):

ne’ —rna’ By i.h.
w [O,&:k=t— AQ' &:x=t Byrule[—Solved
e Q

e Case ® = (O,&:k):
Ifk=xlett=1;if k =N, let t = zero.

NG oY By i.h.
w [0, &:k— AJQ' &: k=t Byrule|—Solve
e o

Lemma 31 (Split Extension).
IfA— Q

and & € unsolved(A)

and Q = O [&: k=1t]

and Q is canonical (Definition|3)
and Q Fty:k

then A — QO [&: k=t5].

Proof oflLemma 31| QSplit Extension]) lem:split-extension




Proof of|Lemma 31| (Split Extension) lem:split-extension 71

Proof. By induction on the derivation of A — Q. Use the fact that Qq[&: k=1;] and Q;[& : k =1,] agree
on all solutions except the solution for & In the case where the existential variable is &, use
QFt:k O

C’.1 Reflexivity and Transitivity

Lemma 32 (Extension Reflexivity).
IfT ctx thenT — T.

Proof. By induction on the derivation of I ctx.

e Case

e
= Byrule

°Case rry  xgdom(l) THAtype

Fx: A

r—T By i.h.
MA = [MA By reflexivity

Nx:A—Tx:A Byrule

e Case oy ik ¢ dom(I)
Lw:kctx

r—r By i.h.
Nu:k — Lu:k Byrule |—>Uvar|or|—>Unso|ved|

e Case pory  addom(l) ThHt:k

L&:k=tctx
r—rm By i.h.
Tt=[TIt By reflexivity

Na:k=t—NLR:k=t Byrule

o Case I" ctx x:kerl (x=—)¢T eET:k
ILoa=1ctx

r—r By i.h.
Tt=[It By reflexivity

Na=t — Na=t Byrule

Proof of|Lemma 32| (]Extension Reﬂexivity[) lem:extension-reflexivity




Proof of|Lemma 32| (Extension Reflexivity]) lem:extension-reflexivity

[ ] Case rctx - ¢ r
I py ctx

r—rm By i.h.

ey — ey Byrule

Lemma 33 (Extension Transitivity).
IfD:T — ®andD’' 20 — AthenT — A.

Proof. By induction on D’.

e Case
—ld
. —> .
~— ~—
e A
I'=-  Byinversion on D

C— Byrule
[— A Sincel=A=-

e Case / / I nal
e —A A'IA =[AA
: [ ]/ [/] Vo
O, x:A—0A XA

S] A

I'=(T'"",x:A"”) By inversion on D

[BIA" = [B]A By inversion on D
r— o’ By inversion on D
M A By i.h.
AENA" = [A'][O]A By congruence of equality
[ATTAT = [ATA By Lemma Substitution Monotonicityb
= [A]A By premise [A’']A = [A’]A’

Mx:A” — Aljx: A’ By

e Case o’ Al
O,k — Aok
e A

I'=(T",«:k) By inversion on D
r— e’ By inversion on D
r— A’ By i.h.

MNMo:k— Aok By

e Case e — A’

—Unsolved
08k SAG K [—Unsolved

o A

Two rules could have concluded D :: T — (@', & : k):

Proof of|Lemma 33| (]Extension Transitivity[) lem:extension-transitivity




Proof of|Lemma 33 (Extension Transitivity) lem:extension-transitivity

73

— Case r_.e’

Unsolved
R 0 A ounsohed
r
r— A’ By i.h.
M&:k— A&k Byrule

— Case r— e

e ——— Add
rS0,&:« —

r— A/ By i.h.
r— A &:« Byrule

e Case e — A’ [Al]t _ [A/]tl

—Solved
O ,&:k=t— A,&:xk=t’

(S) A

Two rules could have concluded D =T — (@', & : k =1):

— Case ! I Nyt li
r-—ao Ot" =[Ot
_—>SI d
MNa:k=t" —0 ,&: k=t o

r
A By i.h.
Ot" = [0t Premise
A'lEt" = (A0t Applying A’ to both sides
ATt" = [A']t By Lemma Substitution Monotonicity{)
ATt By premise [A’]t = [A']t/

Ma:k=t"— Aa:k=t’ Byrule

— Case r— o’

—AddSolved
P o . o oAddSelved

r— A/ By i.h.

' — A'y&:k=t’" By rule|—AddSolved

e Case O — A’ [A/]t: [A/]t/
O,a=t— A a=t’
(C] A

Proof of|Lemma 33| (]Extension Transitivity[) lem:extension-transitivity




Proof of|Lemma 33 (Extension Transitivity) lem:extension-transitivity 74

I'=(I",a=t") By inversion on D

r—ae’ By inversion on D
Ot" =0t By inversion on D
[AOTt" = (A0t Applying A’ to both sides
r— A’ By i.h.
A1t = [A']t By Lemma Substitution Monotonicityb
= [A']t’ By premise [A’]t = [A']t’

Ma=t"— A,a=t’ Byrule

e Case O — A/

— [—Add
0 — A&k | —Add
A

r— A’ By i.h.
r— A &:« Byrule

e Case O A

; ——AddSolved
O — A &: k=t

A

r— A’ By i.h.

'— A';&:k=t By rule[—AddSolved

e Case o’ A
O ey — Al ey
N—— ~—

(] A

I'=T'/», Byinversion on D

r— e’ By inversion on D
M —s A By i.h.
Iosyw — Ay By
O

C’.2 Weakening
Lemma 34 (Suffix Weakening). If T+ t: k then [;© I- t : k.
Proof. By induction on the given derivation. All cases are straightforward. O
Lemma 35 (Suffix Weakening). If '+ A type then T, © + A type.
Proof. By induction on the given derivation. All cases are straightforward. O

Lemma 36 (Extension Weakening (Sorts)). If T -t:k andT" — A then A t: k.

Proof. By a straightforward inductionon ' -t : k.
In the case, use Lemma [22] (Extension Inversion) (i) or (v). In the case, use Lemma
(Extension Inversion) (iv). In the other cases, apply the i.h. to all subderivations, then apply the rule. O

Lemma 37 (Extension Weakening (Props)). If " -+ P prop and ' — A then A+ P prop.

August 15, 2020



C'.3 Principal Typing Properties 75

Proof. By inversion on rule and Lemma [36] (Extension Weakening (Sorts)]) twice. O

Lemma 38 (Extension Weakening (Types)). If ' - A type and ' — A then A + A type.

Proof. By a straightforward induction on I' - A type.

In the case, use Lemma (Extension Inversion)) (i) or (v). In the case, use Lemma
(Extension Inversion) (iv).

In the other cases, apply the i.h. and/or (for [mpliesWF| and WithWF)) Lemma [37] (Extension Weakening|
to all subderivations, then apply the rule. O

C’.3 Principal Typing Properties
Lemma 39 (Principal Agreement).

(@) IfTF A !'type and " — A then [A]JA = [T]A.

(i) IfT + P prop and FEV(P) = () and " — A then [A]P = [T]P.
Proof. By induction on the derivation of ' — A.

Part (i):

e Case r LA, (At =[Aot
To,x=t —)Ao,O(:t/

A
If « ¢ FV(A), then:

Mo, x=t]A = [[H]A By def. of subst.
= [Ao]A By i.h.
= [Aog,x=1']A By def. of subst.

Otherwise, « € FV(A).

o Fttype I is well-formed
Io F o]t type By Lemma (]Right-Hand Substitution for Typing[)

Suppose, for a contradiction, that FEV/([I[]t) # 0.
Since « € FV(A), we also have FEV([I']A) # 0, a contradiction.

Proof of [Lemma 39| (Principal Agreement) lem:substitution-tpp-stable




Proof of|Lemma 39 (Principal Agreement]) lem:substitution-tpp-stable 76
FEV([Iolt) # 0 Assumption (for contradiction)
Molt = M« By def. of subst.
FEV([T) # 0 By above equality
x €FV(A) Above
FEV([TIA) # 0 By a property of subst.
I'=A!type Given
FEV([MA) =0 By inversion
=&
FEV([Iolt) =0 By contradiction
Io Ft!type By|Principal WF
Molt = [Aplt By i.h.
To F[Aolt type By above equality
FEV([Aolt) =0 By above equality
lo F [[Aolt/x]A ! type By Lemma 8| (Substitution—Well-formedness) (i)
[Tol [[Ao]t/a] A = [Ao] [[Ao]t/x]A By i.h. (at [[A]t/a|A)
[To, x=tJA = [Io] [[To]t/a] A By def. of subst.
= [To] [[Aolt/a]A By above equality
= [Ao][[Ao]t/x]A By above equality
= [Ao] [[Aclt’/a] A By [Aolt = [Aolt/
= [AJA By def. of subst.
e Case[—Solved| [—Solve| —Add| [—Solved} Similar to the case.
e Case|—ld| [—Var| [—Uvar|, |—Unsolved| |— Markerf
Straightforward, using the i.h. and the definition of substitution.

Part (ii): Similar to part (i), using part (ii) of Lemma (Substitution—Well-formedness)). O
Lemma 40 (Right-Hand Subst. for Principal Typing). If ' - A p type then T I [TA p type.
Proof. By cases of p:

e Casep =1

'+ A type By inversion
FEV([TIA) = 0 By inversion
I'-[TA type By Lemma Right-Hand Substitution for Typingl)
r—r By Lemma (32| (Extension Reflexivity])
MTA = [TIA By Lemma Substitution Monotonicity[)
FEV([TITA) =0 By inversion
I'=[T"A 'type By rule|Principal WF
o Casep =/
'+ A type By inversion
' ['A type ByLemma |ﬁ| (]Rjght-Hand Substitution for Typing[)
'-A Ytype By rule|NonPrincipal WF
0

Lemma 41 (Extension Weakening for Principal Typing). If ' - A p type and ' — A then A+ A p type.

Proof of |Lemma 41| (]Extension Weakening for Principal 'Iyping|) lem:extension-weakening-tpp




Proof of|Lemma 41| (Extension Weakening for Principal Typing) lem:extension-weakening-tpp 77

Proof. By cases of p:
e Casep = ):

I' - A type By inversion
A+ A type By Lemma |§| (]Extension Weakening (Types)[)

A+ A Y type By rule[NonPrincipal WF

e Casep =

't A type By inversion

FEV([TIA) =0 By inversion
A+ A type By Lemma Extension Weakening (Types)[)
A [AJA type By Lemma Right-Hand Substitution for Typing[)

[AJA = [TA By Lemma Substitution Invariance[)

FEV([AJA) =0 By congruence of equality

AFI[AJA type Byrule

Lemma 42 (Inversion of Principal Typing).

(1) fTH (A — B) ptype thenT + A p type and " - B p type.
@) IfTH(PD>A)ptypethenT + P prop andT - A p type.
(3) IfTH (AAP) ptype thenT - P prop and T+ A p type.

Proof. Proof of part 1:
We have ' A — B p type.

e Casep =/
1 THFA — Btype By inversion
' A type By inversion on 1
'+ B type By inversion on 1

A ) type By rule [NonPrincipal WF|
I'=B ) type By rule [NonPrincipal WF

e Casep =1
1 ''-A — B type By inversionon ' A — B ! type

= FEV([ ](A—>B)) "
= FEV([INA 1B) By definition of substitution
= FEV( F]A) U FEV([F] ) By definition of FEV(—)

FEV([IA) = FEV([TIB) = By properties of empty sets and unions

'+ A type By inversion on 1

'+ B type By inversion on 1

I'=A!type By rule [Principal WF,

I'-B!type By rule [Principal WF

Part 2: We have I' - P O A p type. Similar to Part 1.
Part 3: We have ' A /A P p type. Similar to Part 2. O

August 15, 2020



C'.4 Instantiation Extends

78

C’.4 Instantiation Extends

Lemma 43 (Instantiation Extension).
IfTF&:=7:k1AthenT — A.

Proof. By induction on the given derivation.

o Case It hFT:k
Mn,&:k,rkF&:=1: k4T, &: k=1,Tx
r

Follows by Lemma |23| (Deep Evar Introduction)) (ii).

o Case B € unsolved(Ty[& : kI[P : k])
Mol&: K][/B K F &= /(_’; kA& K][/f; (k=@
r

InstReach

Follows by Lemma |23 (Deep Evar Introduction)) (ii).

®Case i, xRy ik BRix=RI D BRIF B =T x40 OF & =[Oy %A
R:xFR:=11 @&1:%x1A

@2 i %, R i/ R:*x=&1 DR FR =11 : %10 Subderivation

ro[azi*,&1 Z*,&:*=&1 DRy — O By'lh
OF®&; ;= [O]t, : x 1A Subderivation
e —A By i.h.
B2 xR i X, R:x=8R1 ® Rl — A By Lemma QExtension Transitivityl)

Tol&:x] — To[& i %, By :x, R:%x=8 & &2] By Lemma (]Deep Evar Introduction[)
(parts (i), (i), and (ii),
using Lemma (]Extension Transitivity{))

lol&: %] — A By Lemma (IEXtension Transitivityl)

e Case

InstZ
[o[& :N] F & := zero : N Iy[& : N=zero]

Follows by Lemma [23| (Deep Evar Introduction)) (ii).

o Case MN&q:Ny&:N=succ(@)]F& =t :NHA

InstS
r[&:N]l_&:ZSUCC(h):N—{A

By reasoning similar to the case.

C’.5 Equivalence Extends

Lemma 44 (Elimeq Extension).
IfT' /s =t:«k A then there exists © such that ;0 — A.

Proof of|Lemma 44| (]Elimeq Extension[) lem:elimeq-extension




Proof of|Lemma 44| (Elimeq Extension) lem:elimeqg-extension 79

Proof. By induction on the given derivation. Note that the statement restricts the output to be a (consistent)
context A.

e Case

ElimeqUvarRefl
EET e

Since A =T, applying Lemma [32] (Extension Reflexivity) suffices (let © = -).

e Case

ElimeqZero
F/zeroézero:N—H"
Similar to the case.

e Case .
r/o<t:N4A
ElimeqS
I/ succ(o) = succ(®) : N + A
Follows by i.h.

o Case R kKlFR:=t:xk4A
ekl /a=t:x4A
——

r

ElimeqlnstL

'&:=t:xk-1A Subderivation

r— A By Lemma q1nstantiation Extensionl)
Let © = -.

o Case ,opy(Mt)  (a=—)¢T
No=t:kdLa=t

ElimeqUvarL

Let © be (x = t).

w La=t— La=t By Lemma Extension Reflexivity|
~—~——
o)

e Cases |ElimeqlnstR|, [ElimeqUvarR}

Similar to the respective L cases.

e Case o#t

EETIPEN ElimeqClash
o=t:k

The statement says that the output is a (consistent) context A, so this case is impossible. O

Lemma 45 (Elimprop Extension).
IfT' / P - A then there exists © such that ;© — A.

Proof. By induction on the given derivation. Note that the statement restricts the output to be a (consistent)
context A.

Proof of |Lernrna 45| (]Elimprop Extension[) lem:elimprop-extension




80

Proof of|Lemma 45| (Elimprop Extension) lem:elimprop-extension

cCase r/sot:NHA

S

'/ 0=t:NHA Subderivation
w [0— A By Lemma quimeq Extensionl)

Lemma 46 (Checkeq Extension).
IfFTFA=B-AAthenT — A.

Proof. By induction on the given derivation.

e Case

F}—uéu'K—H"

Since A =T, applying Lemma [32] (Extension Reflexivity]) suffices.
e Cases|CheckeqUnit] [CheckeqZero}  Similar to the case.

eCase ri 20/ k40 OF[O, = [0, x4A
TFm e =1 @1 :x1A

CheckeqBin

— ©® Byih.
® — A Byih.
w [ — A ByLemma QExtension Transitivityb

o Case FrMFo<t:N4A

CheckeqS
I'F succ(o) = succ(t) :N—HA

'Fo=t:N+HA Subderivation
w [ — A By i.h.

e Case nialFa:=t:k4A & ¢ FV(N[allt)
LRlFaz=t: k1A

CheckeqlnstL

Iol@l & :=t:x A Subderivation
i el — A By Lemma Instantiation Extension

——
r

e Case Similar to the case.

Lemma 47 (Checkprop Extension).
IfTHPtrue 1A then T — A.

Proof. By induction on the given derivation.

August 15, 2020



C.5 Equivalence Extends 81
o Case ;o tNA S
I"FG:ttrue%A
'-o=t:N-A Subderivation
w [ — A By Lemma (]Checkeq Extension[)
O
Lemma 48 (Prop Equivalence Extension).
IfTFP=Q 1A thenT — A.
Proof. By induction on the given derivation.
e Case 0 o
FFO']:T]ZN4® @FO'z:TzZN%A
=PropEq|
rl—(0'1:0'2)E(T1:T2)—|A m
o =17 :N-H4© Subderivation
r— 0 By Lemma (]Checkeq Extension[)
OFo; =1,: N-4A Subderivation
0—A By Lemma Checkeq Extension)
w [ — A By Lemma Extension Transitivityb
O

Lemma 49 (Equivalence Extension).
IfTFA=B A thenT — A.

Proof. By induction on the given derivation.

e Case

— =V
F)—oczoc—H’

Here A =T, so Lemma [32] (Extension Reflexivity] suffices.

e Case
— X  |=E
Frazadr
Similar to the EVar case.
e Case
—— |=Unit|
r-1=14r"
Similar to the [=Var case.
eCase pi A =B, 40 OF [@]AZE[Q]B2—|A
FF(A1@A2)E(B1EB82)—|A —
'FA;=B; 410 Subderivation
r—oe By i.h.
O F[B]A; =[©]B, 1A Subderivation
0—A By i.h.
w [ — A By Lemma (]Extension Transitivity{)

Proof of|Lemma 49| (]Equivalence Extension[) lem:equiv-extension




Proof of|Lemma 49 (Equivalence Extension) lem:equiv-extension 82

e Case Similar to the[=d] case.

e Cases [EAL  Similar to the [=&]case, but with Lemma [48] (Prop Equivalence Extension) on the first
premise.

e Case Ay =B A a: kA
Fl—‘v’oc:K.AoEVoc:K.B—(Algvl

Noa:kFA9g=B-HA,x:k,A’ Subderivation
No:k— Aja:k, A By i.h.
(=3 [— A By Lemma QExtension Inversionl) @)

e Case
FO[&]I_&ZzTS*—{A &gFV([rO[&HT)
=l iatel
R Fa=T1-A

@l F&:=1:x-4A Subderivation

i [hd]l — A By Lemma |43| (Instantiation Extension|
~——
r
e Case Similar to the case. O

C’.6 Subtyping Extends
Lemma 50 (Subtyping Extension). IfT'F A <:T¥ B4 A thenT — A.
Proof. By induction on the given derivation.

e Case p  &:kF[8/JA<:"BHA rg,0
'EVa:xk.A<:" BHA

A
H
—

Nrg, ®:kF[&/x]JA <:7 B4 A »g,® Subderivation
Nra, &k — Aps,© By i.h. (i)
= r— A By Lemma (]Extension Inversion[) (ii)

Case Similar to the case.

Case r,oc:KFAi:*BAA,oc:K,@m
TFA<: Va:k.BAA

Similar to the case, but using part (i) of Lemma [22] (Extension Inversion)).
Case Similar to the case.

Case ra=B-A

:Equi
F}—A<:7’B—|A

'A=B-dA Subderivation
w [ — A By Lemma (]Equivalence Extension[)

August 15, 2020



C.7 Typing Extends 83

C'.7 Typing Extends

Lemma 51 (Typing Extension).
IfTFe&sAp-HA
orTFe=Ap-dA
orTFs:Ap>Bq-dA
orTFTMzAq&CpHA
orT/PFTIzAl&CpHA
thenT — A.

Proof. By induction on the given derivation.

e Match judgments:

In rule[MatchEmpty] A =T, so the result follows by Lemma [32] (Extension Reflexivity).

Rules [MatchBase| [Match x| [Match+ | and [MatchWild| each have a single premise in which the contexts
match the conclusion (input I' and output A), so the result follows by i.h. For rule Lemma
(Extension Transitivity) is also needed.

In ruleMatchd, apply the i.h., then use Lemma [22] (Extension Inversion)) (i).
Match/\: Use the i.h.

Use the i.h. and Lemma [22] (Extension Inversion) (v).
Immediate by Lemma [32] (Extension Reflexivity).

Vi Unity,

Lr»p,® — O By Lemma (]Elimeq Extension[)
® — A,pp,A’ Byih.
Lep,® — A»p,A’ By Lemma 33| (Extension Transitivity[)
(=3 r— A By Lemma (]Extension Inversior1|) (ii)

e Synthesis, checking, and spine judgments: In rules|[Var [} EmptySpine, and [OT1] the output context
A is exactly T, so the result follows by Lemma [32] (Extension Reflexivity).

- Case[Vll Use the i.h. and Lemma [33] (Extension Transitivity).

- Case[Sping, Bl By[—=Add, ' — & : k.
The result follows by i.h. and Lemma [33] (Extension Transitivity).

- Cases [\ Use Lemma [47] (Checkprop Extension), the i.h., and Lemma
(Tamsitiity).
Cases Using reasoning found in the Al and D] cases.
Case Dl

L»p,® — O By Lemma (]Elimprop Extensionl)

©® — Awp,A Byih.
[»p,® — Ajpp,A ByLemma Extension Transitivity[)
= r— A By Lemma Extension Inversion))

Cases Use the i.h. and Lemma [22] (Extension Inversion)).

Cases [Sub] [Annd| [ E] [=Spine]
Use the i.h., and Lemma 33| (Extension Transitivity) as needed.

Case By Lemma [23] (Deep Evar Introduction)) (ii).

Proof of|Lemma 51| ([I'yping Extensionl) lem:typing-extension




Proof of|Lemma 51| (Typing Extension) lem:typing-extension 84

— Case|&Spinel [} | X 1Rk
Use Lemma Deep Evar Introduction) (i) twice, Lemma (Deep Evar Introduction]) (ii), the
i.h., and Lemma 33] (Extension Transitivity).

- Case[>I& Use Lemma [23] (Deep Evar Introduction) (i) twice, Lemma [23] (Deep Evar Introduc
(i), the i.h. and Lemma[22] (Extension Inversion]) (v).

- Case Use the i.h. on the synthesis premise and the match premise, and then Lemma

(Extension TransmVlﬂ). ]

C’.8 Unfiled

Lemma 52 (Context Partitioning).
IfAy»5,® — Q,»4, Q7 then there is a ¥ such that [Q,» 5, Qz](A,»5,0) = [Q]A, V.

Proof. By induction on the given derivation.

e Case Impossible: A, » 4, © cannot have the form -.

e Case We have Q7 = (Q4,x : A) and ® = (@',x : A’). By i.h., there is ¥’ such that
[Q,»5,Q0](A»5,0") = [QJA, Y. Then by the definition of context application, [Q,»4,Q5,x :
Al(Aps,® x: A') = [QIA Y/ x: [Q]A. Let ¥ = (W, x : [Q']A).

e Case Similar to the[—Var]case, with ¥ = (¥/, « : k).

e Cases|—Eqnl [—Unsolved| |—Solved| |—Solvel [—Add| |—AddSolved} [— Markerf

Broadly similar to the case, but the rightmost context element disappears in context applica-
tion, so we let ¥ =Y’, O

Lemma 54 (Completing Stability).
IfT — Q then [Q]T = [Q]OQ

Proof. By induction on the derivation of ' — Q.

e Case
—|—d

Immediate.

e Case ’
o — Q QplA = [Q]A
0 0 Qo] [/o] Yo
loyx: A — Qp,x: A

To — Qo Subderivation
[QolTo = [QO}Q By i.h.
[QolA = [Qp]A Subderivation
[QolTo,x : [Qo]A = [Q0]Qo, x : [Qo]A’ By congruence of equality
[

[Qp,x: A'l(To,x: A) = [Qo,x: A'l(Qo,x: A’) By definition of substitution

e Case Ny — Qo

Toyx:k — Qop,x: K

Similar to ==Varl

Proof of|Lemma 54| (]Completing Stability[) lem:completes-stability




Proof of|Lemma 54 (Completing Stability) lem:completes-stability

e Case
r() —)_O.o
Unsolved
o, ®:k — Qp,R: K
Similar to ==Varl

*Case 0y [t =[Ot
Toy,&:k=t — Qp,&: k=1

Similar to

e Case My — Qo

loy»a — Qo,»a
Similar to ==Varl

ro,/BiKIHQ(),/B:K/:t

Similar to

©Case 0o [Qolt = [Qolt
o, a=t — Qp,x=t

ro — Qo
[Qolt" = [Qo]t
[Qo]To = [Q0]Qo
[[Qolt/a]([Q0]To) = [[Qolt/a]([Q0]Q0)

1
[QO) (X:t](rO) (X:t/) = [QO) (X:t](QO) O(:t)

e Case r— Q,

0 SAdd
I — Qo &: K

[ — Qo
[QolT" = [Q0]Qp
[Qo,&: K]r = [Qo,&: K](Qo,&: K)

By i.h.

e Case

— Qp
——AddSolved
N — Qo, a:k=t
Similar to the[==Add] case.

Lemma 55 (Completing Completeness).

A IfQ — Q"and Q F t: k then [Q]t = [Q']t.

(i) IfQ — Q' and Q + A type then [Q]JA = [Q']A.

(iii) If Q — Q' then [Q]Q = [Q']Q".
Proof.

Subderivation

Subderivation

By i.h.

By congruence of equality

By definition of context substitution

Subderivation

By definition of context substitution

Proof of |Lernrna 55| (]Completing Completeness[) lem:completing-completeness




Proof of|Lemma 55| (Completing Completeness) lem:completing-completeness 86

e Part (i):

By Lemma (Substitution Monotonicity)) (i), [Q']t = [Q'][Q]t. Now we need to show [Q'][Q]t = [Q]t.
Considered as a substitution, Q' is the identity everywhere except existential variables & and universal
variables «. First, since Q is complete, [Q]t has no free existentials. Second, universal variables free in
[Q]t have no equations in Q (if they had, their occurrences would have been replaced). But if Q has
no equation for «, it follows from Q — Q' and the definition of context extension in Figure [15| that
Q' also lacks an equation, so applying Q' also leaves « alone.

Transitivity of equality gives [Q']t = [Q]t.

e Part (ii): Similar to part (i), using Lemma (Substitution Monotonicity) (iii) instead of (i).

e Part (iii): By induction on the given derivation of Q — Q.

Only cases |—Id}, |—Var} |—Uvar| |—Eqn} |—Solved | —AddSolved| and |—Marker| are possible. In
all of these cases, we use the i.h. and the definition of context application; in cases[— Var], and
we also use the equality in the premise of the respective rule. O

Lemma 56 (Confluence of Completeness).
IfAy — Q and A, — Q then [Q]A; = [Q]A;.

Proof.
A — Q Given
[Q]A; = [Q]Q By Lemma qumpleting Stabilityi)
A — Q Given

[Q]A; = [Q]Q By Lemma (ICompleting Stabilityi)
[Q]A; = [Q]A, By transitivity of equality

O
Lemma 57 (Multiple Confluence).
IfFA— Qand Q — Q' and A’ — Q' then [Q]A = [Q']A’.
Proof.
A— Q Given
[QIA = [Q]Q By Lemma (ICompleting Stabilityl)
Q— Q' Given
[Q]Q =[Q']Q" By Lemma Completing Completenessl) (iii)
= [Q’]A" ByLemma Completing Stability) (A" — Q' given)
O

Lemma 59 (Canonical Completion).

Ifr — Q

then there exists Qanon such that T — Qcanon and Qegnon — Q and dom(Qcaqnon) = dom(T") and, for all
&: k=T and cc="1 in Qcnon, we have FEV(t) = 0.

Proof. By induction on Q. In Q0n, make all solutions (for evars and uvars) canonical by applying Q to
them, dropping declarations of existential variables that aren’t in dom(T"). O

Lemma 60 (Split Solutions).

If A — Q and & € unsolved(A)

then there exists Q; = Qf[&: k=t;] such that Q; — Q and Q; = Q{[&: k=t;,] where A — Q, and
ty # t1 and Q; is canonical.

Proof. Use Lemma (Canonical Completion) to get Qgnon such that A — Qgnon and Qcgnon — Q, where
for all solutions t in Q¢u0n We have FEV(t) = 0.

We have Qcgnon = Q1 [& : k =t1], where FEV(t;) = (. Therefore s=  Qj[&: k=1;] — Q.

Now choose t, as follows:

Proof of|Lemma 60| (]Split Solutions[) lem:split-solutions




Proof of|Lemma 60| (Split Solutions) lem:split-solutions 87

e If k=x,lett) =t — t;.
e If k=N, let t, = succ(ty).

Thus, = t; #At;.Let Q; =Q [& K=1,].

e &0, ByLemmal5] P Bvensi

D’ Internal Properties of the Declarative System

Lemma 61 (Interpolating With and Exists).

(1) FD=YFTTzAl& CpandV i Py true
thenD’' :¥YFTT:A!l & CAPyp.

(2) IfFD:YFTM Al & [t/alCopand ¥ T:k
thenD' :¥YFTT:A!l & (Fa:k.Co)p

In both cases, the height of D’ is one greater than the height of D. .
Moreover, similar properties hold for the eliminating judgmentV /PFTI: Al & C p.

Proof. By induction on the given match derivation.

In the case, for part (1), apply rule Al For part (2), apply rule

In the case, part (1), use Lemma [2] (Declarative Weakening) (iii). In part (2), use Lemma
(Declarative Weakening) (i). O

Lemma 62 (Case Invertibility).

IfY | case(ep,TT) & Cp

thenWhFey=Aland¥YFTT:A! & CpandV¥F TT covers A

where the height of each resulting derivation is strictly less than the height of the given derivation.

Proof. By induction on the given derivation.

e Case Y- case(eo,ﬂ) = A q YEA <Join(pol(B),pol(A)) B

— DeclSub
Y case(eo, IT) & Bp

Impossible, because ¥ F case(eo, IT) = A q is not derivable.

e Cases DeclVl, [DeclDlf  Impossible: these rules have a value restriction, but a case expression is not a
value.

o Case | p e Y case(ep, IT) & Co p

Decll
W case(eo, 1) & Co APp

w <n—1Yhe = A! By i.h.
<n—TYFEIT:A&Cop "

iw <n—1 VYT covers A "
<n—1VYE~Ptrue Subderivation

w <n YFM:A&CoAPp By Lemma (]Interpolating With and Exists[) (D

Proof of|Lemma 62| (]Case Invertibility[) lem:case-invertibility




Proof of|Lemma 62| (Case Invertibility) lem:case-invertibility 88

o Case Y1k W+ case(eg, IT) &« [t/a]Co
Y I case(eo, IT) &« Jax: k. Co p

Decldl

iw Yhey = Al By i.h.
YETT:AECop "
ww W HTT covers A "
Y1k Subderivation
w YHEIT:A&Eda:k.Cop By Lemma (IInterpolating With and Existsl) 2

The heights of the derivations are similar to those in the |Decl/\|| case.
o Cases [Decl1l| [Decl=1] [DeclRed, [Decl+Ty], [Declx1} [DecINil, [DeclCons}

Impossible, because in these rules e cannot have the form case(eo, IT).

© Case i ace(er, MM = A! WHI:zA!I&Cp Wi ITcovers Al

DeclC
Y case(eo, IT) & Cp

Immediate. O

E’ Miscellaneous Properties of the Algorithmic System

Lemma 63 (Well-Formed Outputs of Typing).

(Spines) If TFs:Aq>Cp-dAorTFs:Aq>Clp]HA
andT + A q type
then A+ C p type.

(Synthesis) IfTFe=Ap-1A
then A + p type.

Proof. By induction on the given derivation.

e Case Use Lemma [51] (Typing Extension) and Lemma [41] (Extension Weakening for Principall
a)).

e Case[VSping We have I' - (Va: k. Ag) q type.
By inversion, Iy oc: k = Ag q type.
By properties of substitution, [ & : k - [&/alAo q type.
Now apply the i.h.

e Case Use Lemma [42] (Inversion of Principal Typing) (2), Lemma [47] (Checkprop Extensionl),
and Lemma (Extension Weakening for Principal Typing).

