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The first part (Sections 1–2) of this supplementary material contains rules, figures and definitions omitted
in the main paper for space reasons, and a list of judgment forms (Section 2).

The remainder (Sections A–K ′) includes statements of all lemmas and theorems, along with full proofs.
as well as statements of theorems and a few selected lemmas.
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1 Figures

We repeat some figures from the main paper. In Figures 6a and 14a, we include rules omitted from the main
paper for space reasons.

Ψ ` P true Under context Ψ, check P
Ψ ` (t = t) true

DeclCheckpropEq

Ψ ` e⇐ A p
Ψ ` e⇒ A p

Under context Ψ, expression e checks against input type A
Under context Ψ, expression e synthesizes output type A

x :Ap ∈ Ψ
Ψ ` x⇒ A p

DeclVar
Ψ ` e⇒ A q Ψ ` A ≤join(pol(B),pol(A)) B

Ψ ` e⇐ B p
DeclSub

Ψ ` A type Ψ ` e⇐ A !
Ψ ` (e : A) ⇒ A !

DeclAnno
Ψ, x :Ap ` v⇐ A p

Ψ ` rec x. v⇐ A p
DeclRec

Ψ ` () ⇐ 1 p
Decl1I

v chk-I Ψ,α : κ ` v⇐ A p

Ψ ` v⇐ (∀α : κ. A) p
Decl∀I

Ψ ` τ : κ Ψ ` e⇐ [τ/α]A

Ψ ` e⇐ (∃α : κ. A) p
Decl∃I

v chk-I Ψ / P ` v⇐ A !
Ψ ` v⇐ (P ⊃ A) !

Decl⊃I
Ψ ` P true Ψ ` e⇐ A p

Ψ ` e⇐ (A ∧ P) p
Decl∧I

Ψ, x :Ap ` e⇐ B p

Ψ ` λx. e⇐ A→ B p
Decl→I

Ψ ` e⇒ A p Ψ ` s : A p� C dqe
Ψ ` e s⇒ C q

Decl→E

Ψ ` e⇐ Ak p

Ψ ` injk e⇐ A1 +A2 p
Decl+Ik

Ψ ` e1 ⇐ A1 p Ψ ` e2 ⇐ A2 p

Ψ ` 〈e1, e2〉⇐ A1 ×A2 p
Decl×I

Ψ ` t = zero true
Ψ ` [] ⇐ (Vec t A) p

DeclNil
Ψ ` t = succ(t2) true

Ψ ` e1 ⇐ A p
Ψ ` e2 ⇐ (Vec t2 A) 6 !

Ψ ` e1 :: e2 ⇐ (Vec t A) p
DeclCons

Ψ ` e⇒ A q Ψ ` Π :: A ! ⇐ C p ∀B. if Ψ ` e⇒ B q then Ψ ` Π covers Bq
Ψ ` case(e, Π) ⇐ C p

DeclCase

Ψ ` s : A p� C q
Ψ ` s : A p� C dqe

Under context Ψ,
passing spine s to a function of type A synthesizes type C;
in the dqe form, recover principality in q if possible

Ψ ` τ : κ Ψ ` e s : [τ/α]A 6 ! � C q

Ψ ` e s : (∀α : κ. A) p� C q
Decl∀Spine

Ψ ` P true Ψ ` e s : A p� C q

Ψ ` e s : (P ⊃ A) p� C q
Decl⊃Spine

Ψ ` · : A p� A p
DeclEmptySpine

Ψ ` e⇐ A p Ψ ` s : B p� C q

Ψ ` e s : A→ B p� C q
Decl→Spine

Ψ ` s : A !� C 6 !

for all C ′.
if Ψ ` s : A !� C ′ 6 !
then C ′ = C

Ψ ` s : A !� C d!e
DeclSpineRecover

Ψ ` s : A p� C q

Ψ ` s : A p� C dqe
DeclSpinePass

Ψ / P ` e⇐ C p Under context Ψ, incorporate proposition P and check e against C

mgu(σ, τ) = ⊥
Ψ / (σ = τ) ` e⇐ C p

DeclCheck⊥

mgu(σ, τ) = θ
θ(Ψ) ` θ(e) ⇐ θ(C) p

Ψ / (σ = τ) ` e⇐ C p
DeclCheckUnify

Figure 6a: Declarative typing, including rules omitted from main paper
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Γ ` e⇐ A p a ∆
Γ ` e⇒ A p a ∆

Under input context Γ , expression e checks against input type A,
with output context ∆
Under input context Γ , expression e synthesizes output type A,
with output context ∆

(x :Ap) ∈ Γ
Γ ` x⇒ [Γ ]A p a Γ

Var
Γ ` e⇒ A q a Θ Θ ` A <:join(pol(B),pol(A))

B a ∆
Γ ` e⇐ B p a ∆

Sub

Γ ` A ! type Γ ` e⇐ [Γ ]A ! a ∆
Γ ` (e : A) ⇒ [∆]A ! a ∆

Anno
Γ, x :Ap ` v⇐ A p a ∆, x :Ap,Θ

Γ ` rec x. v⇐ A p a ∆
Rec

Γ ` () ⇐ 1 p a Γ
1I

Γ [α̂ : ?] ` () ⇐ α̂ a Γ [α̂ : ?= 1]
1Iα̂

v chk-I Γ, α : κ ` v⇐ A p a ∆, α : κ, Θ

Γ ` v⇐ ∀α : κ. A p a ∆
∀I

e chk-I Γ, α̂ : κ ` e⇐ [α̂/α]A a ∆
Γ ` e⇐ ∃α : κ. A p a ∆

∃I

v chk-I
Γ,IP / P a Θ
Θ ` v⇐ [Θ]A ! a ∆,IP, ∆ ′

Γ ` v⇐ P ⊃ A ! a ∆
⊃I

v chk-I Γ,IP / P a ⊥
Γ ` v⇐ P ⊃ A ! a Γ

⊃I⊥

e not a case
Γ ` P true a Θ
Θ ` e⇐ [Θ]A p a ∆
Γ ` e⇐ A ∧ P p a ∆

∧I

Γ, x :Ap ` e⇐ B p a ∆, x :Ap,Θ
Γ ` λx. e⇐ A→ B p a ∆

→I
Γ [α̂1:?, α̂2:?, α̂:?= α̂1→α̂2], x : α̂1 ` e⇐ α̂2 a ∆, x : α̂1 , ∆ ′

Γ [α̂ : ?] ` λx. e⇐ α̂ a ∆
→Iα̂

Γ ` e⇒ A p a Θ
Θ ` s : A p� C dqe a ∆
Γ ` e s⇒ C q a ∆

→E
Γ ` e⇒ A q a Θ

Θ ` Π :: [Θ]A q⇐ [Θ]C p a ∆
∆ ` Π covers [∆]A q

Γ ` case(e, Π) ⇐ C p a ∆
Case

Γ ` e⇐ Ak p a ∆
Γ ` injk e⇐ A1 + A2 p a ∆

+Ik
Γ [α̂1 : ?, α̂2 : ?, α̂ : ?= α̂1+α̂2] ` e⇐ α̂k a ∆

Γ [α̂ : ?] ` injk e⇐ α̂ a ∆
+Iα̂k

Γ ` e1 ⇐ A1 p a Θ Θ ` e2 ⇐ [Θ]A2 p a ∆
Γ ` 〈e1, e2〉⇐ A1 × A2 p a ∆

×I

Γ [α̂2:?, α̂1:?, α̂:?= α̂1×α̂2] ` e1 ⇐ α̂1 a Θ
Θ ` e2 ⇐ [Θ]α̂2 a ∆

Γ [α̂ : ?] ` 〈e1, e2〉⇐ α̂ a ∆
×Iα̂

Γ ` t = zero true a ∆
Γ ` [] ⇐ (Vec t A) p a ∆

Nil

Γ,Iα̂, α̂ : N ` t = succ(α̂) true a Γ ′

Γ
′ ` e1 ⇐ [Γ ′]A p a Θ
Θ ` e2 ⇐ [Θ](Vec α̂ A) 6 ! a ∆,Iα̂, ∆ ′

Γ ` e1 :: e2 ⇐ (Vec t A) p a ∆
Cons

Γ ` s : A p� C q a ∆
Γ ` s : A p� C dqe a ∆

Under input context Γ ,
passing spine s to a function of type A synthesizes type C;
in the dqe form, recover principality in q if possible

Γ, α̂ : κ ` e s : [α̂/α]A � C q a ∆
Γ ` e s : ∀α : κ. A p� C q a ∆

∀Spine
Γ ` P true a Θ Θ ` e s : [Θ]A p� C q a ∆

Γ ` e s : P ⊃ A p� C q a ∆
⊃Spine

Γ ` · : A p� A p a Γ
EmptySpine

Γ ` e⇐ A p a Θ Θ ` s : [Θ]B p� C q a ∆s
Γ ` e s : A→ B p� C q a ∆

→Spine

Γ [α̂2:?, α̂1:?, α̂:?= α̂1→α̂2] ` e s : (α̂1→ α̂2) � C a ∆
Γ [α̂ : ?] ` e s : α̂ � C a ∆

α̂Spine

Γ ` s : A !� C 6 ! a ∆
FEV(C) = ∅
Γ ` s : A !� C d!e a ∆

SpineRecover

Γ ` s : A p� C q a ∆(
(p = 6 ! ) or (q = !) or (FEV(C) 6= ∅)

)
Γ ` s : A p� C dqe a ∆

SpinePass

Figure 14a: Algorithmic typing, including rules omitted from main paper
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Ψ ` t : κ Under context Ψ, term t has sort κ

(α : κ) ∈ Ψ
Ψ ` α : κ

UvarSort
Ψ ` 1 : ?

UnitSort
Ψ ` t1 : ? Ψ ` t2 : ?

Ψ ` t1 ⊕ t2 : ?
BinSort

Ψ ` zero : N
ZeroSort

Ψ ` t : N
Ψ ` succ(t) : N

SuccSort

Ψ ` P prop Under context Ψ, proposition P is well-formed

Ψ ` t : N Ψ ` t ′ : N
Ψ ` t = t ′ prop

EqDeclProp

Ψ ` A type Under context Ψ, type A is well-formed

(α : ?) ∈ Ψ
Ψ ` α type

DeclUvarWF
Ψ ` 1 type

DeclUnitWF

Ψ ` A type Ψ ` B type ⊕∈ {→,×,+}

Ψ ` A ⊕ B type
DeclBinWF

Γ ` t : N Γ ` A type
Γ ` Vec t A type

DeclVecWF

Ψ,α : κ ` A type
Ψ ` (∀α : κ. A) type

DeclAllWF
Ψ,α : κ ` A type

Ψ ` (∃α : κ. A) type
DeclExistsWF

Ψ ` P prop Ψ ` A type
Ψ ` P ⊃ A type

DeclImpliesWF
Ψ ` P prop Ψ ` A type

Ψ ` A ∧ P type
DeclWithWF

Ψ ` ~A types Under context Ψ, types in ~A are well-formed

for all A ∈ ~A.
Ψ ` A type

Ψ ` ~A types
DeclTypevecWF

Ψ ctx Declarative context Ψ is well-formed

· ctx
EmptyDeclCtx

Ψ ctx x /∈ dom(Ψ) Ψ ` A type
Ψ, x : A ctx

HypDeclCtx

Ψ ctx α /∈ dom(Ψ)

Ψ,α : κ ctx
VarDeclCtx

Figure 16: Sorting; well-formedness of propositions, types, and contexts in the declarative system
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Γ ` τ : κ Under context Γ , term τ has sort κ

(u : κ) ∈ Γ
Γ ` u : κ

VarSort
(α̂ : κ= τ) ∈ Γ
Γ ` α̂ : κ

SolvedVarSort
Γ ` 1 : ?