« Case SpineRecover
Byih., AF C ) type.
We have as premise FEV(C) = 0.
Therefore A = C ! type.

e Case[SpinePasst By i.h.
e Case|[EmptySpinel Immediate.

e Case Use Lemma [42] ([nversion of Principal Typing) (1), Lemma [51] (Typing Extension)), and
Lemma (Extension Weakening for Principal Typing).

e Case Show that &; — &; is well-formed, then use the i.h. O

August 15, 2020



F  Decidability of Instantiation 89

F' Decidability of Instantiation

Lemma 64 (Left Unsolvedness Preservation).
IfTo,&, T F&:=A:k A andp € unsolved(T) then B € unsolved(A).
———

r

Proof. By induction on the given derivation.

e Case
[oFT:k
InstSol
l,&:k,MMEFR:=1: x4, R: k=m1,T
—_——— —_—————
r A

Immediate, since to the left of &, the contexts A and I'" are the same.

o Case B € unsolved (I [&: kI[P : ])
= = —~ InstReach
Ma:klB:klF&:=B: kAT [R: KB : k=&
—_———
r A

Immediate, since to the left of &, the contexts A and I are the same.

°Case B KR iA=R BRI F R =T 41O OF &y = Otz:ix4A
Ty @id I FRi=T1 BT2:x4A [nstBin

We have P € unsolved(I). Therefore B € unsolved (T, &5 : ).
Clearly, &, € unsolved(Ty, &7 : x).
We have two subderivations:

Fo,&z:*,&1:*,&:*:&1@&2,1“1I—&1 =A1:%x10 @8]
@l—&z = [@]Az:*—(A (2)

By induction on (1), @ € unsolved(®).

Also by induction on (1), with &, playing the role of B, we get &, € unsolved(©).

Since B € T, it is declared to the left of & in [0, B2 ik, Q1 : %, R=R1 D R, 7.

Hence by Lemma (Declaration Order Preservation)), f is declared to the left of &, in ©. That is,
© = (Op, &2 : x,01), where B € unsolved(©p).

By induction on (2), [@ € unsolved(A).

e Case

InstZ
IM[&:N]F &:= zero: N - T/[& : N=zero]
——— = zero)
: A

Immediate, since to the left of &, the contexts A and I" are the same.

o Case MN&:Ny&:N=succ(@)]F& =t :NHA

InstS
M&:NF&:=succ(ty) :N+A

We have [@ € unsolved(Ty). Therefore B € unsolved(Ty, &; : N). By i.h., ﬁ € unsolved(A). O

r

—
Lemma 65 (Left Free Variable Preservation). If Ty, & : k,[y F & :==t:k A andT F s: k' and & € FV(['s)
and P € unsolved(Ty) and B ¢ FV([Tls), then B ¢ FV([Als).

Proof. By induction on the given instantiation derivation.

Proof oflLemma 65| qLeft Free Variable Preservationl) lem:left-free-variable-preservation




Proof of|Lemma 65| (Left Free Variable Preservation) lem:left-free-variable-preservation 90

e Case Mok T:k

InstSol
l,&:k,MMFa:=1: x4, &: k=1,
—_——

A

We have & ¢ FV([I'lo). Since A differs from I" only in &, it must be the case that [[o = [A]o. It is given
that B ¢ FV([To), so B ¢ FV([Alo).

e Case 9 € unsolved(T'[& : K]W k) InstReach
r[& ][? ]}_& ‘i) K—{r [ K= & nstReac
_v—’
A

Since A differs from I only in solving 9 to &, applying A to a type will not introduce a . We have
B ¢ FV(I'o), so 5 ¢ FV([Ao).

e Case r

TRy k&1 ixRix=Q1 B RIF& :=T1:x10  OF & =[Otz :%x1A
InstBi
Ma:xF&=m @T2:x1A

We have '+ o type and & ¢ FV([Io) and B ¢ FV([Io).

By weakening, we get '’ I ¢ : k’; since & ¢ FV(['lo) and '’ only adds a solution for &, it follows that
Mo =[MNo.

Therefore &; ¢ FV([I"]o) and &, ¢ FV([I"]o) and B ¢ FV([I"]o).

Since we have B € Iy, we also have B € (T, &, : *).

By induction on the first premise, § ¢ FV([©]o).

Also by induction on the first premise, with &, playing the role of B, we have &, ¢ FV([O]o).

Note that &, € unsolved(Iy, &2 : *).

By Lemma [64] (Left Unsolvedness Preservation)), &, € unsolved(©).

Therefore © has the form (@o, &y %, 01).

Since B # &,, we know that p is declared to the left of &, in (Fo, &y : %), so by Lemmam m
[Order Preservation)), f is declared to the left of &, in ©. Hence P € ©.

Furthermore, by Lemma [43] (Instantiation Extension), we have I'" — ©.
Then by Lemma [36] (Extension Weakening (Sorts))), we have A - o : k.

Using induction on the second premise, 3 ¢ FV([A]o).

e Case

InstZ
IM&:NF&:=zero:NAT'[&: N=zero]
——— —_————
r A

We have & ¢ FV([I'lo). Since A differs from I" only in &, it must be the case that [[Jo = [A]o. It is given
that B ¢ FV([To), so B ¢ FV([Alo).

e Case )

M[& :N,&: N=succ(&)|F & =t :N4A
InstS
IM[&:N] F &:=succ(ty) :NHA

~——
r

Proof of|Lemma 65| (]Left Free Variable Preservation{) lem:left-free-variable-preservation




Proof of|Lemma 65| (Left Free Variable Preservation) lem:left-free-variable-preservation 91
NFo:«k/ Given
OFo:k’ By weakening
& ¢FV([TNo) Given
& ¢ FV([O]o) & ¢ FV([I'o) and © only solves &
O = (T, & :N,&: N=succ(&9),1) Given
B ¢ unsolved(T) Given
B ¢ unsolved(Ty, &7 : N) & fresh
/[3 ¢FV([To) Given
B ¢FV([Olo) &7 fresh
= B ¢FV([Alo) By i.h.
O

r

—
Lemma 66 (Instantiation Size Preservation). If Ty, &, 1 F & ;== t: k HAandT s : k'’ and & ¢ FV([']s), then
I[Tls| = |[Als|, where |C| is the plain size of the term C.

Proof. By induction on the given derivation.

e Case
ToFT:k
InstSol
lo,&:k, M E&:=1:xA0,&: k=1,T}
r A

Since A differs from I" only in solving &, and we know & ¢ FV([I'lo), we have [Alo = [I']o; therefore
I[Alo = [Mol.

e Case

InstZ
IM&:NF&:=zero:NAAT'[&: N=zero]

—— | S —
r A
Similar to the [nstSolve case.
e Case

B € unsolved(I"[& : I[P : k])

Ma: kB :klFa:=p: kAT &: k|
r

InstReach

TKk=&)

o

>

Here, A differs from I' only in solving P to & However, & has the same size as 3, so even if B € FV([Io),
we have [[A]lo = [To].

e Case r

B2 % 81 %, 8:x=81 @RI &1 =11 :x40  OF & := Ol :xHA
InstBi
Ma:d k&=t @1 :ix1A

We have 'F o : k" and & ¢ FV([I'o).

Since &1, &, € dom(I'), we have &, &1, &, ¢ FV([I'o).

By Lemma Deep Evar Introductionl), I'[& : x] — T,

By Lemma Extension Weakening (Sorts)), I'' F o : k'

Since & ¢ FV(o), it follows that [I']o = [0, and so |[T 0‘| = |[Mol.

By induction on the first premise, |[I'']o| = |[©]o].

By Lemma (Declaration Order Preservation)), since &, is declared to the left of &; in '/, we have

Proof of|Lemma 66| (]Instantiation Size Preservation[) lem:instantiation-size-preservation




Proof of|Lemma 66| (Instantiation Size Preservation) lem:nstantiation-size-preservation 92

that &, is declared to the left of &; in ©.

By Lemma (Left Unsolvedness Preservationl), since &, € unsolved(I'’), it is unsolved in ©: that is,
0= (@o, &2 : *,@1 )

By Lemma [43] (Instantiation Extension), we have I'" — ©.

By Lemma 56| (Extension Weakening (Sors)), © - o : .

Since &, ¢ FV([I'']o), Lemma (Left Free Variable Preservation) gives &, ¢ FV([@]o).
By induction on the second premise, |[©]c| = |[Alo], and by transitivity of equality, |[I'o| = |[A]o].

e Case r

T[&r: N, &: N=succ(&)] F & := t1 : N4 A
InstS
Ml& N & = suce(t)) :N A

MN&:xFo:k’ Given
aélMa:«]Jo  Given
MN&:x — T/ By Lemma Deep Evar Introductionl)
Mko:«x' By Lemma Extension Weakening (Sorts)|)

[Mo=[T&:«]]lc Since & ¢ FV([I'& : %]]o)
[[M]o] = |[T[&: «]lo] By congruence of equality

& €[lMo Since [I]o = [T'[& : x]]o, and & ¢ dom(T'[& : %])
I[M]o| = |[©]o] By i.h.
|F'[& : *]]o| = |[@]o] By transitivity of equality

O

Lemma 67 (Decidability of Instantiation). If ' = Ih[& : k'] and T F t : k such that [Tt = t and & ¢ FV(t),
then:

(1) Either there exists A such that Ty[& : k'] - & := t: k 4 A, or not.

Proof. By induction on the derivation of I' - t : k.

e Case (u:x)erm

Sort
FL,&:K’,FR}—U,:K

If k # «’, no rule matches and no derivation exists.
Otherwise:

- If (u: k) € T, we can apply rule[InstSolve]
— If u is some unsolved existential variable B and (P : k) € 'k, then we can apply rule [InstReach
— Otherwise, u is declared in 'z and is a universal variable; no rule matches and no derivation exists.

cCase (g._qer

—————|SolvedVarSort
'Ep:x

By inversion, (B:xk=1)eT,but TP =P is given, so this case is impossible.

e Case[UnitSort
If ’ = %, then apply rule|InstSolvel Otherwise, no rule matches and no derivation exists.

e Case Nty % N7 %

FL,&IK/,FR}—’U D Tr ik
\—,—/
r

Proof of|Lemma 67| (]Decidability of Instantiation{) lem:instantiation-decidable




Proof of|Lemma 67| (Decidability of Instantiation) lem:instantiation-decidable 93

If k’ # %, then no rule matches and no derivation exists. Otherwise:

Given, [I(t1 @ 12) =71 ® 12 and & ¢ FV([T'(t7 ® T2)).

If L+ 71 @ T2 : %, then we have a derivation by [InstSolvel

If not, the only other rule whose conclusion matches t; & 75 is

First, consider whether I'L, &, : x, &1 : %, & : x=&1 & &2,[r F & := t: % 4 — is decidable.

By definition of substitution, [I(t; & t2) = ([I't1) @ ([IN72). Since [I'(t; ® T2) = T1 § T2, We have
[r]"ﬁ =T and [r]Tz = T2.

By weakening, 'L, &2 : %, &1 : %, R:*x=&1 ® R, [R FT1 & T2 : ~.

Since ' 717 : xand I' F 15 : x, we have &;, &, ¢ FV(t1) UFV(T2).

Since & ¢ FV(t) D FV(1), it follows that [I"]t; = T17.

By i.h., either there exists © s.t. I', &2 : %, &7 : ¥, R:x=& § R2,[R F & := 17 : ¥ 1O, or not.

If not, then no derivation by [InstBin| exists.

Otherwise, there exists such a ©. By Lemma (Left Unsolvedness Preservation|), we have &, €
unsolved(®).

By Lemmal|65| (Left Free Variable Preservationl), we know that &, ¢ FV([O®]t,).

Substitution is idempotent, so [O][@]T; = [O]T,.

By i.h., either there exists A such that ® - &; := [@]1, : k 1 A, or not.

If not, no derivation by InstBin] exists.
Otherwise, there exists such a A. By rule wehave '+ & :=t: k4 A.

e Case

————————— |ZeroSort
I'zero: N
If k' # N, then no rule matches and no derivation exists. Otherwise, apply rule

e Case 4 .y

—————— [SuccSort
F}—succ(to):N

If ’ # N, then no rule matches and no derivation exists. Otherwise:

If Il F succ(to) : N, then we have a derivation by [[nstSolve]

If not, the only other rule whose conclusion matches succ(ty) is

The remainder of this case is similar to the case, but shorter. O

G’ Separation

Lemma 68 (Transitivity of Separation).
If (T * Tr) =7 (Or x Or) and (O * Or) 7 (AL * Ag)
then (T * FR) = (AL * AR).

Proof.
(M * TR) 7 (O * Og) Given
(M, MR) — (O, Br) By Deﬁnition
r]_ - @]_ and FR - @R "
(Or * Or) %7 (AL * AR) Given
(OL,0r) — (Ar, Ag) By Deﬁnition
O C A and Or C Ag "
(T, TR) — (A, AR) By Lemma (]Extension Transitivityb
L C AL and 'Rk € Agx By transitivity of C
i (ML *TR) 52 (AL * AR) By Deﬁnition

August 15, 2020



G Separation 94

Lemma 69 (Separation Truncation).

IfH has the form « : k or »4 or wp Or x:Ap

and (Ty * (Try,H)) =7 (AL * Ag)

then (T * TR) = (AL * Ag) where Ag = (Ao, H,©).

Proof. By induction on Ag.

If Ag = (...,H), we have (I = I'g, H) =~ (AL * (A, H)), and inversion on[——Uvar] (if H is (« : k), or the
corresponding rule for other forms) gives the result (with © = -).

Otherwise, proceed into the subderivation of (I't, g, & : k) — (Ar, Ar), with Ag = (Ag, A’) where A’ is
a single declaration. Use the i.h. on A}, producing some ©’. Finally, let © = (©',A"). O

Lemma 70 (Separation for Auxiliary Judgments).

@ Il xTrRFo=T1: k1A
and FEV (o) U FEV(t1) C dom(I'R)
then A = (AL * AR) and (FL * FR) T (A]_ * AR)

() IfTy x TR F P true 4 A
and FEV(P) C dom(I'g)
then A = (A1 * Ag) and (T * TR) 2 (AL * AR).

i) IfTy x TR /o=T1:k4A
and FEV(c) UFEV(T) =0
then A = (Ar * (Ag,®)) and (Ty * (TR, 0)) 5 (AL * AR).

@(v) IfT .« TR /P HA
and FEV(P) =0)
then A = (A * (Ag,©)) and (T * (T, ©)) = (AL * Ag).

V) Ty s TR FR:=T: k1A
and (FEV(t) U{&}) C dom(I'g)
then A = (Ar * Ag) and ('L * TR) 2 (AL * AR).

(vi) IfTy « Tk FP=QHA
and FEV(P) U FEV(Q) C dom(T)
then A = (A]_ * AR) and (r]_ * FR) = (A]_ * AR)

(viD) IfTy «x TR FA=BHA
and FEV(A) U FEV(B) C dom(T)
then A = (A = AR) and (Ty * TrR) = (Ar * AR).

Proof. Part (i): By induction on the derivation of the given checkeq judgment. Cases|CheckeqVar}|CheckeqUnit]
and are immediate (A; = . and Ag = Tg). For case apply the i.h. For cases
and [CheckegInstR] use the i.h. (v). For case use reasoning similar to that in the
case of Lemma [72] (Separation—Main)) (transitivity of separation, and applying © in the second premise).

Part (ii), checkprop: Use the i.h. (i).

Part (iii), elimeq: Cases |ElimeqUvarRefl, [ElimeqUnit| and [CheckeqZero| are immediate (A = I and Ag =
Ir). Cases [ElimeqUvarL L] [ElimeqUvarR1] [ElimeqBinBot| and [ElimeqClash| are impossible (we have A, not
1). For case [ElimeqSucd, apply the i.h. The case for [ElimeqBin|is similar to the case in part (i).
For cases [ElimeqUvarl] and [ElimeqUvarR] A = (I, g, =) which, since FEV(t) C dom(Ik), ensures that
(T * (Try ax=71)) 57 (AL * (Ar, x=17)).

Part (iv), elimprop: Use the i.h. (iii).

Part (v), instjudg:

e Case[InstSolvet  Here, I' = (I, & : k,I7) and A = (o, & : k=1,Ty). We have & € dom(I), so the
declaration & : k is in . Since FEV(t) C dom(I'g), the context A maintains the separation.

Proof of [Lemma 70| (Separation for Auxiliary Judgments) lem:separation-aux




Proof of|Lemma 70| (Separation for Auxiliary Judgments) lem:separation-aux 95

e Case Here, I = Io[& : k][B : k] and A = T [& : K][B : k=&]. We have & € dom(I'z), so the
declaration & : k is in I'z. Since [@ is declared to the right of &, it too must be in 'y, which can also be
shown from FEV(3) C dom(Tg). Both declarations are in Iy, so the context A maintains the separation.

e Case In this rule, A is the same as I' except for a solution zero, which doesn’t violate
separation.

e Case|lnstSucct The result follows by i.h., taking care to keep the declaration &; : N on the right when
applying the i.h., even if & : N is the leftmost declaration in Iz, ensuring that succ(&;) does not violate
separation.

e Case As in the case, the new declarations should be kept on the right-hand side of
the separator. Otherwise the case is straightforward (using the i.h. twice and transitivity).

Part (vi), propequivjudg: Similar to the [CheckeqBin| case of part (i), using the i.h. (i).
Part (vii), equivjudg:

e Cases|=Var| |=Exvar] |=Unitf Immediate (A; =TI and Ag =TR).

Case Similar to the case in part (i).

Case Similar to the case in part (i).

Cases[=V] Similar to the case in part (i).

Cases Similar to the case in part (i), using the i.h. (vi).

Cases |=Instantiatel} [=InstantiateRf Use the i.h. (v). O

Lemma 71 (Separation for Subtyping). If T *x T FA <:P B4 A
and FEV(A) C dom(TR)

and FEV(B) C dom(TR)

then A = (A1 * Ag) and ('L * TR) 2 (AL * AR).

Proof. By induction on the given derivation. In the [< case, use Lemma [70] (Separation for Auxiliary]
Judgments) (vii). Otherwise, the reasoning needed follows that used in the proof of Lemmal72|( Seﬁarauon—

Main)).

Lemma 72 (Separation—Main).

(Spines) If Ty x Tk Fs:Ap>Cq-A
orTL xTrFs:Ap>Clq]H4A
and 'L « TR H A p type
and FEV(A) C dom(IR)
then A = (AL * AR) and (FL * FR) (AL * AR) and FEV( ) - dom(AR).

(Checking) IfTy xTxFe& Cp A
andFL*FRFCp type
and FEV(C) C dom(TR)
then A = (Ar * Ag) and (It * TR) =2 (AL * AR).

(Synthesis) IfTy « TR Fe=Ap-dA
then A = (A * Ar) and (T * TR) 5 (AL * AR).

(Match) IfTy = TR =TTz AqeCpHA
and FEV(A) = 0
and FEV(C) C dom(Tg)
then A = (AL * AR) and (FL x R) = (A]_ * AR).

August 15, 2020



G Separation 96

(Match Elim.) IfTy *Tg /PFTTzAl & CpHA
and FEV(P) =0
and FEV(A) = 0)
and FEV(C) C dom(TR)
then A = (Ar * Ag) and (T * TR) = (AL * AR).

Proof. By induction on the given derivation.
First, the (Match) judgment part, giving only the cases that motivate the side conditions:

e Case Here we use the i.h. (Checking), for which we need FEV(C) C dom(TR).

e Case Here we use the i.h. (Match Elim.), which requires that FEV(P) = (), which motivates
FEV(A) = 0.

e Case In its premise, this rule appends a type A € A to I and claims it is principal (z : A1),
which motivates FEV(A = ().

Similarly, (Match Elim.):

e Case Here we use Lemma [70| (Separation for Auxiliary Judgments)) (iii), for which we
need FEV(o) U FEV(t) = 0, which motivates FEV(P) = 0.

Now, we show the cases for the (Spine), (Checking), and (Synthesis) parts.

e Cases In all of these rules, the output context is the same as the input context, so just
let Ay =T and Ag = Tk.

e Case

EmptySpi
lMxTrbE-tAp> A p 4FL*FR
N~

€ g
Let Af =T1 and Ag =Tk.
We have FEV(A) C dom(Tr). Since Ag = I'g and C = A, it is immediate that FEV(C) C dom(Ag).

e Case L miFe=AqHO OrA<PBAA
M«lRFecBpdA

By lh, = (@]_ * ®R) and (r[_ * FR) = (@L * @R)
By Lemma Separation for Subtyping), A = (Ar * Ar) and (O * Or) 2 (AL * Ag).
By Lemma |68| (Transitivity of Separationl), (I't * I'r) = (AL * Ag).

*Case rArgpe ThHes[AIHA
NE(e:A)=[AJAIHA

Anno|

By i.h.; since FEV(A) = (), the condition on the (Checking) part is trivial.

e Case

NMa:x - QO &a AT&:x=1]

Adding a solution with a ground type cannot destroy separation.

o Case | pig Mn,MRyx:kFvEAp A x: k0O
,MlrFv&EVa: k. Agp 1A @

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|Lemma 72| (Separation—Main))

97

lem:separation-main

FEV(Va: k. Ag) € dom(TR) Given
FEV(Ap) C dom(Tg, o : k) From definition of FEV
(Ao k,0) = (AL % AR) By i.h.
(T * (Tryoc: k) = (AL * Ag) "
= (T * FR) T’ (AL * AR) By Lemma (]Separation Truncationl)
= (Ag,x: k,0©) "
(Ao K @) (A * AR) Above
= (A, AR) Definition of =
= (AL, AR, x: k,0) By above equation
= A = (AL, AR) « not multiply declared

o Case N,Mk,&:kkes:[@/JAg >Cq-1A

VSpi
l,MlkFes:Va:k.Agp>Cqg-A
FEV(Vo: kAp. ) € dom(IR) Given
FEV([&/a]Ag) € dom(TR, & : k) From definition of FEV
= A= (AL * AR) By i.h.
(T * (Try &2 K)) 57 (AL * AR) "
= FEV(C) C dom(Ag) "
dom(T) € dom(Ar) By Deﬁnition
dom(Tg, & : k) € dom(Ag) By Definition |5
dom(Tr) U{&} C dom(AR) By definition of dom(—)
dom(T'r) C dom(Ag) Property of C
(M, Tr) — (AL, AR) By Lemma ql"yping Extensionl)
= (ML % TR) = (AL * AR) By Deﬁnition
e Case , tacase T #TrFPtrue—0© @I—e@[@]Aop%AN
MxrkFe& (AgAP)pHA A

I« Tk (Ao AP)p type
It x 'R =P prop
I« TR FAo p type
FEV(Ao A P) C dom(TR)
FEV(P) C dom(Tg)
FEV(Ao) C dom(TR)
O = (O * Or)

(M * TR) =7 (O * Og)

Given

By inversion
By inversion
Given

By def. of FEV

"

By Lemma (]Separation for Auxiliary Judgments[) 6]
"

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|Lemma 72 (Separation—Main)) lem:separation-main 98

FEV(Ao) C dom(IR) Above
dom(Tg) € dom(Og) By Deﬁnition
FEV(Ay) C dom(Og) By previous line
FEV([®]Ay) C dom(OR) Previous line and (It * ') 5 (O * Or)
N« Tk (Ao AP)ptype Given
I« Tk F Ao p type By inversion
OF Ao p type By Lemma Extension Weakening for Principal Typingl)
O F[B]A, p type By Lemma Right-Hand Substitution for Typing)
(OL * Or) 7 (AL * AR) "
= (L x TR) == (AL * AR) By Lemma (TTransitivity of Separationl)

e Case[Nilt Similar to a section of the [All case.

e Case Similar to the [Al] case, with an extra use of the i.h. for the additional second premise.

°Case | pkl I x(Trywp) /P40  OFv<e[OAg! HA wp, A/

|
M*xMREFEV&EPDAN!HA
ML«TrRE(PDAg)!type Given
L xR FP D Ag prop By inversion
FEV(P D Ag) =0 "
FEV(P) =10 By def. of FEV
I (Try»p) / P10 Subderivation

® = (O * (Or,0z)) By Lemma (]Separation for Auxiliary Judgmentsl) @iv)
(T * (TR, »p,©z)) =7 (O * (B, 0z)) ”

L« TrRE(PDAp) 'type Given

I, MR FAp ! type By Lemma Inversion of Principal Typing|) (2)
I, MR, »p,®z FAp ! type By Lemma Suffix Weakening)
O F [B]A, ! type By Lemmas41|and [40|
FEV(Ao) =0 Above and def. of FEV
FEV(Ap) C dom(Bg,07) Immediate
(Aywp, A7) = (AL * A}) By i.h.
(O * (Br,0z)) 57 (AL * Ag) "
(TL * (Trywp)) = (AL * AR) By Lemma Transitivity of Separationl)
= (T * TR) = (Ar * AR) By Lemma |69| (Separation Truncation)
A]lz = (Ag,»p, ) "
= A = (AL, AR) Similar to the@case

e Case Similar to the case.

eCase i -Prue4O OFes:[OlAcp>CqHA

DSpi
I"L*I“R)—es:PDAop>>Cq—|A

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|Lemma 72 (Separation—Main)) lem:separation-main 99

M xTr (P DAp) ptype Given

I« 'r =P prop By inversion
I, TR FPtrue 10 Subderivation
O = (O * Og) By Lemma (]Separation for Auxiliary Judgments|) )
(M * TR) = (O * OR) "

OFes:[OJA;p>Cq-dA Subderivation

(Aypp,A') = (Ar x AR) By i.h.
(OL * Or) 57 (AL * Ag) "
= FEV(C) C dom(Ag) "
= (TL * Tr) =7 (AL * AR) By Lemma (ITransitivity of Separationb

o Case I, Ryx:CpkFv& Cp—|A,x:Cp,®
,flrFrecx.v&Cp4A

I« TR FCp type Given
FEV(C) C dom(TR) Given
Il x (Tryx:Cp) FCp type By weakening and Deﬁnition
M,Mryx:CpFv&Cp4Ax:Cp,® Subderivation
(A, x:Cp,0) = (AL, AR) By i.h.
(T * TR) =7 (AL * Ag) "
(= (TL * TR) =5 (AL * AR) By Lemma (]Separation Truncation[)
Ap = (Ag,x:Cp,...) "
= A = (AL, AR) Similar to the @case

o Case I, TRyx:ApFe&BpdAx:Ap,®
lN,lkFAx.e &EA—-Bp-dA

xR (A —B)ptype Given
I« TR FBptype By inversion
FEV(A — B) C dom(Tg) Given
FEV(A) C dom(I'R) By def. of FEV
It * (Mryx:Ap) FB p type By weakening and Deﬁnition@
lM,MlRyx:ApFe<&Bp-dAx:Ap,0 Subderivation
(A x:Ap,0) = (A, AR) By i.h.
(T * Tr) = (AL * Ag) "
= (ML % TR) =52 (AL * AR) By Lemma (]Separation Truncationl)
AR—(A JXIAD, ... "
=3 A = (AL, AR) Similar to the case

o Case ro[&ﬁ*, &21*, &'*:&1—)&2] X:® Fey& R —|A,X2&1 yA

16
R xFAx.eg & 1A
—
NI

We have (T % I'r) = [H[& : x]. We also have FEV (&) C dom(I'z). Therefore & € dom(I'z) and
Fo[&:*] = FL,FZ,&:*, F3

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|Lemma 72 (Separation—Main)) lem:separation-main 100

where 'z = (I, & : %, T3).

Then the input context in the premise has the following form:
ro [&1 23} &21*, Rk = &1 —>&2], X: &1 = r]_, rz, &1 ok &22*, Rk = &1 —>&2, F3, X: &1

Let us separate this context at the same point as I'y[& : %], that is, after T and before I';, and call the
resulting right-hand context I';. That is,

ro[&1 ok &22*, Rk = &1—)&2],7(2&1 = r]_ * (rz,&1 oy &22*, &:*:&1%&2,1“3“:&1 )
[
FEV(&) C dom(TR) Given
M+xTiFep <& 4A,x:®;,A" Subderivation
I+ TEE&2 ) type &y € dom(Ty)
FEV(&;2) C dom(T}) &, € dom(ly)
(Ayx:&1,A") = (A, AR) By i.h.
(r]_ * F’) (A[_ * A ) "
= A (AL, AR) Similar to the@case
= (ML * TR) =7 (AL * Ag) "

cCase pp o Ap1@  OFs:[OAp>Clq]-HA

E
TFes=Cq-A

Use the i.h. and Lemma [68| (Transitivity of Separation|), with Lemma [91| (Well-formedness of Algorith-|
and Lemma [13] (Right-Hand Substitution for Typing).

e Case
ls:A!'>CJYHA FEV([AIC) =0 —
F'Es:Al>C[NHA

Use the i.h.

e Case
FEs:Ap>Cq4A  ((p=J))or(q=") or (FEV([AIC) #0)) —
lEs:Ap>Clq]dA

Use the i.h.

eCase L ibecA;pdO OFs: @A p>Cq-A

=
M«MrbFes:A; A, p>Cq-A

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|Lemma 72 (Separation—Main)) lem:separation-main

I'E (A1 = Az) p type

' A5 type
FEV(A] — Az) - dom(FR)
FEV(A]) - dom(FR)

© = (Or,06r)

('L * Tr) =7 (O * Og)

' A, type
'+ [B]A, type

FEV(Az) - dom(FR)

=3 A= (AL, AR)
(OL * Or) 7 (AL * AR)

= FEV(C) C dom(Ag)
= (TL * Tr) =7 (AL * Ag)
e Case

FFesAcp-A

-1
Fl—injke<:A1+A2p—|A

Given

By inversion

Given

By def. of FEV

By i.h.

"

By inversion
By Lemma (IRight-Hand Substitution for Typing[)
By def. of FEV

By i.h.

"

"

By Lemma (]Transitivity of Separationl)

Use the i.h. (inverting I' - (A + A2) p type).

eCase po A pHO

OFe & [BIA pHA

FF<€1,€2><=A] XAzp—{A

IH (A1 x Az) p type

I'EAq p type
l-eg &A;p10
© = (O, 06r)
(ML * TR) 7 (O * OR)

' A, type
r— o

O+ A, type

© - [B]A; type

OFe; & [BIA pHA

A = (A, AR)
(Or * Or) 5 (AL * AR)
w o (I xTR) 7 (AL * Ag)

Given

By inversion
Subderivation
By i.h.

"

By inversion
By Lemma
By Lemma
By Lemma
Subderivation
By i.h.

"

By Lemma

Typing Extension[)

Extension Weakening (Sorts)l)

Right-Hand Substitution for Ty'ping[)

qTransitivity of Separationl)

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|Lemma 72 (Separation—Main)) lem:separation-main

102

* Case ia, Ry, Rx=R& X&) F e & & 40

OFe, & [O&, 1A

M&:* - (e1,ex) & 4A

We have (T % I'g) = [H[& : x]. We also have FEV (&) C dom(I'z). Therefore & € dom(I'z) and

Tol& : %]

where I'g = (T2, & : %, 3).

= r]_,rz,&:*,rg

Then the input context in the premise has the following form:

To[®1 %, Rpik, Bk = R X R3]

(r]_, rz, &1 2.9} &22*, Rk = &1 X&z, F3)

Let us separate this context at the same point as I'y[& : %], that is, after 'L and before I';, and call the

resulting right-hand context I'y:

Tol&1k, Roik, Rk =Ry X Ra] = T * (I, Ryik, Rook, Rk =& xR, T3 )

T

FEV(&) C dom(TR) Given
M «lgker & 40 Subderivation
FEV(&2) € dom(T}) &, € dom(Ig)
0= (61_»@]2) By i.h.
(T * TR) = (OL * OR) "

OFe; &[0, 1A Subderivation
dom(T}) € dom(©x) By Definition|5|
FEV(&;) C dom(©g) By above C

FEV([Ogr]&2) C dom(©g) By Deﬁnition
= A = (AL, AR) By i.h.
(OL x Or) %7 (AL x AR) "
R = (Fz,&:*,I}) Above

r,é = (rz,&ﬁ*, &2:*,&:*:&1><&2,F3) Above

By Lemma (Deep Evar Introduction)) (i), (i), (i) and the definition of separation, we can show
(M (M, &%, T3)) =2 (T * (I, Ryok, Rk, Bex =Ry XR2, [3))

(M« TR) = (I = TR) By above equalities
e (L xTR) 52 (AL * Ar) By Lemma (]Transitivity of Separation[) twice

° Case prg .y By ik Rik=B1+R] e =B HA
Ma:«Finje&s & 4A

Similar to the|x|&case, but simpler.

© Case pia, xRy ik Rik=R1 =Rl Feso: (& — &) >C HA
NMa:xlFesp: & >C HA

Similar to the and cases, except that (because we’re in the spine part of the lemma) we have
to show that FEV(C) C dom(Ag). But we have the same C in the premise and conclusion, so we get
that by applying the i.h.

Proof of|Lemma 72| (]Separation—Main[) lem:separation-main




Proof of|[Lemma 72| (Separation—Main)) lem:eparation-main 103

eCase pp o . A14@ OFM:Aqe[OCpHA  TT+ [AA covers A
't case(e,TT) & CpHA

Use the i.h. and Lemma [68| (Transitivity of Separation)). O

H’' Decidability of Algorithmic Subtyping

H'.1 Lemmas for Decidability of Subtyping

Lemma 73 (Substitution Isn’t Large).
For all contexts ©, we have #large([O]A) = #large(A).

Proof. By induction on A, following the definition of substitution. O

Lemma 74 (Instantiation Solves).
IfTF&:=71:k4A and [t =7 and & ¢ FV([I'T) then |unsolved(T")| = |unsolved(A)| + 1.

Proof. By induction on the given derivation.

e Case MEr:x

InstSol
Mn,&:k,rFE&R:=T1: k4T, &: k=1,TR

It is evident that |unsolved (T, & : K, Tr)| = |unsolved(T'L, & : k =7, TR)| + 1.

e Case ﬁ € unsolved(T'[& : K][/B k)

ra:«lp:kFa:= kAT KB : k=&

InstReach

P
—~—
T

Similar to the previous case.

® Case i, xRyt BRiA=RI DBRIF R =T x40 OF R = [OTaixHA
hR:xFR=11®1:%x1A

lunsolved (T [&7 : %, R7 : %, & =R @ R2])| = |unsolved
lunsolved (T [&7 : %, &7 : %, & =& @ &2])| = |unsolved

o))l +1 Immediate
) +1 By i.h.

—_ o~~~ —

lunsolved(T")| = |unsolved(©)] Subtracting 1
= = |unsolved(A)| + 1 By i.h.
e Case
InstZ
IN&:N]F & := zero: N T[&: N=zero]
Similar to the [nstSolvel case.

e Case g, N,&:N=succ(&)]F & = t; :N4A

InstS
Mo@: N F & = succ(t) :NHA

lunsolved(A)| + 1 = |unsolved(TH[&7 : N, & : N=succ(®7)])] Byi.h.
= = |unsolved (I [& : N])| By definition of unsolved(—)

Proof oflLemma 75| (]Checkeq Solving]) lem:checkeg-solving




Proof of|Lemma 75| (Checkeq Solving) lem:checkeg-solving

104

Lemma 75 (Checkeq Solving). If ' s =t : k 4 A then either A =T or |unsolved(A)| < |unsolved(T)|.

Proof. By induction on the given derivation.

e Case

CheckeqV
T e

A

Here A =T.
e Cases[CheckeqUnit} [CheckeqZero} ~ Similar to the case.

e Case 0
'Fo=t:NHA
CheckeqS
' succ(o) = succ(t) :N+HA
Follows by i.h.

e Case pidlka:=t:k4A &’ FV(1)
TR F&=t:kdA

CheckeqlnstL

——
r
elFa:=t: kA Subderivation
rx:=t:k4A I'=Ty[&]
A =T or |unsolved(A)| = |unsolved(T')] —1 By Lemma (]Instantiation Solves[)
= A =T or |unsolved(A)| < |unsolved(T")|

e Case ria. (= t:k4A  &ZFV(1)
NMa:xlFt=&:k4A

Similar to the |CheckeqlnstL|case.

eCase i s 20 ., 4O OF [Olo, £ [O,:x4A
Fr’For o =11 PT:x1A
—_——  ——

CheckeqlnstR

CheckeqBin

o t

ko =11: %10 Subderivation
© =T or |unsolved(O)| < |unsolved(T")] By i.h.

-0=1TI:
OFBOlo; =[Ot :x4A Subderivation
F'ETo; =Tt :x1A By® =T
= A =T or |unsolved(T')| = Junsolved(A)| +1 By i.h.

— |unsolved(®)| < |unsolved(I")|:

OF[Blo; =[Ot :x1A Subderivation
A = O or |unsolved(A)| < |unsolved(®)| By i.h.

If A = O then substituting A for © in |unsolved(®)| < |unsolved(T")| gives |unsolved(A)| < |unsolved(T")].

If |unsolved(A)| < |unsolved(®)| then transitivity of < gives |unsolved(A)| < |unsolved(T).

O

August 15, 2020



H'.1 Lemmas for Decidability of Subtyping 105

Lemma 76 (Prop Equiv Solving).
IfT'H P =Q - A then either A =T or |unsolved(A)| < |unsolved(T")|.

Proof. Only one rule can derive the judgment:

eCase i ; 2y .NH4® OF[O02=[@t:N4A

=PropE
l'E(op=02)=(t1 =t;) 1A

By Lemma|75| (Checkeq Solving) on the first premise,
either ® =T or |unsolved(®)| < |unsolved(T)|.

In the former case, the result follows from Lemma [75] (Checkeq Solving) on the second premise.

In the latter case, applying Lemma|[75| (Checkeq Solving)) to the second premise either gives A = ©, and
therefore

lunsolved(A)| < |unsolved(T")]

or gives |unsolved(A)| < |unsolved(©®)|, which also leads to |unsolved(A)| < |Junsolved(T")]. O

Lemma 77 (Equiv Solving).
IfT' = A =B - A then either A =T or |unsolved(A)| < |unsolved(T")].

Proof. By induction on the given derivation.

e Case

— =V
N-oa=o0-dT
Here A =T.
e Cases Similar to the case.

e Case 1| A —B, 4@ @F[@]AZE[G)]BZ—UX
(A1 @A) =(B1@®By)H4A —

By i.h., either © =T or |unsolved(®)| < |unsolved(T")|.

In the former case, apply the i.h. to the second premise. Now either A = ©®—and therefore A = '—or
lunsolved(A)| < |unsolved(®)|. Since ® = I', we have |unsolved(A)| < |unsolved(T)|.

In the latter case, we have |unsolved(®)| < |unsolved(T)|. By i.h. on the second premise, either A = ©,
and substituting A for © gives |unsolved(A)| < |unsolved(T")|—or |unsolved(A)| < |unsolved(®)|, which
combined with |unsolved(®)| < |unsolved(TI")| gives |unsolved(A)| < |unsolved(T')|.

e Case Similar to the =] case.

o Case I",oc:K}—AOEBo—iA,oc:K,A’@
F'EVa:k.Ag=Va:k.Bg 1A

By i.h., either (A, oc: k,A’) = (T, & : k), or |unsolved (A, o : k, A")| < |unsolved(T; & : )|.

In the former case, Lemma 22| (Extension Inversion) (i) tells us that A’ = -. Thus, (A, x: ) = ([ & : k),
andso A=T.

In the latter case, we have |unsolved(A, o : k, A’)| < |unsolved(T; c : k)|, that is:

lunsolved(A)| + 0 + |unsolved(A’)| < |unsolved(T)| + 0

Since |unsolved(A’)| cannot be negative, we have |unsolved(A)| < |unsolved(T')|.

Proof oflLemma 77| (]Equiv Solving]) lem:equiv-solving




Proof of|Lemma 77| (Equiv Solving) lem:equiv-solving 106

e Case
r'FP=Q-H0 OF [BJA)=[0]By 1A
Q 0 =[0]By
FNFPOA=QDBoHA

Similar to the case, but using Lemma (Prop Equiv Solving) on the first premise instead of the
i.h.

e Case
r'FP=Q-H0 OF [B]JA) =[O]By 1A
Q [B]A, = [B]Bo
F'FACAP=ByAQHA

Similar to the EA case.

e Case pialFa:=T:x4A  &&FV(T

)
=Instantiatel
el Fa=T14A

——
r

By Lemma (Instantiation Solves)), |unsolved(A)| = |unsolved(T")| — 1.

o Case pialFR:=T:%HA  REFV(T

)
=I iateR
DRIFt=&-A

Similar to the |=Instantiatel| case. O

Lemma 78 (Decidability of Propositional Judgments).
The following judgments are decidable, with A as output in (1)-(3), and A+ as output in (4) and (5).

We assume ¢ = [I'lo and t = [T'|t in (1) and (4). Similarly, in the other parts we assume P = [['|P and (in
part (3)) Q = [1Q.

(DTrRo=t: k1A
@) TEPtrued A
B TFEP=Q4A
@DT/o=t:k4AL
(5) T/PA4A*

Proof. Since there is no mutual recursion between the judgments, we can prove their decidability in order,
separately.

(1) Decidability of T+ 0 = t : k 4 A: By induction on the sizes of ¢ and t.

e Cases|CheckeqVar| [CheckeqUnit], |CheckeqZero No premises.
e Case Both ¢ and t get smaller in the premise.
e Cases|CheckeqlnstL] [CheckeqlnstR:  Follows from Lemma |67| (Decidability of Instantiation)).

(2) Decidability of T' - P true 4 A: By induction on ¢ and t. But we have only one rule deriving this judgment
form, which has the judgment in (1) as a premise, so decidability follows from part (1).

(3) Decidability of T'+ P = Q 4 A: By induction on P and Q. But we have only one rule deriving this
judgment form, which has two premises of the form (1), so decidability follows from part (1).

(4) Decidability of T / o =t : k - A+: By lexicographic induction, first on the number of unsolved variables
(both universal and existential) in T, then on o and t. We also show that the number of unsolved
variables is nonincreasing in the output context (if it exists).

Proof of [Lemma 78| (Decidability of Propositional Judgments) lem:prop-decidable




Proof of|Lemma 78 (Decidability of Propositional Judgments]) lem:prop-decidable 107

Cases |[ElimeqUvarRefl, [ElimegZerof No premises, and the output is the same as the input.

Case [ElimegClashf The only premise is the clash judgment, which is clearly decidable. There is no
output.

Case In the first premise, we have the same I but both ¢ and t are smaller. By i.h.,
the first premise is decidable; moreover, either some variables in ® were solved, or no additional
variables were solved.

If some variables in © were solved, the second premise is smaller than the conclusion according to
our lexicographic measure, so by i.h., the second premise is decidable.

If no additional variables were solved, then @ = TI'. Therefore [@]t, = [['T;. It is given that o = [['o
and t = [I'lt, so [T1, = 1. Likewise, [@]t; = [I't5 = T}, so we aremaking a recursive call on a
strictly smaller subterm.

Regardless, A* is either L, or is a A which has no more unsolved variables than ®, which in turn
has no more unsolved variables than T".

Case
The premise is invoked on subterms, and does not yield an output context.

Case Both ¢ and t get smaller. By i.h., the output context has fewer unsolved
variables, if it exists.

Cases [ElimeglnstL} [ElimeqglnstR;  Follows from Lemma [67] (Decidability of Instantiation). Further-
more, by Lemma[74] (Instantiation Solves), instantiation solves a variable in the output.

Cases [ElimeqUvarl} [ElimeqUvarRE  These rules have no nontrivial premises, and « is solved in the
output context.

Cases [ElimeqUvarlL 1| [ElimeqUvarR 1}  These rules have no nontrivial premises, and produce the
output context L.

(5) Decidability of T/ P 4 At: By induction on P. But we have only one rule deriving this judgment form,
for which decidability follows from part (4). O

Lemma 79 (Decidability of Equivalence).
Given a context I' and types A, B such that T + A type and ' + B type and [T]A = A and [T|B = B, it is
decidable whether there exists A such thatT = A =B H A.

Proof. Let the judgment I' - A = B 4 A be measured lexicographically by

(ED
(E2)
(E3)

#large(A) + #large(B);
lunsolved(T")|, the number of unsolved existential variables in I;

|A] + |B|.

Cases|=Var| [=Exvar|, |=Unit; No premises.

Case i A =B, 4@ OF[OA,=[OB,4A

r-A1®@A,=By @B, 1A

In the first premise, part (E1) either gets smaller (if A, or B, have large connectives) or stays the same.
Since the first premise has the same input context, part (E2) remains the same. However, part (E3)
gets smaller.

In the second premise, part (E1) either gets smaller (if A; or B; have large connectives) or stays the
same.

Case Similar to a special case of where two of the types are monotypes.

Proof of [Lemma 79| (Decidability of Equivalence) lem:equiv-decidable




Proof of|Lemma 79 (Decidability of Equivalence) lem:equiv-decidable 108

o Case [‘,oc:K}—AOEBo—|A,oc:K,A'|€v|
N'EVo:k.Ag =Va:k.Bg 1A
—_————  —
A B

Since #large(Ap) + #large(By) = #large(A) + #large(B) — 2, the first part of the measure gets smaller.

eCase py p_g4@ OF[OA,=[OByHA

TFPSAc=Q OBy 1A
——— ——
A B

The first premise is decidable by Lemma [78| (Decidability of Propositional Judgments)) (3).

For the second premise, by Lemma (Substitution Isn’t Large), #large([@]Ay) = #large(Ao) and
#large([O]By) = #large(Bo). Since #large(A) = #large(Ap) + 1 and #large(B) = #large(Bo) + 1, we
have

#large([BlAo) + #large([O]By) < #large(A) + #large(B)

which makes the first part of the measure smaller.

e Case _ —
r'EkP=Q 10O OF [B]JAy = [B]By 1A
Q [] 0 []0
TFAGAP=BoAQA

Similar to the =) case.

e Case
NMalFa&:=1:«4A & ¢ FV
& F[&F]t F*& —y 7 5 =lInstantiatel

Follows from Lemma |67| (Decidability of Instantiation)).
e Case Similar to the case. O

H’.2 Decidability of Subtyping

Theorem 1 (Decidability of Subtyping).
Given a context I' and types A, B such thatT" - A type and ' + B type and [T]A = A and [T|B = B, it is
decidable whether there exists A such thatT - A <:7 B 4 A.

Proof. Let the judgments be measured lexicographically by #large(A) + #large(B).

For each subtyping rule, we show that every premise is smaller than the conclusion, or already known to
be decidable. The condition that ['JA = A and [I'/B = B is easily satisfied at each inductive step, using the
definition of substitution.

Now, we consider the rules deriving T - A <:7 B 4 A.

* Case ) ot headed by V/3
B not headed by V/3 r'FA=B-HA

:Equi
r’EA<:PBHA

In this case, we appeal to Lemma[79] (Decidability of Equivalence).

* Case gt headed by V
ea,&:kE[@/x]A<:7 B4A»s,0
N-Va:k.A<:"BHA

<:VL

The premise has one fewer quantifier.

Proof of [Theorem 1| (]Decidability of Subtyping[) thm:subtyping-decidable




Proof of|[Theorem 1| (Decidability of Subtyping) thm:subtyping-decidable

109

Case Pp. A< BHAB: kO

:VR
I'FA<:"VB:x.BHA

The premise has one fewer quantifier.

e Case +
Na:kFA<:TBHAA a:k,©
2 TN
NF3a:k.A<:TBHA

The premise has one fewer quantifier.

* Case ), ot headed by 3
R»@,BIKFA?:JF[B/B]B—(A,bg,@) —=
NNFA<:"3f:x.BH4A <:3R)

The premise has one fewer quantifier.

e Case neg(A)
'FA<:"BHA nonpos(B) —
-~ <:7L
FrFA<:TBHA

Consider whether B is negative.

— Case neg(B):

B=VR:«.B’ Definition of neg(B)
B:xkFA<:"B'"4A/B:k,0 Inversion on the premise

There is one fewer quantifier in the subderivation.

— Case nonneg(B):
In this case, B is not headed by a V.

A=Vou:k A’ Definition of neg(A)
Nra,&:kE[R/aJA <:7 "4 A »a,0 Inversion on the premise

There is one fewer quantifier in the subderivation.

o Case nonpos(A)
rNFA<:"BHA neg(B) _
T <:7R
rNFA<:"BHA
B=VR:«x.B’ Definition of neg(B)

NR:kFA<:7B'4A,f:x,0 Inversion on the premise

There is one fewer quantifier in the subderivation.

e Case pOS(A)
FrFA<:*BHA nonneg(B)
TFA<:TBAHA

This case is similar to the case.

<: 'L

Proof of [Theorem 1| ([Decidability of Subtyping]) thm:subtyping-decidable




Proof of|[Theorem 1| (Decidability of Subtyping) thm:subtyping-decidable 110

o Case nonneg(A)

FrEA<:"BH4A  pos(B)
'FA<:T BHA

This case is similar to the case.

O
H’'.3 Decidability of Matching and Coverage
Lemma 80 (Decidability of Guardedness Judgment).
For any set of branches T1, the relation TT guarded is decidable.
Proof. This follows via a routine induction on TT, counting the number of branch lists. O

Lemma 81 (Decidability of Expansion Judgments).
Given branches T1, it is decidable whether:

(1) there exists a unique T1’ such that T T

(2) there exist unique TTy and TTg such that T1 N || TTg;

var

(3) there exists a unique 11’ such that TT ~ T1’;

(4) there exists a unique T’ such that TT Lo

(5) there exist unique 1T ; and T1.. such that TT e Mgy || ...

Proof. In each part, by induction on TT: Every rule either has no premises, or breaks down TT in its nontrivial
premise. O

Lemma 82 (Expansion Shrinks Size).
We define the size of a pattern |p| as follows:

x| =0

L =0

(P, p")l = T+Ipl+Ip’l
10| = 0

linj;pl = T+[pl
linjpl = 1+1pl

[[]] = 1

pup’l = T4Ipl+1p/|

We lift size to branches m =p = e as follows:
P1y..yPn = el =Ip1l+... + |pnl
We lift size to branch listsTT =y | ... | 1., as follows:
It | Pl =l + ..+ 7
Now, the following properties hold:
1. IfTT & T’ then [TT| = [TT/].
2. IfTT <5 TU then [TT| = [TT"].

3. IfTT <5 11 then [TT| < [TT/].

August 15, 2020



H'.3 Decidability of Matching and Coverage 111

4. IFTT <5 T || Ty then [TT| < [Th| and [TT] < [TT,.

5. IfTT X Ty || T, then M| < [TT] and [T, < [T,

6. IfTT guarded and TT X T || TT.. then [T | < 11| and [TT..| < [T7|.

Proof. Properties 1-5 follow by a routine induction on the derivation of the expansion judgement. Since
expansion only ever removes pattern constructors, and only ever adds wildcards, it never increases the size
of the resulting branch list.

Case 6 for vectors proceeds by induction on the derivation of IT guarded, and furthermore depends upon
the proof for case 5.

1. Case

(1,7 = e | IT guarded

By inversion on the expansion derivation, we know TT Y Mg || ...
By part 5, we know that [T | < [TT| and [TT..| < |TT].

By the definition of size, we know that [f = ¢| < |[],P = el.

ww Hencelp=elllgl<|[0,p=elTl.

By the definition of size, we know that [TT| < |[1,p = e | TI|.

ww Hence [TT.| < [[],p = el Tl

2. Case

p:p’,P = el Tl guarded

By inversion on the expansion derivation, we know TT Y Mg || ...
By part 5, we know that [T | < [T and [TT..| < |TT].

By the definition of size, we know that [p,p’,p = el <|p:p/,P = el.
ww Hence [p,p’,p=celll.l<|pzp/,p=>ellll.

By the definition of size, we know that |TT| < [p = p/,p = e | TI|.

ww Hence |TTg| < |[[1,p = e | TT].

3. Case IT guarded
,P = el Il guarded

By inversion on the expansion derivation, we know TT X Mg || ...
By induction, [ITp;| < || and |TT..| < |TT].

w By the definition of size, | ,p = el Tlg|< | ,p=elTl|

rw By the definition of size, | ,p = e |TT.|<| ,p=elTI]

4. Case T guarded

x,P = e | IT guarded

Similar to previous case.

Theorem 2 (Decidability of Coverage). .
Given a context I', branches TT and types A, it is decidable whether T =TT covers A q is derivable.

Proof ofITheorem ZI ([Decidability of Coverage]) thm:coverage-decidable




Proof of|Theorem 2| (Decidability of Coverage) thm:coverage-decidable 112

Proof. By induction on, lexicographically, (1) the size |TT| of the branch list TT and then (2) the number of A
connectives in A, and then (3) the size of f\, considered to be the sum of the sizes |A| of each type A in A
(treating constraints s =t as size 1).

(For [CoversVarl |Covers x} |CoversVec] |CoversVec }| and [Covers+} we also use the appropriate part of Lemma
(Decidability of Expansion Judgments)), as well as Lemma [82] (Expansion Shrinks Siz€]).)

Case No premises.

Case The number of A connectives does not grow, and the size of the branch list stays the
same, and A gets smaller.

Case The number of /\ connectives and the size of the branch list stays the same, and A gets
smaller.

Case The size of the branch list stays the same, and the number of A connectives in A goes
down. This lets us analyze the two possibilities for the coverage-with-assumptions judgement:

— Case|CoversEq: The first premise is decidable by Lemma [78] (Decidability of Propositional Judg-|
ments|

ents) (4). The number of /A connectives in A gets smaller (note that applying A as a substitution
cannot add /A connectives).
- Case The premise is decidable by Lemma [78| (Decidability of Propositional Judg-|
).

Case The size of the branch list stays the same, and the number of A connectives in A goes
down.

Case[Coversx} The size of the branch list does not grow, the number of /\ connectives stays the same,
and A gets smaller, since |[Aq]| + |A2| < |A7 x Aal.

Case Here we have A = (A1 4+ A2, ]§). In the first premise, we have (Aq, ]§), which is smaller
than A, and in the second premise we have (A, B), which is likewise smaller. (In both premises, the

size of the branch list does not grow, and the number of /\ connectives stays the same.)
Case |CoversVed
Vec

Since TT guarded is decidable, and TT ~> TT3 || TT.. is decidable, then we know that the size of the branch
lists TT(y and TT.. is strictly smaller than TT.

This lets us analyze the two cases for each premise, noting that the assumption is decidable by Lemma
(Decidability of Propositional Judgments)) (4).

- Case [CoversEqf  The first premise (that t = zero) is decidable by Lemma
Propositional Judgments) (4). The size of TT; is strictly smaller than TT’s size, so we can still
appeal to induction (note A as a substitution cannot add change the size of a branch list).

— Case Decidable by Lemma [78| (Decidability of Propositional Judgments)) (4).

The cons case is nearly identical:

- Case The first premise (that t = succ(n)) is decidable by Lemma
of Propositional Judgments) (4). The size of TTy; is strictly smaller than TT’s size, so we can still

appeal to induction (note A as a substitution cannot add change the size of a branch list).
- Case Decidable by Lemma [78| (Decidability of Propositional Judgments)) (4).

Case [CoversVec /]

Since TT guarded is decidable, and TT Y& Ty || T1.. is decidable, then we know that the size of the branch
lists TT;y and TT.. is strictly smaller than TT.

Case The size of the branch list does not grow, and A gets smaller.

Proof of|TheoreIn 2| (]Decidability of Coverage[) thm:coverage-decidable




Proof of|[Theorem 2| (Decidability of Coverage)) thm:coverage-decidable 113

e Case The first premise is decidable by Lemma|78] (Decidability of Propositional Judgments])
(4). The number of A connectives in A gets smaller (note that applying A as a substitution cannot add
/\ connectives).

e Case|CoversEqBotl Decidable by Lemma [78| (Decidability of Propositional Judgments) (4). O

H’.4 Decidability of Typing
Theorem 3 (Decidability of Typing).

(i) Synthesis: Given a context I', a principality p, and a term e,
it is decidable whether there exist a type A and a context A such that
l'Fe=Ap-A.

(ii) Spines: Given a context I', a spine s, a principality p, and a type A such that '+ A type,
it is decidable whether there exist a type B, a principality q and a context A such that
lEs:Ap>Bq-A.

(iii) Checking: Given a context I', a principality p, a term e, and a type B such that " - B type,
it is decidable whether there is a context A such that
NFe<BpHA.

(iv) Matching: Given a context I, branchesTl, a list of types A, a type C, and a principality p, it is decidable
whether there exists A such thatTFTT:A q & Cp HA.

Also, if given a proposition P as well, it is decidable whether there exists A such thatT /P Tz A | &
Cp-A.

Proof. For rules deriving judgments of the form

N-e=——-4-
'Fe&Bp-d-—
l-s:Bp>»——-4—
FMFMzAqeCpH—

(where we write “—” for parts of the judgments that are outputs), the following induction measure on such
judgments is adequate to prove decidability:

=
<e/s/ﬂ, & />, #large(B), B >

Match, A, match judgment form

where (...) denotes lexicographic order, and where (when comparing two judgments typing terms of the
same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second line).
That is,

= < & /> /Match

Two match judgments are compared according to, first, the list of branches TT (which is a subterm of the
containing case expression, allowing us to invoke the i.h. for the rule), then the size of the list of types
A (considered to be the sum of the sizes |A| of each type A in A), and then, finally, whether the judgment is
[/PE... orT k..., considering the former judgment (I/P I-...) to be larger.

Note that this measure only uses the input parts of the judgments, leading to a straightforward decidability
argument.

We will show that in each rule deriving a synthesis, checking, spine or match judgment, every premise is
smaller than the conclusion.

e Case[EmptySpinef No premises.

Proof oflTheorem 3| (IDecidability of 'Iyping]) thm:typing-decidable




Proof of|Theorem 3| (Decidability of Typing)) thm:typing-decidable 114

Case In each premise, the expression/spine gets smaller (we have e s in the conclusion, e in
the first premise, and s in the second premise).

Case[Vart No nontrivial premises.

Case The first premise has the same subject term e as the conclusion, but the judgment is smaller
because our measure considers synthesis to be smaller than checking.

The second premise is a subtyping judgment, which by Theorem |I]is decidable.

Case It is easy to show that the judgment I' - A ! type is decidable. The second premise types
e, but the conclusion types (e : A), so the first part of the measure gets smaller.

Cases No premises.

Case Both the premise and conclusion type e, and both are checking; however, #large(Ao) <
#large(Vo : k. Ap), so the premise is smaller.

Case [VSping:  Both the premise and conclusion type e s, and both are spine judgments; however,
#large(—) decreases.

Case By Lemma [78] (Decidability of Propositional Judgments) (2), the first premise is decidable.
For the second premise, #large([@]Ay) = #large(Ap) < #large(Ao A P).

Case Both the premise and conclusion type e, and both are checking; however, #large(—) decreases
so the premise is smaller.

Case For the first premise, use Lemma [78] (Decidability of Propositional Judgments) (5). In the
second premise, #large(—) gets smaller (similar to the case).

Case The premise is decidable by Lemma [78] (Decidability of Propositional Judgments)) (5).
Case Similar to the [\l case.

Cases[=I|[=1& In the premise, the term is smaller.

Cases In all premises, the term is smaller.

Cases In all premises, the term is smaller.

Case In the first premise, the term is smaller. In the second premise, we have a list of branches
that is a proper subterm of the case expression. The third premise is decidable by Theorem

We now consider the match rules:

Case |MatchEmptyp No premises.

Case In each premise, the list of branches is properly contained in IT, making each premise
smaller by the first part (“e/s/TT”) of the measure.

Case The term e in the premise is properly contained in TT.
Cases [Matchd| [Match x| [Match+| [MatchNeg| [MatchWild;  Smaller by part (2) of the measure.

Case The premise has a smaller A, so it is smaller by the A part of the measure. (The premise
is the other judgment form, so it is larger by the “match judgment form” part, but A lexicographically
dominates.)

Case|[Match I} For the premise, use Lemma [78| (Decidability of Propositional Judgments) (4).

Case
Lemma [78| (Decidability of Propositional Judgments|) (4) shows that the first premise is decidable.

The second premise has the same (single) branch and list of types, but is smaller by the “match judg-
ment form” part of the measure. O

August 15, 2020



I' Determinacy 115

I’ Determinacy

Lemma 83 (Determinacy of Auxiliary Judgments).

(1) Elimeq: GivenT, o, t, k such that FEV(c) UFEV(t) =0 and Dy =T /o =t:k 1Ay and D, =T /o = t:
K 1A7,
it is the case that A{ = Ay

(2) Instantiation: Given T, &, t, k such that & € unsolved(T") and '+t : k and & ¢ FV(t)
andD; :TF&:=t:kdA7andD; z:TF&a:=t: kA,
it is the case that A1 = A,.

(3) Symmetric instantiation:
GivenT, &, B, x such that &, B € unsolved(T") and & #* B
andD; :TH&:=P:k4A;andD> :THB:=&:x 4A;
it is the case that A1 = A,.

(4) Checkeq: GivenT, o,t,ksuchthatD; :TFo=t:k4AjandD,:THo=t: k1A,
it is the case that A1 = A;.

(5) Elimprop: GivenT, P such thatD; =T /P4 Ay and Dy =:T / P A AZl
it is the case that A1 = A,.

(6) Checkprop: GivenT, P such that D; :: T+ P true 1Ay and D2 =T F P true 4 A,
it is the case that A1 = A,.

Proof.
Proof of Part (1) (Elimeq).

Rule applies if and only if 0 = t = zero.

Rule applies if and only if o and t are headed by succ.
Now suppose 0 = «.

e Rule applies if and only if t = «. (Rule cannot apply; rules and

have a free variable condition; rules [ElimeqUvarl 1] and [ElimeqUvarR1] have a condition
that o # t.)

In the remainder, assume t # alpha.
e If x € FV(t), then rule applies, and no other rule applies (including and
ElimeqClash).

In the remainder, assume o &€ FV(t).

e Consider whether [ElimeqUvarR 1| applies. The conclusion matches if we have t =  for some 3 # «
(that is, 0 = « and t = ). But[ElimeqUvarR1|has a condition that f € FV(o), and 0 = «, so the

condition is not satisfied.

In the symmetric case, use the reasoning above, exchanging L’s and R’s in the rule names.

Proof of Part (2) (Instantiation).
Rule [InstBin| applies if and only if t has the form t; & t,.
Rule [InstZero|applies if and only if t has the form zero.
Rule [InstSucd applies if and only if t has the form succ(to).
If t has the form {, then consider whether {3 is declared to the left of & in the given context:

e If B is declared to the left of &, then rule cannot be used, which leaves only

e If B is declared to the right of &, then cannot be used because p is not well-formed under T,
(the context to the left of & in[InstSolve). That leaves only [nstReach]

e Q& cannot be [3, because it is given that & ¢ FV(t) = FV(G) = {(@}.

Proof of [Lemma 83| (Determinacy of Auxiliary Judgments) lem:aux-det




Proof of|Lemma 83 (Determinacy of Auxiliary Judgments) lem:aux-det 116

Proof of Part (3) (Symmetric instantiation).
[InstBinl [InstZero| and [InstSucc| cannot have been used in either derivation.

Suppose that|InstSolve|concluded D;. Then A; is the same as ' with & solved to 8. Moreover, {3 is declared
to the left of @ in T. Thus, cannot conclude D,. However, can conclude D, but produces
a context A, which is the same as I' but with & solved to /B Therefore A1 = A,.

The other possibility is that InstReach| concluded D;. Then A, is the same as I with f solved to &, with
& declared to the left of 3 in T". Thus, [InstReach| cannot conclude D,. However, can conclude D,
producing a context A, which is the same as I' but with 6 solved to &. Therefore A7 = A,.

Proof of Part (4) (Checkeq).
Rule applies if and only if 0 =t = & or 0 = t = « (note the free variable conditions in

Rule [CheckeqUnit] applies if and only if o0 = t = 1.

Rule [CheckegBin| applies if and only if o and t are both headed by the same binary connective.