UnitSort

Γ ` τ1 : ? Γ ` τ2 : ?
Γ ` τ1 ⊕ τ2 : ?

BinSort
Γ ` zero : N

ZeroSort
Γ ` t : N

Γ ` succ(t) : N
SuccSort

Γ ` P prop Under context Γ , proposition P is well-formed

Γ ` t : N Γ ` t ′ : N
Γ ` t = t ′ prop

EqProp

Γ ` A type Under context Γ , type A is well-formed

(u : ?) ∈ Γ
Γ ` u type

VarWF
(α̂ : ?= τ) ∈ Γ
Γ ` α̂ type

SolvedVarWF
Γ ` 1 type

UnitWF

Γ ` A type Γ ` B type ⊕∈ {→,×,+}

Γ ` A ⊕ B type
BinWF

Γ ` t : N Γ ` A type
Γ ` Vec t A type

VecWF

Γ, α : κ ` A type
Γ ` ∀α : κ. A type

ForallWF
Γ, α : κ ` A type
Γ ` ∃α : κ. A type

ExistsWF

Γ ` P prop Γ ` A type
Γ ` P ⊃ A type

ImpliesWF
Γ ` P prop Γ ` A type

Γ ` A ∧ P type
WithWF

Γ ` A p type Under context Γ , type A is well-formed and respects principality p

Γ ` A type FEV([Γ ]A) = ∅
Γ ` A ! type

PrincipalWF
Γ ` A type
Γ ` A6 ! type

NonPrincipalWF

Γ ` ~A [p] types Under context Γ , types in ~A are well-formed [with principality p]

for all A ∈ ~A. Γ ` A type

Γ ` ~A types
TypevecWF

for all A ∈ ~A. Γ ` A p type

Γ ` ~A p types
PrincipalTypevecWF

Γ ctx Algorithmic context Γ is well-formed

· ctx
EmptyCtx

Γ ctx
x /∈ dom(Γ)
Γ ` A type

Γ, x :A 6 ! ctx
HypCtx

Γ ctx
x /∈ dom(Γ)
Γ ` A type FEV([Γ ]A) = ∅

Γ, x :A ! ctx
Hyp!Ctx

Γ ctx u /∈ dom(Γ)

Γ, u : κ ctx
VarCtx

Γ ctx α̂ /∈ dom(Γ) Γ ` t : κ
Γ, α̂ : κ= t ctx

SolvedCtx

Γ ctx α : κ ∈ Γ (α=−) /∈ Γ Γ ` τ : κ
Γ, α= τ ctx

EqnVarCtx
Γ ctx Iu /∈ Γ

Γ,Iu ctx
MarkerCtx

Figure 17: Well-formedness of types and contexts in the algorithmic system
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Γ ` P true a ∆ Under context Γ , check P, with output context ∆

Γ ` t1 $ t2 : N a ∆
Γ ` t1 = t2 true a ∆

CheckpropEq

Γ / P a ∆⊥ Incorporate hypothesis P into Γ , producing ∆ or inconsistency ⊥

Γ / t1 $ t2 : N a ∆⊥

Γ / t1 = t2 a ∆⊥
ElimpropEq

Figure 18: Checking and assuming propositions

Γ ` t1 $ t2 : κ a ∆ Check that t1 equals t2, taking Γ to ∆

Γ ` u $ u : κ a Γ
CheckeqVar

Γ ` 1 $ 1 : ? a Γ
CheckeqUnit

Γ ` τ1 $ τ ′1 : ? a Θ Θ ` [Θ]τ2 $ [Θ]τ ′2 : ? a ∆
Γ ` (τ1 ⊕ τ2) $ (τ ′1 ⊕ τ ′2) : ? a ∆

CheckeqBin

Γ ` zero $ zero : N a Γ
CheckeqZero

Γ ` t1 $ t2 : N a ∆
Γ ` succ(t1) $ succ(t2) : N a ∆

CheckeqSucc

Γ [α̂ : κ] ` α̂ := t : κ a ∆ α̂ /∈ FV(t)
Γ [α̂ : κ] ` α̂ $ t : κ a ∆

CheckeqInstL

Γ [α̂ : κ] ` α̂ := t : κ a ∆ α̂ /∈ FV(t)
Γ [α̂ : κ] ` t $ α̂ : κ a ∆

CheckeqInstR

Figure 19: Checking equations

t1 # t2 t1 and t2 have incompatible head constructors

zero # succ(t) succ(t) # zero 1 # (τ1 ⊕ τ2) (τ1 ⊕ τ2) # 1

⊕1 6= ⊕2
(σ1 ⊕1 τ1) # (σ2 ⊕2 τ2)

Figure 20: Head constructor clash

August 15, 2020



1 Figures 13

Γ / σ $ τ : κ a ∆⊥ Unify σ and τ, taking Γ to ∆, or to inconsistency ⊥

Γ / α $ α : κ a Γ
ElimeqUvarRefl

Γ / zero $ zero : N a Γ
ElimeqZero

Γ / σ $ τ : N a ∆⊥

Γ / succ(σ) $ succ(τ) : N a ∆⊥
ElimeqSucc

α /∈ FV(τ) (α=−) /∈ Γ
Γ / α $ τ : κ a Γ, α= τ

ElimeqUvarL
α /∈ FV(τ) (α=−) /∈ Γ
Γ / τ $ α : κ a Γ, α= τ

ElimeqUvarR

t 6= α α ∈ FV(τ)
Γ / α $ τ : κ a ⊥

ElimeqUvarL⊥
t 6= α α ∈ FV(τ)
Γ / τ $ α : κ a ⊥

ElimeqUvarR⊥

Γ / 1 $ 1 : ? a Γ
ElimeqUnit

Γ / τ1 $ τ
′
1 : ? a Θ Θ / [Θ]τ2 $ [Θ]τ ′2 : ? a ∆⊥

Γ / (τ1 ⊕ τ2) $ (τ ′1 ⊕ τ ′2) : ? a ∆⊥
ElimeqBin

Γ / τ1 $ τ
′
1 : ? a ⊥

Γ / (τ1 ⊕ τ2) $ (τ ′1 ⊕ τ ′2) : ? a ⊥
ElimeqBinBot

σ # τ

Γ / σ $ τ : κ a ⊥
ElimeqClash

Figure 21: Eliminating equations
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Γ ` A <:P B a ∆ Under input context Γ , type A is a subtype of B, with output context ∆

A not headed by ∀/∃
B not headed by ∀/∃ Γ ` A ≡ B a ∆

Γ ` A <:P B a ∆
<:Equiv

B not headed by ∀
Γ,Iα̂, α̂ : κ ` [α̂/α]A <:− B a ∆,Iα̂, Θ

Γ ` ∀α : κ. A <:− B a ∆
<:∀L

Γ, β : κ ` A <:− B a ∆,β : κ,Θ

Γ ` A <:− ∀β : κ. B a ∆
<:∀R

Γ, α : κ ` A <:+ B a ∆,α : κ,Θ

Γ ` ∃α : κ. A <:+ B a ∆
<:∃L

A not headed by ∃
Γ,Iβ̂, β̂ : κ ` A <:+ [β̂/β]B a ∆,Iβ̂, Θ

Γ ` A <:+ ∃β : κ. B a ∆
<:∃R

Γ ` A <:− B a ∆
neg(A)
nonpos(B)

Γ ` A <:+ B a ∆
<:−+L

Γ ` A <:− B a ∆
nonpos(A)
neg(B)

Γ ` A <:+ B a ∆
<:−+R

Γ ` A <:+ B a ∆
pos(A)
nonneg(B)

Γ ` A <:− B a ∆
<:+−L

Γ ` A <:+ B a ∆
nonneg(A)
pos(B)

Γ ` A <:− B a ∆
<:+−R

Γ ` P ≡ Q a ∆
Under input context Γ ,
check that P is equivalent to Q
with output context ∆

Γ ` t1 $ t2 : N a Θ Θ ` [Θ]t ′1 $ [Θ]t ′2 : N a ∆
Γ ` (t1 = t

′
1) ≡ (t2 = t

′
2) a ∆

≡PropEq

Γ ` A ≡ B a ∆
Under input context Γ ,
check that A is equivalent to B
with output context ∆

Γ ` α ≡ α a Γ
≡Var

Γ ` α̂ ≡ α̂ a Γ
≡Exvar

Γ ` 1 ≡ 1 a Γ
≡Unit

Γ ` A1 ≡ B1 a Θ Θ ` [Θ]A2 ≡ [Θ]B2 a ∆
Γ ` (A1 ⊕ A2) ≡ (B1 ⊕ B2) a ∆

≡⊕
Γ ` t1 ≡ t2 a Θ Θ ` [Θ]A1 ≡ [Θ]A2 a ∆

Γ ` (Vec t1 A1) ≡ (Vec t2 A2) a ∆
≡Vec

Γ, α : κ ` A ≡ B a ∆,α : κ,∆ ′

Γ ` (∀α : κ. A) ≡ (∀α : κ. B) a ∆
≡∀

Γ, α : κ ` A ≡ B a ∆,α : κ,∆ ′

Γ ` (∃α : κ. A) ≡ (∃α : κ. B) a ∆
≡∃

Γ ` P ≡ Q a Θ Θ ` [Θ]A ≡ [Θ]B a ∆
Γ ` (P ⊃ A) ≡ (Q ⊃ B) a ∆

≡⊃
Γ ` P ≡ Q a Θ Θ ` [Θ]A ≡ [Θ]B a ∆

Γ ` (A ∧ P) ≡ (B ∧ Q) a ∆
≡∧

α̂ /∈ FV(τ) Γ [α̂] ` α̂ := τ : ? a ∆
Γ [α̂] ` α̂ ≡ τ a ∆

≡InstantiateL
α̂ /∈ FV(τ) Γ [α̂] ` α̂ := τ : ? a ∆

Γ [α̂] ` τ ≡ α̂ a ∆
≡InstantiateR

Figure 22: Algorithmic subtyping and equivalence
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Γ ` α̂ := t : κ a ∆ Under input context Γ ,
instantiate α̂ such that α̂ = t with output context ∆

Γ0 ` τ : κ
Γ0, α̂ : κ, Γ1 ` α̂ := τ : κ a Γ0, α̂ : κ= τ, Γ1

InstSolve

β̂ ∈ unsolved(Γ [α̂ : κ][β̂ : κ])

Γ [α̂ : κ][β̂ : κ] ` α̂ := β̂ : κ a Γ [α̂ : κ][β̂ : κ= α̂]
InstReach

Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆
Γ [α̂ : ?] ` α̂ := τ1 ⊕ τ2 : ? a ∆

InstBin

Γ [α̂ : N] ` α̂ := zero : N a Γ [α̂ : N= zero]
InstZero

Γ [α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆
Γ [α̂ : N] ` α̂ := succ(t1) : N a ∆

InstSucc

Figure 23: Instantiation
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Γ ` Π :: ~A q⇐ C p a ∆ Under context Γ ,
check branches Π with patterns of type ~A and bodies of type C

Γ ` · :: ~A q⇐ C p a Γ
MatchEmpty

Γ ` π :: ~A q⇐ C p a Θ Θ ` Π ′ :: [Θ]~A q⇐ C p a ∆
Γ ` π ||Π ′ :: ~A q⇐ C p a ∆

MatchSeq

Γ ` e⇐ C p a ∆
Γ ` (·⇒ e) :: · q⇐ C p a ∆

MatchBase
Γ ` ~ρ⇒ e :: ~A q⇐ C p a ∆

Γ ` (),~ρ⇒ e :: 1, ~A q⇐ C p a ∆
MatchUnit

Γ, α : κ ` ~ρ⇒ e :: A, ~A q⇐ C p a ∆,α : κ,Θ

Γ ` ~ρ⇒ e :: (∃α : κ. A), ~A q⇐ C p a ∆
Match∃

Γ / P ` ~ρ⇒ e :: A, ~A ! ⇐ C p a ∆
Γ ` ~ρ⇒ e :: A ∧ P, ~A ! ⇐ C p a ∆

Match∧

Γ ` ~ρ⇒ e :: A, ~A 6 ! ⇐ C p a ∆
Γ ` ~ρ⇒ e :: A ∧ P, ~A 6 ! ⇐ C p a ∆

Match∧ 6 !