Rule [CheckeqZerd| applies if and only if o = t = zero.

Rule [CheckeqSucd applies if and only if o and t are headed by succ.

Now suppose 0 = &. If t is not an existential variable, then cannot be used, which leaves
only [CheckeqlnstL] If t is an existential variable, that is, some B (distinct from &), and is unsolved, then both
[CheckeqlnstL|and [CheckeqlInstR| apply, but by part (3), we get the same output context from each.

The t = & subcase is similar.

Proof of Part (5) (Elimprop). There is only one rule deriving this judgment; the result follows by part (1).

Proof of Part (6) (Checkprop). There is only one rule deriving this judgment; the result follows by part
4). O

Lemma 84 (Determinacy of Equivalence).

(1) Propositional equivalence: Given T, P, Q such thatD; = THFP=Q H4A;andD, =:THP=Q 4 A,
it is the case that A1 = A;.

(2) Type equivalence: Given T, A, B such thatD; :THFA=BH4A;andD, :THFA=B A,
it is the case that A1 = A,.

Proof.
Proof of Part (1) (propositional equivalence). Only one rule derives judgments of this form; the result
follows from Lemma [83| (Determinacy of Auxiliary Judgments) (4).

Proof of Part (2) (type equivalence). If neither A nor B is an existential variable, they must have the same
head connectives, and the same rule must conclude both derivations.

If A and B are the same existential variable, then only [=Exvar|applies (due to the free variable conditions
in|=Instantiatel| and |=InstantiateR)).

If A and B are different unsolved existential variables, the judgment matches the conclusion of both
[Elnstantiatel] and [ElnstantiateR}, but by part (3) of Lemma [83] (Determinacy of Auxiliary Judgments)), we get
the same output context regardless of which rule we choose. O

Theorem 4 (Determinacy of Subtyping).

(1) Subtyping: GivenT, e, A, B suchthat Dy :T+HA<:PB4A;andD, =:T+A<:P BHA,,
it is the case that A1 = A;.

Proof. First, we consider whether we are looking at positive or negative subtyping, and then consider the
outermost connective of A and B:

Proof of [Theorem 4] (Determinacy of Subtyping) thm:subtyping-det




Pro

of of|[Theorem 4| (Determinacy of Subtyping) thm:subtyping-det 117

e IfTFA<:"B-H4A;andTF A <:* B H A;, then we know the last rule ending the derivation of D,
and D, must be:

B
v 3 other
v |<:;R|,|<:1L| <:E|R| <:, L
A 3 l:3d e k3

other |< : 1R| <:EIR| |< : Equiv|

The only case in which there are two possible final rules is in the V/V case. In this case, regardless of
the choice of rule, by inversion we get subderivations ' A <:~ B4 A;andTTH A <:~ B 4 A;.

eIfTFA<:"BHdA;and '+ A <:~ B 4 A,, then we know the last rule ending the derivation of D;
and D, must be:

B
A 3 other

v <R |l <L
A 3 < VR U< Rl L
other [<:VR |< : J_rR| |< : Equiv|

The only case in which there are two possible final rules is in the V/V case. In this case, regardless of
the choice of rule, by inversion we get subderivations '+ A <:" B4 A;andTH A <:* B 4 A;.

As a result, the result follows by a routine induction. O

Theorem 5 (Determinacy of Typing).

(D

&)

3

4

Checking: GivenT, e, A,psuchthatD; :TFe&Ap-dAjandD, :TkHe& Ap Ay,
it is the case that A1 = A;.

Synthesis: GivenT, e such that Dy :THe=B;p; 1A and D, =T+ e= B, px 1A,
it is the case that By = B, and p1 = p2 and A = A;.

Spine judgments:

GivenT, e, A,psuchthatD; :Tte:Ap>Cyqi 1A andD, :THe:Ap> Cyqz 1A,

it is the case that Cy = C; and q1 = q2 and Ay = A;.

The same applies for derivations of the principality-recovering judgmentsT'-e: A p > Cy [qx| 7 Ax.

Match judgments:

GivenT,TI, A, p, Csuchthat D; =T FTI:Aq& Cp-dAyandD, =THM =z A q < Cp Ay,
it is the case that A1 = A;.

GivenT, P, TI, A, p, C ) )

such thatDy =T /PFTT:Al & CpHdAyandD, =T /PEITzA!l & CpHA,,

it is the case that A1 = A,.

Proof.
Proof of Part (1) (checking).

The rules with a checking judgment in the conclusion are: VI, AT}

1&g [<1, [< T3l [Case) [Nill [Consl

The table below shows which rules apply for given e and A. The extra “chk-I?” column highlights the role

of the “chk-I” (“check-intro”) category of syntactic forms: we restrict the introduction rules for V and > to

Proof of [Theorem 5| (Determinacy of Typing) thm:typing-det




Proof of|Theorem 5| (Determinacy of Typing) thm:typing-det 118

type only these forms. For example, given e = x and A = (V& : k. Ap), we need not choose between [Sub|and
VIt the latter is ruled out by its chk-I premise.

A
Note 1
chk-I? vV D 3 AN — + X 1 x o Vec
AX. eg chk-I I —l 0 0 0 1 0 0
rec x.v Note 2 Rec Red |Rec :Rec 0
inj, €o chk-I Sl L I 0 S A 0 HRy| 0 0
(e1,e2)  chk-I S | o 0 0 x| o 0
0O chi-1 BB | 0o 0 0 I I
e [ chk-I DIoIL N0 0 0 0 0 0 Nil
e e chk-I /e I 0 0 0 0 0 0 Cons
case(ep, IT) Note 3 Cas¢| Cése| Ca's<.a| Cas§| Case| Cas¢| Cas¢| Case| Cas¢| Cas¢|
X Sub) Sub| [Sub| [Sub| [Subl |Sub| |Sub| [Subl [Sub| [Sub
(eg : A) Sub Subl |Sub| [Sub| [Subl [Sub| [Sub| [Sub] [Sub| [Sub
ers Sub Subl [Sub| [Sub] |Sub| [Sub| [Sub| |Sub Subl [Sub

Notes:

e Note 1: The choice between[>lland is resolved by Lemma 83| (Determinacy of Auxiliary Judgments)
5).

e Note 2: Fixed points are a checking form, but not an introduction form. So if e is rec x.v, we need not
choose between an introduction rule for a large connective and the [Redrule: only the [Redrule is viable.
Large connectives must, therefore, be introduced inside the typing of the body v.

e Note 3: Case expressions are a checking form, but not an introduction form. So if e is a case expression,
we need not choose between an introduction rule for a large connective and the rule: only the
rule is viable. Large connectives must, therefore, be introduced inside the branches.

Proof of Part (2) (synthesis). Only four rules have a synthesis judgment in the conclusion: and
Rule [Var] applies if and only if e has the form x. Rule applies if and only if e has the form (eo : A).
Otherwise, the judgment can be derived only if e has the form e; e, by[=H

Proof of Part (3) (spine judgments). For the ordinary spine judgment, rule applies if and only
if the given spine is empty. Otherwise, the choice of rule is determined by the head constructor of the input
type: —/[—Spine} V/VSpine} D/DSpinel &/&Spinel

For the principality-recovering spine judgment: If p = /, only rule [SpinePasg applies. If p =!and q = !,
only rule applies. If p = ! and q = }, then the rule is determined by FEV(C): if FEV(C) = 0 then
only pplies; otherwise, FEV(C) # () and only[SpinePass| applies.

Proof of Part (4) (matching). First, the elimination judgment form I' / P - ...: It cannot be the case that
bothT /o =t:k+Landl /o =t:k 6, so either[Match] concludes both D; and D, (and the result
follows), or[MatchUnify| concludes both D; and D, (in which case, apply the i.h.).

Now the main judgment form, without “/ P”: either TT is empty, or has length one, or has length greater
than one. applies if and only if TT is empty, and applies if and only if TT has length
greater than one. So in the rest of this part, we assume TT has length one.

Moreover, applies if and only if A has length zero. So in the rest of this part, we assume the
length of A is at least one.

Proof of [Theorem 5| (Determinacy of Typing) thm:typing-det




Proof of|Theorem 5| (Determinacy of Typing) thm:typing-det 119

Let A be the first type in A. Inspection of the rules shows that given particular A and p, where p is the
first pattern, only a single rule can apply, or no rule (“()”) can apply, as shown in the following table:

A
| A + X Vec other
inji po [Match3 [Match/\| [Match+y| 0 0 0
[ Matchx| () 0

P (p1 , p2> Matchd| [MatchA
z Matchd| [Match/\| |[MatchNeg| [MatchNeg| [MatchNegl [MatchNeg]
_ Matchd [Match/\| [MatchWild] [MatchWild| [MatchWild| [MatchWild|

(] Matchd| [Match/\ 0 0 [MatchNil[ 0
p1 P2 [Matchdl [Match/A 0 0 MatchCons| 0 O

J’  Soundness

J’.1 Instantiation

Lemma 85 (Soundness of Instantiation).
IfTF&:=71:xk4Aand& ¢ FV([I't) and [Tt =t and A — Q then [Q]& = [Q]T.

Proof. By induction on the derivation of ' - & := T: k 4 A.

e Case Mok T:k

InstSol
FO»&:K)rlF&:=T1K4r0,&:K:T’r1 nstoove
—_—————

A

[Al& = [A]Tt By definition
w [Q]a =[Q]t ByLemma (]Substitution Monotonicityl) to each side

o Case B € unsolved(T'[& : I[P : ])
= = = InstReach
MNa:kl[B:xlF&:= B kAT :x][P:k=8&]
v N— e
T A
Al = [Al& By definition
[QI[AIR = [Ql[A]&  Applying Q to each side
i [Q)] ﬁ = [Q]a By Lernrna Substitution Monotonicity) to each side
~—
e Case r

To[®2 1, Ry 1k, Rix=R1 DRI F R :=T1:x40  OF & :=[Ol2:x 1A
InstBi
Na:FR:=t1&T:x1A

Proof of [Lemma 85| (Soundness of Instantiation) lem:instantiation-soundness




Proof of|Lemma 85| (Soundness of Instantiation) lem:instantiation-soundness

120

A— Q Given
NC& =11 :%«410 Subderivation
80— A By Lemma Instantiation Extensionb
00— Q By Lemma Extension Transitivity)
Q&1 = [Q]Ty By i.h.
OF&; := [O]ty : « 1A Subderivation
[Ql&, = [Q][O]1, By i.h.
= [Q]t, By Lemma (]Substitution Monotonicity[)
(1QlT1) & (1Q]T2) = ([Ql&1) & ([Q]&z) By above equalities
= [Q](&1 @& &2) By definition of substitution
= [Q]([I'"]&) By definition of substitution
= [Q]& By Lemma (]Substitution Monotonicity{)
= Q] (11 @ 12) = [Q]& By definition of substitution

e Case

InstZ
Iol@: Nl F & := zero: N+ Ty[&: N=zero]
Similar to the [nstSolve case.

* Case piia, N, &:N=succ(&)]F & =t :N4A

InstS
Iol@:NJF & :=succ(t;) :NHA

Similar to the case, but simpler.

Lemma 86 (Soundness of Checkeq).
IfTFo=1t:x A where A — Q then [Q]o = [Q]t.

Proof. By induction on the given derivation.

e Case

F}—uéu'K—il"

w  [QJlu=[QJu By reflexivity of equality

e Cases|CheckeqUnit, |[CheckeqZero; Similar to the [CheckeqVar|case.

e Case 0
'op=ts:NHA
CheckeqS
' succ(og) = succ(ty) :N-HA

I'Fog =ty :N-HA Subderivation
[Qloo = [Qlto By i.h.
succ([Q]og) = succ([Qltg) By congruence
v [Q](succ(og)) = [Q](succ(ty)) By definition of substitution

Proof of|Lemma 86| (]Soundness of Checkeq]) lem:checkeg-soundness




Proof of|Lemma 86| (Soundness of Checkeq)) lem:checkeg-soundness 121

eCase pp (ot 4@  OF [Olo; =[Ot : #
l'Fogdor=to®ti:x4A

A

NFog=ty: NHA Subderivation
OF[O®lo; = [O]t; : x4 A Subderivation
A— Q Given
0—A By Lemma Checkeq Extension))
®— Q0 By Lemma Extension Transitivity[)
[Qlog = [Qltg By i.h. on first subderivation
[Q]B]o; = [Q][O]t, By i.h. on second subderivation
[Q][B]or = [Qloy By Lemma Substitution Monotonicity]
[Q]O]t; = [Q]t; By Lemma Substitution Monotonicity]
[Qlo; = [Q]ty By transitivity of equality
[Qloo @ [Qloy = [Qlto @ [Qlty By congruence of equality
= [Ql(op @ 01) = [Q](to D t1) By definition of substitution

°Case pal-a:=t:k4A &’ FV(1)

MaFa=t:k4A

Nal-&:=t: x4 A Subderivation
a ¢FV(t) Premise
= [Q]la = [Q]t By Lemma (]Soundness of Instantiation[)

e Case ra. (-a=0:kHA & ¢FV(t)
Na:klFo=&:k4A

CheckeqlnstR|

Similar to the case. O

Lemma 87 (Soundness of Propositional Equivalence).
IfT'+P=Q - A where A — Q then [Q]P = [Q]Q.

Proof. By induction on the given derivation.

eCase | 5 2y .NHO® OF[Olor =[Ot :N4A

=PropE
l'E(og=02)=(t) =t) 4A

A— Q Given
0 —A By Lemma Checkeq Extension) (on 2nd premise)
®— Q By Lemma Extension Transitivity{)
o=t :N-HO Given
[Qlo; = [Qlt, By Lemma QSoundness of Checkeql)
OF[@lo; =[Ot : NHA Given
[Q][O]o,; = [Q][O]t, By Lemma @ Soundness of Checkeq[)
[Q][O]o; = [Qlo By Lemma Substitution Monotonicity]
[Q][O]t, = [Q]t, By Lemma Substitution Monotonicity]
[Qlo, = [Qlt, By transitivity of equality
([Q]oy = [Qloz) = ([AQAlt; = [Q]t,) By congruence of equality
= [Q](o7 = 032) = [Q](t7 =t32) By definition of substitution O

August 15, 2020



J.1 Instantiation

122

Lemma 88 (Soundness of Algorithmic Equivalence).
IfTHA =B+ A where A — Q then [Q]A = [Q]B.

Proof. By induction on the given derivation.

e Case

— =V
I"}—oczoc—W

w [Qla = [Q]a By reflexivity of equality

e Cases Similar to the case.

eCase 1| A —B, 4O OF[OA,=[OB,HA

'FAT A =B @B, 1A
A— Q Given
© F[B]A; = [B]B, 1A Subderivation
0 — A By Lemma Equivalence Extensionl)
00— Q By Lemma Extension Transitivity)
I'FA;=B; 40 Subderivation
[Q]A] = [Q]B1 By i.h.
A— Q Given
[QIB]A; = [Q][B]B; By i.h.
[Q]A; = [Q]B;, By Lemma (]Substitution Monotonicityl)

ww  ([QJA7) @ ([QJA2) = ([Q]B7) @ ([Q]B,) By above equations

o Case F,OCIK}—A()EBO—|A,0(:K,A/@
N'EVa:k.Ag=Va:k.Bg 1A

Lo:kFAg=By 1A, x:k, A’ Subderivation
A— Q Given
No:k,- — Ak, A/ By Lemma (IEquivalence Extension[)

Proof of [Lemma 88| (Soundness of Algorithmic Equivalence) lem:equiv-soundness




Proof of|Lemma 88 (Soundness of Algorithmic Equivalence)) lem:equiv-soundness 123

A’ soft Since - is soft
Aok, AN — QO x:k, Q7 ByLemma
No:kkEAptype By validity on subderivation
[Joo: kFBo type By validity on subderivation

FV(Ay) C dom(T] & : k) By well-typing of A,
FV(By) C dom(T; & : k) By well-typing of By
Mok — QK By

FV(Ao) C dom(Q,: k) By Lemma|20]

Declaration Order Preservation
Declaration Order Preservation!

FV(By) € dom(Q,x:k) ByLemma

[Q,0: Kk, Q7]A0 = [Q, x: k]Ap By definition of substitution, since FV(Ao) Ndom(Qz) =
[Q, x:k,Q7]By = [Q, o : K]Bg By definition of substitution, since FV(Bo) Ndom(Qz) =0
[Q,x:k]Ag = [Q, x: k]Bg By transitivity of equality
[Q]Ay = [Q ]Bo From definition of substitution
Va: k. [Q)JAy = Va : k. [Q]Bg Adding quantifier to each side
[Q](Va: k. Ap) = [Q (VOc k. Bp) By definition of subsitution
e Case _ _
''EP=Q-10 OF [BlAy = [O]By 1A
Q 0 0
FrNFPDA=QDBoHA
A— Q Given
O F[B]Ay = [B]By 1A Subderivation
®— A By Lemma Equivalence Extensionl)
0—Q By Lemma Extension Transitivity)
rEP=Q-40 Subderivation
[QIP = [Q]Q By Lemma (]Soundness of Propositional Equivalence[)
O F[B]Ay = [B]By 1A Subderivation
[QlB]A, = [Q][B]B, By i.h.
[Q]Ay = [Q]By By Lemma (]Substitution Monotonicityl)
e Case _ _
'FP=Q-H0 OF [B]JAy = [B]By 1A
Q [ ] 0 [ ] 0
FTFAGAP=ByAQ 1A
Similar to the =2 case.
e Case
NMajFa:=1t:x4A & ¢ FV(1)
=Instantiatel
MaFa=_t A
~—
A
Nalk&:=71:%«-1A Subderivation
i [Qla = [Q]t By Lemma (]Soundness of Instantiation[)
e Case Similar to the case. O

J’.2  Soundness of Checkprop

Lemma 89 (Soundness of Checkprop).
IfTFPtrue 4 A and A — Q thenV |- [Q]P true.

Proof of|Lemma 89| (]Soundness of Checkprop[) lem:checkprop-soundness




Proof of|[Lemma 89 (Soundness of Checkprop)) lem:checkprop-soundness

124

Proof. By induction on the derivation of I' - P true 4 A.

eCase rpooyiNA

_Check ropE
'Fo=ttrue4A ProP=a
~——

]

No=t:NHA Subderivation
[Qlo = [Q]t By Lemma[%l (Soundness of Checkeql)
o = [Q]t true By |DecICheckproqu|
(0 =1) true By def. of subst.
P true ByP=(o=1t)

J’.3 Soundness of Eliminations (Equality and Proposition)

Lemma 90 (Soundness of Equality Elimination).
Ifllo=cand[Mt=tandTFo:xandT - t:«k and FEV (o) UFEV(t) = (), then:

(1) fT Jo=t: kA
then A = (I,©) where © = (1 =t1,...,xn, =1tn) and
for all Q) such thatT — Q
and all t’ such that Q - t’: k’,
it is the case that [Q, @]t’ = [0][Q]t’, where 6 = mgu(o,t).

(2) IfT /o =t:k - L then mgu(o,t) = L (that is, no most general unifier exists).
Proof. First, we need to recall a few properties of term unification.
(i) If o is a term, then mgu(o, o) = id.
(ii) If f is a unary constructor, then mgu(f(o), f(t)) = mgu(o, t), supposing that mgu(o, t) exists.

(iii) If f is a binary constructor, and ¢ = mgu(f(o7,02), f(t1,t2)) and o7 = mgu(o7,t1)
and o, = mgu([o1]o2,[01]t2), then 0 = 02 0 07 = 07 0 03.

(iv) If o & FV(t), then mgu(a, t) = (a=1).

(v) If f is an n-ary constructor, and o; and t; (for i < n) have no unifier, then f(oy,...,0,) and f(ty,..

have no unifier.

o tn)

We proceed by induction on the derivation of T / ¢ = t : k | AL, proving both parts with a single

induction.

e Case

YETICED ElimeqUvarRefl

Here we have A =T, so we are in part (1).
Let © = id (which is mgu(o, 0)).
We can easily show [id][Q]x = [Q, o] = [Q, .

e Case
ElimeqZero
F/zeroézero:N—H"

Similar to the [ElimeqgUvarRefl| case.

Proof of [Lemma 90| (Soundness of Equality Elimination) lem:elimeq-soundness




Proof of|Lemma 90 (Soundness of Equality Elimination) lem:elimeg-soundness 125

* Case P/t =t NAAL

'/ succ(t;) = succ(ty) : N4 A+

We distinguish two subcases:

- Case A = A:
Since we have the same output context in the conclusion and premise, the “for all t’...” part
follows immediately from the i.h. (1).
The i.h. also gives us 6y = mgu(tq,t2).
Let © = 0¢. By property (ii), mgu(t1,t2) = mgu(succ(t7),succ(ty)) =

- Case At = I:
' /t1 =t;: N L Subderivation
mgu(ty,t2) = L By i.h. (2)
= mgu(succ(ty),succ(ty)) =L By contrapositive of property (ii)

o Case yopy(t) (a=—)gT

ElimeqUvarL
F e Zt T et

Here A # 1, so we are in part (1).

[Q,x=1tt' = [[Q]t/oc] [Q]t’ By a property of substitution

= [Q][t/«][Q]t" By a property of substitution
= [Q][6][Q]t’ By mgu(a, t) = (o0/t)
= = [0][Q]t’ By a property of substitution (0 creates no evars)

o Case s opyt) (a=—)gT

ElimeqUvarR
F e at
Similar to the case.

e Case

——|Eli Unit
PSS
Similar to the case.

e Case

r/mi=t1:x40  ©/0lT = [0]1): 1At
N/m @t =1 ot,:x4At

Either Al is some A, or it is L.

- Case A+ = A:

Proof of [Lemma 90| (Soundness of Equality Elimination)) lem:elimeq-soundness




Proof of|[Lemma 90 (Soundness of Equality Elimination) lem:elimeg-soundness 126

r/tm=1:x10 Subderivation
0= ([A) By i.h. (1)
(IH-1st) [Q,A]]LL] = [91][_(1}1” " forall Q- uj : K’
01 = mgu(t1,T7) "
/ O]t =[Ot} : x 1A  Subderivation
= (0,4;) By i.h. (1)
[0

(IH-2nd) [Q, A],Az]uz =
0, = mgU(TZvTZ)

][Q Aqluy " forall Q Fu,: k'’

"

Suppose Q Fu: k’.

[Q, A1, AzxJu = [6:][Q, Aq]u By (IH-2nd), with u, =u
= [0,][07][Qlu By (IH-1st), withu; =u
= = [Q][0; 0 61]u By a property of substitution
=3 02007 = mgu((t1 & 12), (1] @ 715)) By property (iii) of substitution
- Case At = 1:

Use the i.h. (2) on the second premise to show mgu(tz,75) = L, then use property (v) of unifica-
tion to show mgu((T1 & 12), (] ® T5)) = L.

e Case N/t =11:x- 1L

— ; ElimeqBinBot
Fr/méen=1&Tt:+x4L

Similar to the L subcase for [ElimeqSucc, but using property (v) instead of property (ii).

e Case o#t

e B

Since o # t, we know o and t have different head constructors, and thus no unifier. O

August 15, 2020



J.3 Soundness of Eliminations (Equality and Proposition)

127

Theorem 6 (Soundness of Algorithmic Subtyping).
IFTTA = A and [ITB = BandT - A type and T - B type and A — Q and T - A <:¥ B - A then

[QIAF [QIA <P [Q]B.

Proof. By induction on the given derivation.

o Case g 5t headed by v

Nra,R:kE[R/JAy<:” BH4A »g,©®

'EVa:k.Ag<:” BHA

Let Q' = (Q,|»4,0|).

Lra,R:kEF[R/JAy<:~ B4A »g,®

A— Q
(A) ’&)@) — Q

I'EVoa: k. Ap type
Lok FAptype
Nea,&: kE[&/x]Ap type
"B type

[Q1(A,»4,0) F[Q[&/x]As <7 [Q']B

QB type
[Q']B = [Q]B

[Q'1(A,»,0) F[Q[&/x]Ac <™ [QIB

[Q)(A,»a,0) F [[Q718/a] [QA, <~ [QJB

Lra,R:kEF&R:Kk
ra,R:k— Ajpg,O
O is soft

A, OFR:k
(Aa>&)®) — Qf
Q10 F[Q]
[Q'(A,»a,0) F[Q]

Q1A »5,0) FVo:
Q1A »g,O) FV:
[QJA FVo:
[QJA FVo:

[ONE OO

e Case Similar to the case.

e Case pp. A< ByHApB: KO
TFA<: Vp:x.Bo-A

R

Subderivation

Given
By Lemma qulling Completes[)

Given

By inversion

By a property of substitution
Given

By i.h.

By Lemma Extension Weakening (Sorts)|)
By Lemma Substitution Stability)

By above equality

By distributivity of substitution

By |VarSort

By Lemma |50
By Lemma |22
By Lemma (36|
Above
By Lemma |14
By Lemma |54

[T

By Lemm@ (Substitution Stabilityi)

By Lemma @Context Partitioningl) + thinning
By def. of substitution

By def. of substitution

Subtyping Extensionl)
Extension Inversion[) (ii)
Extension Weakening (Sorts)[)

Substitution for Sorting[)
Completing Stability)

Proof of [Theorem 6| (Soundness of Algorithmic Subtyping) thm:subtyping-soundness




Proof of|Theorem 6| (Soundness of Algorithmic Subtyping) thm:subtyping-soundness 128

NBR:kFA<:”BogdA,pB: k0O Subderivation
Let Q7 = |0|.
Let Q' =(Q,B:k,Q7).
AR :x,0) — QF By Lemma QFilling Completes[)
'+ A type Given
LR:kHEAtype By Lemma (]Sufﬁx Weakening[)
I'-=VB: k. By type Given
LB :kFBotype By inversion
[Q(A, B : k,0) F QA <~ [Q']Bg By i.h.
LBR:k— AB:k,0O By Lemma Subtyping Extensionp
® is soft By Lemma Extension Inversion) (i)
[Q,B: k(AR k) F (3 ~[Q,B:k]By By Lemma Substitution Stability)
[Q,B: k(AR : k) F [ [Q]Bo By def. of substitution
QA -0 ]A< vp:k.[QJBo  By[<WR
[QIAF[Q]JA <™ [Q](Vp : k. By) By def. of substitution

e Casel[<:dLl Similar to the[<:VRlcase.

*Case pa=BA

<:Equi
FI—A<:7’B—|A

I'FA=BHA Subderivation
A— Q Given
[Q]JA = [Q]B By Lemma Soundness of Algorithmic Equivalence[)
r— A By Lemma [49| (Equivalence Extensionl)
' A type Given
[Q]Q F[Q]A type By Lemma Substitution for Type Well-FormednessI)
QJA - [Q]A type By Lemma Completing Stability)

[
w  [QJAF[QJA <P [Q]B  By|<ReflP|

[ ] Case neg(A)
'FA<:T"BAHA nonpos(B)
oL
Fr’FA<:TBHA
'NCFA<:"BHA By inversion
neg(A) By inversion
nonpos(B) By inversion
nonpos(A) since neg(A)
[QT' - [Q]JA <~ [Q]B By induction
[

= QN FQ ]A<+ QB By[<y]

o Case nonpos(A)
I'FA<:"BAHA neg(B)

Fr’FA<:TBHA

Similar to the case.

Proof of [Theorem 6| (Soundness of Algorithmic Subtyping) thm:subtyping-soundness




Proof of|Theorem 6| (Soundness of Algorithmic Subtyping) thm:subtyping-soundness 129

e Case pos(A)
FrFA<:*BHA nonneg(B)

'FA<:" BHA

Similar to the case.

e Case

<: L

nonneg(A)
Fr’FA<:TBH4A  pos(B) -
: 'R
FFA< BA <R

Similar to the case.

J’.4 Soundness of Typing
Theorem 7 (Soundness of Match Coverage).

1. IfT F TT covers A qandT + A q types and [F]f\ — A andT — Q then [Q]T - TT covers A q-

2. IfT /P FTlcovers A 'andT — Q and T + A ! types and TJA = A and TP = P then [QIT / P +
T covers A !.

Proof. By mutual induction on the given algorithmic coverage derivation.

1. e Case

CoversEmpty

[QI'+-= e | ...covers - By DeclCoversEmpty

-=erl...-covers T

e Cases|CoversVar] |Coversl) |Covers x| [Covers+] [Covers] [Covers/\} |CoversVed, [Covers/\ }] |CoversVec [

Use the i.h. and apply the corresponding declarative rule.

2. eCase iy e M ikdA [ANTE [AJA covers A

I/t :tz}—ﬂcovers/z‘;!

/Mty =Tt k4A Subderivation

A [A]TT covers [A]f\ Subderivation
[Q]A F [ATT covers [AlAo, [AJA) By ih.

A= ([O) By Lemma (]Soundness of Equality Eliminationl) (D
mgu(ty, t2) =0 "

"

[Q]A = [0][Q]T By Lemma Substitution Upgrade) (iii)
[A]TT = [O]TT By Lemma Substitution Upgrade)) (iv)
([A}f\) = ([6]Ao, [e]/i) By Lemma Substitution Upgrade)) (i)
[0][QIT + [6]TT covers [B]A By above equalities
= [QIT / t; =t FTT covers A By DeclCoversEq

Proof of|TheoreIn 7| (]Soundness of Match Coverage|) thm:coverage-soundness




Proof of|Theorem 7| (Soundness of Match Coverage) thm:coverage-soundness

130

e Case /Mgy = Mty kL

—— |CoversEqBot]

I'/ti =ty FTTcovers A !

' / Tty = [Tty : k 4L  Subderivation

mgu([Ity,[Tt;) = L By Lemma (]Soundness of Equality Eliminationl) (2)

mgu(ty,tz) = L By given equality

w [QI / ty =ty FTT covers A By DeclCoversEqBot

Lemma 91 (Well-formedness of Algorithmic Typing).
Given I ctx:

(i) IfT-e= Ap-1Athen A+ A p type.
(i) fTFs:Ap>Bq-1Aandl'+ A p type then A+ B q type.
Proof. 1. Supposel'Fe= Ap-A:

e Case
tAp)erT
(X p)
MEx=[Ap AT

= (To,x:Ap,I1) (x:Ap)eTl
I'EA ptype Follows from T ctx

*Case L Arpgpe The<[MNAIHA

Anno
M-(e:A)=[AIATHA
I'-A!type By inversion
r— A By Lemma Typing Extensionb

At Atype By Lemma Extension Weakening for Principal Typing[)

= A+ [AJA ' type By Lemma Principal Agreement])) (i)
e Case p=J)orq=
M- Ap-0© OFs:BJAp>Cqg-A or FEV([A]C) # 0
l'Fes=Cq-A
l'-e=Ap-0 By inversion
OFA p type By induction
O F[O]JA p type By Lemma (]Right-Hand Subst. for Principal Typing[)
O ctx By implicit assumption
OFs:[BJAp>Cq-dA Byinversion
w AFCqtype By mutual induction

2. Suppose'+s:Ap>Bq-J4Aand T+ A p type:

Proof of [Lemma 91| (Well-formedness of Algorithmic Typing) lem:typing-wf




Proof of|Lemma 91| (Well-formedness of Algorithmic Typing) lem:typing-wf 131

e Case

AP S Ap T Emesend

I'-Aptype Given

eCase pL o ApH4@ OFs:OBp>Cq-HA

l-es:A—=Bp>Cq-dA
'A — Bptype Given
I'B p type By Lemma Inversion of Principal Typing)
O FB p type By Lemma Extension Weakening for Principal Typing[)
O [O]B p type By Lemma Right-Hand Subst. for Principal Typing)
A C q type By induction

e Case py.hes: /A >Cq-A

VSpi
l-es:Va:k. Ap>Cq-A

'FVo:k.Aptype Given
'EVoa: k. A type By inversion

Dok EA type By inversion
N&:Kkyo: kA type By weakening
L&:kkEI[&/]A type By substitution
= A+ C q type By induction

*Case L ppye4@® OFes:[OAp>Cq-A

DSpi
'es:PODAp>Cq-dA

I'EP D> Aptype Given

I' =P prop By Lemma q1nversion of Principal Typing|)
A p type "

r—o By Lemma Checkprop Extension)
O F A p type By Lemma Extension Weakening for Principal Typing[)
OF[OJA ptype BylLemma Right-Hand Subst. for Principal Typing)

= A+ C q type By induction
e Case )
MRy : %R :x,R:x=Q) = &alFes: (&1 = &) >C 4A
aSpi
Na:+xFes:a >C HA

O F&; — & type Byrules
w AFCqtype By induction

Theorem 8 (Eagerness of Types).
(i) If D derivesT e < ApdAandT F A p type and A = [T|A then D is eager.

August 15, 2020



J .4 Soundness of Typing 132

(i) If D derivesT' e = A p 4 A then D is eager.
(iii) If D derivesTFs:Ap>Bq-dAandTF A p type and A = [T'|A then D is eager.
(iv) If D derivesT+s:Ap>B[q] 1A andT + A p type and A = [I'|A then D is eager.

(v) If D derivesTHTTzA q< CpH4AandT+ A q types and [T]A = A and T+ C p type
then D is eager.

(vi) If D derivesT /P TT:: AleC p 1A andT + P prop and FEV(P) = () and [T]P = P
andT + A ! types and T + C p type
then D is eager.

Proof. By induction on the given derivation.
Part (i), checking

Case By i.h. (i).
Case[Sub; By i.h. (ii) and (i).
Case |Vl By i.h. (D).
Case[All

Substitution is idempotent, so in the last premise [@][O]Ay = [@]A and we can use the i.h. (i).

e Case[Dll Similar to the[All case.

Case This rule has no subderivations of the relevant form, so the case is trivial.

Case[=l By ih. ().

Case =1k

In the premise, [Fo [R1:%, Rk, Bk = B71— R3], X1 &y ] = &, so we can use the i.h. (i).
Case[+I} Byih. (i).

Case Similar to the case.

Case

By i.h. (i) on the first subderivation, then i.h. (i) on the second subderivation (using the fact that
[BI[OIA, = [B]A,).

Case Similar to the case.

Case This rule has no subderivations of the relevant form, so the case is trivial.

e Case[Const
By i.h. (i) on the subderivations typing e; and e, using [I'][I"]Ao = [["]Ao and [O][O](Vec & Ao) =
[B](Vec & Ap).

e Case OFM:OBq&[OAP-HA

'He=Bq-0O A FTT covers [A]B q
't case(e,TT) & Ap-HA

Case

D = l'Fe=B!H0O Subderivation
[@]B = B and D; eager By i.h. (ii)

D, OFTT:[O]B < [OJAp-HA Subderivation
D, eager By i.h. (v)

By Definition [8} the given derivation is eager.

Proof of [Theorem 8| (Eagerness of Types)) thm:eagerness




Proof of|[Theorem 8| (Eagerness of Types)) thm:eagerness 133

Part (ii), synthesis
e Case|[Varf Substitution is idempotent: [[IAo = [[A,.
By inversion, A =T and A = [I']A, where (x: Agp) € T.

Using the above equations, we have

[MAe = [MAo
TA =A
[AJA=A

This rule has no subderivations, so there is nothing else to show.

e Case[Annol By inversion, A = [A]A,.
Substitution is idempotent, so [I[I'NAy = [[JAo and we can use the i.h. (i) to show that the checking
subderivation is eager.

The type in the conclusion is [A]Ap, which by idempotence is equal to [A][A]Ag. Since A = [A]Ay, we

have A = [A]A.
eCase pp o . Bp4@ OFs:Bp>Alq]HA
'es=Aq-A
Di: The=Bp-d0O Subderivation

B = [O]B and D; eager By i.h. (ii) on D

Dy: OFs:Bp>A[q]H4A Subderivation
B = [O]|B Above
A = [O]A and D; eager By i.h. (iv) on D,

i A= [OJA Above
= D, eager Above
= D, eager Above

Parts (iii) and (iv), spines

e Case
Na:kkesy:[@/dAg Y >Cq-A
VSpi
N-esp:Va:k.Agp>Cq-A
It is given that [I(Va : k. Ag) = (Vo : k. Ag).
Therefore, [TTAy = Ap.

Since & is not solved in I} & : k, we also have

N &:k][&/x]Ao = [&/a]Ao

By i.h., C = [A]C and all subderivations are eager. Since the output type and output context of the
conclusion are C and A, the same as the premise, we have C = [A]C.

*Case ri pyue 4@ OFesy:OlAcp>Cq-A

DSpi
lFespg:PDAyp>Cqg-A

Substitution is idempotent, so [@][O]A, = [B]A,, and we can apply the i.h. showing C = [A]C and that
all subderivations are eager. Since the output type and output context of the conclusion are C and A,
the same as the premise, we have C = [A]C.

Proof of [Theorem 8| (Eagerness of Types)) thm:eagerness




Proof of|[Theorem 8| (Eagerness of Types)) thm:eagerness 134

e Case[SpineRecovert By i.h. (iii).
e Case[SpinePasst By i.h. (iii).

e Case

__E tySpi
TF:Ap> A p 4 T APPTE
N TV d

C q
We have [I'JA = A. Since C = A, we also have [I'/C = C; since I' = A, we also have [A]C = C, which

was to be shown.

eCase pp oA, pHO  OFs:[@Ap>CqHA

3
N-es:A1 =2 Ap>»>Cq-A

We have (A7 — Az) = A; — A,. Therefore, [NA; = A;. By i.h. on the first subderivation, its
subderivations are eager.

Substitution is idempotent, so [@][@]A, = [O]A,. By i.h. on the second subderivation, [A]C = C (and
its subderivations are eager).

Since the output type and output context of the conclusion are C and A, the same as the premise, we
have C = [A]C; we also showed that all subderivations are eager.

e Case
Tol®2 i %, &1 : %, R:*x=R1—R2] F (& &) >C HA
ol®2 i %, &1 1 X, Rik=R1 =R Feso: (&1 — &)
DR:xlFesg: & >C HA

By definition of substitution,
[ro[&z TE Ry K R Ak=R —)&2]] (&1 — &2) = (&1 — &2)

Therefore, we can apply the i.h.
Since the output type and output context of the conclusion are C and A, the same as the premise, we
have C = [A]C; we also showed that all subderivations are eager.

Parts (v) and (vi), pattern matching

Part (v), rules [MatchEmpty, etc.: By i.h. (v) and, in [MatchBase, i.h. (i). By i.h. (v), using

idempotency of substitution for A.

Part (vi), rule trivial. Part (vi), rule [MatchUnify; by the assumption I' - A ! types, the vector A

has no existential variables at all, so in the second premise, A = ['JA and we can apply the i.h. (v). O

Theorem 9 (Soundness of Algorithmic Typing).
Given A — Q:

(i) IfTFe<=Ap-dAandT+ A ptype and A = [TA then [Q]A | [Q]e & [Q]A p.

(i) IfT+He= Ap -A then [QJAF [Q]e = [Q]A p.
(i) fITFs:Ap>Bq-dAandTF A ptype and A = [TA then [Q]JAF [Q]s : [Q]JA p > [Q]B q.
(iv) IfTFs:Ap>B[q] 1A andT+ A p type and A = [I'A then [Q]AF [Q]s : [Q]JA p > [Q]B [q].

(v) FTFT:Aq< Cp+AandT - A types and [TA = A and T + C p type
then p F [Q]A = [Q]TT ! < [Q]A qlQ]C.

(vi) IfF/PI—ﬂ::/i!<:Cp—|AandFl—PpropandFEV(P):Q)and[F}P:P
andFl—/K!t}/pesandFl—CpQ/pe
then [Q]A / [Q]P F [Q]TT = [QJA | & [Q]C p.

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 135

Proof. By induction, using the measure in Definition [7}

Where the i.h. is used, we elide the reasoning establishing the condition [I'lA = A for parts (i), (iii), (iv),
(v) and (vi): this condition follows from Theorem |8, which ensures that the appropriate condition holds for
all subderivations.

TFx= MApAT

(x:Ap)erl Premise

(x:Ap) eA r=A
A— Q Given

(x:[QJAp) €lQII By Lemma|§| QUvar Preservation[) (ii)
[QITH[Qlx = [Q]JA p By |DeclVar|
A— Q Given
r—Q r=A
[QJA = [Q]TTA By Lemma qSubstitution Monotonicityl) (iii)
= [QITF[Q]x = [Q]I'A p By above equality

e Case MFe=Aq-0 O F A <.Jjoin(pol(B),pol(A)) g —|A
l'Fe&Bp-HA
'Fe=Aq-10 Subderivation
OFA<:PBHA Subderivation
0@ — A By Lemma quping Extensionl)
A— Q Given
®— Q0 By Lemma (]Extension Transitivityb
[Qle F[Qle = [QJA q By i.h.
QO = [Q]A By Lemma (]Conﬂuence of Completeness[)
[Q]A+[Qle = [Q]A g By above equality
O F A <:Join(pol(B),pol(A)) B 4 A Subderivation
[Q]A F [Q]A <ein(pol(B).pol(A)) (O] By Theorem|§|
= [0lAF[Ole < [Q]Bp By [DeclSub]

e Case P Atpe  Thep<(MAg!HA
I'(eg:Ag) = [A]JAp ' HA

Anno

ey & TA ' HA Subderivation
[QJAF[Qley & [Q]TTAy ! Byi.h.

I'EAop! type Subderivation
'+ Ao type By inversion
FEV(Ao) =0 "

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness

136

r— A By Lemma (ITyping Extensionb
A— Q Given
r—Q By Lemma Extension Transitivity)
QFAp type By Lemma Extension Weakening (Sorts)|)
[Q]Q F[Q]A, type By Lemma Substitution for Type Well-FormednessI)
QO = [Q]A By Lemma Completing Stability[)
[Q]A F[Q]A type By above equality
[Q][TTAy = [Q]A, By Lemma (]Substitution Monotonicityb (iii)
[QJAF[Qleg & [Q]Ap ! By above equality
[QJA F ([Qleo : [Q]A0) = [QJA ! By|DeclAnnd
[Q]JA, = Ay From definition of substitution
= [QJAF[Q](eq : Ag) = [Q]Ap ! By above equality
e Case
-0 &1p- \F/
A
QIAFO <1p By |Declil
w [QJAF[Q]O < [Q]lp By definition of substitution
e Case
116
DR:+xEF O )AL x=1]
—_———
A
R:x=1 — Q Given
[Qla = [Q][Al& By Lemma (]Substitution Monotoniciry{) )
= [Q]1 By definition of context application
=1 By definition of context application
QIAFO 1Y) By [Decl1l
= [QIAF[Q]O < [Qla Y By above equality

e Case v chk-I

Noa:kFvEAp 1A a: kO

N-v&vVa: k. Agp 1A

A— Q Given
Ay — Qo By
Noa— Ay, ® By Lemma
© soft By Lemma
By Lemma

Ao, © — Q) «, |0
D ——

A7 Q'

i

Typing Extension[)

Extension Inversion[) (i) (with 'z = -, which is soft)

Filling Completes

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 137

Lakv&eAgp 1A Subderivation

QA FQlv & [Q']Agp Byih.
QJAg By Lemma (]Substitution Stability[)
By above equality

Ao, — Q|0 Above
A/ Q/
O is soft Above

Q1A = ([Q]A, &)
[QIA, o k- [OJv < [Q]A p

By Lemma qSoftness Goes Away[)
By above equality

[QIA Qv & V. [Q]A p By [DeclvI
= [QJA Qv & [Q](Va. Ag) p By definition of substitution

e Case pa.wkesy:[®/adAg ) >Cq-HA
N -esp:Va:k.Agp>Cq-A

Na:kkFesp:[®/ax]Ay ) >Cq-A Subderivation
[QIAF [Q](e so) : [QI[&/xdAo [ > [QIC g By i.h.
[QIAF [Q](e so) : [[Q&/a] [QJAo ¥ > [Q]C q By a property of substitution

Na:kk&:«k By|[VarSort
La:k— A By Lemma Typing Extension))
AFR&:k By Lemma Extension Weakening (Sorts)[)
A— Q Given

[QJAF[Q]&: k By Lemma (]Bundled Substitution for Sorting[)

QJAF [Ql(e sp) : Va: k. [QJAs p > [Q]C q By |DeclVSping]
Q

JAF [Q](e sp) : [Q](Va: k. Ap) p > [Q]C q By def. of subst.

— —

=

o Case . ppg I'EPtrue 10 Oke& [BlAgp 1A
FrNFescAgAPpHA N
'EPtrue 10 Subderivation
A— Q Given
®—0 A By Lemma Typing Extension[)
0—Q By Lemma Extension Transitivity)
[Q]O - [Q]P true By Lemma 89| (Soundness of Checkprop[)
[Q]A F[Q]P true By Lemma Confluence of Completenessl)
OFe& [BlAgp 1A Subderivation
[Q]A - [Qe & ([Q]B]A0) p By i.h.
[QJA F[Q]e & ([Q]OJA)) A [QJPp  By[DeclAl
[Q][B]Ay = [Q]Ag By Lemma (ISubstitution Monotonicityb (iii)
[QIAF[Qle & ([QJA) A [QIP p By above equality
= [QIAF[Qle < [Q](Ag AP) p By def. of substitution

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness

138

e Case 1y oo true A

Nil
I+ 11 @(VectA)p#A

't =zerotrue 4 A Subderivation
A— Q Given
[QJA +[Q](t = zero) true By Lemma qSoundness of Checkprop[)
[Q]JA F [Q]t = zero true By def. of substitution

s [QJAF[Q][] & (Vec [QJt [QJA) p  By[DecINil

e Case F’l—e1<:[r’}Aop—|®
. — / !
Nea,&:NFt=succ(®) true 4T OF e & [O](Vec 2 Ag) Y 1A s, A
Nejzey&(VectAp)p 1A
[ra,&: NEt=succ(®) true 4T’ Subderivation
A— Q Given
r-—aoe By Lemma 51] Typing Extension
O — Ars, A/ By Lemma 51} Typing Extension|
Aypa, A — QF By Lemma [25| (Filling Completes))
I — Q’ By Lemma 33| (Extension Transitivity)
[QTT F[Q'](t = succ(R)) true By Lemma [89] (Soundness of Checkprop)
Q1A »a, A F [Q’ ](t = succ(R)) true By Lemma 56| (Confluence of Completeness[)
Q1A »a, A ) [Q](t = succ(R)) true By Lemmaz Substitution Stabﬂity[)
[QJA F[Q](t = succ(R)) true By Lemma 52| (Context Partitioning) + thinning
1 [Q ] F ([Q]t) = succ([Q]R) true By def. of substitution
Mkey &[IMAyp 10 Subderivation
[Q']® = [Q’]e1 & ([Q']M]Ao) p  Byih.
[QTM AL = [Q1A By Lemma (ISubstitution Monotonicityp (iii)
Q ] F[OQ ]e1 & [Q1A0p By above equality
2 [QJAF[Q]e; & [Q]Ao p Similar to above
OFe; & [O](Vec &2 Ag) Y 1A s, A’ Subderivation
[Q/)(A, » s, A) FQ/les < [Q][O](Vee & Ag) By i.h.
[QJA F[Q]e; & [Q](Vec & Ap) Y Similar to above
3 [QJA F[Q]e, & (Vec (IQ]R) [Q]AL) p By def. of substitution
[QJA F([Qley) = [Qles = Vec ([QJt) [Q]Ag p By [DeclCond| (premises: 1, 2, 3)
= [QIAF[Q](e; e2) & [Q](Vec t Ap) p By def. of substitution

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness

139

°Case . nkl  Ta:kkes [R/adAy 4A

Ne&3da:k.Agp 1A
L&:kFe& [R/JAy 1A Subderivation
[QJA F[Qe « [Q][&/x]Ag By i.h.

[QJAF[Qle & [[Ql&/«][Q]JA; By a property of substitution

N&:kF&:k By\_/arSort

Na:xk— A By Lemma Typing Extensionb
AF®&:k By Lemma Extension Weakening (Sorts)[)
A— Q Given
QIAF[Q]& : « By Lemma unndled Substitution for Sortingl)
[QIAF[Qle < Fa: k. [QJAo P By
= [QIAF[Q]e < [Q](Fx: k. Ag) p By def. of subst.

e Case |, prl  Mwp/PHO" O Fve [O7]Ag ! HA, wp, A

|
r'Fv&EPDA!IHA
I'EA!type Given
FEV([TIA) = 0 By inversion on rule|Principal WF
FEV([TIP) = 0 A= (P> Ao)
Lep /PH1OT Subderivation
ep / 0=t: k10" By inversion
FEV([o) UFEV([T]t) =0 By FEV([T'IP) = () above
0t = ([»p,0) By Lemma qSoundness of Equality Eliminationl)
[Q7, elt" = [0, »plt’ " (for all Q' extending (I;»p) and t’ s.t. Q'+t : k")
0 = mgu(o, t) "
A— Q Given
OF — A,pp,A’ By Lemma quping EXtension[)
Lep,® — Ajpp, A’ By above equalities
Let QO = (Q,»p,A’).
App,® — Q pp, A/ By repeated |—Eqn
0f — Qf By Lemma@ (Extension Transitivityi)

[Q’;0]B = [0][[;»p]B By Lemma (ISubstitution Upgradel) )
(for all Q' extending (I, »p and B s.t. Q' - B : k')

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 140

Ot v & [Ot]Ag!4A,»p,A’ Subderivation

QA pp, A ) F[Qlv & [QT][OT]A( ! By i.h.
Lep,® — Q,pp, A’ By Lemma Extension Transitivity[)
r—Q By Lemma [22| (Extension Inversion)
[OT]OF]Ay = [QT]Ag By Lemma Substitution Monotonicity{)
= [0][Q, »plAg Above, with (Q,»p) as Q' and Ay as B
= [0][Q]A, By def. of substitution
[Q,»p,Bl(A,»p,A") = [0][Q]A By Lemma QSubstitution Upgradel) (iii)
[O][Q]A F[Q][0]v <« [0][Q]Ay ! By above equalities
QA pp,A") / (0=1) F[Q]v & [Q]A ! By [DeclCheckUnify,
[QF](A»p,AT) = [Q]A From def. of context application
QA / (o=1t) F[Qlv & [Q]Ap ! By above equality
[QIAF[Ql & (0=1) D [QlA, ! By |Decl D
[QIA H[Q]v < ([Q]lo = [Q]t) D [Q]JAy ! By FEV condition above

e Case | pkr  Mep/PHL

DIL
FTFv&eEPDA!H \l:/
A
Lep /PHL Subderivation
Lep / 0=t:k-d L Byinversion
P=(o=1) "
FEV([TTo) UFEV(TTt) = 0 As in[>l] case (above)
mgu(o,t) = L By Lemma (ISoundness of Equality Eliminationl)
[QIA / (o =1) Qv & [Q]Ap ! By |DeclCheck L
[QIAF[Qlv & (0=1t) D [Q]A( ! By [DeclDl
[QIAF[OQlv < ([Q](c=1)) D[QJAs! By above FEV condition
= [QIA Qv < [Q](P D Ap) ! By def. of subst.
Let Q' = Q.
= Q— Q' By Lemma qEXtension Reﬂexivityb
= A— QF Given
e Case
Ik Ptrue 10 OFeso:[OA;p>Cqg-A
DSpi
lFespg:PDAyp>Cqg-A
OFesy:[BOJAyp>Cq-dA Subderivation

0 — A By Lemma quping Extensionb
A— Q Given
®— Q By Lemma (]Extension Transitivityb

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 141
[QJA F [Ql(e sp) : [QIIOJA, p > [QIC g By i.h.
[Q][B]Ay = [Q]A, By Lemma (]Substitution Monotonicity{) (iii)
[QIAF [Ql(e so) : [QJA, p > [Q]C ¢ By above equality
'FPtrue 41 © Subderivation

[Q]O F[Q]P true By Lemma Completeness of Checkprop[)
Qe = [Q]A By Lemma Confluence of Completeness[)
[Q]JA F[Q]P true By above equality

[QIAF [Ql(e so) : ([QIP) D [QJA, p > [QIC q By

= [QIA F [Q](e so) : [QI(P D Ap) p > [QIC q By def. of subst.

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness

142

o Case Nx:AipkFes&EAp 1A x:A1p,0

FFAX.60<:A1*>A2}’J4A

A— Q
Ax:Arp — Q,x:[QJA1p
Nx:A1p — A)x:A1p,0
© soft

A,x:A1p,0 — Q,x:[Q]A1p,|O|

A Q7

[x:Aipkeys & A p 1A/

[Q1A" F[Qleo < [QA; p
[01A; = [QJA,
[Q11A" - [Qleo < [QJA, p

A, x:A1p,0 — Q,x:[Q]A1 p,|O|
A foX
© soft
[Q']A" = ([Q]JA,x: [Q]A1 p)
[QJA,x: [Q]JA; p F[Qleo & [QA; p

Given

By|—Var

By Lemma Typing Extensionb

By Lemma Extension Inversion[) W)
(with 'z = -, which is soft)

By Lemma Filling Completes

Subderivation

By i.h.
By Lemma (]Substitution Stability[)
By above equality

Above

Above
By Lemma (]Softness Goes Awayb
By above equality

Q1A FAx. [Qleo « (IQJA1) = (QJA2) p - By[Decl -]
w [QJAF[Q](Ax.eo) & [Ql(AT — A2) p By definition of substitution

o Case | prg Nx:ApFv&EAPH4AXx:Ap,O

R
Frecx.v&EAp-HA

Similar to the [5]] case, applying instead of

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 143

® Case g Ry R:x=R1 =), x: & FFeo <R A xR 1,0

1
NMa:xFAx.ep & Y 1A
M&ix, Rok, R k=1 >R, x: &Y — Ax:),0 By Lemma Typing Extension[)
© soft By Lemma Extension Inversion[) W)
(with 'z = -, which is soft)
M&yx, Rk, R :x=R1 =] — A "
A— Q Given

Ayx:e Y — Q,x:[Q]ag )Y By|—Var
Ax: ),0 — Q,x:[Q]&; },|8] By Lemma Filling Completes

A Q’

I' &, X &2:*,&:*2&]—>&2],X:&1 Y ey & ) YA A,XZ&] }/,@) Subderivation

[ A" F[Q']eq <: Q& Y By i.h.
Q&, = [Q,x:[Ql&; V] &, By Lemma QSubstitution Stability{)
= [Q]&, By definition of substitution
QA = [Q,x &1 Y (Ax:&q )) By Lemma(]Softness Goes Away)
= [QJA,x: [Q]& ¥ By definition of context substitution
[Q]A,x:[Q]& Y + [Q]eo <= &, Y By above equalities
QA FAx. [Qleo = ([Q)&1) — [Q)&; ¥ By[Decl—]

&%, Rk, & : =R —&2] — QO Above and Lemma (]Extension Transitivityi)

[Qla = [Q]MN& By Lemma (]Substitution Monotonicity[) @)
= [Q]((M&7) — Ma&,) By definition of substitution
= ([Q]l'&;) — ([Q]MN&z) By definition of substitution
= ([Q]a1) — ([QA]&,) By Lemma (ISubstitution Monotonicityl) (1)
iw o [QJAF[Q](Ax.ep) & [QlR Y By above equality

eCase rp o 2 AG4O® OFse:Aq>ClpldA

'-eyso=Cp-dA
N -eo=Aq10 Subderivation
OFsp:Aq>C[p] 1A Subderivation
[— ©®and® — A By Lemma (ITyping Extension[)
A— Q Given
®— Q By Lemma Extension Transitivity]
r— Q By Lemma Extension Transitivity|
QI = [Q]O = [Q]A By Lemma Confluence of Completenessl)
[QIT' - [Qleo = [QJA q By i.h.
[QIAF[Qley = [Q]A g By above equality

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness

144

[Q]O F [Qlso : [QAIA q > [QIC [p]

= [QJAF[Q](eoso) = [QICp

By i.h.

By rule

e Case
FEs:Al>CJ)HA FEV(C) =0 —
lEs:Al>C[NHA
Nl-s:A!'>CJ)HA Subderivation

[QIT+ [Qls: [QJA !> [Q]Cq Byi.h.

We show the quantified premise of |[DeclSpineRecover, namely,

forall C'.

if [QOFs:[QJA!> C’ ) then C'=[Q]C

Suppose we have C’ such that [Q]T' F s : [QJA ! > C’ /. To apply DeclSpineRecover, we need to show

C’' =[QlC.

[QITF [Qls: [QJA !> C' Y
Qcanon — Q
dom(Qcanon) = dom(T")
I' — Qcanon
[—O-]r = [Qcanon]r
[Q}A = [Qcanon]A
[Qcanon]T F [Qls & [Qeanon] At > C’ Y

Mes:[MAI>C" qH4A”
Qcanon — Q/I
A// SN _O_”
C/ —_ [Q//]C//

FEs:MTA!>C"qHA"
MA=A
Mhs:AlsC/gHA"

N-s:A!'>CJ)4HA
C’"=Candg=)fand A" =A
C/ — [Q//]CII

— [Q//]C
= [Qcanon]c
= [Q]C

We have thus shown the above “for all C’. .

s [QIT - [Q]s: [QJA 1> [QIC [1]

Assumption
By Lemma (ICanonical Completionl)
1

"

By Lemma Multiple Confluence))
By Lemma Completing Completenessb (i)
By above equalities

By Theorem (iii)
1

"

"

Above

Given

By above equality
Subderivation

By Theorem

Above

By above equality

By Lemma Completing Completeness|
By Lemma Completing Completeness|

(i)
(i)

..” statement.

By|DecISpineRecover|

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 145

e Case
Fr-s:Ap>Cq-A ((p=¥)or(q=1") or (FEV(C) #0))
F'Fs:Ap>Clq]HA

N'-s:Ap>»>Cq-A Subderivation
[QITF [Qls : [QJA p > [Q]C q By i.h.

s [QITF [Qls: [QJA p > [QIC [q]  By|[DeclSpinePass

e Case

EmptySpi
FTAp S Ap T EmedSeind
w [QIN'F - [QJAp > [QJAp By[DeclEmptySpine

e Case
e &A;p10 OFse:[OlA;p>Cq-A
3
M-eoso: Al = A2p>Cq-A

A— Q Given
@ — A By Lemma Typing Extension[)
®— Q By Lemma Extension Transitivityl)

lrepg &Ap10 Subderivation

QO F[Qleg & [QJA;7 p Byih.
Qe = [Q]A By Lemma (]Conﬂuence of Completeness[)
[QJAF[Qley & [QJA; p By above equality

OFsp:[BJA;p>Cq-A Subderivation
[QJAF [Qso : [Q]IOJA, p > [Q]C q By i.h.
[Q][B]A; = [Q]A; By Lemma qSubstitution Monotonicityl)
[QIAF [Qlso : [Q]JA; p > [Q]C g By above equality
[QJA F [Ql(eo so0) : ([QJA1) = [QJA; p> [QIC g By[Decl—Spine
= [QIAF [Ql(ep so) : [QIAT — Az) p > [QIC q By def. of subst.
o Case Mheo<Arp A
—
lFinjpeo &A1 +A2p 1A
lreo &= AxpdA Subderivation
[QIAF[Qley < [QJAK p By i.h.

[QJA Finjy [Qleo & ([QJA1) + ([QJA2) p By[Decl+1y
w [QJAF[Q](inj eo) & [QI(AT+AL) p By def. of substitution

o Case MRy xR i xR :xk=R1+&] ey & & YA
TR:A Finjpec =& 1A

H1R

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness

146

ML k=81 48] Feo &< By Y A
[QJAF[Qley & [Qlay )Y

JA Finjy [Qleo = ([Ql&q) +

[Q
([Q]ar) + ([Ql&,) = [Qla
[

QlAa

eCase ni o A;pH0O

F1Q](injy eo) = [Ql& ¥

@|—€2<:[®]A2p—|A

Subderivation

By i.h.

ry e 7]

Similar to the case (above)
By above equality / def. of subst.

([Ql&y) Y

FF<€1,€2><:A] XAzp#A

OFe, «[OJA;p1A
00— A
00— Q

N'eg &Ap10
[Qle F[Qle; < [QJAT p
Q1A+ [Qle; < [QJA; p

OFe; «[BA; pHA
[Q]A F[Qle; < [QOIA; p
I'EA7 x A type
I'EA; type
[— 0
O A, type
[QIAF [Qle; < [QIA; p

[QIAF ([Qleq, [Qlez) < ([QJA1) X
[QIAF[Q]{e1,e2) < [QI(A1 x A2) p

[ =y

[Q]JA; p

<

Subderivation
By Lemma
By Lemma
Subderivation

By i.h.
By Lemma (]Conﬂuence of Completenessl)

Typing Extensionb
Extension Transitivityp

Subderivation
By i.h.

Given

By inversion
By Lemma
By Lemma
By Lemma

nypeeo]

By def. of substitution

Typing Extensionl)
Extension Weakening (Ty'pes)l)
Substitution Monotonicityp

® Case ia, xRy ik Rir=RixRalbF e & & YO  OFer < @& YA
Fa:*F{e1,e2) = )Y -HA
A— Q Given
0 — A By Lemma Typing Extensionb
®— Q By Lemma Extension Transitivity{)
Mo..,&:*x=1x] ey &1 Y10 Subderivation
Qe F[Qle; « [Q]ay ) By i.h.

[Qle = [Q]A
[QJAF[Q]er = [Qlay Y

OFte, & [O

[QJA F[Qlex < [Q][O]
[Qlela; = [Q]&;

[QJA+[Qe; & [Q]

&y ) A
&2 ¥

&y )

[QlA F([Qler, [Qlez) « (1Q]
([Ql&1) x [Q ] & = [Ql&
= QAT Q]<e1,e2> Q}&/y

By Lemma qunﬂuence of Completenessl)
By above equality

Subderivation

By i.h.

By Lemma qSubStitution Monotonicityl)
By above equality

&) x [QJ&, ¥ By[Declx|

Similar to the case (above)
By above equality

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 147

® Case i,k Ry ik Rix=Q&1 &) Feoso: (& — &) Y >C LA

&Spi
Ma:+xlFeyso: &)Y >CJYy4HA
ML..,&:*x=&1—®]JFeyso: (&1 2&)Yy>CY-HA Subderivation
[QIAF [Ql(eo so) : [Ql(&) — &2) ¥ > [Q]C Y Byih.
[Ql(&; — &) = [Ql& Similar to thecase
= [Q]AF [Ql(ep so) : [Qla ¥ > [Q]C ) By above equality

eCase py o/ . Bq4@ OFT:[OBq<[OCpHA  AFTicovers [AB g

Case]
'k case(ep, ) & Cp—HA
'Feo=B!40O Subderivation
0 — A By Lemma Typing Extension[)
0 — Q By Lemma Extension Transitivity[)
QIO F[Qley = [Q]B ! By i.h.
[QIAF[Qley = [QIB! By Lemma (]Conﬂuence of Completeness[)
OFTT:[OB&BICpHA Subderivation
'Feo=B!H40O Subderivation
OFB!type By Lemma (rWell-Forrned Outputs of Typing[) (Synthesis)
I'=Cptype Given
r— 0 By Lemma Typing Extension[)
OFCrptype By Lemma Extension Weakening for Principal Typing[)
O +[B]C p type By Lemma Right-Hand Subst. for Principal Typing)

[QIAFQIT = [Q]B < [Q]O]Cp Byih. (v)
[Q][e]C = [Q]C By Lemma (]Substitution Monotonicityb
[QJA QT = [Q]B < [Q]C p By above equalities

Assume Q such that A — Q.

Assume D such that [Q]JA+e = D q.

Hence [QI' e = D q.

By Theorem there exist B’ and ©’ such that THey = B’ q 40’ and Q — Q' and D = [Q']B’ and
B’ =[©']B".

By Lemmal|5| (Determinacy of Typing)), we know ©’ = © and B’ = B, which means D = [Q][A]B.

By Lemmal|7| (Soundness of Match Coverage)), [Q]A + [Q]TT covers [Q][A]B q.

Hence [Q]A - [Q]IT covers D q.