Γ ` ρ1, ρ2,~ρ⇒ e :: A1, A2, ~A q⇐ C p a ∆
Γ ` 〈ρ1, ρ2〉,~ρ⇒ e :: A1 ×A2, ~A q⇐ C p a ∆

Match×

Γ ` ρ,~ρ⇒ e :: Ak, ~A q⇐ C p a ∆
Γ ` (injk ρ),~ρ⇒ e :: A1 +A2, ~A q⇐ C p a ∆

Match+k

A not headed by ∧ or ∃ Γ, z :A ! ` ~ρ⇒ e ′ :: ~A q⇐ C p a ∆, z :A !, ∆ ′

Γ ` z,~ρ⇒ e :: A, ~A q⇐ C p a ∆
MatchNeg

A not headed by ∧ or ∃ Γ ` ~ρ⇒ e :: ~A q⇐ C p a ∆
Γ ` _,~ρ⇒ e :: A, ~A q⇐ C p a ∆

MatchWild

Γ / (t = zero) ` ~ρ⇒ e :: ~A ! ⇐ C p a ∆
Γ ` [],~ρ⇒ e :: (Vec t A), ~A ! ⇐ C p a ∆

MatchNil

Γ, α : N / (t = succ(α)) ` ρ1, ρ2,~ρ⇒ e :: A, (Vec α A), ~A ! ⇐ C p a ∆,α : N, Θ
Γ ` (ρ1 :: ρ2),~ρ⇒ e :: (Vec t A), ~A ! ⇐ C p a ∆

MatchCons

Γ ` ~ρ⇒ e :: ~A 6 ! ⇐ C p a ∆
Γ ` [],~ρ⇒ e :: (Vec t A), ~A 6 ! ⇐ C p a ∆

MatchNil6 !

Γ, α : N ` ρ1, ρ2,~ρ⇒ e :: A, (Vec α A), ~A 6 ! ⇐ C p a ∆,α : N, Θ
Γ ` (ρ1 :: ρ2),~ρ⇒ e :: (Vec t A), ~A 6 ! ⇐ C p a ∆

MatchCons6 !

Γ / P ` Π :: ~A ! ⇐ C p a ∆ Under context Γ , incorporate proposition P while checking branches Π
with patterns of type ~A and bodies of type C

Γ / σ $ τ : κ a ⊥
Γ / σ = τ ` ~ρ⇒ e :: ~A ! ⇐ C p a Γ

Match⊥

Γ,IP / σ $ τ : κ a Θ Θ ` ~ρ⇒ e :: ~A ! ⇐ C p a ∆,IP, ∆ ′

Γ / σ = τ ` ~ρ⇒ e :: ~A ! ⇐ C p a ∆
MatchUnify

Figure 24: Algorithmic pattern matching
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Γ ` Π covers ~A q

Γ / P ` Π covers ~A !
Π guarded

Under context Γ , patterns Π cover the types ~A

Under context Γ , patterns Π cover the types ~A assuming P

Pattern list Π contains a list pattern constructor at the head position

Γ ` (·⇒ e1) ||Π covers · q
CoversEmpty

Π
var
; Π ′ Γ ` Π ′ covers ~A q

Γ ` Π covers A, ~A q
CoversVar

Π
1
; Π ′ Γ ` Π ′ covers ~A q

Γ ` Π covers 1, ~A q
Covers1

Π
×
; Π ′ Γ ` Π ′ covers A1, A2, ~A q

Γ ` Π covers (A1 ×A2), ~A q
Covers×

Π
+
; ΠL ‖ ΠR Γ ` ΠL covers A1, ~A q Γ ` ΠR covers A2, ~A q

Γ ` Π covers (A1 +A2), ~A q
Covers+

Γ, α : κ ` Π covers ~A q

Γ ` Π covers (∃α : κ. A), ~A q
Covers∃

Γ / t1 = t2 ` Π covers A0, ~A !

Γ ` Π covers
(
A0 ∧ (t1 = t2)

)
, ~A !

Covers∧

Π ` A0, ~A covers Γ

Γ ` Π covers
(
A0 ∧ (t1 = t2)

)
, ~A 6 !

Covers∧6 !

Π guarded Π
Vec
; Π[] ‖ Π::

Γ / t = zero ` Π[] covers ~A !
Γ, n : N / t = succ(n) ` Π:: covers (A,Vec n A, ~A) !

Γ ` Π covers Vec t A, ~A !
CoversVec

Π guarded Π
Vec
; Π[] ‖ Π::

Γ ` Π[] covers ~A 6 !
Γ, n : N ` Π:: covers (A,Vec n A, ~A) 6 !

Γ ` Π covers Vec t A, ~A 6 !
CoversVec6 !

Γ / [Γ ]t1 $ [Γ ]t2 : κ a ∆ ∆ ` [∆]Π covers [∆]~A q

Γ / t1 = t2 ` Π covers ~A !
CoversEq

Γ / [Γ ]t1 $ [Γ ]t2 : κ a ⊥
Γ / t1 = t2 ` Π covers ~A !

CoversEqBot

[],~p⇒ e ||Π guarded p :: p ′,~p⇒ e ||Π guarded

Π guarded

_,~p⇒ e ||Π guarded

Π guarded

x,~p⇒ e ||Π guarded

Figure 25: Algorithmic match coverage
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2 List of Judgments

For convenience, we list all the judgment forms:

Judgment Description Location

Ψ ` t : κ Index term/monotype is well-formed Figure 16
Ψ ` P prop Proposition is well-formed Figure 16
Ψ ` A type Type is well-formed Figure 16
Ψ ` ~A types Type vector is well-formed Figure 16
Ψ ctx Declarative context is well-formed Figure 16

Ψ ` A ≤P B Declarative subtyping Figure 4

Ψ ` P true Declarative truth Figure 6

Ψ ` e⇐ A p Declarative checking Figure 6
Ψ ` e⇒ A p Declarative synthesis Figure 6
Ψ ` s : A p� C q Declarative spine typing Figure 6
Ψ ` s : A p� C dqe Declarative spine typing, recovering principality Figure 6

Ψ ` Π :: ~A ! ⇐ C p Declarative pattern matching Figure 7
Ψ / P ` Π :: ~A ! ⇐ C p Declarative proposition assumption Figure 7

Ψ ` Π covers ~A ! Declarative match coverage Figure 8

Γ ` τ : κ Index term/monotype is well-formed Figure 17
Γ ` P prop Proposition is well-formed Figure 17
Γ ` A type Polytype is well-formed Figure 17
Γ ctx Algorithmic context is well-formed Figure 17

[Γ ]A Applying a context, as a substitution, to a type Figure 12

Γ ` P true a ∆ Check proposition Figure 18
Γ / P a ∆⊥ Assume proposition Figure 18
Γ ` s $ t : κ a ∆ Check equation Figure 19
s # t Head constructors clash Figure 20
Γ / s $ t : κ a ∆⊥ Assume/eliminate equation Figure 21

Γ ` A <:P B a ∆ Algorithmic subtyping Figure 22
Γ / P ` A <: B a ∆ Assume/eliminate proposition Figure 22
Γ ` P ≡ Q a ∆ Equivalence of propositions Figure 22
Γ ` A ≡ B a ∆ Equivalence of types Figure 22
Γ ` α̂ := t : κ a ∆ Instantiate Figure 23

e chk-I Checking intro form Figure 5

Γ ` e⇐ A p a ∆ Algorithmic checking Figure 14
Γ ` e⇒ A p a ∆ Algorithmic synthesis Figure 14
Γ ` s : A p� C q a ∆ Algorithmic spine typing Figure 14
Γ ` s : A p� C dqe a ∆ Algorithmic spine typing, recovering principality Figure 14

Γ ` Π :: ~A q⇐ C p a ∆ Algorithmic pattern matching Figure 24
Γ / P ` Π :: ~A ! ⇐ C p a ∆ Algorithmic pattern matching (assumption) Figure 24

Γ ` Π covers ~A q Algorithmic match coverage Figure 25

Γ −→ ∆ Context extension Figure 15

[Ω]Γ Apply complete context Figure 13
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A Properties of the Declarative System

Lemma 1 (Declarative Well-foundedness). Go to proof
The inductive definition of the following judgments is well-founded:

(i) synthesis Ψ ` e⇒ B p

(ii) checking Ψ ` e⇐ A p

(iii) checking, equality elimination Ψ / P ` e⇐ C p

(iv) ordinary spine Ψ ` s : A p� B q

(v) recovery spine Ψ ` s : A p� B dqe

(vi) pattern matching Ψ ` Π :: ~A ! ⇐ C p

(vii) pattern matching, equality elimination Ψ / P ` Π :: ~A ! ⇐ C p

Lemma 2 (Declarative Weakening). Go to proof

(i) If Ψ0, Ψ1 ` t : κ then Ψ0, Ψ, Ψ1 ` t : κ.

(ii) If Ψ0, Ψ1 ` P prop then Ψ0, Ψ, Ψ1 ` P prop.

(iii) If Ψ0, Ψ1 ` P true then Ψ0, Ψ, Ψ1 ` P true.

(iv) If Ψ0, Ψ1 ` A type then Ψ0, Ψ, Ψ1 ` A type.

Lemma 3 (Declarative Term Substitution). Go to proof
Suppose Ψ ` t : κ. Then:

1. If Ψ0, α : κ,Ψ1 ` t ′ : κ then Ψ0, [t/α]Ψ1 ` [t/α]t ′ : κ.

2. If Ψ0, α : κ,Ψ1 ` P prop then Ψ0, [t/α]Ψ1 ` [t/α]P prop.

3. If Ψ0, α : κ,Ψ1 ` A type then Ψ0, [t/α]Ψ1 ` [t/α]A type.

4. If Ψ0, α : κ,Ψ1 ` A ≤P B then Ψ0, [t/α]Ψ1 ` [t/α]A ≤P [t/α]B.

5. If Ψ0, α : κ,Ψ1 ` P true then Ψ0, [t/α]Ψ1 ` [t/α]P true.

Lemma 4 (Reflexivity of Declarative Subtyping). Go to proof
Given Ψ ` A type, we have that Ψ ` A ≤P A.