By rule [DeclCasd, [Q]A I- [Q]case(eo, TT) < [QIC p

Part (v):

e Case[MatchEmptyt Apply rule [DeclMatchEmpty}

e Case MFee=CpHA

e

Apply the i.h. and |DecIMatchBase
e Case Apply the i.h. and [DecIMatchUnit]

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 148

cCase . AqeCpHdO® OFM:AqecCpHA

Ml :AqeCpHA

Apply the i.h. to each premise, using lemmas for well-formedness under ©; then apply|DeclMatchSeq

e Cases|Matchd, [Match/\| [MatchWild| [MatchNill [MatchConsf:
Apply the i.h. and the corresponding declarative match rule.

e Cases|Match x| [Match+}

We have I' - A ! types, so the first type in A has no free existential variables.
Apply the i.h. and the corresponding declarative match rule.

* Case Anotheadedby Aor3 Nz:Alkf=e zAq&eCpdAz:ALA

N-zp=ezAAqeCp-HA

Construct O’ and show A, z: A, A’ — Q’ as in the =] case.

Use the i.h., then apply rule

Part (vi):

o Case r/o=t:x-L
N/o=tkppezAl<CpHr

'/ o=71:x+ L Subderivation
Mo=1)= (0 =1 Given
=[(oc="7 Given
= [Q](oc=1) By Lemma Substitution Monotonicityb )]
€ By Lemma |90| (Soundness of Equality Eliminationb
mgu([Q]o, [Q]T) = L By above equality

s [QIF/[Q)(0 =) F[Q](ppe) = [QJA < [QICp  By[DecIMatch ]

e Case o otrikl r%aiexf\q@CpAA,.p,A’
No=1kp=ez:Al&Cp-HA
ep /Jo=T:kT’ Subderivation
(o=1)=1[M(o=1) Given
= [Q](c=1) By Lemma Substitution Monotonicity[) (D)
=T »p,0) By Lemma 90| (Soundness of Equality Eliminationb
O = (ln=t1),..., (@n=tn)) "
0 = mgu([Q]o, [Q]T) "
[Q,»p,BIt" = [0][Q, »p]t’ " forall Q,mp Ft’: k'
Nrp,OFf=e:A&Cp-HArp,A Subderivation

[Q,»p, Ol(A, mp,A) FIQ, »p,0(F =€) = [Q,mp, OlA < [Q,»p,0]Cp Byih.

Proof of [Theorem 9| (Soundness of Algorithmic Typing) thm:typing-soundness




Proof of|Theorem 9 (Soundness of Algorithmic Typing) thm:typing-soundness 149

(Q,»p,0) = [0](Q,»p) By Lemma Substitution Upgrade)) (iii)
[Q,»p, OJA = [0] [Q, >p]/i By Lemma Substitution Upgrade)) (i)
[Q,»p,B]C = [0][Q, »p]C By Lemma Substitution Upgrade]) (i)

[Q,»p,0](p = e) =[0][Q](f = e) ByLemma Substitution Upgrade]) (iv)

-

0([Q,»pll) FBIQI(P =€) = 0([Q,»p]A) & 0([Q,»p]C) p By above equalities

—

o(1QIT) F[BIIQl(F = e) = B([QJA) « 6([QIC) p Subst. not affected by »p

s [QIF/[Q)(0 =) FIQI(F = ) = [QJA < [Q]Cp  By[DeclMatchUnify]

K’ Completeness

K’.1 Completeness of Auxiliary Judgments

Lemma 92 (Completeness of Instantiation).

Given T — Q and dom(T") = dom(Q) and T+ t: x and T = [I']T and & € unsolved(T") and & ¢ FV(t1):
IflQl& = [Q]t

then there are A, Q' such that O — Q' and A — Q' and dom(A) =dom(Q’) andT+ & := 1: k 1 A.

Proof. By induction on T.
We have [Q]T F [Q]& <P [Q]A. We now case-analyze the shape of .

° CaseT:(g:

& ¢FV(B) Given
&#P From definition of FV(—)
B €unsolved(I") From [TB = B
Let Q' = Q.
= Q— Q' By Lemma (IExtension Reﬂexivityb

Now consider whether & is declared to the left of 8, or vice versa.

- Case ' =Ty[a: kB : «:
Let A=Tp&: KB : k=4l

TF&:=PB:xk-4A By|InstReach
[Q]a = [QIB Given
r—Q Given
= A— Q By Lemma (IParallel Extension Solutionl)
w  dom(A) = dom(Q’) dom(A) = dom(T") and dom(Q’) = dom(Q)

- Case (I'=To[P : kl[&: «l:
Similar, but using InstSolve|instead of

e Case 1 = «:
We have [Q]& = «, so (since Q is well-formed), « is declared to the left of & in Q.
We have ' — Q.

By Lemma [21] (Reverse Declaration Order Preservation), we know that o is declared to the left of & in
I'; thatis, ' =T [o: k][& : K].

Proof of [Lemma 92| (Completeness of Instantiation)) lem:instantiation-completeness




Proof of|Lemma 92| (Completeness of Instantiation)) lem:instantiation-completeness 150

Let A=T1[x:K][&:k=0a] and Q' = Q.

By|[InstSolve] I [oc: k][@: k] F & := at: k A,

By Lemma (Parallel Extension Solution)), I't [e: k][& : k=] — Q.

We have dom(A) = dom(T") and dom(Q’) = dom(Q); therefore, dom(A) = dom(Q’).

e Caset=1:

Similar to the T = « case, but without having to reason about where « is declared.

e Case T = zero:

Similar to the T = 1 case.

e Case T =11 P 12

[Qla = [Q](T] & 12) Given
= ([Qlt1) & ([Q]T2) By definition of substitution
T ® 1 = [Tt & T2) Given
71 = Mty By definition of substitution and congruence
T = N1, Similarly
& ¢FV(T1 @ 12) Given
& ¢FV(ty) From definition of FV(—)
Q& EFV(ty) Similarly
['=Ty[&: +] By & € unsolved(T")
r— Q Given
[o[@:*] — To[R2 1 %, &7 : %, & : %] By Lemma (]Deep Evar Introductionb (1) twice
e, R DRy x Straightforward

&2, &1, 8] — TH[&2, 21, &=&1 & ®2] By Lemma Deep Evar Introduction[) (ii)
Nol&] — To&2, &1,8=&1 ® &] By Lemma Extension Transitivity)

(In the last few lines above, and the rest of this case, we omit the “: ¥” annotations in contexts.)
Since & € unsolved(I") and I' — Q, we know that Q has the form Qq[& = To].

To show that we can extend this context, we apply Lemma [23| (Deep Evar Introduction)) (iii) twice to
introduce &, =T, and &; =Ty, and then Lemma (Parallel Variable Update]) to overwrite To:

Qold=10] — QolRor =12, 81 =71, =01 & &)
—_——
o

We have I' — Q, that is,
ro [&} — QQ [& = To]

By Lemma[26] (Paralle] Admissibility) (i) twice, inserting unsolved variables &, and &; on both contexts
in the above extension preserves extension:

Io[R2, &1, 8] — Qol@2 =72, 1 =711, 8= "To] By Lemma Parallel Admissibility[) (ii) twice
lo[®2, &1, 2= 1DR2] — Qol[®2 =7T2,81 =T1,&=&1BR2] By Lemma Parallel Variable Update
r (o}

Since & ¢ FV(1), it follows that [I]T = [t = T.

Therefore &1 ¢ FV(t1) and &1, R, € FV(13).

By Lemma (Completing Completeness) (i) and (iii), [Q4]T7 = [QII" and [Q;]& = T7.

By i.h., there are A; and Q, such thatI'; - &7 (=11 :k 1Ay and A; — Q; and Q7 — Q.

Proof of [Lemma 92| (Completeness of Instantiation)) lem:instantiation-completeness




Proof of|Lemma 92| (Completeness of Instantiation)) lem:instantiation-completeness 151

Next, note that [Az} [Az]’[‘z = [Az]’fz.
By Lemma |64 (Left Unsolvedness Preservation|), we know that &, € unsolved(A;).
By Lemma Left Free Variable Preservationl), we know that &, ¢ FV([Az]13).

By Lemma Extension TransmVlEh, QO — Qs.
We know [Q,]A, = [Q]T because:

[Q5]A; = [Q3]Q, ByLemma Completing Stability])
= [Q]OQ By Lemma Comﬁ!eting Comﬁ!eteness) (iii)
= [Q]r By Lemma Completing Stability))

By Lemma Completing Completeness) (i), we know that [Q;]&; = [Q1]&; = T5.

By Lemma Completing Completeness) (i), we know that [Q;]1; = [Q]T.

Hence we know that [(Q,]A; F [Qs]& <7 [Qs]T).

By i.h., we have A and Q' such that A; F &, := [Az]to:k HAand Q; — Q' and A — Q.
By rule[lnstBin] I'- & := T: k 4 A.

By Lemma [33] (Extension Transitivity), Q — Q'.

e Case T = succ(1y):

Similar to the T = t7 & T, case, but simpler. O

Lemma 93 (Completeness of Checkeq).

Given ' — Q and dom(I") = dom(Q)
andThHo:kandTFT:«k

and [Q]o = [Q]T

thenTHF[To=[Tt:xkH1A

where A — Q' and dom(A) = dom(Q’) and QO — Q.

Proof. By mutual induction on the sizes of [['Jo and [I']t.
We distinguish cases of [l and [I']7.

e Case [lMo=[Nt=1:

e N-1=1:%4 T  By|CheckeqUnit
by
Let Q' = Q.
r—Q Given
(= A— QF A=Tand Q' =Q
w dom(l") = dom(Q) Given
= Q— Q' By Lemma QExtension Reflexivityb

e Case [[o = [t = zero:

Similar to the case for 1, applying|CheckeqZero|instead of |CheckeqUnit
e Case Mo =[Nt =

Similar to the case for 1, applying [CheckeqVar|instead of
e Case [No = & and [t = B:

- If & = B: Similar to the case for 1, applying|CheckeqVar|instead of [CheckeqUnit]
- If&+#B:

Proof of |Lernrna 93| (]Completeness of Checkeq]) lem:checkeqg-completeness




Proof of|Lemma 93| (Completeness of Checkeq)) lem:checkeg-completeness 152

r—Q Given
& ¢FV( B ) By definition of FV(—)
~—
(rit
[Qlo = [Q]t Given
[Q]Me = [Q]T]t By Lemma (]Substitution Monotonicity{) (1) twice
[Q]a = [Q][Tt Mo=2a&
dom(T") = dom(Q) Given

r-&:=Mt:«x4A By Lemma QCompleteness of Instantiation|)
1

= A— Q "
= dom(A) = dom(Q’) "

= N-&=[t:«k4A By|CheckeqlnstL

e Case [[lo =& and [I'lt =1 or zero or «:
Similar to the previous case, except:

& gFV (\1/) By definition of FV(—)
(Mt

and similarly for 1 and «.
e Case [t =& and [o =1 or zero or x: Symmetric to the previous case.

e Case [INo = & and [I'lt = succ([IMNty):
If & ¢ FV([I'ty), then & ¢ FV([T']t). Proceed as in the previous several cases.
The other case, & € FV([T'lty), is impossible:

We have & < [Ito.

Therefore & < succ([I'lty), that is, & < [T']t.

By a property of substitutions, [Q]& < [Q][T]t.

Since ' — Q, by Lemma (]Substitution Monotonicity{) D, [Q][MNt = [Q]t, so [Q]& < [Q]t.
But it is given that [Q]& = [Q]t, a contradiction.

e Case [t =& and [Io = succ([op): Symmetric to the previous case.

e Case [[o = [Noy @ [MNoz and [Tt = [Tty & [Mta:

r—Q Given
Moy =Mty : %10 By i.h.
0 — Qo "
Q— Qo "
dom (@) = dom(Qy) "
OF[O]lMNo, = [OIMty : x 1A By i.h.
= A— QF "
Qp — Q' "
w dom(A) = dom(Q’) "
= Q— Q' By Lemma (]Extension Transitivityl)
= M=[Moy @ Moz = [ty @ [Mtz) : x 1A By|CheckeqBinj

Proof of |Lemma 93| (]Completeness of Checkeq]) lem:checkeqg-completeness




Proof of|[Lemma 93| (Completeness of Checkeq) lem:checkeg-completeness 153

e Case [lo = & and [Tt = t; @ t,: Similar to the &/succ(—) case, showing the impossibility of
& e FV([Ttx) fork=1and k = 2.

e Case [Nt =& and [lo = 07 @ 02: Symmetric to the previous case. O

Lemma 94 (Completeness of Elimeq).
IflTlo=candTlt=tandTFo:kandT t:«k and FEV(o) UFEV(t) = 0 then:

(1) If mgu(o,t) =106
thenT /o =t:k 4 ([JA)
where A has the form oy =t7,..., 00 =1tp,
and for all w such that T w : k, it is the case that [T, Alu = 6([I'u).
(2) If mgu(o,t) = L (that is, no most general unifier exists) thenT" /o =t:k - L.

Proof. By induction on the structure of [Ilo and [T']t.

e Case [Q]o =t = zero:

mgu(zero, zero) = - By properties of unification
I/ zero =zero: N AT Byrule
= I' / zero=zero:NHATJA where A =-
ww Suppose ' u:«k’.
I Alu = [Tu where A = -
= 0([MNu) where 0 is the identity

e Case 0 = succ(o’) and t = succ(t’):

— Case mgu(succ(o’),succ(t’)) = 0:

mgu(o’,t’") = mgu(succ(o’),succ(t’)) =0 By properties of unification

succ(o’) = [Msucc(o’) Given
= succ([I"o’) By definition of substitution
o' = [lNo’ By injectivity of successor
succ(t’) = [Msucc(t’) Given
= succ([T't") By definition of substitution
t' = [Tt/ By injectivity of successor
/o =t :NALA By i.h.
= [I; Alu = 6([I"u) for all uwsuch that... "

= I' / succ(o’) =succ(t’) :NHAT A Byrule

— Case mgu(succ(o’),succ(t’)) = L:

mgu(o’,t") = mgu(succ(o’),succ(t’)) = L By properties of unification

succ(o’) = [Msucc(a’) Given
= succ([l"o") By definition of substitution
o' = [lNo’ By injectivity of successor
succ(t’) = [Msucc(t’) Given
= succ([I't") By definition of substitution
t/ = [t/ By injectivity of successor
/o =t :NHL By i.h.
= I' / succ(o’) =succ(t’) :N-H L Byrule

Proof of |Lemma 94| ([Completeness of Elimeq]) lem:elimeqg-completeness




Proof of|Lemma 94| (Completeness of Elimeq) lem:elimeg-completeness

154

e Caseo=01 Dorandt=1; @ t,:

First we establish some properties of the subterms:

01 ® oy = [IN(0o7 ® 032) Given
= [MNoy @ [Tlo, By definition of substitution
= Moy = oy By injectivity of ®
= Moz = 02 By injectivity of ®
t1 @ty =Tt & t2) Given
= [ty @ [Tt By definition of substitution
= Mt; = t4 By injectivity of ®
= Mty =tz By injectivity of ®

— Subcase mgu(o,t) = L:
x Subcase mgu(oq,t;) = L:
N/ or=t:xk4L By i.h.

'/ o1@o=t ®ty: k4L Byrule[ElimeqBinBot

x Subcase mgu(o1,t;) = 07 and mgu(07(02),01(t2)) = L:
I'/op =t kAT A, By i.h.
L AyJu = 64 ([MNu) for all wsuch that... "

[I;A7]loy = 6:([To2) Above line with 0, as u

(
= 01(02) Moz =02
[I;Aq]t; = 01([TIt2)  Above line with t; as u
=01(t2) Since [INo, = o)
mgu ([T} Aq]o, I Arlt2) = 6, By transitivity of equality

I, A¢1T; Aqlos = [T;A1]lo, By Lemma Substitution Monotonicity]

AT Aqt, = [T Aq]t, By Lemma Substitution Monotonicity]

AN / [RA]]O'Zé[r,Aﬂtz:K—'J_ By'lh

= '/ o1®o2=t1®ty: k4L Byrule|ElimegBin

- Subcase mgu(o,t) = 0:
mgu(o1 @ 02,t1 D t2) =0 =000

mgu(oq,t1) =0
mgu(01(02),01(t2)) =0

By properties of unifiers
"

"

r/o £t1ZK—|r,A1 By'lh
# L AyJu = 04 ([MNu) for all wsuch that... "
[, At]los = 0:([Mo2) Above line with ¢, asu
= 01(02) Moz = 02
A ]t = 01 ([Tt2) Above line with t, as u
= 07 (t2) Moz =02
mgu([l; At]oz, [ A]t2) = 0 By transitivity of equality

Proof of |Lemma 94| (]Completeness of Elimeq[) lem:elimeqg-completeness




Proof of|Lemma 94| (Completeness of Elimeq) lem:elimeg-completeness

155
5 A¢1IT; A1los = [T;A1]lo, By Lemma Substitution Monotonicity]
(LA Aqlt, = [T;A4]t; By Lemma Substitution Monotonicity]
I A / [I“,A1]02£[F,A1]tz:|<—|F,A1,A2 By'lh
** Ay, Axlu’ = 0,([, AqJu/) for all u’ such that... "
= '/ or@o=t1 dty: kAL A, A, Byrule
ww  Suppose ' u: k'
5 A1, ArJu=02([[AJu) By **
= 02(0:(Mu)) By*
= 0([MNu) 0 =000,
e Case 0 = «:
— Subcase « € FV(t):
mgu(a,t) = L By properties of unification
= '/ a=t:k4 L Byrule[ElimeqUvarL L
— Subcase « ¢ FV(t):
mgu(a, t) = [t/ By properties of unification
(=t")¢Tl Mo =«
(= '/ a=t:k4a=t By rule|ElimeqUvarl
ww Suppose ' w: k'
L a=tlu= [T([t/o]u) By definition of substitution
= [[Mt/x][Mu By properties of substitution
= [t/od[Mu Mt=t
e Case t = o: Similar to previous case. O

Lemma 95 (Substitution Upgrade).
If A has the form oy =t1,..., 0, =ty

and, for all u such that ' - u : k, it is the case that [T, Alu = 6([I"u),
then:

(@) IfT F A type then [T, AJA = 0([T'A).
(i) IfT — Q then [QIT = 0([QT).
(i) IfT — Q then [Q, Al(T,A) = 0([QIT").
(iv) IfT — Q then [Q, Ale = 0([Q]e).

Proof. Part (i): By induction on the given derivation, using the given “for all” at the leaves.

Part (ii): By induction on the given derivation, using part (i) in the[—Var|case.

Part (iii): By induction on A. In the base case (A = -), use part (ii). Otherwise, use the i.h. and the
definition of context substitution.

Part (iv): By induction on e, using part (i) in the e = (eo : A) case. O

August 15, 2020



K'.1 Completeness of Auxiliary Judgments 156
Lemma 96 (Completeness of Propequiv).
GivenT — Q
and T+ P prop and T+ Q prop
and [Q]P = [Q]Q
thenTH[MP=[TQ 4A
where A — Q' and QO — Q.
Proof. By induction on the given derivations. There is only one possible case:
e Case
'Fop:N 'Foy:N 'ET1:N N1, :N
EqP EqP
I' oy = o, prop m Ity =7, prop
[Ql(o1 = 02) = [Q)(T1 =T2) Given
[Qloy = Q)T Definition of substitution
Qo = (Ol "
NFo7:N Subderivation
Nkt :N Subderivation
'tEToy =[T]o,: NHO By Lemma QCompleteness of Checkeql)
e — Qp "
Q— Qo "
Noy:N Subderivation
OFo,:N By Lemma (]Extension Weakening (Sorts)[)
OFT1:N Similarly
OFBOT; =[Ot : NHA By Lernrna (]Cornpleteness of Checkeql)
= A — Qo "
QO — Q/ "
O]ty = [B][INTy By Lemma (]Substitution Monotonicity{) D
@], = [B][lT2 "
O F [0t = [@]lNt;: NH4A By above equalities
(= Q— Q' By Lemma (]Extension Transitivityb
M ([Moy =[©loz) = ([Nt =[6lt2) 4T By[=PropEq|
ww ['H([INo; =[MNoz) = ([MNt; =[Nt) 4T By above equalities
O

Lemma 97 (Completeness of Checkprop).

IfT' — Q and dom(T") = dom(Q)
and T + P prop

and [P =P

and [QIT F [Q]P true

thenT - P true 4 A

where A — Q' and Q — Q' and dom(A) = dom(Q”).

Proof. Only one rule, |DeclCheckpropEq} can derive [Q]T" F [Q]P true, so by inversion, P has the form (t; = t;)
where [Q]t; = [Q]t,.

By inversionon I' - (t; =t,) prop, we have 'ty : Nand "'+ t, : N.

Then by Lemma (Completeness of Checkeq)), '+ [Tt = [Tt, : N 4 A where A — Q' and Q — Q.

By |CheckpropEq, I" = (t1 = t2) true 4 A.

O

August 15, 2020



K'.2 Completeness of Equivalence and Subtyping 157

K'.2 Completeness of Equivalence and Subtyping

Lemma 98 (Completeness of Equiv).

IfT'— Q andTH A type and ' - B type

and [Q]A = [Q]B

then there exist A and Q' such that A — Q' and Q — Q" andT F [INA =B 4 A.

Proof. By induction on the derivations of I' - A type and I" - B type.

We distinguish cases of the rule concluding the first derivation. In the first four cases (ImpliesWF| [WithWF|
[ForallWF|, [ExistsWF), it follows from [Q]JA = [Q]B and the syntactic invariant that Q substitutes terms t
(rather than types A) that the second derivation is concluded by the same rule. Moreover, if none of these
three rules concluded the first derivation, the rule concluding the second derivation must not be
[WithWF] [ForallWF| or [ExistsWF| either.

Because Q) is predicative, the head connective of [I'lA must be the same as the head connective of [Q]A.

We distinguish cases that are imposs. (impossible), fully written out, and similar to fully-written-out
cases. For the lower-right case, where both [I'JA and [I'|B have a binary connective 4, it must be the same
connective.

The Vec type is omitted from the table, but can be treated similarly to > and A.

(1B

) A vp.B’  3B.B’ 1 x B B: @ B,

D Implies imposs. imposs. imposs. imposs. imposs. imposs. imposs.

AN imposs. With  imposs. imposs. imposs. imposs. imposs. imposs.

Va. A’ imposs. imposs. Forall imposs. imposs. imposs. imposs. imposs.

Jo. A’ imposs. imposs. imposs.  Exists imposs. imposs. imposs. imposs.

1 imposs. imposs. imposs. imposs. 2.Units imposs. 2.BEx.Unit imposs.

[F] A « imposs. imposs. imposs. imposs. imposs. 2.Uvars 2.BEx.Uvar imposs.
& imposs. imposs. imposs. imposs. 2.AEx.Unit 2.AEx.Uvar SI;AE:(S)::;::} i%); 2.AEx.Bin

A1 @ A, Iimposs. Imposs. ImpoSS. Imposs. imposs. imposs. 2.BEx.Bin 2.Bins

o Case ' P prop ' Ap type
I'=P D Ap type

ImpliesWF|

This case of the rule concluding the first derivation coincides with the Implies entry in the table.

We have [Q]A = [Q]B, that is, [Q](P D Ap) = [Q]B.
Because Q is predicative, B must have the form Q D By, where [Q]P = [Q]Q and [Q]A, = [Q]Bo.

Proof of |Lernrna 98| (]Completeness of Equiv[) lem:equiv-completeness




Proof of|Lemma 98 (Completeness of Equiv) lem:equiv-completeness

158

I" =P prop
' Ao type
I'EQ D Bo type
I't+Q prop
I' =By type
r=mrprP=[IiQ-4e
@—)Qo
Q— Qp

r— 0
I'=Ap type
I' =By type
[QJAo = [Q]Bo
[Qo]Ao = [Qo]Bo
I'EMAy=[TBy A
= A— Q
_O.o — Q'

= 0 — 0
I'= (P>

MAo) = (INQ > MBo) 44 By[E])
= I'ETHP DA =[(Q D By) 1A

Subderivation
Subderivation
Given

By inversion on rule |ImpliesWF

"

By Lemma (]Completeness of Propequiv{)
1

"

By Lemma (]Prop Equivalence Extension|)

Above

Above

Above

By Lemma qumpleting Completeness[) (ii) twice
By i.h.

"

"

By Lemma qutension Transitivity[)

By definition of substitution

e Case Similar to the|ImpliesWFH| case, coinciding with the With entry in the table.

o Case Lok Ap type
' Voa: k. Ag type

This case coincides with the Forall entry in the table.

r—Q
Noa:k— Q,ax:k
o:kFAptype

B =V«&: k. By
[Q]A, = [Q]By

Loa:xkETAy = TBy 1Ay

Ao—)Qo
Q,o:k — Qo

= Q—Q'and Qp = (Q',x:k,...)

Ao = (A, k,A)
= A— QF

Given

e

Subderivation

Q predicative
From definition of substitution
By i.h.

1

1"

By Lemma
By Lemma

"

Extension Inversion]) (i)
Extension Inversion) (i)

Vo k. [MNAy =Va: k. [TBy 1A By

= =M (Ve: k. Ap) = M (Ve : k. Bg) 4 A

By definition of substitution

e Case Similar to the case. (This is the Exists entry in the table.)

e Case[BinWF} If[BinWFalso concluded the second derivation, then the proof is similar to the[ImpliesWF|
case, but on the first premise, using the i.h. instead of Lemma [96] (Completeness of Propequiv). This is
the 2.Bins entry in the lower right corner of the table.

Proof of |Lernrna 98| (]Completeness of Equiv[) lem:equiv-completeness




Proof of|Lemma 98 (Completeness of Equiv) lem:equiv-completeness 159

If did not conclude the second derivation, we are in the 2.AEx.Bin or 2.BEx.Bin entries; see
below.

In the remainder, we cover the 4 x 4 region in the lower right corner, starting from 2.Units. We already
handled the 2.Bins entry in the extreme lower right corner. At this point, we split on the forms of [I'JA and
[I'B instead; in the remaining cases, one or both types is atomic (e.g. 2.Uvars, 2.AEx.Bin) and we will not
need to use the induction hypothesis.

e Case 2.Units: MNA =[TB =1

- FF1=14T By[EUnif

r—Q Given
Let Q' = Q.
= A—Q A=T
= Q—Q’ By Lemma QExtension Reﬂexivityb and Q' =Q

e Case 2.Uvars: [INA =[I'B =«

r— Q Given
Let Q' =Q’.
- MFa=oa-T By[EVal
= A— Q A=T
e Q— Q By Lemma qutension Reﬂexivityl) and Q' =Q

e Case 2.AExUnit: A =&and B =1

r— Q Given
1=[Q]1 By definition of substitution
& ¢FV(1) By definition of FV(—)
[Qla = [Q]1 Given

N-&:=1:x4A By Lemma (ICompleteness of Instantiationl) @))
= 00— 0 "
= A— Q

"

1=1[I1 By definition of substitution
& ¢FV(1) By definition of FV(—)

- rFa=14A By Elnstantiatel]

e Case 2.BExUnit: [lNA =1and [I'NB =&
Symmetric to the 2.AExUnit case.

e Case 2.AEx.Uvar: [INA =& and [IB = «
Similar to the 2.AEx.Unit case, using $ = [Q]f = [l and & ¢ FV(B).

e Case 2.BExUvar: NA =1and [lNB =&

Symmetric to the 2.AExUvar case.

e Case 2.AEx.SameEx: [[JA =& = =B

Proof of |Lernrna 98| (]Completeness of Equiv[) lem:equiv-completeness




Proof of|Lemma 98 (Completeness of Equiv) lem:equiv-completeness 160

r-a=a&-T By [EExvar| (& = B)

Ma=a & unsolved in T
o &= [rpB 4T By above equality + & = B
r—Q Given
= A— Q A=T
Let Q' = Q.
= Q—Q’ By Lemma (]Extension Reﬂexivity[) and Q' =Q

e Case 2.AEx.OtherEx: [[JA = & and [B =  and & # P
Either & € FV([TB), or & ¢ FV([TB).

- & FV(INB):
We have & < [I']J.
Therefore & = [F]/B, or & < [I"]@.
But we are in Case 2.AEx.OtherEx, so the former is impossible.
Therefore, & < [I'B.
By a property of substitutions, [Q]& < [Q][{.
Since ' — Q, by Lemma Substitution Monotonicity[) (i), [Q] [F]B = [Q]G, so [Q]& < [Q]/[.’;.
But it is given that [Q]& = [Q][3, a contradiction.

- & ¢ FV([MP):

N-a:= [F]G :x4A By Lemrna|9_2| (]Cornpleteness of Instantiationl)

= &= [F]/[.’; HA BylzlnstantiateLl

= A — Q "
e Q— Q "

e Case 2.AEx.Bin: [NA =& and [I'/B=B; & B,

Since [I']B is an arrow, it cannot be exactly &. By the same reasoning as in the previous case (2.AEx.OtherEx),
& ¢ FV([MB).

'ea&:=[TIB:x+4A By Lemma (ICompleteness of Instantiationl)
= A— Q "
= Q- Q 4

= ''-[MA= [I'NB 4A By|=Instantiatel
—~ =~
& B1®B2

e Case 2.BEx.Bin: A =A; & A, and [1B = B
Symmetric to the 2.AEx.Bin case, applying [ElnstantiateR] instead of O

Theorem 10 (Completeness of Subtyping).

IfT'— Q and dom(T') = dom(Q) and T+ A type and ' - B type
and [QIT - [QJA <” [Q]B

then there exist A and Q' such that A — Q'

and dom(A) = dom(Q’)

and Q — Q'

andTF [MA <:7 [INB 4 A.

Proof. By induction on the number of V/3 quantifiers in [Q]A and [Q]B.

It is straightforward to show dom(A) = dom(Q’); for examples of the necessary reasoning, see the proof
of Theorem [12]
We have [Q]T" - [Q]A <ioin(pel(B),pol(A) [0)]B,

Proof of|TheoreIn 10| (]Completeness of Subtyping[) thm:subtyping-completeness




Proof of|Theorem 10| (Completeness of Subtyping) thm:subtyping-completeness 161

e Case
[QIT - [Q]A type nonpos([QJA)
[QIT - [Q]JA <™ [QJA

~——
[Q]B

First, we observe that, since applying Q) as a substitution leaves quantifiers alone, the quantifiers that
head A must also head B. For convenience, we alpha-vary B to quantify over the same variables as A.

— If A is headed by V, then [Q]A = (V& : k. [Q]Ap) = (Vo : k. [Q]Bp) = [Q]B.
Let Ty = ([ o: kypg, & K).
Let Qo = (Q,x: Ky pg, & : K=0).
x If pol(Ap) € {—, 0}, then:
(We elide the straightforward use of lemmas about context extension.)
[Qollo F QA < [QlA, By [<Refl-]

[Qo]To F[Qo)[&/x]Ag <™ Ap By def. of subst.
Ay — Q By i.h. (fewer quantifiers)
Qo — Qf "
ro = [ro][&/(x]Ao <:7 [F]Bo - Ao "
Io F[&/adTo]Ag <: 7 [TBy 4 Ag & unsolved in Iy
To F&/ad[lMAg <:~ [MBg 4 Ag Iy substitutes as I’
Do:kFEVa:k [IMAg<:~ [TBy 1A, x: k,© By|<:VL
MVoo: k. [MAg <:~ Vo : k. [TBo 4 A By|<:VR
=3 MMV k. Ap) <:~ [T(Vee: k. Bg) 4 A By def. of subst.
(=] A— Q By lemma
w0 — Q) By lemma

« If pol(Ap) = +, then proceed as above, but apply instead of [<Refl-| and apply[<: "L]
after applying the i.h. (Rule also works.)
— If A is not headed by V:

We have nonneg([QJA). Therefore nonneg(A), and thus A is not headed by 3. Since the same
quantifiers must also head B, the conditions in rule are satisfied.

r— Q Given
Fr'FTMA=[BHA By Lemma qumpleteness of Equiv{)
= A— Qf "
= Q— Qf "

= MEMMA <~ [MB+A  Byl:Equiy

o Case [<Refl+}  Symmetric to the case, using (or [<:1R), and instead of
<:VI/<: VRl

e Case Orc.x  [QINF [t/al[QIA, <~ [QIB

<vL
[QT F Vo : k. [Q]JAy <7 [Q]B
| S —
[Q]A

We begin by considering whether or not [QQ]B is headed by a universal quantifier.

- [QIB=(VBp:k'.B'):

Proof of|TheoreIn 10| (]Completeness of Subtyping[) thm:subtyping-completeness




Proof of|Theorem 10| (Completeness of Subtyping) thm:subtyping-completeness

162

QIR : k' FIQJA <~ B’ By Lemma (]Subtyping Inversion[)

The remaining steps are similar to the case.
— [Q]B not headed by V:

QIrFT:k Subderivation
r—Q Given

[ O N T By|—Marker,

ra,8:k— Qypg,&: k=T  By|—Solve
N I —

Qo
[QIT = [Qol(l; »a, & : k) By definition of context application (lines 16, 13)

[QIT F[t/x][Q]Ag <™ [Q]B Subderivation
[Qol(Tywa, &: k) Ft/ad[Q]Ay <™ [Q]B By above equality
[Qol( s, & : k) F [[Qol&/a] [Q]A, <™ [QIB By definition of substitution
[Qol(h g, & : k) F [[Qol&/a] [Qo]Ao < [Q0]B By definition of substitution
[Qol(Ty g, &: k) F[Qol[&/ax]Ay <™ [Qp]B By distributivity of substitution

Nea, &FEMpa,&: kl[&/x]Ay <:~ [ pa,&:k]B4Ay Byi.h. (A lost a quantifier)

AO Q " "

Qy — Qr

"

Nra,&:kE[R/]Ag <:~ [IB-4Ay By definition of substitution

Nea, @k — Ap By Lemma Subtyping Extension[)
Ao = (A »g,0O) By Lemma Extension Inversion)) (ii)
r— A "
Q"= (Q'»s,Qz) ByLemma (]Extension Inversionb (i)
= A — Q/ "
Qo — Q" Above
Qpg,B:k=17— Q' ps,0Q7 By above equalities
1= Q—Q' By Lemma qutension Inversion[) (ii)
Nea,&:kEM&R/x]Ay <:~ [TIB4A,»5,0® By above equality Ay = (A, » &, O)
Nea,&:kE[@/alMA <:~ [TIB 1A »5,® By def. of subst. ([I'N& = & and M« = o)
[I'B not headed by V From the case assumption
MV k. [MAg <:~ [MB 4 A By[<:v]
= =MV : k. Ag) <:~ [MNBHA By definition of substitution

e Case —
[QINB: - [QJA <~ [Q]B,
OIF - QA < VB - v [QJBg =X
\q/_/

[Q]B

Proof of|TheoreIn 10| (]Completeness of Subtyping[) thm:subtyping-completeness




Proof of|Theorem 10| (Completeness of Subtyping) thm:subtyping-completeness

163

:Vﬁ K. Bo

[QII' - [QJA <™ [Q]B

[QIT F [QJA <~ VB. [Q]B,

[
QIR : k FIQJA <~ [Q]Bo
KIGR: k) FIQ,B:k]A
I",B:KI—[F,[S.K]A<.
A — Q)
Q,f:k— Qf

[Q,B:

-0,
[T B:k]Bo 4 A’

B k1Bo

LR:kEIMA<:~ [MNBy A’

Q predicative

Given

By above equality
Subderivation

By definitions of substitution
By i.h. (B lost a quantifier)

"

"

By definition of substitution

Instantiation Extensionb
Extension Inversion[) (D

By A" — and above equality

Lp:xk— A By Lemma
A= (A Bk 0) By Lemma
r— A "
AB: KO — Q)
QL= (Q'p:k0Qr) ByLemma
= A— Q "
NE:kFMA <~ By 4A,B: kO
Q,B:k— Q,B:k Qg
= Q— Q'
N=TA <:~ VB : k. [IBy 4 A
= FHMA <:— [TV : k. Bo) 4 A
* Case [O)fa:kk [QJA <* [QJB
[T F 3o x. [QJAe <* [QJB =&
|
[Q]A
A =dx: k. Ao
[QIT - [QJA) < [Q]B
[QITF[Q]Fx: k. Ay <T [Q]B
QIR o: k F[QJA, <* [QB
(

[Q,:k](lo: k) F

Q,o: kAo <7 [Q, o : k]B

Lo:kE[NLPR:k]Ag <:T [I,B:k]B 4 A’

A — Q)
Q,a:k— Q)

Mok F[MA <:* [MBy o A

Noa:k — A
A= (Ajx:k,0)
r— A
Ajx:k,® — Qf
Q(/) = (Q' a1k, QR)
A— QF

By Lemma
By Lemma
11

By A" —
By Lemma
1

qutension Inversionl) 6))]

By above equality
By above equality
By Lemma qEXtension Transitivity[)

A

By definition of substitution

Q predicative

Given

By above equality
Subderivation

By definitions of substitution
By i.h. (A lost a quantifier)

"

"

By definition of substitution

Q/, and above equality
qutension Inversionl) @)

Instantiation Extension|)
Extension Inversion)) (i)

Proof of|TheoreIn 10| (]Completeness of Subtyping[) thm:subtyping-completeness




Proof of|Theorem 10| (Completeness of Subtyping) thm:subtyping-completeness

164

Noa:kETAg<:TTMBHA a: k0
Q,:k — Q o: k, Qg
= Q—Q

N -3a: k. [MAg<:T[INBAHA
= MM (Ja:k.Ap) <: T [TIBHA

e Case yi . YK IQIA<' [t/BBo —
YF QA <' 3B : k. B =
—_——

[Q]B

By above equality
By above equality
By Lemma (]Extension Transitivityi)

[

By definition of substitution

We consider whether [Q]A is headed by an existential.

If [OJA =3x: k. A’":

QT e: k" FA"<T [Q]B By Lemma (]Subtyping Inversionb

The remaining steps are similar to the case.

If [Q]A not headed by 3:

QIFrFT:k

r—Q Given

Subderivation

e O N T By |—Marker|

Nrg,®:k— Qpg,&: k=T  By|—Solve
S —

Qo
[QIT = [Qol(l»a, & : k)

JA <" [1/BlIQIBo
QJA <* [t/B1[QIBo
JA <* [[Qo]a/B][QIBo

Q
Q

T [Qoll&/BIBo

Mea, &FMra,&: kA < [ra, &: kl[&/B1Bo - Ao

Ao — Q"
Qo — Q"

Nra,&:kE[M[&/BIBo <:* [MB + Ao

Nra, &k — Ag
AO = (A)>&)@)
r— A
Q"= (Q'»,Qz)
= A— QF
Qo—).O.”
Qira, k=1 — Q' »s, Q7
= Q— Q'

* [1Qo]&/B]1Q0]Bo

By definition of context application (lines 16, 13)

Subderivation

By above equality

By definition of substitution
By definition of substitution
By distributivity of substitution

By i.h. (B lost a quantifier)

"

"

By definition of substitution

By Lemma Subtyping Extension[)
By Lemma Extension Inversion)) (ii)
1

By Lemma (]Extension Inversionb (ii)
"

Above
By above equalities
By Lemma qutension Inversionb (ii)

Proof of|TheoreIn 10| (]Completeness of Subtyping[) thm:subtyping-completeness




Proof of|[Theorem 10| (Completeness of Subtyping) thm:subtyping-completeness 165
Lea,&:kETA <: T [T[&/B]Bo 4 A, »5,® By above equality Ag = (A, »4,0)
Lra,2:kF[TA <: T [&/BITIBo 4 A, »g,® By def. of subst. ([IN& = & and [TIR = B)

[IA not headed by 3 From the case hypothesis
FIMA <:* 3B : k. [MBo A By|<: 3R
= FIMA <:* [T1(3B : k. Bg) 4 A By definition of substitution
O
K'.3 Completeness of Typing
Lemma 99 (Variable Decomposition). IfTT ~& T/, then
1. ifTT % T thenT1” =TT,
2. if 1 < 1" then there exists T1” such that T1"" *Z T1” and 1" *& T/,
3. if T <5 Ty || T then T *& 117 and Tl “& 11/,
4. if 10X T | T then T =TT,
Proof. Each of these follows by induction on TT and decomposition of the two input derivations. O

Lemma 100 (Pattern Decomposition and Substitution).
1. IfTT 5 T’ then [QITT & [QITT".
2. IfTT -5 11 then [QITT & [Q]TT.
3. IfTT 5 T1 then [QITT < [QITT.
4. IfTT <5 10, || 1T, then [QITT <5 [QITT; || [QITT,

5. IFTT X 0y || T, then [QITT X

QT || [Q
6. IF[QITT & T1’ then there is T1” such that [Q]TT” =TI’ and TT & T1”.
7. If[QITT LTI’ then there is 1" such that QI =T1" and TT Lo,

8. If[QITT < T then there is 1" such that [QITT” =T1" and TT < T17.

9. IFIQITT T4 || TT5 then there are 1Ty and 1T, such that [Q]TT; =TT} and [Q]TT, =TT} and 1T & Ty || 2.

10. If [QIT X ~5 TI{ || T} then there are Tly and T, such that [QITTy = TI} and [Q]TT, = T, and T Yes

Ty || TT2.

Proof. Each case is proved by induction on the relevant derivation.
Lemma 101 (Pattern Decomposition Functionality).

1. IfFTT X2 11 and 1T *& 11 then 11 =T1".

2. IfTT -5 T and 1T % T then T’ = T1".

3. IfTT <5 T and 1T <5 T17 then T1/ =T1".

4. IfTT 5 T0y || T, and TT ~5 11 || 11, then TT; =TT} and T, =TT},

Vec Vec

5. IfTT ~ T H 1T, and TT ~> TI4 || T, then Tl = ﬂ{ andTl; = ﬂé

Proof. By induction on the derivation of IT ~& TT.

O

August 15, 2020



K'.3 Completeness of Typing 166

Lemma 102 (Decidability of Variable Removal). For all T1, either there exists a T1’ such that T1 2 or
there does not.

Proof. This follows from an induction on the structure of TT. O

Lemma 103 (Variable Inversion).

var

1. IfTT *Z 11" and W - T1 covers A, A q then ¥ + T1' covers A q.

var

2. IfTT 2 T and T+ TT covers A, A q then T+ T1' covers A q.
Proof. This follows by induction on the relevant derivations. O
Theorem 11 (Completeness of Match Coverage).

1. IfTF A q types and MA = A and (for all Q such that T — Q, we have [Q]T" I [Q]TT covers [QIA q)
thenT F TT covers A q.

2. IfMA=Aand[T/P=PandT F A! types and (for all Q such that T — Q, we have [Q]l" / [Q]P +
[Q]TT covers [Q]A 1)
thenT / P TI covers Al

Proof. By mutual induction, with the induction metric lexicographically ordered on the number of pattern
constructor symbols in the branches of TT, the number of connectives in A, and 1 if P is present/0 if it is
absent.

1. AssumeT F A q types and [I'] A = A and (for all Q such thatT" — Q, we have [Q]T" F [Q]TT covers [Q]K q)

e Case A = -:
Choose a completing substitution Q.
Then we have [Q]T" F [Q]TT covers - q.

By inversion, we see that|DeclCoversEmpty|was the last rule, and that we have [Q]T'F [Q]- = e | ... covers - q.
Hence by |CoversEmpty, we have I'-- = e | ... covers - q.

e Case A = A, B:
By Lemma [102| (Decidability of Variable Removal)) either

var

— CaseIT ~ TT':
Assume Q such that ' — Q.
By assumption, [Q]I" - [Q]TT covers [Q](A, ]§) qg.
By Lemma|100| (Pattern Decomposition and Substitution[), Q=& Q.
By Lemma|103| (Variable Inversion[), [QIT F [Q]TT covers [Q]B g.
So for all Q such that ' — Q, [Q]T F [Q]TT’ covers [Q]B q.
By induction, T TT’ covers B .

= By rule I+ T covers A, B q.

— Case VIT —(TT & 117):
x Case &,ﬁ:
This case is impossible. Choose a completing substitution Q such that [Q]& =1 — 1, and
then by assumption we have [Q]T" - [Q]TT covers 1 — 1, [Q]B q. By inversion we have that
[QIT *& T’. By Lemma [100| (Pattern Decomposition and Substitution), we have a TT”

var

such that [Q]TT” =TI’, and TT ~ T1”. This yields the contradiction.
x Case C — D, B:
x Case Vo : K. A,ﬁ:
* Case «, B:

Similar to the & case.

Proof of [Theorem 11| (Completeness of Match Coverage)) thm:coverage-completeness




Proof of|Theorem 11| (Completeness of Match Coverage)) thm:coverage-completeness 167

x Case A = 1, B:
Choose an arbitrary Q such that ' — Q.
By assumption, [Q]I" - [Q]TT covers [Q](1,B) g.
By inversion, we know the rule DeclCoversl applies (since the variable case has been ruled out).
Hence [Q]TT L 1" and [QIT  TT” covers [Q]B qg.
By Lemma [100)| (Pattern Decomposition and Substitution), there is a TT" such that
[QIMT =T1” and T ~> TT".

Assume Q such that ' — Q.
By assumption, [Q]T" - [Q]IT covers [Q](1, l§) qg.
By inversion, we know the rule applies (since the variable case has been ruled out).
Hence [Q]TT L 1" and [QIT - TT” covers [Q]B qg.
By Lemma [100| (Pattern Decomposition and Substitution),
there is a 11" such that TT” = [Q]1” and TT & B
By Lemma |101| (]Pattern Decomposition Functionality{), we know 11" =TT/,
So for all Q such that ' — Q, [QIT" F [Q]TT’ covers [Q]B q.
By induction, I - TT’ covers B q.
By rule I+ 1T covers A, B q.

x Case C x D, B:
Choose an arbitrary Q such that ' — Q.
By assumption, [Q]I" - [Q]TT covers [Q](C x D, I§) qg.
By inversion, we know the rule DeclCoversx applies (since the variable case has been ruled out).
Hence [Q]TT <5 T1” and [QIT F T1” covers [Q](C, D, B) q.
By Lemma [100| (Pattern Decomposition and Substitution), there is a TT” such that
QI =T1" and TT < TT.

Assume Q such that T — Q.
By assumption, [Q]T" - [Q]TT covers [Q](C x D, l§) qg.
By inversion, we know the rule applies (since the variable case has been ruled out).
Hence [Q]TT <5 T1” and [QIT F T1” covers [Q](C, D, B) q.
By Lemma [100| (Pattern Decomposition and Substitution),
there is a f1” such that TT” = [QJf1” and TT <> Pi.
By Lemma [101| (Pattern Decomposition Functionality)), we know 1’ =T1".
So for all Q such that T — Q, [Q]T - [Q]TT covers [Q](C, D, B) q.
By induction, T - TT’ covers C, D, B q.
By rule "= TT covers C x D,f’; qg.

x Case C+ D, B:
Choose an arbitrary Q such that ' — Q.
By assumption, [Q]I" - [Q]TT covers [Q](C x D, l§) qg.
By inversion, we know the rule DeclCovers+ applies (since the variable case has been ruled out).
Hence [Q]TT <5 TT; || TT5 and [Q]T" I TT1 covers [Q}(C,ﬁ) q and [Q]T" F TT} covers [Q}(D,ﬁ) qg.
By Lemma [100| (Pattern Decomposition and Substitution), there is a Ty and TT; such that
[QITT; =TT} and [QJTT, =TT} and TT ~> TT; || TT,.

Assume Q such that " — Q.
By assumption, [Q]T" - [Q]TT covers [Q](C x D, l§) q.
By inversion, we know the rule applies (since the variable case has been ruled out).
Hence [Q]IT ~5 11} || 14 and [Q]T + 1T} covers [Q](C, B) q and [QIT + 1T} covers [Q](D, B) q.

Proof of [Theorem 11| (Completeness of Match Coverage)) thm:coverage-completeness




Proof of|Theorem 11| (Completeness of Match Coverage)) thm:coverage-completeness 168

By Lemma [100| (Pattern Decomposition and Substitution),
there is a T1;” such that ﬁ{ = [QIf1; and T2, = [Q]f1, and TT < Py, I f,.
By Lemma |101| (]Pattern Decomposition Functionaliry{), we know M1y = TT;.
So for all Q such that ' — Q, [Q]T" - [Q]TT; covers [Q](C, l§) qg.
So for all Q such that T — Q, [Q]T F [Q]TT, covers [Q](D, B) q.
By induction, I - TT; covers C, B g.
By induction, T F TT, covers D, B q.

By rule I+ 1T covers C+ D, B q.

x Case Vecn A, B:
Similar to the previous case.
x Case Jo : K. C,ﬁ:
Assume Q such that ' — Q.
By assumption, [Q]T" - [Q]TT covers [Q](Fx : k. C, ﬁ) qg-
By inversion, we know the rule DeclCovers3 applies.
Hence [Q]T; o : k - [Q]TT covers [Q](C,ﬁ) q-
So for all Q such that T — Q, [Q](T, & : k)  [Q]TT covers [Q](C, B) q.
By induction, I} « : k - TT covers C, B q-

By rule I TT covers Joc : k. C, B .

x Case C A\ P, B:
- Case q = J: Similar to the previous case.

- Caseq ="
Assume Q such that ' — Q.
By assumption, [Q]T" - [Q]TT covers [Q](C A P, ]§) q-
By inversion, we know the rule DeclCovers/\ applies.
Hence [Q]T / [Q]P + [QITT covers [Q](C, B) !.
So for all Q such that T — Q, [Q](I «: ) / [QIP I [QITT covers [Q](C, B) !.
By mutual induction, " / P - TT covers C, Bl
By rule '+ TT covers C A\ P,ﬁ IR

2. Assume [F]f\ — A and TP = Pand T + Al types and (for all Q such that ' — Q, we have
[QIT / [Q]P F [Q]TT covers [QJA ).

Let (t; = t;) be P.
Consider whether the mgu(t;,t2) exists

e Case 0 = mgu(ty,tz):

mgu(ti,t2) =06 Premise
N/ t1=t:«x4L0O By Lemma@ QCompleteness of Elimeq[) D
I/ [Tty =Mt : k4O Follows from given assumption

Assume Q such that ;0 — Q.
By Lemma (Canonical Completionl), there is a Q' such that [Q]l' = [Q’]l" and dom(I") =

dom(T).
Moreover, by Lemma [22] (Extension Inversion), we can construct a Q" such that Q' = Q”,© and
r— Q'

By assumption, [Q”]T" / [Q"](t; = t2) F [Q"]TT covers Al
There is only one way this derivation could be constructed:

Proof of [Theorem 11| (Completeness of Match Coverage)) thm:coverage-completeness




Proof of|Theorem 11| (Completeness of Match Coverage)) thm:coverage-completeness 169
- Case g _ eult,ta)  1O1QVIT - O1IQITT covers [B][Q"IA !
-
[Q"IT /1Q"](t7 = t2) - [Q"]TT covers [Q"]A!
B][Q"]T F [6][Q"]TT covers ([6] [Q”]/K) Subderivation
0][Q"]T = [Q",8](T, ) By Lemma Substitution Upgrade) (iii)
[O][Q7]TT = [Q”, e By Lemma Substitution Upgrade) (iv)
(181[Q"]A) = (IQ, ][, B]A) By Lemma [95| (Substitution Upgrade) (i)
[Q”,0](,0) F[Q", Ol covers [Q”,O][I;0]A By above equalities
[Q'](T,©) - [Q']TT covers [Q'][T, OIA By above equalities
[Q(T;©) F [Q]TT covers [Q]T OA By above equalities
So we know by induction that I;© + [T} ©]TT covers [T, @]/7\ 1
Hence bywe have I / t; = t, F TT covers Al
e Case mgu(ty,ty) = L:
mgu(ti,ty) = L Premise
N/ t1=t:xk4L By Lemma qumpleteness of Elimeql) 2)
I' /[Tty =Tty : k4L Follows from given assumption
w [/t =t - TT covers A By
O

Theorem 12 (Completeness of Algorithmic Typing). Given I' — Q such that dom(TI") = dom(Q):

®

(i)

(iii)

v)

)

IfTH A ptype and [QI' - [Qle & [QJA p andp’ C p
then there exist A and Q'

such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andT e < [MAp' A,

IfTHA ptype and [QIT' - [Qle = A p

then there exist A, Q', A’, andp’ C p

such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andTHe= A'p’4Aand A’ =[AJA" and A = [Q']A".

IfTHFAptypeand [QII'-[Q]s: [QJAp > B qandp’' Cp
then there exist A, Q’, B’ and q' C q
such that A — Q' and dom(A) = dom(Q’) and Q — Q'

andTFs:["MAp’> B’ q'4A and B’ =[A]B’ and B = [Q

1B’.

IfTHAptypeand [QITH [Q]s: [QJAp > B [q] andp' Cp

then there exist A, Q’, B, and q' C ¢
such that A — Q' and dom(A) = dom(Q’) and Q — Q'

andTFs:[MAp’> B’ [q'] 1A and B’ = [A]B’ and B = [Q/]B’.

IfT + A ! types and T+ C p type and [QIT - [Q]TT = [QJA q < [QIC p andp’ C p

then there exist A, Q', and C
such that A — Q' and dom(A) = dom(Q’) and Q — Q'
andT'HTT:[TA q & [TICp' 4 A.

August 15, 2020



K'.3 Completeness of Typing

170

(vi) IfT + A ! types and T + P prop and FEV(P) = §) and T+ C p type
and [QIT / [QIP F [Q]IT = [QJA | < [Q]C p

andp’ Cp
then there exist A, Q’, and C

such that A — Q' and dom(A) = dom(Q’) and Q — Q'

andT /[TIPFT = [MA ! & [TCp’ HA.

Proof. By induction, using the measure in Definition [7}

e Case . Ap)elQll

Qx> Ap
(x:Ap) elQIl’ Premise
r—Q Given
(x:A’p) €T where [QJA’ = A From definition of context application
Let A=T.
Let Q' = Q.
(= r—Q Given
= Q—Q By Lemma (]Extension Reﬂexivityb
e Mex= [MA pAT By |Var]
= MA’ = [T[MA’ By idempotence of substitution
v  dom(l") = dom(Q) Given
r—Q Given
[Q]MA’ = [Q]A’ By Lemma (]Substitution Monotonicityb (iii)
> =A By above equality
* Case \HirtQle=Bq  [QT - B <enol(A)pel(B)) ()4
[QIT - [Qle < [Q]JA p
[QITF[Q]le= B q Subderivation
NFe=B'q-10 By i.h.
B = [QJB’ d
e — Qo "
Q— Qo "
dom(®) = dom(Qy) "
r—Q Given
'— Qo By Lemma qutension Transitivityl)
[Q]T - B <oin(pol(A),pol(B)) [0)] A Subderivation
QI = [Q]O By Lemma (]Conﬂuence of Completenessb
[Q]O + B <ioin(pol(A),pol(B)) )] A By above equalities
0 — O Above
© B’ < omn(pol(A)pel(B) A A By Theorem|[10|
Qy — Q' "
w dom(A) = dom(Q’) "
= A— QF By Lemma Extension Transitivity|

. MFesAp-A

By Lemma Extension Transitivity]

By |Sub

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

171

* Case |Oirp QA pe QN [Qles < [QIA !

DeclA
[QITF [Q(ep : A) = A
[QIT F[Qley & [Q]A! Subderivation
[QJA = [Q]TTA By Lemma (]Substitution Monotonicityb
[QIT - [Qley < [Q]TA ! By above equality
e & TAITHA By i.h.
= A— Q "
= QO — Q' "
= dom(A) = dom(Q’) "
A— QF By Lemma (]Extension Transitivity{)
I'=A! type Given
= M't(eo:A) = [AJA14A By|Anno)
= [AJA = [A][AIA By idempotence of substitution
A =[Q]A Above
=[Q'A By Lemma Completing Completeness) (ii)
= = [Q'][A]A By Lemma Substitution Monotonicity]
e Case

_ 111
Qe 0 = 1p 2t

We have [Q]A = 1. Either [I'A =1, or [[A = & where & € unsolved(I').

In the former case:

Let A=T.
Let Q' = Q.
= r—Q Given
= Q— Q' By Lemma (]Extension Reﬂexivityl)
iw dom(l") = dom(Q) Given
F-O«1pAT Byl
= rFO&<MipHdr 1=

In the latter case, since A = @ and I' F & p type is given, it must be the case thatp = ).

N@&:dFOQ <& yATo&: x=1] Byl11d]
= Dola:xF O & [ola:«]]& Y ATo[@:x=1] By def. of subst.

ol : %] — O Given
w  [p[@:+x=1] — Q By Lemma Parallel Extension Solutionl)
= QO — QO ByLemma Extension Reflexivity)

e Case
v chk-I QITax:kEF[Qlv&EAyp
DeclVI
QI [Qlv EVa: k. Ap p

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 172

[Q]JA =V : k. Ap Given
=Va: k. [QJA’ By def. of subst. and predicativity of Q

Ao = [QJA’ Follows from above equality

QI o : k F[Qv & [QJA p Subderivation and above equality
r—Q Given

Doa:k— Q K By

[QIF o : k = [Qy e k(T oz k) By definition of context substitution

[Q,o: k([ o: k) H[Qlv & [Q]JA p By above equality

]
[Q,o: k([ o: k) Qv & [Q,x:k]JA' p By definition of substitution

Na:kkFvEe Qo k]Ap H4A7 By i.h.

A — Q) 4
Q,x:k— Q) "
dom(A’) = dom(Q}) "

No:k — A/ By Lemma Typing Extension[)
A= (A x:k,0O) By Lemma Extension Inversionl) 6]
Aok, ©® — Q) By above equality
Q= ok Q7) By Lemma (]Extension Inversionb 6)
= A— QF "
= dom(A) = dom(Q/) "
e Q— Q' By Lemma (IExtension Inversionl) onQ,o:k— Q)

Na:kbkFvEoa:k]A'p 4A,a: k,0 By above equality

Na:kkFv&ETA pH4A a: kO By definition of substitution
MvevVa:k [MA p-HA By|v]
= FFv&eMVa: k. Al)p 1A By definition of substitution

e Case [Oirpr.k  [QINF[Ql(e so) : [t/ad[QAy /> B g

DeclVSpi
[QIT F [Q](e so) : Vo : k. [QJAg p > B g

QIr'FTt:k Subderivation
r—Q Given
NeR:k— Q,: k=71 By
[QIT - [Ql(e sp) : [t/od[Q]JAo ¥ > B q Subderivation
T=[Q]t FEV(t) =0
[t/al[Q]Ag = [T/a][Q, & : k =T]Ap By def. of subst.
= [[QlT/a] [Q, & : k=7T] Ao By above equality
= [0Q,a:k=1|[&/a]Ao By distributivity of substitution
QINr=[Q,&:k=1](,&: k) By definition of context application

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

173

[Q,a:k=1](L&:k)F [Ql(eso): [Q&:k=1][&/x]As } > B q
La:kkeso:[M&:k[&/x]JAg ¥ >B qH1A

B=[Q,&:k=1B’

= A— QF

= dom(A) = dom(Q/)
= Q— Q'

= B’ — [A]B’

= B — [Q']B’

K &: kl@/a]JAg = [T[&/a]Ag
= [&/a[T Ao
La:kkeso:[@&/allMAy Y >B q-1A
lFeso:Va:k. MNAgp>B q4A
= FFeso:[MVa:k.Ag)p>B' q-HA

e Case | pir  [QIF/[QIPF [Qlv & [QJA, ! a—
[QIT F [Qlv < ([Q]P) 5 [QlA, ! e

[QIT / [Q]P F[Q]v & [Q]JAp !  Subderivation

By above equalities
By i.h.

"
"
"
"
"

"

By def. of context application
I" does not subst. for «
By above equality

ryrspn

By def. of subst.

The concluding rule in this subderivation must be [DeclCheck_L| or |DecICheckUnifyl In either case, [Q]P

has the form (0’ = t’) where ¢’ = [Q]o and T/ = [Q]T.

— Case

mgu([Q]o, [Q]T) = L

[QIT / [Q](0 =1) F [Q]v < [Q]A, !

We have mgu([Q]o, [Q]t) = L. To apply Lemma (Completeness of Elimeq)) (2), we need to

show conditions 1-5.

NF(o=1) D> Ap!type Given
[Q]((o=1) D Ap) = [IN((0=T) D Ao) By Lemma (]Principal Agreemenq) ®
[Qlo = [To By a property of subst.
[Qlt = [Tt Similar
N-o:k By inversion
3 MEMo:« By Lemma qRight-Hand Substitution for Sorting|)
4 NEMMlTt:k Similar
mgu([Q]o, [Q]T) = L Given
mgu([ao, [IT) = L By above equalities
FEV(o) UFEV(T) =0 By inversion on ***
FEV([Q]o) UFEV([Q]T) =0 By a property of complete contexts
5 FEV([To)UFEV([INT) =10 By above equalities
1 Mo = [MNo By idempotence of subst.
2 Mt = [Tt By idempotence of subst.

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 174

N/ Mo=Mrt:x41L By Lemma|9_4| (ICompleteness of Elimeql) 2

Lwp / [Mo=[TtH L By [ElimpropEq

Mev & (Mo =17 >MA. ! 4T Bypll]

= FrEv&T((o=1) DA AT By def. of subst.

= r—aQ Given

= QO—Q By Lemma (]Extension Reﬂexivityb
iw  dom(T") = dom(Q) Given

- Case ou([Qlo, [QT) =0 O(1QIT) F 8([Qle) < B([Q]A,) !

QI / (([Qle) = [Q]T) F [Qle < [Q]Ao !

We have mgu([Q]o, [Q]T) = 0, and will need to apply Lemma [94| (Completeness of Elimeq)) (1).
That lemma has five side conditions, which can be shown exactly as in the [Dec/Check L|case above.

mgu(o,T) = 0 Premise
Let Qo = (Q,»p).
r—Q Given

T T

dom(I') = dom(Q)  Given
dom(l}»p) = dom(Qg) By def. of dom(—)

Lwp / TMo=Mt:xk4L»p,® ByLemma (ICompleteness of Elimeql) (1)

Nep / [Mo=[t-N»p,®  By[ElimpropEq

EQO forall[wp Fu:k. [ljpp,@lu=0(Nrplu)

I'-P DAy !type Given

Ao ! type By inversion
r—Q Given
EQa [TAy = [Q]Ay By Lemma QPrincipal Agreementl) @)

Let Q7 = (Q,»p,0).
0([QIMN Fo(e) & 0([QJAy) ! Subderivation

Lep,® — Qg By induction on ©
0([Q)JAy) = 0([T"Ay) By above equality EQa
= [} »p,OlAo By Lemma Substitution Upgradel) (i) (with EQO)
= [Q1]A0 By Lemma 39| (Principal Agreement) (i)
= [4][, »p, OlAg By Lemma Substitution Monotonicityp (iii)
o([Qll") = [Q4]1(; »p, O) By Lemma Substitution Upgrade) (iii)
0([Qle) = [Qq]e By Lemma Substitution Upgrade)) (iv)

[Q4]1(Ty»p, O) F[Q1]le & [OQ4][T;»p,B]Ao ! By above equalities

dom(l; »p,®) = dom(Q1) dom(T") = dom(Q)

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 175

Lep,®OFe < [Mpp,BlAg ! HA’ Byih.

A/ — Qé "
Q) — Q) "
dom(A’) = dom(Q)) "
A= (A, pp,A") By Lemma Extension Inversion)) (ii)
Q) =(Q'wp,Q7) By Lemma Extension Inversion)) (ii)
= A— QF "
Qo — Q) By Lemma (]Extension Transitivityb
Q,pp — Q' pp, Q7 By above equalities
= Q— Q' By Lemma (IExtension Inversionb (i)
"

i dom(A) = dom(Q/)

ep,®OFe <& [Mpp,OlAg ! HA pp, A" By above equality
M-e < ([Mo=[Mt) > TAy ! HA By
= F'e&T(PD A HA By def. of subst.

e Case [QIT F [Q]P true [QIT - [Q(e so) : [QJAop > B q

[QIF - [Ql(e s0) : ([QIP) S [QJAcp > B g

[QIT F [Q]P true Subderivation
[QIT F[Q][TP true By Lemma Substitution Monotonicityb (ii)
I[P true 1©® By Lemma Completeness of Checkprop[)
1

0 — Q]
Q— Q] "
dom(®) = dom(Q;) "
r—Q Given
Q' =[O4]0 By Lemma Multiple Confluence)
[QJAL, = [Q1]A0 By Lemma Completing Completeness[) (i)

[QITH [Ql(e so) : [QJAgp > B q  Subderivation
(0410 F [Q](e sp) : [Q1]As p> B q By above equalities
Okesy:[BOlAgp>B' q1A By i.h.