Lemma 5 (Subtyping Inversion). Go to proof

• If Ψ ` ∃α : κ. A ≤+ B then Ψ,α : κ ` A ≤+ B.

• If Ψ ` A ≤− ∀β : κ. B then Ψ,β : κ ` A ≤− B.

Lemma 6 (Subtyping Polarity Flip). Go to proof

• If nonpos(A) and nonpos(B) and Ψ ` A ≤+ B
then Ψ ` A ≤− B by a derivation of the same or smaller size.

• If nonneg(A) and nonneg(B) and Ψ ` A ≤− B
then Ψ ` A ≤+ B by a derivation of the same or smaller size.

• If nonpos(A) and nonneg(A) and nonpos(B) and nonneg(B) and Ψ ` A ≤P B
then A = B.
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Lemma 7 (Transitivity of Declarative Subtyping). Go to proof
Given Ψ ` A type and Ψ ` B type and Ψ ` C type:

(i) If D1 :: Ψ ` A ≤P B and D2 :: Ψ ` B ≤P C
then Ψ ` A ≤P C.

Property 1. We assume that all types mentioned in annotations in expressions have no free existential vari-
ables. By the grammar, it follows that all expressions have no free existential variables, that is, FEV(e) = ∅.

B Substitution and Well-formedness Properties

Definition 1 (Softness). A context Θ is soft iff it consists only of α̂ : κ and α̂ : κ= τ declarations.

Lemma 8 (Substitution—Well-formedness). Go to proof

(i) If Γ ` A p type and Γ ` τ p type then Γ ` [τ/α]A p type.

(ii) If Γ ` P prop and Γ ` τ p type then Γ ` [τ/α]P prop.
Moreover, if p = ! and FEV([Γ ]P) = ∅ then FEV([Γ ][τ/α]P) = ∅.

Lemma 9 (Uvar Preservation). Go to proof
If ∆ −→ Ω then:

(i) If (α : κ) ∈ Ω then (α : κ) ∈ [Ω]∆.

(ii) If (x :Ap) ∈ Ω then (x : [Ω]Ap) ∈ [Ω]∆.

Lemma 10 (Sorting Implies Typing). Go to proof If Γ ` t : ? then Γ ` t type.

Lemma 11 (Right-Hand Substitution for Sorting). Go to proof If Γ ` t : κ then Γ ` [Γ ]t : κ.

Lemma 12 (Right-Hand Substitution for Propositions). Go to proof If Γ ` P prop then Γ ` [Γ ]P prop.

Lemma 13 (Right-Hand Substitution for Typing). Go to proof If Γ ` A type then Γ ` [Γ ]A type.

Lemma 14 (Substitution for Sorting). Go to proof If Ω ` t : κ then [Ω]Ω ` [Ω]t : κ.

Lemma 15 (Substitution for Prop Well-Formedness). Go to proof
If Ω ` P prop then [Ω]Ω ` [Ω]P prop.

Lemma 16 (Substitution for Type Well-Formedness). Go to proof If Ω ` A type then [Ω]Ω ` [Ω]A type.

Lemma 17 (Substitution Stability). Go to proof
If (Ω,ΩZ) is well-formed and ΩZ is soft and Ω ` A type then [Ω]A = [Ω,ΩZ]A.

Lemma 18 (Equal Domains). Go to proof
If Ω1 ` A type and dom(Ω1) = dom(Ω2) then Ω2 ` A type.

C Properties of Extension

Lemma 19 (Declaration Preservation). Go to proof If Γ −→ ∆ and u is declared in Γ , then u is declared in
∆.

Lemma 20 (Declaration Order Preservation). Go to proof If Γ −→ ∆ and u is declared to the left of v in Γ ,
then u is declared to the left of v in ∆.

Lemma 21 (Reverse Declaration Order Preservation). Go to proof If Γ −→ ∆ and u and v are both declared
in Γ and u is declared to the left of v in ∆, then u is declared to the left of v in Γ .

An older paper had a lemma
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“Substitution Extension Invariance”
If Θ ` A type and Θ −→ Γ then [Γ ]A = [Γ ]([Θ]A) and [Γ ]A = [Θ]([Γ ]A).

For the second part, [Γ ]A = [Θ]([Γ ]A), use Lemma 29 (Substitution Monotonicity) (i) or (iii) instead. The
first part [Γ ]A = [Γ ][Θ]A hasn’t been proved in this system.

Lemma 22 (Extension Inversion). Go to proof

(i) If D :: Γ0, α : κ, Γ1 −→ ∆
then there exist unique ∆0 and ∆1
such that ∆ = (∆0, α : κ,∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D.

Moreover, if Γ1 is soft, then ∆1 is soft.

(ii) If D :: Γ0,Iu, Γ1 −→ ∆
then there exist unique ∆0 and ∆1
such that ∆ = (∆0,Iu, ∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D.

Moreover, if Γ1 is soft, then ∆1 is soft.

Moreover, if dom(Γ0,Iu, Γ1) = dom(∆) then dom(Γ0) = dom(∆0).

(iii) If D :: Γ0, α= τ, Γ1 −→ ∆
then there exist unique ∆0, τ ′, and ∆1
such that ∆ = (∆0, α= τ ′, ∆1) and D ′ :: Γ0 −→ ∆0 and [∆0]τ = [∆0]τ

′ where D ′ < D.

(iv) If D :: Γ0, α̂ : κ= τ, Γ1 −→ ∆
then there exist unique ∆0, τ ′, and ∆1
such that ∆ = (∆0, α̂ : κ= τ ′, ∆1) and D ′ :: Γ0 −→ ∆0 and [∆0]τ = [∆0]τ

′ where D ′ < D.

(v) If D :: Γ0, x : A, Γ1 −→ ∆
then there exist unique ∆0, A ′, and ∆1
such that ∆ = (∆0, x : A

′, ∆1) and D ′ :: Γ0 −→ ∆0 and [∆0]A = [∆0]A
′ where D ′ < D.

Moreover, if Γ1 is soft, then ∆1 is soft.

Moreover, if dom(Γ0, x : A, Γ1) = dom(∆) then dom(Γ0) = dom(∆0).

(vi) If D :: Γ0, α̂ : κ, Γ1 −→ ∆ then either

• there exist unique ∆0, τ ′, and ∆1
such that ∆ = (∆0, α̂ : κ= τ ′, ∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D,
or

• there exist unique ∆0 and ∆1
such that ∆ = (∆0, α̂ : κ,∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D.

Lemma 23 (Deep Evar Introduction). Go to proof

(i) If Γ0, Γ1 is well-formed and α̂ is not declared in Γ0, Γ1 then Γ0, Γ1 −→ Γ0, α̂ : κ, Γ1.

(ii) If Γ0, α̂ : κ, Γ1 is well-formed and Γ ` t : κ then Γ0, α̂ : κ, Γ1 −→ Γ0, α̂ : κ= t, Γ1.

(iii) If Γ0, Γ1 is well-formed and Γ ` t : κ then Γ0, Γ1 −→ Γ0, α̂ : κ= t, Γ1.

Lemma 24 (Soft Extension). Go to proof
If Γ −→ ∆ and Γ,Θ ctx and Θ is soft, then there exists Ω such that dom(Θ) = dom(Ω) and Γ,Θ −→ ∆,Ω.

Definition 2 (Filling). The filling of a context |Γ | solves all unsolved variables:
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|·| = ·
|Γ, x : A| = |Γ | , x : A
|Γ, α : κ| = |Γ | , α : κ
|Γ, α= t| = |Γ | , α= t
|Γ, α̂ : κ= t| = |Γ | , α̂ : κ= t
|Γ,Iα̂| = |Γ | ,Iα̂
|Γ, α̂ : ?| = |Γ | , α̂ : ?= 1
|Γ, α̂ : N| = |Γ | , α̂ : N= zero

Lemma 25 (Filling Completes). If Γ −→ Ω and (Γ,Θ) is well-formed, then Γ,Θ −→ Ω, |Θ|.

Proof. By induction on Θ, following the definition of |−| and applying the rules for −→.

Lemma 26 (Parallel Admissibility). Go to proof
If ΓL −→ ∆L and ΓL, ΓR −→ ∆L, ∆R then:

(i) ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ,∆R

(ii) If ∆L ` τ ′ : κ then ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R.

(iii) If ΓL ` τ : κ and ∆L ` τ ′ type and [∆L]τ = [∆L]τ
′, then ΓL, α̂ : κ= τ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R.

Lemma 27 (Parallel Extension Solution). Go to proof
If ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R and ΓL ` τ : κ and [∆L]τ = [∆L]τ

′

then ΓL, α̂ : κ= τ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R.

Lemma 28 (Parallel Variable Update). Go to proof
If ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ= τ0, ∆R and ΓL ` τ1 : κ and ∆L ` τ2 : κ and [∆L]τ0 = [∆L]τ1 = [∆L]τ2
then ΓL, α̂ : κ= τ1, ΓR −→ ∆L, α̂ : κ= τ2, ∆R.

Lemma 29 (Substitution Monotonicity). Go to proof

(i) If Γ −→ ∆ and Γ ` t : κ then [∆][Γ ]t = [∆]t.

(ii) If Γ −→ ∆ and Γ ` P prop then [∆][Γ ]P = [∆]P.

(iii) If Γ −→ ∆ and Γ ` A type then [∆][Γ ]A = [∆]A.

Lemma 30 (Substitution Invariance). Go to proof

(i) If Γ −→ ∆ and Γ ` t : κ and FEV([Γ ]t) = ∅ then [∆][Γ ]t = [Γ ]t.

(ii) If Γ −→ ∆ and Γ ` P prop and FEV([Γ ]P) = ∅ then [∆][Γ ]P = [Γ ]P.

(iii) If Γ −→ ∆ and Γ ` A type and FEV([Γ ]A) = ∅ then [∆][Γ ]A = [Γ ]A.

Definition 3 (Canonical Contexts). A (complete) contextΩ is canonical iff, for all (α̂ : κ= t) and (α= t) ∈ Ω,
the solution t is ground (FEV(t) = ∅).

Lemma 31 (Split Extension). Go to proof
If ∆ −→ Ω
and α̂ ∈ unsolved(∆)
and Ω = Ω1[α̂ : κ= t1]
and Ω is canonical (Definition 3)
and Ω ` t2 : κ
then ∆ −→ Ω1[α̂ : κ= t2].
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C.1 Reflexivity and Transitivity

Lemma 32 (Extension Reflexivity). Go to proof
If Γ ctx then Γ −→ Γ .

Lemma 33 (Extension Transitivity). Go to proof
If D :: Γ −→ Θ and D ′ :: Θ −→ ∆ then Γ −→ ∆.

C.2 Weakening

The “suffix weakening” lemmas take a judgment under Γ and produce a judgment under (Γ,Θ). They do not
require Γ −→ Γ,Θ.

Lemma 34 (Suffix Weakening). Go to proof If Γ ` t : κ then Γ,Θ ` t : κ.

Lemma 35 (Suffix Weakening). Go to proof If Γ ` A type then Γ,Θ ` A type.

The following proposed lemma is false.

“Extension Weakening (Truth)”
If Γ ` P true a ∆ and Γ −→ Γ ′ then there exists ∆ ′ such that ∆ −→ ∆ ′ and Γ ′ ` P true a ∆ ′.

Counterexample: Suppose α̂ ` α̂ = 1 true a α̂ = 1 and α̂ −→ (α̂=(1→1)). Then there does not exist such
a ∆ ′.

Lemma 36 (Extension Weakening (Sorts)). Go to proof If Γ ` t : κ and Γ −→ ∆ then ∆ ` t : κ.

Lemma 37 (Extension Weakening (Props)). Go to proof If Γ ` P prop and Γ −→ ∆ then ∆ ` P prop.

Lemma 38 (Extension Weakening (Types)). Go to proof If Γ ` A type and Γ −→ ∆ then ∆ ` A type.

C.3 Principal Typing Properties

Lemma 39 (Principal Agreement). Go to proof

(i) If Γ ` A ! type and Γ −→ ∆ then [∆]A = [Γ ]A.

(ii) If Γ ` P prop and FEV(P) = ∅ and Γ −→ ∆ then [∆]P = [Γ ]P.

Lemma 40 (Right-Hand Subst. for Principal Typing). Go to proof If Γ ` A p type then Γ ` [Γ ]A p type.

Lemma 41 (Extension Weakening for Principal Typing). Go to proof If Γ ` A p type and Γ −→ ∆ then
∆ ` A p type.

Lemma 42 (Inversion of Principal Typing). Go to proof

(1) If Γ ` (A→ B) p type then Γ ` A p type and Γ ` B p type.

(2) If Γ ` (P ⊃ A) p type then Γ ` P prop and Γ ` A p type.

(3) If Γ ` (A ∧ P) p type then Γ ` P prop and Γ ` A p type.

C.4 Instantiation Extends

Lemma 43 (Instantiation Extension). Go to proof
If Γ ` α̂ := τ : κ a ∆ then Γ −→ ∆.
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C.5 Equivalence Extends

Lemma 44 (Elimeq Extension). Go to proof
If Γ / s $ t : κ a ∆ then there exists Θ such that Γ,Θ −→ ∆.

Lemma 45 (Elimprop Extension). Go to proof
If Γ / P a ∆ then there exists Θ such that Γ,Θ −→ ∆.

Lemma 46 (Checkeq Extension). Go to proof
If Γ ` A ≡ B a ∆ then Γ −→ ∆.

Lemma 47 (Checkprop Extension). Go to proof
If Γ ` P true a ∆ then Γ −→ ∆.

Lemma 48 (Prop Equivalence Extension). Go to proof
If Γ ` P ≡ Q a ∆ then Γ −→ ∆.

Lemma 49 (Equivalence Extension). Go to proof
If Γ ` A ≡ B a ∆ then Γ −→ ∆.

C.6 Subtyping Extends

Lemma 50 (Subtyping Extension). Go to proof If Γ ` A <:∓ B a ∆ then Γ −→ ∆.

C.7 Typing Extends

Lemma 51 (Typing Extension). Go to proof
If Γ ` e⇐ A p a ∆
or Γ ` e⇒ A p a ∆
or Γ ` s : A p� B q a ∆
or Γ ` Π :: ~A q⇐ C p a ∆
or Γ / P ` Π :: ~A ! ⇐ C p a ∆
then Γ −→ ∆.

C.8 Unfiled

Lemma 52 (Context Partitioning). Go to proof
If ∆,Iα̂, Θ −→ Ω,Iα̂,ΩZ then there is a Ψ such that [Ω,Iα̂,ΩZ](∆,Iα̂, Θ) = [Ω]∆,Ψ.

Lemma 53 (Softness Goes Away).
If ∆,Θ −→ Ω,ΩZ where ∆ −→ Ω and Θ is soft, then [Ω,ΩZ](∆,Θ) = [Ω]∆.

Proof. By induction on Θ, following the definition of [Ω]Γ .

Lemma 54 (Completing Stability). Go to proof
If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

Lemma 55 (Completing Completeness). Go to proof

(i) If Ω −→ Ω ′ and Ω ` t : κ then [Ω]t = [Ω ′]t.

(ii) If Ω −→ Ω ′ and Ω ` A type then [Ω]A = [Ω ′]A.

(iii) If Ω −→ Ω ′ then [Ω]Ω = [Ω ′]Ω ′.

Lemma 56 (Confluence of Completeness). Go to proof
If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

Lemma 57 (Multiple Confluence). Go to proof
If ∆ −→ Ω and Ω −→ Ω ′ and ∆ ′ −→ Ω ′ then [Ω]∆ = [Ω ′]∆ ′.
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Lemma 58 (Bundled Substitution for Sorting). If Γ ` t : κ and Γ −→ Ω then [Ω]Γ ` [Ω]t : κ.

Proof.
Γ ` t : κ Given
Ω ` t : κ By Lemma 36 (Extension Weakening (Sorts))

[Ω]Ω ` [Ω]t : κ By Lemma 14 (Substitution for Sorting)
Ω −→ Ω By Lemma 32 (Extension Reflexivity)

[Ω]Ω = [Ω]Γ By Lemma 56 (Confluence of Completeness)
Z [Ω]Γ ` [Ω]t : κ By above equality

Lemma 59 (Canonical Completion). Go to proof
If Γ −→ Ω
then there exists Ωcanon such that Γ −→ Ωcanon and Ωcanon −→ Ω and dom(Ωcanon) = dom(Γ) and, for all
α̂ : κ= τ and α= τ in Ωcanon, we have FEV(τ) = ∅.

The completion Ωcanon is “canonical” because (1) its domain exactly matches Γ and (2) its solutions τ
have no evars. Note that it follows from Lemma 57 (Multiple Confluence) that [Ωcanon]Γ = [Ω]Γ .

Lemma 60 (Split Solutions). Go to proof
If ∆ −→ Ω and α̂ ∈ unsolved(∆)
then there exists Ω1 = Ω ′1[α̂ : κ= t1] such that Ω1 −→ Ω and Ω2 = Ω ′1[α̂ : κ= t2] where ∆ −→ Ω2 and
t2 6= t1 and Ω2 is canonical.

D Internal Properties of the Declarative System

Lemma 61 (Interpolating With and Exists). Go to proof

(1) If D :: Ψ ` Π :: ~A ! ⇐ C p and Ψ ` P0 true
then D ′ :: Ψ ` Π :: ~A ! ⇐ C ∧ P0 p.

(2) If D :: Ψ ` Π :: ~A ! ⇐ [τ/α]C0 p and Ψ ` τ : κ
then D ′ :: Ψ ` Π :: ~A ! ⇐ (∃α : κ. C0) p.

In both cases, the height of D ′ is one greater than the height of D.
Moreover, similar properties hold for the eliminating judgment Ψ / P ` Π :: ~A ! ⇐ C p.

Lemma 62 (Case Invertibility). Go to proof
If Ψ ` case(e0, Π) ⇐ C p
then Ψ ` e0 ⇒ A ! and Ψ ` Π :: A ! ⇐ C p and Ψ ` Π covers A !
where the height of each resulting derivation is strictly less than the height of the given derivation.

E Miscellaneous Properties of the Algorithmic System

Lemma 63 (Well-Formed Outputs of Typing). Go to proof

(Spines) If Γ ` s : A q� C p a ∆ or Γ ` s : A q� C dpe a ∆
and Γ ` A q type
then ∆ ` C p type.

(Synthesis) If Γ ` e⇒ A p a ∆
then A ` p type.
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F Decidability of Instantiation

Lemma 64 (Left Unsolvedness Preservation). Go to proof
If Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ := A : κ a ∆ and β̂ ∈ unsolved(Γ0) then β̂ ∈ unsolved(∆).

Lemma 65 (Left Free Variable Preservation). Go to proof If

Γ︷ ︸︸ ︷
Γ0, α̂ : κ, Γ1 ` α̂ := t : κ a ∆ and Γ ` s : κ ′ and

α̂ /∈ FV([Γ ]s) and β̂ ∈ unsolved(Γ0) and β̂ /∈ FV([Γ ]s), then β̂ /∈ FV([∆]s).

Lemma 66 (Instantiation Size Preservation). Go to proof If

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` α̂ := τ : κ a ∆ and Γ ` s : κ ′ and

α̂ /∈ FV([Γ ]s), then |[Γ ]s| = |[∆]s|, where |C| is the plain size of the term C.

Lemma 67 (Decidability of Instantiation). Go to proof If Γ = Γ0[α̂ : κ ′] and Γ ` t : κ such that [Γ ]t = t and
α̂ /∈ FV(t), then:

(1) Either there exists ∆ such that Γ0[α̂ : κ ′] ` α̂ := t : κ a ∆, or not.

G Separation

Definition 4 (Separation).
An algorithmic context Γ is separable and written ΓL ∗ ΓR if (1) Γ = (ΓL, ΓR) and (2) for all (α̂ : κ= τ) ∈ ΓR it
is the case that FEV(τ) ⊆ dom(ΓR).

Any context Γ is separable into, at least, · ∗ Γ and Γ ∗ ·.
Definition 5 (Separation-Preserving Extension).
The separated context ΓL ∗ ΓR extends to ∆L ∗ ΓR, written

(ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R)

if (ΓL, ΓR) −→ (∆L, ∆R) and dom(ΓL) ⊆ dom(∆L) and dom(ΓR) ⊆ dom(∆R).

Separation-preserving extension says that variables from one half don’t “cross” into the other half. Thus,
∆L may add existential variables to ΓL, and ∆R may add existential variables to ΓR, but no variable from ΓL
ends up in ∆R and no variable from ΓR ends up in ∆L.

It is necessary to write (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) rather than (ΓL ∗ ΓR) −→ (∆L ∗ ∆R), because only −→∗
includes the domain conditions. For example, (α̂ ∗ β̂) −→ (α̂, β̂= α̂) ∗ ·, but the variable β̂ has “crossed over”
to the left of ∗ in the context (α̂, β̂= α̂) ∗ ·.
Lemma 68 (Transitivity of Separation). Go to proof
If (ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) and (ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R)
then (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Lemma 69 (Separation Truncation). Go to proof
If H has the form α : κ or Iα̂ or IP or x :Ap
and (ΓL ∗ (ΓR, H)) −→∗ (∆L ∗ ∆R)
then (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆0) where ∆R = (∆0, H,Θ).

Lemma 70 (Separation for Auxiliary Judgments). Go to proof

(i) If ΓL ∗ ΓR ` σ $ τ : κ a ∆
and FEV(σ) ∪ FEV(τ) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(ii) If ΓL ∗ ΓR ` P true a ∆
and FEV(P) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).
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(iii) If ΓL ∗ ΓR / σ $ τ : κ a ∆
and FEV(σ) ∪ FEV(τ) = ∅
then ∆ = (∆L ∗ (∆R, Θ)) and (ΓL ∗ (ΓR, Θ)) −→∗ (∆L ∗ ∆R).

(iv) If ΓL ∗ ΓR / P a ∆
and FEV(P) = ∅
then ∆ = (∆L ∗ (∆R, Θ)) and (ΓL ∗ (ΓR, Θ)) −→∗ (∆L ∗ ∆R).