= B’ = [A]B’ "
i dom(A) = dom(Q’) "
= B = [Q/]B ¢
= A— Q "
Q; — Q' "
= QO — 0 By Lemma Extension Transitivity)
B]Ay = [B]lMNAg By Lemma Substitution Monotonicity{) (iii)
OFesy:[OIMAyp>B ' q4A By above equality

Meso:(IMP) D MAgp>B'q+A By[DSping
w Theso:[MPDA))Pp>B q-HA By def. of subst.

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

176

e Case /
[QITF[Qleg € AL p
Decl+l
QI injy [Qles & A] + A3 p 22
——
[Q]JA

Either A = Ay + A, (where [QJAx = A{) or A = & € unsolved(T").
In the former case:

[QINF[Qleg & AL p Subderivation
[QT F[Qleg « [Q]AL p QAL = A}
Mbeo < [MAp A By i.h.
= A— Q "

= dom(A) = dom(Q') "
= 0 Q "
M Einjeo < (A7) + (MA2) p 4 A By[th]
= IMFinjeo & M(AT+A2)pdA By def. of subst.

In the latter case, A = & and [QJA = [Q]& = A] + A} =T] +T5.
By inversion on I' - & p type, it must be the case that p = }.

r—Q Given
['=Tyh[& : ] & € unsolved(I)
Q= Qp[&:*=19] ByLemma qutension Inversion|) (vi)

Let Q) = Qo[®1 1 x=1T], & 1 x=T5, & 1 x=8&1+R2].
Let Ty = To[®1 : %, &2 : %, & : x =R +R2).

r—1T By Lemma eep Evar Introduction)) (iii) twice
and Lemma [26| (Parallel Admissibility) (ii)

QO — O, ByLemma |23@eep Evar Introduction)) (iii) twice
and Lemma [26| (Parallel Admissibility) (i)

 — Qp By Lemma 26| (Parallel Admissibility) (i), (i), (iii)

[QIT - [Qley < Qo] Y Subd. and A] = 1| = [Q,]8

[QIT = [Q,]T; By Lemma (]Multiple Conﬂuence[)
[Q2]15 Fep & [Qa]ay Y By above equality
I ey & (] )/ A By i.h.
= A— QF "
iz dom(A) = dom(Q/) "
Q, — Q' "
= Q— Q' By Lemma qutension Transitivityl)
Mhinjeeo= & ¥ 4A  By[+ia
= IkFinjpeo=MT& Y 4A & € unsolved(T")

o Case [QIGx:AjpE[Qleo & Al p

; — |Decl—
QI Ax. [Qleg & A] = Ay p

We have [Q]A = A] — Aj. Either [IA = A; — A, where A] = [Q]A; and A} = [Q]A,—or [TTA =&

and [Q]&a = A} — AJ.

Proof of|Theorem 12| (]Completeness of Algorithmic Typingl) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

177

In the former case:

Al = [QIA,
= [QJIMA,
[QJA] = [QI[Q]TTA,
= [Q]MA,

Subderivation

Known in this subcase

By Lemma (]Substitution Invariance[)
Applying Q on both sides

By idempotence of substitution

By definition of context application

r—aQ Given
Lx:[MA1p — Q,x:Ajp By
dom(I") = dom(Q) Given
dom(I[x:[MA1p) = Q,x:Ajp By def. of dom(—)

x:MAjpkey & Ap 1A’ Byih.
A — Q) "
dom(A’) = dom(QJ) "
O, x:Alp — Qf "

QL= (Q'x:A1p,Qz) By Lemma (IExtension Inversionl) %)

= Q-— Q' "

Nx:[MA;p — A’
A= (Nx:--,0)
Ax: 00— Q' x:Ajp, Q7
= A— QF
= dom(A) = dom(Q")

By Lemma Typing Extensionb

By Lemma Extension Inversionl) W)
By above equalities

By Lemma qutension Inversionl) W)
1

Lx:MAptes & TAp 1A x:---p, O By above equality
EAx.eo < (IMA7) = ([MA2) p A By[5]
= FEAx.eog &[T1(A] 2 A)p 1A By definition of substitution

In the latter case ([I'|A = & € unsolved(T") and [Q]& = A — Al =1 — T)):

By inversion on I' - & p type, it must be the case that p = }.
Since & € unsolved(T"), the context I' must have the form IH[& : #].
Let I =Tyl : *, Qs *y R:x=R1—R2].

By Lemma |23 gDeep Evar Introduction)) (iii) twice
and Lemma |26 (|Paralle1 Admissibility) (ii)
Known in this subcase

F—>l‘2

Qla=1 -1}

r—Q Given
Q =0Qp[@:*=719] ByLemma (]Extension Inversion[) (vi)

Let Q) = Qo[&) : %=1}, & 1k =T}, R %=1 >R

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

178

F—)Fz

Q—)Qz

F2—>Q2

[QIfx:t; Y F

[ ]

Q>

By Lemma @_(]_Deep Evar Introduction)) (iii) twice
and Lemma 26| (Parallel Admissibility) (ii)

By Lemma |23EI)eep Evar Introduction)) (iii) twice
and Lemma [26| (Parallel Admissibility) (i)

By Lemma 26| (Parallel Admissibility) (ii), (ii), (iii)

[Qlep & t5 ¥ Subderivation

= [0, By Lemma. Multiple Conﬂuencel)
= [Q]&, From above equality
=
=

Q& By Lemma QCompleting Completenessl) 6]
QL6 Similar

INyx:ty Y = [Qz,x:1; Y1 (T2yx: R )) By def. of context application

[Qa,x:11 YT, x: &1 )) F[Qleg & [Q]R, Y By above equalities

dom(T") = dom(Q) Given

dom(T2,x: & }) = dom(Q2,x:717 }) By def. of T, and Q,

rz,X:&1 Y ey & [rz,X:&1 /]&2 /yﬂA_’_ By'lh
AT — QT "
dom(A™) = dom(Q™) "
Qz — QF "

Myx:& Y — AT By Lemma Typing Extension[)

At = (A x:& Y, A7) By Lemma Extension Inversion)) (v)
Qf =(Qx:...},Q7) By Lemma Extension Inversion)) (v)
A— QF "

= dom(A) = dom(Q/) "

QO — 0, Above
QO — OF By Lemma Extension Transitivity[)
Q— Q' By Lemma Extension Inversion)) (v)
TEA.ep =&Y HA By |[—1&]
a=[a & € unsolved(T")
'EAx.ep & IM& Y 4A By above equality

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

179

* Case |ny:[QJAp - Qv < [QA p

DecIR
[QIT' F rec x. [Qlv & [Q]A p

[QIEx:[QJAp F[Qlv & [Q]JA p Subderivation

[QITx: [QJAp = [Q,x: [QJAp](T;x: [IMAp) By definition of context application

[Q,x: [QJAp]I(Tyx: [TAp) HIQ]v & [Q]JA p By above equality

r— Q Given
Nx:MAp — Q,x:[QJAp By
dom(T) = dom(Q) Given
dom(Lx:[MAp) = Q,x:[QJAp By def. of dom(—)
Nx:MApkv&TJApH4A’  Byih
A — Q) "
dom(A’) = dom(€Q) "
Q,x:[Q]JAp — Q} "
Qf = (Q',x:[QJAp,©) By Lemma (]Extension Inversion[) W)
= Q— Q "
Lx:[MAp — A’ By Lemma Typing Extension))
A= (Ax:--,0) By Lemma Extension Inversion|) )
Ayx:--,0— Q' x:[Q]Ap,O By above equalities
= A— Q' By Lemma (]Extension Inversion[) )
= dom(A) = dom(Q/) "

Lx:MApEv&[TIAp 4A/x:[IMAp,® By above equality
= Mhrecx.veTApHA By[Red

*Case (Orr[Qleg=Aq QT+ [Qlso:Aq> C[p]
[T F [Ql(eo s0) = Cp

Decl—E

[QITF[Q]eo = A q Subderivation
l'teo=A’q40© Byih.
e — Q@ "
dom(@®) = dom(Qg) "
Q— Q@ "
A = [Q@]A/ "
A/ — [@]AI "

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 180

r—Q Given
QI = [Qel® By Lemma (]Multiple Conﬂuence[)
[QIT + [Qlso : A g > C [p] Subderivation

[Qel®F [Qlso : [QelA’ g > C [p] By above equalities
OFso:[BJA"qg>C’'[p] 1A Byih.

= C' = [A]Cl "
= A— QF "
w  dom(A) = dom(Q’) "

Qe — Q' "
= c=1[Q’lCc’ "

OFsg:Aq>C'[p]HA By above equality

= Q— Q' By Lemma (IEXtension Transitivityl)
= TFeyso=C'pH4A By |- Ef

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 181
e Case for all C,.
QM- [Qls: [QJAY > C ) if [QITF[Q]s:[QJA!>C, ) thenCy;=C i
[QITF [Q]s: [QJA !> C 1]
r—Q Given
[QITF [Qs: [QJAt> C )  Subderivation
NeEs:[TA!'>C'YH4A Byih.
= A— QF "
= Q—Q’ "
iw  dom(A) = dom(Q') "
. C= [Q/]C/ "
= C' = [A}C/ "

Suppose, for a contradiction, that FEV([A]C’) # (.

That is, there exists some & € FEV([A]C’).

A—)Qz
Q& k=t] — Q
\H_/

[OF]
Q, = Q{[& K=t5]
t # 4
(NEQ) [Qola # [Qf]&
(EQ) [Q,]B = [Q}B forall B #&

By Lemma |60| (Split Solutions))
1

"

"

By def. of subst. (t; # t1)
By construction of Q,
and Q, canonical

Choose &g such that &g € FEV(C’) and either &g = & or & € FEV([A]&R).
Then either & = &, or &g is declared to the right of & in A.

[Q2]C" # [Q']C!
F-s:MAUSC fHA
[QLIT - [Qa]s : [QL]TIA S [Q,]C Y

FEs:TA!>C' VYHA
I'EA ! type
I'=[TTA ! type
FEV([TIA) =0
FEV([I'A) C dom(-)
A= (AL x AR)
(T ) =7 (AL x Ag)
FEV(C’) C dom(Ag)

From (NEQ) and (EQ)
Above
By Theorem|§|

Above

Given

By Lemma (IRight-Hand Substitution for Typing|)
By inversion

Property of C

By Lemma (]Separation—MainI) (Spines)

11

"

Above
Property of C
A well-formed

By Deﬁnition

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

182

[QLIT = [Q]s : [QL][TIA > [Q,]C’ Y Above

Q, and Q, differ only at & Above

FEV([TIA) = 0 Above
[Q][TA = [O4][TA By preceding two lines
'+ [I'A type Above
r— Q; By Lemma Extension Transitivity)
Q; FT]A type By Lemma Extension Weakening (Types)l)
dom(Q;3) = dom(Q1) Q; and Q; differ only at &

Q; HTIA type By Lemma (Equal Domains|)

'+ [TA type Above
Q F[T]A type By Lemm@ (Extension Weakening (Ty'pes)l)
[Q4][MA = [Q]ITA = [Q][I'NA By Lemma |5§_|_(1Completing Completenessb (ii) twice
= [Q]JA By Lemma—|§_9| (]Substitution Monotonicityb (iii)
[QIr = [Q1r By Lemma Multiple Confluence
=[O By Lemma Multiple Confluence
= [Q,]IT Follows from &g ¢ dom(I")

[Qs]s = [Q]s  Q, and Q differ only in &

[QIT' - [Q]s: [QJA ! > [Q,]C’ ¥ By above equalities

C=[Q’C’ Above
[Q]1C" # [Q,]C! By def. of subst.
C # [Qy]C’ By above equality
C = [Q,]C’ Instantiating “for all C,” with C, = [Q,]C’
=&
FEV([AIC') =0 By contradiction
= MEs:[MA1>C'[1]4A  By[SpineRecover

e Case [QITF [Q]s: [QJAp > Cq

[QIT - [Qls: [QJA p > C [q]

QT+ [Q]s: [QJAp>> Cq  Subderivation
Fes:[MAp>C q4A Byih
"

= A— QF

=  dom(A) = dom(Q’) "
= Q—Qf "
= C/ — [A}C/ 1
= C=1[Q'lC’ "

We distinguish cases as follows:

- If p= Y or q =, then we can just apply [SpinePass

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 183

ww Tts:[MAp>C’'[q] 4A By[SpinePass

- Otherwise, p = ! and q = }. If FEV(C) # 0, we can apply [SpinePass| as above. If FEV(C) = 0,
then we instead apply [SpineRecover}

s Tks:[[JAp>C'[1]4A By[SpineRecover

Here,q’ =!and q=/f,soq' C q.

e Case
QFE QA S [QlA p PeEmetySeing
= Me-:MAp>[ApAT By[EmptySpind
= TA = [I[TA By idempotence of substitution
(= r— Q Given
w dom(l") = dom(Q) Given
= [Q]MNA = [Q]JA By Lemma Substitution Monotonicityb (iii)
= QO—Q By Lemma 32 (Extension Reflexivity)

e Case [P [Qley < [QJA1 g [QITF [Qlso : [QJA, > B p

ecl—Spine
[QIT F [Q(eo so0) : ([QAJA7) = ([QJA2) g>Bp

[QIT F[Q]es & [QJA7 q Subderivation
l'epg &A'q10 By i.h.
0 — _O.@ "
Q— _O_@ "
A = [QelA’ "
A/ — [@]A/ "
[QITF [Qlso: [QJA2 g >Bp Subderivation
l'Fso:A2g>BpHdA By i.h.
= A— QF "
=  dom(A) = dom(Q’) "
= Q— Q' "
= B’ = [A]B’ "
= B =[Q']B’ "

= Mteoso:A1 = A1 q>Bp-A By[5Spind

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

184

e Case QIr

F [Q]P true [QIT F [Qle & [Q]Ao p
DeclAl
[QITF [Qle < ([QJA0) A QP p
If e not a case, then:
[QIT - [Q]P true Subderivation
I'EPtrue 10 By Lemma (]Completeness of Checkprop[)
0 — O} "
QO — 0 "
r—Q Given
r— Q} By Lemma Extension Transitivity[)
[QI' = [Q]Q By Lemma Completing Stability)
= [Q4]Qf By Lemma Completing Completenessb (iii)
=[O}l By Lemma Confluence of Completeness[)
I'=Ao /\Pptype Given

I'=Ao p type
[Q]A, = [Qg]A0

[QIT - [Qle < [Q]JA p
Q510 F[Qle < [Q4lA0 p
OFe & [BJAgp 1A
A— QF
dom(A) = dom(Q/)
Qy — QF
Q—Qf

=

=

[ Sy

Fhe<=AgAPp-A

By inversion
By Lemma (]Completing Completeness[) (ii)

Subderivation
By above equalities
By i.h.

By Lemma (]Extension Transitivityl)

By

Otherwise, we have e = case(eop, IT). Let n be the height of the given derivation.

n—1 [QIT F[Q](case(ep, IT)) & [Q]A, p Subderivation
n—2 [QIN'+[Qleg = B! By Lemma (1Case Invertibilityi)
n—2 [QITF[QIT:B < [Q]JAyp "
n—2 [QIT +[Q]TT covers B "
n—1 [QIT F[Q]P true Subderivation
n—1 [QITF[Q]TT = B < ([QJA.) A ([QIP) p By Lemma (IInterpolating With and Existsl) (@D)
n—1 [QIFF[QIT=B & [Q](Ag AP)p By def. of subst.
ey =B !4© Byih.
0 — Qf "
QO — 0f "
B = [Q4B’ d
= [Q}][O]B’ By Lemma QSubstitution Invariance[)
[QI' = [Q}]le By Lemma Multiple Conﬂuenceb
[Q](Ao A P) = [Q§](Ao AP) ByLemma Completing Completenessl) (ii)

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

185

n—1 [Q4]0 QT : [Qf]BIB" « [QI(As AP)p
OFM: OB «A; APp-HA
= A— QF
w  dom(A) = dom(Q/)

Qy — Q'

©® 1T covers [O]B’
= Q0 — Q
= ' case(eo, 1) & Ag APpHA

e Case [Orp 1.

[QIT F e & [t/a][Q]

By above equalities
By i.h.

By Theorem |1

By Lemma 33 iExtensmn Tran51t1v1ty[)

QN+ e < Ja: k. [QJAo P

Qe < [t/od[Q]Ay Y
Let Qo = (Q,&:x=1).
[QIT = [Qol(l; & : %)
[Qol(&: %) Fe < [t/a][Q]Ap Y
[t/o[Q]Ag = [Q, & : x=T][&/x]Ap
[Qol(L&: %) Fe < [Qoll&/]Ag ¥

Na:xFe&[®/x]Ay YA
= A— Q)
= dom(A) = dom(Q’)
Qo—)Q/
Q*)Qo
= Q— Q'
= NFe&3da:k.Agp 1A

A
. pecrl

Subderivation

By def. of context substitution
By above equality

By a property of substitution
By above equality

By i.h.

"
"

"

By|—AddSolved

By Lemma (33| (Extension Transitivity)

By

e Case|DecINil: Similar to the first part of the |Decl/\l| case.

e Case
[QIT F ([Q]t) = succ(ty) true

[Qir
[Qir

F[Qler < [Q]A, P
F[Qle; & (Vectz [Q

[QIT - ([Qleq) =

Let QF = (Q,»a,&: N=t,).

[QIT F ([Q]t) = succ(ty) true

([Qley) < (Vec (1QJ) [QIA

2 e et

Subderivation

QT »g, & :N) F([Q]t) = [QT]succ(R) true Defs. of extension and subst.
1 [ea,&: NFt=succ(®) true 4T’ By Lemma (]Completeness of Checkprop[)
" — Q} "
QO — Qg "

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 186

ra,&:N—T’ By Lemma Checkprop Extension))
Dra,8:N— Q] By Lemma Extension Transitivity{)
QI = [Q]Q By Lemma Completing Stabilityp
=[Q*]Q* By def. of context application
[QO]QO By Lemma Completing Completeness) (iii)
= [QqIT By Lemma Confluence of Completenessl)
[QJA, = [QT]AL By def. of context application
= [Q4]A0 By Lemma qumpleting Completenessb (ii)

[QIT F[QJe; & [QJAop  Subderivation
[QJT F[Qler < [Q§]Ays p By above equalities

2 INMke; &TM"Ayp 10 Byih.
e — Qf "
Qf — O "
[QIT - [Qle; & (Ve tz Ao) Y Subderivation
[QIT - [Qe; < (Vec &) [QJAo) ¥ By def. of substitution
Qe I—[Q]ez &= (Vec Q(’)’ ) [Q§1A0) ¥ By lemmas
Q10 +[Qle; & [Qf](Vec & Ag) Y By def. of subst.
3 @I—ez < [OlAg p A, wg, A By i.h.
A, >&’A/ N Q// 1
dom(A,»g,A’) = dom(Q") "
Q(/)/ — Q/I 1
Q" =(Q,m»a,-.-) By Lemma QExtension Inversionl) (i)
- A—s Q "
= dom(A) = dom(Q’) "
TMway...) — Qf By Lemma Extension Transitivity{)
= Q— Q' By Lemma Extension Inversion) (ii)
= lN-ejzey;&(VectAp)p 1A By

* Case O] [Qley «Alp  [QTF [Qle; & Abp
ec
[QIT F ([Qler, [Qlez) & Af x Asp

Either [I'NA = A7 x A, or [I'NA = & € unsolved(T").

- In the first case ([INA = A; x A;), we have A] = [Q]A; and A} = [Q]A,.

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 187

[QIF F[Qler < Af p
[QIF - [Qler < [QIAT p
ey &[MA;p10O
0 — Q@
dom(©®) = dom(Qg)
o — Q@

—

QIl'-[Qle; & Al p
Ir'=[Qle; < [QJA2 p

o

[— O
QI = [Qel®
[Q]JA; = [QelA;

[QelO® F[Qle; & [QelAzp
OFe; = MA,pHA

(=] A— QF

iw  dom(A) = dom(Q’)
_Q@ — Q'

= Q— Q

Subderivation
[QJA; = A}
By i.h.
"
"
"
Subderivation
[QJA; =A)

By Lemma Typing Extensionb
By Lemma Multiple Confluence])
By Lemma Completing Completenessl) (ii)

By above equalities
By i.h.

"
"

"

By Lemma |33 (]Extension Transitivity{)

M (er,e2) & (MA1) x (MA2) p 4 A By|x|
= ME{er,e2) & M(AT xAz)pdA By def. of subst.

— In the second case, where [[JA = &, combine the corresponding subcase for |Decl+ly| with some
straightforward additional reasoning about contexts (because here we have two subderivations,

rather than one).

" Case [QIN'E[OQleg = Cq
[QITF[QIMT=C! < [Q]JAp ¥D.IQIM - [Qleo = D q > [QIF - [QIT covers D!
[QIT I case([Qleo, [QIM) « [QIA p

[QIl-[Q]eo = Cq Subderivation

Mrey=C'q4© Byih

0 — Q@ "
dom(®) = dom(Qge) "
Q— _O.@ "
C= [_O_@]C/ 1"
O+ C’ qtype By Lemma qWell-Formed Outputs of Typingl)
FEV(C) =0 By inversion
[QelC'=C’ By a property of substitution

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

188

r— Q

A— Q

®— Q

[QIT = [Q]e = [Q]A

[— 0
[ — _O.@

[QIT = [Qel®
' A type
QFA type

[QJA = [Qe]A

[QIF QT = C < [QIA p
[QelO F QT [QelC’ < [QelA p
OFM:C' & [B]JAp 1A

= A— QF
dom(A) = dom(Q’)

_O.@ — Q

= Q— Q'

[QIT - [Q]TT covers C

[QIT = [Q]A

=[Q']A

[Q']A F[Q]TT covers C’
A— QF

Q
Q

I'-C' ! type
r— A
AFC' ! type
[AlC’ =C’
A FTT covers C’

Given

Given

By Lemma
By Lemma
By Lemma
By Lemma
By Lemma
Given + inve
By Lemma 38]
By Lemma 55]
Subderivation

NEEEE

<
—

S

By i.h. (v)

Extension Transitivity)
Confluence of Completenessp
Typing Extension])

Extension Transitivity[)
Multiple Confluence])

ion

Extension Weakening (Types)[)
Completing Completenessp (i)

By above equalities

By Lemma (IEXtension Transitivityl)

Instantiation of qua
Above

ntifier

By Lemma (]Multiple Conﬂuence[)

By above equalities

By Lemma (IExte

nsion Transitivityi)

Given

By Lemma |ﬁ| (Typing Extension) & |§|

By Lemma (IExtension Weakening for Principal Typingl)

By FEV(C’) = 0 and a property of subst.

By Theorem

= 'k case(ep, TT) & [TAp 4 A By

* Case oMk [Qle; « Ay p

[QIT - [Qle; < As p

QT F ([Qles, [Qlez) < Ay x Ay p
——

[QJA

Either A = & where [Q]& = Ay x A, or A = A] x A} where A; = [QJA] and A, = [Q]A}.

In the former case (A = &):

We have [Q]& = Ay x A;. Therefore A; = [QJA] and A, = [Q]A). Moreover, ' = Tp[& : k].

QT - [Qler < [QJA] p

Subderivation

Let T/ =Tp[& : K, QX K,&Z K=& +&].

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

189

QIr = [QJr’
[QIF - [Qley < [QJA! p

By def. of context substitution
By above equality

Mke <A} p'40© Byih
e — Q] "
Q— Q] "
dom(®) = dom(Q;) "
QT F[Qle; « [QJAS p Subderivation
QI = [Q]1© By Lemma Multiple Conﬂuence[)
[QJAS = [Q4]AS By Lemma Completing Completeness[) (ii)
(D10 F[Qle; & [Q1]AS p By above equalities
OFe;, «[OIA,p’'4A Byih

= dom(A) = dom(Q’)
= A— QF
Q] — Q
= Q— Q'
= Ik(er,e2) «ap’' H4A

In the latter case (A = A] x Ab):

[QIN'-[Qle; A p
[QIM - [Qle; < [QIA] p
ey &MAp-H0O
e — Qp
dom (@) = dom(Qy)
Q— Qo

QT F[Qle; = Az p
[QIT + [Qle; « [QJA} p
I'EAf x A} p type
I'Aj type
r—Q
N — _Qo
Qo FA) type
[QIT = 1Qlez <= [QolAS p
[QIT F[Qlez < [Qo][BIA) p
[Q)O - [Qlez & [QlIBIAS p
OFe, = [OIA}pHA
= A— QF
= dom(A) = dom(Q’)
Qo — Q'
Q— Q'

=

"
"

1"
By Lemma (]Extension Transitivityb

B[

Subderivation
Ay =[QJA]
By i.h.

Subderivation

Ay =[QJA)

Given (A = Aj x Aj)
By inversion
Given

By Lemma
By Lemma
By Lemma
By Lemma
By Lemma

Extension Transitivity)
Extension Weakening (Types)|)
Completing Completeness|
Substitution Monotonicity]
Multiple Confluence)

(iii)

By Lemma (IExtension Transitivityp

I (er,ez) < (IQJA7) x ([QJA2) p 1A By

= F}—<e1,e2> & [Q)(A, XAz)p—(A

By def. of substitution

Now we turn to parts (v) and (vi), completeness of matching.

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness

190

Case [DeclMatchEmptyt  Apply rule

Case Apply the i.h. twice, along with standard lemmas.
Case Apply the i.h. (i) and rule

Case Apply the i.h. and rule
Case[DeclMatchdt By i.h. and rule[Matchd]

Case By i.h. and rule

Case By i.h. and rule

Case oI/ Pk 5= e [QIA, [QIA L < [QIC P

[QINF§= e ([QAA[QIP),[QIA ! < [QIC P

To apply the i.h. (vi), we will show (1) T - (A, /K) ! types, (2) T = P prop, (3) FEV(P) = 0, (4

I Cptype, (5) [QIT / [QIP - 5= [Qle : [QJA | « [QIC p, and (6) p’ C p.

I'-(AAP, A)! types Given
N'E(AAP)!type By inversion on|PrincipaITypevecWF|

I'=A!type By Lemma (]Inversion of Principal Typing[) 3
(2) I'P prop "
(3) FEV(P) =10 By inversion
@) It (A,/Z_\') ! types By inversion and |PrincipaITypevecWF|
(C))] I'=Cp type Given
(5) [QIF /PHF= [Qle: [QIA,[QJA < [QICp Subderivation
(6) p'Cp Given
r/MPFG=ex:T(AA) < TCp’ +A By i.h. (vi)
= A— QF "
=  dom(A) = dom(Q/) "
= Q-0 4
r/MPrFF=exzTA,[MA) < [MCp’ HA By def. of subst.
Mk = ex(NAAIP),MA) < MCp' A By[Match/
= TrFp=e: [F]((A/\P),/K) &[MCp’'—HA By def. of subst.

Case By i.h. and rule [MatchNeg]

Case By i.h. and rule[MatchWild|
Case DeclMatchNil:  Similar to the case.

Case DeclMatchCons: Similar to the [DecIMatchd and [DecI[Match/\ cases.

Case mgu([Qlo, [Q)T) = L
[QIT / [Qlo = [Qlt+ [Q)(F = e) = [QJA ! & [QIC p

Proof of [Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness




Proof of|Theorem 12| (Completeness of Algorithmic Typing) thm:typing-completeness 191

= r—Q Given

FEV(oc=1)=10 Given

[Qlo = [Tlo By Lemma qPrincipal Agreemend) (D)
[Qlt = [t Similar
mgu([Q]o, [Q]T) = L Given
mgu([lMo, [Mt) = L By above equalities
N/o=t:xk4dL By Lemma|9_4| (]Completeness of Elimeqj) 2)
w T /Mo=[Mrtrpg=e=[MA<TCp-T ByMatchL
=3 QO—Q By Lemma (]Extension Reﬂexivity{)
= dom(I") = dom(Q) Given
e Case - P
mgu([Q]o, [Q]T) =0 0([QIT) F0(p = [Qle) = 0([QAJA) ! < 0([QIC) p .
- :
[QIT / [Qlo=[Q]tF g = [Qle = [QJA ! & [Q]Cp
([Qlo = [Mo) and ([Q]t = [T) Asin|DeclMatch_l|case
mgu([Q]o, [Q]t) =0 Given
mgu([lo,[lt) =0 By above equalities
N/ o=t:x-(O) By Lemma (]Completeness of Elimqu) @)
@Z(Oq :t1, ,(antn) "
[, @lu = 0([Tu) "forallTFu:«k

o(1QIl) = [Q,»p,BI(T, »p,O) By Lemma Substitution Upgrade)) (iii)

6([Q]/K = [Q,»p,0 A By Lemma Substitution Upgrade]) (i) (over /i)
0([Q]C C By Lemma Substitution Upgrade]) (i)

0(p = [Qle) = [Q,»p,BOl(f = e) By Lemma Substitution Upgrade)) (iv)

([Q,»p, 0T »p,0) F[Q,»p,Bl(F =€) = [Q,»p,OlA & [Q,»p,0lCp By above equalities

Nrp,OF (F=e):[Nrp,OlA & [[rp,O]Cp 1A, »p, A’ Byih.
A,»p,AI — _O.I,>P,_O.N "
Qrp,® — Q' pp, Q" "

dom(A,»p,A’) = dom(Q’,»p, Q") "

= A— Q By Lemma (]Extension Inversionl) (i)
= dom(A) = dom(Q/) "
= QO—Qf By Lemma (IExtension Inversion[) (ii)

w [/[Mo=[MtFg=e=[MA<TCp-4A ByMatchUnify

August 15, 2020



	Figures
	List of Judgments
	Properties of the Declarative System
	Substitution and Well-formedness Properties
	Properties of Extension
	Reflexivity and Transitivity
	Weakening
	Principal Typing Properties
	Instantiation Extends
	Equivalence Extends
	Subtyping Extends
	Typing Extends
	Unfiled

	Internal Properties of the Declarative System
	Miscellaneous Properties of the Algorithmic System
	Decidability of Instantiation
	Separation
	Decidability of Algorithmic Subtyping
	Lemmas for Decidability of Subtyping
	Decidability of Subtyping
	Decidability of Matching and Coverage
	Decidability of Typing

	Determinacy
	Soundness
	Soundness of Instantiation
	Soundness of Checkeq
	Soundness of Equivalence (Propositions and Types)
	Soundness of Checkprop
	Soundness of Eliminations (Equality and Proposition)
	Soundness of Subtyping
	Soundness of Typing

	Completeness
	Completeness of Auxiliary Judgments
	Completeness of Equivalence and Subtyping
	Completeness of Typing

	=14ptProofs
	Properties of the Declarative System
	Substitution and Well-formedness Properties
	Properties of Extension
	Reflexivity and Transitivity
	Weakening
	Principal Typing Properties
	Instantiation Extends
	Equivalence Extends
	Subtyping Extends
	Typing Extends
	Unfiled

	Internal Properties of the Declarative System
	Miscellaneous Properties of the Algorithmic System
	Decidability of Instantiation
	Separation
	Decidability of Algorithmic Subtyping
	Lemmas for Decidability of Subtyping
	Decidability of Subtyping
	Decidability of Matching and Coverage
	Decidability of Typing

	Determinacy
	Soundness
	Instantiation
	Soundness of Checkprop
	Soundness of Eliminations (Equality and Proposition)
	Soundness of Typing

	Completeness
	Completeness of Auxiliary Judgments
	Completeness of Equivalence and Subtyping
	Completeness of Typing