(v) If ΓL ∗ ΓR ` α̂ := τ : κ a ∆
and (FEV(τ) ∪ {α̂}) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(vi) If ΓL ∗ ΓR ` P ≡ Q a ∆
and FEV(P) ∪ FEV(Q) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(vii) If ΓL ∗ ΓR ` A ≡ B a ∆
and FEV(A) ∪ FEV(B) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Lemma 71 (Separation for Subtyping). Go to proof
If ΓL ∗ ΓR ` A <:P B a ∆

and FEV(A) ⊆ dom(ΓR)
and FEV(B) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Lemma 72 (Separation—Main). Go to proof

(Spines) If ΓL ∗ ΓR ` s : A p� C q a ∆
or ΓL ∗ ΓR ` s : A p� C dqe a ∆
and ΓL ∗ ΓR ` A p type
and FEV(A) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) and FEV(C) ⊆ dom(∆R).

(Checking) If ΓL ∗ ΓR ` e⇐ C p a ∆
and ΓL ∗ ΓR ` C p type
and FEV(C) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(Synthesis) If ΓL ∗ ΓR ` e⇒ A p a ∆
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(Match) If ΓL ∗ ΓR ` Π :: ~A q⇐ C p a ∆
and FEV(~A) = ∅
and FEV(C) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(Match Elim.) If ΓL ∗ ΓR / P ` Π :: ~A ! ⇐ C p a ∆
and FEV(P) = ∅
and FEV(~A) = ∅
and FEV(C) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

H Decidability of Algorithmic Subtyping

Definition 6. The following connectives are large:

∀ ⊃ ∧
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A type is large iff its head connective is large. (Note that a non-large type may contain large connectives,
provided they are not in head position.)

The number of these connectives in a type A is denoted by #large(A).

H.1 Lemmas for Decidability of Subtyping

Lemma 73 (Substitution Isn’t Large). Go to proof
For all contexts Θ, we have #large([Θ]A) = #large(A).

Lemma 74 (Instantiation Solves). Go to proof
If Γ ` α̂ := τ : κ a ∆ and [Γ ]τ = τ and α̂ /∈ FV([Γ ]τ) then |unsolved(Γ)| = |unsolved(∆)|+ 1.

Lemma 75 (Checkeq Solving). Go to proof If Γ ` s $ t : κ a ∆ then either ∆ = Γ or |unsolved(∆)| <
|unsolved(Γ)|.

Lemma 76 (Prop Equiv Solving). Go to proof
If Γ ` P ≡ Q a ∆ then either ∆ = Γ or |unsolved(∆)| < |unsolved(Γ)|.

Lemma 77 (Equiv Solving). Go to proof
If Γ ` A ≡ B a ∆ then either ∆ = Γ or |unsolved(∆)| < |unsolved(Γ)|.

Lemma 78 (Decidability of Propositional Judgments). Go to proof
The following judgments are decidable, with ∆ as output in (1)–(3), and ∆⊥ as output in (4) and (5).

We assume σ = [Γ ]σ and t = [Γ ]t in (1) and (4). Similarly, in the other parts we assume P = [Γ ]P and (in
part (3)) Q = [Γ ]Q.

(1) Γ ` σ $ t : κ a ∆

(2) Γ ` P true a ∆

(3) Γ ` P ≡ Q a ∆

(4) Γ / σ $ t : κ a ∆⊥

(5) Γ / P a ∆⊥

Lemma 79 (Decidability of Equivalence). Go to proof
Given a context Γ and types A, B such that Γ ` A type and Γ ` B type and [Γ ]A = A and [Γ ]B = B, it is
decidable whether there exists ∆ such that Γ ` A ≡ B a ∆.

H.2 Decidability of Subtyping

Theorem 1 (Decidability of Subtyping). Go to proof
Given a context Γ and types A, B such that Γ ` A type and Γ ` B type and [Γ ]A = A and [Γ ]B = B, it is
decidable whether there exists ∆ such that Γ ` A <:P B a ∆.

H.3 Decidability of Matching and Coverage

Lemma 80 (Decidability of Guardedness Judgment). Go to proof
For any set of branches Π, the relation Π guarded is decidable.

Lemma 81 (Decidability of Expansion Judgments). Go to proof
Given branches Π, it is decidable whether:

(1) there exists a unique Π ′ such that Π ×
; Π ′;

(2) there exist unique ΠL and ΠR such that Π +
; ΠL ‖ ΠR;

(3) there exists a unique Π ′ such that Π var
; Π ′;
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(4) there exists a unique Π ′ such that Π 1
; Π ′.

(5) there exist unique Π[] and Π:: such that Π Vec
; Π[] ‖ Π::.

Lemma 82 (Expansion Shrinks Size). Go to proof
We define the size of a pattern |p| as follows:

|x| = 0
|_| = 0
|〈p, p ′〉| = 1+ |p|+ |p ′|
|()| = 0
|inj1 p| = 1+ |p|
|inj2 p| = 1+ |p|
|[]| = 1
|p :: p ′| = 1+ |p|+ |p ′|

We lift size to branches π = ~p⇒ e as follows:

|p1, . . . , pn ⇒ e| = |p1|+ . . .+ |pn|

We lift size to branch lists Π = π1 || . . . ||πn as follows:

|π1 || . . . ||πn| = |π1|+ . . .+ |πn|

Now, the following properties hold:

1. If Π var
; Π ′ then |Π| = |Π ′|.

2. If Π 1
; Π ′ then |Π| = |Π ′|.

3. If Π ×
; Π ′ then |Π| ≤ |Π ′|.

4. If Π +
; ΠL ‖ ΠR then |Π| ≤ |Π1| and |Π| ≤ |Π2|.

5. If Π Vec
; Π[] ‖ Π:: then |Π[]| ≤ |Π| and |Π::| ≤ |Π|.

6. If Π guarded and Π Vec
; Π[] ‖ Π:: then |Π[]| < |Π| and |Π::| < |Π|.

Theorem 2 (Decidability of Coverage). Go to proof
Given a context Γ , branches Π and types ~A, it is decidable whether Γ ` Π covers ~A q is derivable.

H.4 Decidability of Typing

Theorem 3 (Decidability of Typing). Go to proof

(i) Synthesis: Given a context Γ , a principality p, and a term e,
it is decidable whether there exist a type A and a context ∆ such that
Γ ` e⇒ A p a ∆.

(ii) Spines: Given a context Γ , a spine s, a principality p, and a type A such that Γ ` A type,
it is decidable whether there exist a type B, a principality q and a context ∆ such that
Γ ` s : A p� B q a ∆.

(iii) Checking: Given a context Γ , a principality p, a term e, and a type B such that Γ ` B type,
it is decidable whether there is a context ∆ such that
Γ ` e⇐ B p a ∆.

(iv) Matching: Given a context Γ , branches Π, a list of types ~A, a type C, and a principality p, it is decidable
whether there exists ∆ such that Γ ` Π :: ~A q⇐ C p a ∆.

Also, if given a proposition P as well, it is decidable whether there exists ∆ such that Γ / P ` Π :: ~A ! ⇐
C p a ∆.
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I Determinacy

Lemma 83 (Determinacy of Auxiliary Judgments). Go to proof

(1) Elimeq: Given Γ , σ, t, κ such that FEV(σ) ∪ FEV(t) = ∅ and D1 :: Γ / σ $ t : κ a ∆⊥1 and D2 :: Γ / σ $ t :
κ a ∆⊥2 ,
it is the case that ∆⊥1 = ∆⊥2 .

(2) Instantiation: Given Γ , α̂, t, κ such that α̂ ∈ unsolved(Γ) and Γ ` t : κ and α̂ /∈ FV(t)
and D1 :: Γ ` α̂ := t : κ a ∆1 and D2 :: Γ ` α̂ := t : κ a ∆2
it is the case that ∆1 = ∆2.

(3) Symmetric instantiation:

Given Γ , α̂, β̂, κ such that α̂, β̂ ∈ unsolved(Γ) and α̂ 6= β̂
and D1 :: Γ ` α̂ := β̂ : κ a ∆1 and D2 :: Γ ` β̂ := α̂ : κ a ∆2
it is the case that ∆1 = ∆2.

(4) Checkeq: Given Γ , σ, t, κ such that D1 :: Γ ` σ $ t : κ a ∆1 and D2 :: Γ ` σ $ t : κ a ∆2
it is the case that ∆1 = ∆2.

(5) Elimprop: Given Γ , P such that D1 :: Γ / P a ∆⊥1 and D2 :: Γ / P a ∆⊥2
it is the case that ∆1 = ∆2.

(6) Checkprop: Given Γ , P such that D1 :: Γ ` P true a ∆1 and D2 :: Γ ` P true a ∆2,
it is the case that ∆1 = ∆2.

Lemma 84 (Determinacy of Equivalence). Go to proof

(1) Propositional equivalence: Given Γ , P, Q such that D1 :: Γ ` P ≡ Q a ∆1 and D2 :: Γ ` P ≡ Q a ∆2,
it is the case that ∆1 = ∆2.

(2) Type equivalence: Given Γ , A, B such that D1 :: Γ ` A ≡ B a ∆1 and D2 :: Γ ` A ≡ B a ∆2,
it is the case that ∆1 = ∆2.

Theorem 4 (Determinacy of Subtyping). Go to proof

(1) Subtyping: Given Γ , e, A, B such that D1 :: Γ ` A <:P B a ∆1 and D2 :: Γ ` A <:P B a ∆2,
it is the case that ∆1 = ∆2.

Theorem 5 (Determinacy of Typing). Go to proof

(1) Checking: Given Γ , e, A, p such that D1 :: Γ ` e⇐ A p a ∆1 and D2 :: Γ ` e⇐ A p a ∆2,
it is the case that ∆1 = ∆2.

(2) Synthesis: Given Γ , e such that D1 :: Γ ` e⇒ B1 p1 a ∆1 and D2 :: Γ ` e⇒ B2 p2 a ∆2,
it is the case that B1 = B2 and p1 = p2 and ∆1 = ∆2.

(3) Spine judgments:

Given Γ , e, A, p such that D1 :: Γ ` e : A p� C1 q1 a ∆1 and D2 :: Γ ` e : A p� C2 q2 a ∆2,
it is the case that C1 = C2 and q1 = q2 and ∆1 = ∆2.

The same applies for derivations of the principality-recovering judgments Γ ` e : A p� Ck dqke a ∆k.

(4) Match judgments:

Given Γ , Π, ~A, p, C such that D1 :: Γ ` Π :: ~A q⇐ C p a ∆1 and D2 :: Γ ` Π :: ~A q⇐ C p a ∆2,
it is the case that ∆1 = ∆2.

Given Γ , P, Π, ~A, p, C
such that D1 :: Γ / P ` Π :: ~A ! ⇐ C p a ∆1 and D2 :: Γ / P ` Π :: ~A ! ⇐ C p a ∆2,
it is the case that ∆1 = ∆2.
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J Soundness

J.1 Soundness of Instantiation

Lemma 85 (Soundness of Instantiation). Go to proof
If Γ ` α̂ := τ : κ a ∆ and α̂ /∈ FV([Γ ]τ) and [Γ ]τ = τ and ∆ −→ Ω then [Ω]α̂ = [Ω]τ.

J.2 Soundness of Checkeq

Lemma 86 (Soundness of Checkeq). Go to proof
If Γ ` σ $ t : κ a ∆ where ∆ −→ Ω then [Ω]σ = [Ω]t.

J.3 Soundness of Equivalence (Propositions and Types)

Lemma 87 (Soundness of Propositional Equivalence). Go to proof
If Γ ` P ≡ Q a ∆ where ∆ −→ Ω then [Ω]P = [Ω]Q.

Lemma 88 (Soundness of Algorithmic Equivalence). Go to proof
If Γ ` A ≡ B a ∆ where ∆ −→ Ω then [Ω]A = [Ω]B.

J.4 Soundness of Checkprop

Lemma 89 (Soundness of Checkprop). Go to proof
If Γ ` P true a ∆ and ∆ −→ Ω then Ψ ` [Ω]P true.

J.5 Soundness of Eliminations (Equality and Proposition)

Lemma 90 (Soundness of Equality Elimination). Go to proof
If [Γ ]σ = σ and [Γ ]t = t and Γ ` σ : κ and Γ ` t : κ and FEV(σ) ∪ FEV(t) = ∅, then:

(1) If Γ / σ $ t : κ a ∆
then ∆ = (Γ,Θ) where Θ = (α1= t1, . . . , αn= tn) and
for all Ω such that Γ −→ Ω
and all t ′ such that Ω ` t ′ : κ ′,
it is the case that [Ω,Θ]t ′ = [θ][Ω]t ′, where θ = mgu(σ, t).

(2) If Γ / σ $ t : κ a ⊥ then mgu(σ, t) = ⊥ (that is, no most general unifier exists).

J.6 Soundness of Subtyping

Theorem 6 (Soundness of Algorithmic Subtyping). Go to proof
If [Γ ]A = A and [Γ ]B = B and Γ ` A type and Γ ` B type and ∆ −→ Ω and Γ ` A <:P B a ∆ then
[Ω]∆ ` [Ω]A ≤P [Ω]B.

J.7 Soundness of Typing

Theorem 7 (Soundness of Match Coverage). Go to proof

1. If Γ ` Π covers ~A q and Γ ` ~A q types and [Γ ]~A = ~A and Γ −→ Ω then [Ω]Γ ` Π covers ~A q.

2. If Γ / P ` Π covers ~A ! and Γ −→ Ω and Γ ` ~A ! types and [Γ ]~A = ~A and [Γ ]P = P then [Ω]Γ / P `
Π covers ~A !.

Lemma 91 (Well-formedness of Algorithmic Typing). Go to proof
Given Γ ctx:
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(i) If Γ ` e⇒ A p a ∆ then ∆ ` A p type.

(ii) If Γ ` s : A p� B q a ∆ and Γ ` A p type then ∆ ` B q type.

Definition 7 (Measure). Let measureM on typing judgments be a lexicographic ordering:

1. first, the subject expression e, spine s, or matches Π—regarding all types in annotations as equal in
size;

2. second, the partial order on judgment forms where an ordinary spine judgment is smaller than a
principality-recovering spine judgment—and with all other judgment forms considered equal in size;
and,

3. third, the derivation height.

〈
e/s/Π,

ordinary spine judgment
<

recovering spine judgment
, height(D)

〉

Note that this definition doesn’t take notice of whether a spine judgment is declarative or algorithmic.
This measure works to show soundness and completeness. We list each rule below, along with a 3-tuple.

For example, for Sub we write 〈=,=, <〉, meaning that each judgment to which we need to apply the i.h. has
a subject of the same size (=), a judgment form of the same size (=), and a smaller derivation height (<).
We write “−” when a part of the measure need not be considered because a lexicographically more significant
part is smaller, as in the Anno rule, where the premise has a smaller subject: 〈<,−,−〉.

Algorithmic rules (soundness cases):

• Var, 1I, 1Iα̂, EmptySpine and Nil have no premises, or only auxiliary judgments as premises.

• Sub: 〈=,=, <〉

• Anno: 〈<,−,−〉

• ∀I, ∀Spine, ∃I, ∧I: 〈=,=, <〉

• ⊃I: 〈=,=, <〉

• ⊃I⊥ has only an auxiliary judgment, to which we need not apply the i.h., putting it in the same class as
the rules with no premises.

• ⊃Spine: 〈=,=, <〉

• →I, →Iα̂, →E, Rec: 〈<,−,−〉

• SpineRecover: 〈=, <,−〉

• SpinePass: 〈=, <,−〉

• →Spine, +Ik, +Iα̂k, ×I, ×Iα̂, Cons: 〈<,−,−〉

• α̂Spine: 〈=,=, <〉

• Case: 〈<,−,−〉

Declarative rules (completeness cases):

• DeclVar, Decl1I, DeclEmptySpine and DeclNil have no premises, or only auxiliary judgments as premises.

• DeclSub: 〈=,=, <〉

• DeclAnno: 〈<,−,−〉
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• Decl∀I, Decl∀Spine, Decl∃I, Decl∧I, Decl⊃I, Decl⊃Spine: 〈=,=, <〉

• Decl→I, Decl→E, DeclRec: 〈<,−,−〉

• DeclSpineRecover: 〈=, <,−〉

• DeclSpinePass: 〈=, <,−〉

• Decl→Spine, Decl+Ik, Decl×I, DeclCase, DeclCons, 〈<,−,−〉

Definition 8 (Eagerness).
A derivation D whose conclusion is J is eager if:

(i) J = Γ ` e⇐ A p a ∆
if Γ ` A p type and A = [Γ ]A
implies that
every subderivation of D is eager.

(ii) J = Γ ` e⇒ A p a ∆
if A = [∆]A
and every subderivation of D is eager.

(iii) J = Γ ` s : A p� B q a ∆
if Γ ` A p type and A = [Γ ]A
implies that
B = [∆]B
and every subderivation of D is eager.

(iv) J = Γ ` s : A p� B dqe a ∆
if Γ ` A p type and A = [Γ ]A
implies that
B = [∆]B
and every subderivation of D is eager.

(v) J = Γ ` Π :: ~A q⇐ C p a ∆
if Γ ` ~A q types and [Γ ]~A = ~A and Γ ` C p type and C = [Γ ]C
implies that
every subderivation of D is eager.

(vi) J = Γ / P ` Π :: ~A ! ⇐ C p a ∆

if Γ ` ~A ! types and Γ ` P prop and [Γ ]~A = ~A and Γ ` C p type and C = [Γ ]C
implies that
every subderivation of D is eager.

Theorem 8 (Eagerness of Types). Go to proof

(i) If D derives Γ ` e⇐ A p a ∆ and Γ ` A p type and A = [Γ ]A then D is eager.

(ii) If D derives Γ ` e⇒ A p a ∆ then D is eager.

(iii) If D derives Γ ` s : A p� B q a ∆ and Γ ` A p type and A = [Γ ]A then D is eager.

(iv) If D derives Γ ` s : A p� B dqe a ∆ and Γ ` A p type and A = [Γ ]A then D is eager.

(v) If D derives Γ ` Π :: ~A q⇐ C p a ∆ and Γ ` ~A q types and [Γ ]~A = ~A and Γ ` C p type
then D is eager.
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(vi) If D derives Γ / P ` Π :: ~A ! ⇐ C p a ∆ and Γ ` P prop and FEV(P) = ∅ and [Γ ]P = P

and Γ ` ~A ! types and Γ ` C p type
then D is eager.

Theorem 9 (Soundness of Algorithmic Typing). Go to proof
Given ∆ −→ Ω:

(i) If Γ ` e⇐ A p a ∆ and Γ ` A p type and A = [Γ ]A then [Ω]∆ ` [Ω]e⇐ [Ω]A p.

(ii) If Γ ` e⇒ A p a ∆ then [Ω]∆ ` [Ω]e⇒ [Ω]A p.

(iii) If Γ ` s : A p� B q a ∆ and Γ ` A p type and A = [Γ ]A then [Ω]∆ ` [Ω]s : [Ω]A p� [Ω]B q.

(iv) If Γ ` s : A p� B dqe a ∆ and Γ ` A p type and A = [Γ ]A then [Ω]∆ ` [Ω]s : [Ω]A p� [Ω]B dqe.

(v) If Γ ` Π :: ~A q⇐ C p a ∆ and Γ ` ~A ! types and [Γ ]~A = ~A and Γ ` C p type
then p ` [Ω]∆ :: [Ω]Π ! ⇐ [Ω]~A q[Ω]C.

(vi) If Γ / P ` Π :: ~A ! ⇐ C p a ∆ and Γ ` P prop and FEV(P) = ∅ and [Γ ]P = P

and Γ ` ~A ! types and Γ ` C p type
then [Ω]∆ / [Ω]P ` [Ω]Π :: [Ω]~A ! ⇐ [Ω]C p.

K Completeness

K.1 Completeness of Auxiliary Judgments

Lemma 92 (Completeness of Instantiation). Go to proof
Given Γ −→ Ω and dom(Γ) = dom(Ω) and Γ ` τ : κ and τ = [Γ ]τ and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(τ):
If [Ω]α̂ = [Ω]τ
then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Γ ` α̂ := τ : κ a ∆.

Lemma 93 (Completeness of Checkeq). Go to proof
Given Γ −→ Ω and dom(Γ) = dom(Ω)
and Γ ` σ : κ and Γ ` τ : κ
and [Ω]σ = [Ω]τ
then Γ ` [Γ ]σ $ [Γ ]τ : κ a ∆
where ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′.

Lemma 94 (Completeness of Elimeq). Go to proof
If [Γ ]σ = σ and [Γ ]t = t and Γ ` σ : κ and Γ ` t : κ and FEV(σ) ∪ FEV(t) = ∅ then:

(1) If mgu(σ, t) = θ
then Γ / σ $ t : κ a (Γ, ∆)
where ∆ has the form α1= t1, . . . , αn= tn
and for all u such that Γ ` u : κ, it is the case that [Γ, ∆]u = θ([Γ ]u).

(2) If mgu(σ, t) = ⊥ (that is, no most general unifier exists) then Γ / σ $ t : κ a ⊥.

Lemma 95 (Substitution Upgrade). Go to proof
If ∆ has the form α1= t1, . . . , αn= tn
and, for all u such that Γ ` u : κ, it is the case that [Γ, ∆]u = θ([Γ ]u),
then:

(i) If Γ ` A type then [Γ, ∆]A = θ([Γ ]A).

(ii) If Γ −→ Ω then [Ω]Γ = θ([Ω]Γ).

(iii) If Γ −→ Ω then [Ω,∆](Γ, ∆) = θ([Ω]Γ).
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(iv) If Γ −→ Ω then [Ω,∆]e = θ([Ω]e).

Lemma 96 (Completeness of Propequiv). Go to proof
Given Γ −→ Ω
and Γ ` P prop and Γ ` Q prop
and [Ω]P = [Ω]Q
then Γ ` [Γ ]P ≡ [Γ ]Q a ∆
where ∆ −→ Ω ′ and Ω −→ Ω ′.

Lemma 97 (Completeness of Checkprop). Go to proof
If Γ −→ Ω and dom(Γ) = dom(Ω)
and Γ ` P prop
and [Γ ]P = P
and [Ω]Γ ` [Ω]P true
then Γ ` P true a ∆
where ∆ −→ Ω ′ and Ω −→ Ω ′ and dom(∆) = dom(Ω ′).

K.2 Completeness of Equivalence and Subtyping

Lemma 98 (Completeness of Equiv). Go to proof
If Γ −→ Ω and Γ ` A type and Γ ` B type
and [Ω]A = [Ω]B
then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` [Γ ]A ≡ [Γ ]B a ∆.

Theorem 10 (Completeness of Subtyping). Go to proof
If Γ −→ Ω and dom(Γ) = dom(Ω) and Γ ` A type and Γ ` B type
and [Ω]Γ ` [Ω]A ≤P [Ω]B
then there exist ∆ and Ω ′ such that ∆ −→ Ω ′

and dom(∆) = dom(Ω ′)
and Ω −→ Ω ′

and Γ ` [Γ ]A <:P [Γ ]B a ∆.

K.3 Completeness of Typing

Lemma 99 (Variable Decomposition). Go to proof If Π var
; Π ′, then

1. if Π 1
; Π ′′ then Π ′′ = Π ′.

2. if Π ×
; Π ′′′ then there exists Π ′′ such that Π ′′′ var

; Π ′′ and Π ′′ var
; Π ′,

3. if Π +
; ΠL ‖ ΠR then ΠL

var
; Π ′ and ΠR

var
; Π ′,

4. if Π Vec
; Π[] ‖ Π:: then Π ′ = Π[].

Lemma 100 (Pattern Decomposition and Substitution). Go to proof

1. If Π var
; Π ′ then [Ω]Π

var
; [Ω]Π ′.

2. If Π 1
; Π ′ then [Ω]Π

1
; [Ω]Π ′.

3. If Π ×
; Π ′ then [Ω]Π

×
; [Ω]Π ′.

4. If Π +
; Π1 ‖ Π2 then [Ω]Π

+
; [Ω]Π1 ‖ [Ω]Π2.

5. If Π Vec
; Π1 ‖ Π2 then [Ω]Π

Vec
; [Ω]Π1 ‖ [Ω]Π2.

6. If [Ω]Π
var
; Π ′ then there is Π ′′ such that [Ω]Π ′′ = Π ′ and Π var

; Π ′′.
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7. If [Ω]Π
1
; Π ′ then there is Π ′′ such that [Ω]Π ′′ = Π ′ and Π 1

; Π ′′.

8. If [Ω]Π
×
; Π ′ then there is Π ′′ such that [Ω]Π ′′ = Π ′ and Π ×

; Π ′′.

9. If [Ω]Π
+
; Π ′1 ‖ Π ′2 then there are Π1 and Π2 such that [Ω]Π1 = Π

′
1 and [Ω]Π2 = Π

′
2 and Π +

; Π1 ‖ Π2.

10. If [Ω]Π
Vec
; Π ′1 ‖ Π ′2 then there are Π1 and Π2 such that [Ω]Π1 = Π ′1 and [Ω]Π2 = Π ′2 and Π Vec

;

Π1 ‖ Π2.

Lemma 101 (Pattern Decomposition Functionality). Go to proof

1. If Π var
; Π ′ and Π var

; Π ′′ then Π ′ = Π ′′.

2. If Π 1
; Π ′ and Π 1

; Π ′′ then Π ′ = Π ′′.

3. If Π ×
; Π ′ and Π ×

; Π ′′ then Π ′ = Π ′′.

4. If Π +
; Π1 ‖ Π2 and Π +

; Π ′1 ‖ Π ′2 then Π1 = Π ′1 and Π2 = Π ′2.

5. If Π Vec
; Π1 ‖ Π2 and Π Vec

; Π1 ‖ Π2 then Π1 = Π ′1 and Π2 = Π ′2.

Lemma 102 (Decidability of Variable Removal). Go to proof For all Π, either there exists a Π ′ such that
Π

var
; Π ′ or there does not.

Lemma 103 (Variable Inversion). Go to proof

1. If Π var
; Π ′ and Ψ ` Π covers A, ~Aq then Ψ ` Π ′ covers ~Aq.

2. If Π var
; Π ′ and Γ ` Π covers A, ~A q then Γ ` Π ′ covers ~A q.

Theorem 11 (Completeness of Match Coverage). Go to proof

1. If Γ ` ~A q types and [Γ ]~A = ~A and (for all Ω such that Γ −→ Ω, we have [Ω]Γ ` [Ω]Π covers [Ω]~A q)
then Γ ` Π covers ~A q.

2. If [Γ ]~A = ~A and [Γ ]P = P and Γ ` ~A ! types and (for all Ω such that Γ −→ Ω, we have [Ω]Γ / [Ω]P `
[Ω]Π covers [Ω]~A !)
then Γ / P ` Π covers ~A !.

Theorem 12 (Completeness of Algorithmic Typing). Go to proof Given Γ −→ Ω such that dom(Γ) = dom(Ω):

(i) If Γ ` A p type and [Ω]Γ ` [Ω]e⇐ [Ω]A p and p ′ v p
then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` e⇐ [Γ ]A p ′ a ∆.

(ii) If Γ ` A p type and [Ω]Γ ` [Ω]e⇒ A p
then there exist ∆, Ω ′, A ′, and p ′ v p
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` e⇒ A ′ p ′ a ∆ and A ′ = [∆]A ′ and A = [Ω ′]A ′.

(iii) If Γ ` A p type and [Ω]Γ ` [Ω]s : [Ω]A p� B q and p ′ v p
then there exist ∆, Ω ′, B ′ and q ′ v q
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` s : [Γ ]A p ′ � B ′ q ′ a ∆ and B ′ = [∆]B ′ and B = [Ω ′]B ′.

(iv) If Γ ` A p type and [Ω]Γ ` [Ω]s : [Ω]A p� B dqe and p ′ v p
then there exist ∆, Ω ′, B ′, and q ′ v q
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` s : [Γ ]A p ′ � B ′ dq ′e a ∆ and B ′ = [∆]B ′ and B = [Ω ′]B ′.
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(v) If Γ ` ~A ! types and Γ ` C p type and [Ω]Γ ` [Ω]Π :: [Ω]~A q⇐ [Ω]C p and p ′ v p
then there exist ∆, Ω ′, and C
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` Π :: [Γ ]~A q⇐ [Γ ]C p ′ a ∆.

(vi) If Γ ` ~A ! types and Γ ` P prop and FEV(P) = ∅ and Γ ` C p type
and [Ω]Γ / [Ω]P ` [Ω]Π :: [Ω]~A ! ⇐ [Ω]C p
and p ′ v p
then there exist ∆, Ω ′, and C
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ / [Γ ]P ` Π :: [Γ ]~A ! ⇐ [Γ ]C p ′ a ∆.

August 15, 2020



A′ Properties of the Declarative System 38

Proofs

In the rest of this document, we prove the results stated above, with the same sectioning.

A ′ Properties of the Declarative System

Lemma 1 (Declarative Well-foundedness).
The inductive definition of the following judgments is well-founded:

(i) synthesis Ψ ` e⇒ B p

(ii) checking Ψ ` e⇐ A p

(iii) checking, equality elimination Ψ / P ` e⇐ C p

(iv) ordinary spine Ψ ` s : A p� B q

(v) recovery spine Ψ ` s : A p� B dqe

(vi) pattern matching Ψ ` Π :: ~A ! ⇐ C p

(vii) pattern matching, equality elimination Ψ / P ` Π :: ~A ! ⇐ C p

Proof. Let |e| be the size of the expression e. Let |s| be the size of the spine s. Let |Π| be the size of the branch
list Π. Let #large(A) be the number of “large” connectives ∀, ∃, ⊃, ∧ in A.

First, stratify judgments by the size of the term (expression, spine, or branches), and say that a judgment
is at n if it types a term of size n. Order the main judgment forms as follows:

synthesis judgment at n
< checking judgments at n
< ordinary spine judgment at n
< recovery spine judgment at n
< match judgments at n

< synthesis judgment at n+ 1
...

Within the checking judgment forms at n, we compare types lexicographically, first by the number of
large connectives, and then by the ordinary size. Within the match judgment forms at n, we compare using
a lexicographic order of, first, #large(~A); second, the judgment form, considering the match judgment to be
smaller than the matchelim judgment; third, the size of ~A. These criteria order the judgments as follows:

synthesis judgment at n
<

(
checking judgment at n with #large(A) = 1

< checkelim judgment at n with #large(A) = 1
< checking judgment at n with #large(A) = 2
< checkelim judgment at n with #large(A) = 2
< . . .

)
<

(
match judgment at n with #large(~A) = 1 and ~A of size 1

< match judgment at n with #large(~A) = 1 and ~A of size 2
< matchelim judgment at n with #large(~A) = 1

< match judgment at n with #large(~A) = 2 and ~A of size 1
< match judgment at n with #large(~A) = 2 and ~A of size 2
< matchelim judgment at n with #large(~A) = 2
< . . .

)

Proof of Lemma 1 (Declarative Well-foundedness) lem:declarative-well-founded
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The class of ordinary spine judgments at 1 need not be refined, because the only ordinary spine rule applicable
to a spine of size 1 is DeclEmptySpine, which has no premises; rules Decl∀Spine, Decl⊃Spine, and Decl→Spine
are restricted to non-empty spines and can only apply to larger terms.

Similarly, the class of match judgments at 1 need not be refined, because only DeclMatchEmpty is appli-
cable.

Note that we distinguish the “checkelim” form Ψ / P ` e⇐ A p of the checking judgment. We also define
the size of an expression e to consider all types in annotations to be of the same size, that is,

|(e : A)| = |e|+ 1

Thus, |θ(e)| = |e|, even when e has annotations. This is used for DeclCheckUnify; see below.
We assume that coverage, which does not depend on any other typing judgments, is well-founded. We

likewise assume that subtyping, Ψ ` A type, Ψ ` τ : κ, and Ψ ` P prop are well-founded.
We now show that, for each class of judgments, every judgment in that class depends only on smaller

judgments.

• Synthesis judgments

Claim: For all n, synthesis at n depends only on judgments at n− 1 or less.

Proof. Rule DeclVar has no premises.
Rule DeclAnno depends on a premise at a strictly smaller term.
Rule Decl→E depends on (1) a synthesis premise at a strictly smaller term, and (2) a recovery spine
judgment at a strictly smaller term.

• Checking judgments

Claim: For all n ≥ 1, the checking judgment over terms of size n with type of size m depends only on

(1) synthesis judgments at size n or smaller, and

(2) checking judgments at size n− 1 or smaller, and

(3) checking judgments at size n with fewer large connectives, and

(4) checkelim judgments at size n with fewer large connectives, and

(5) match judgments at size n− 1 or smaller.

Proof. Rule DeclSub depends on a synthesis judgment of size n. (1)
Rule Decl1I has no premises.
Rule Decl∀I depends on a checking judgment at n with fewer large connectives. (3)
Rule Decl∃I depends on a checking judgment at n with fewer large connectives. (3)
Rule Decl∧I depends on a checking judgment at n with fewer large connectives. (3)
Rule Decl⊃I depends on a checkelim judgment at n with fewer large connectives. (4)
Rules Decl→I, DeclRec, Decl+Ik, Decl×I, and DeclCons depend on checking judgments at size < n. (2)
Rule DeclNil depends only on an auxiliary judgment.
Rule DeclCase depends on:

– a synthesis judgment at size n (1),

– a match judgment at size < n (5), and

– a coverage judgment.

• Checkelim judgments

Claim: For all n ≥ 1, the checkelim judgment Ψ / P ` e ⇐ A p over terms of size n depends only on
checking judgments at size n, with a type A ′ such that #large(A ′) = #large(A).

Proof. Rule DeclCheck⊥ has no nontrivial premises.
Rule DeclCheckUnify depends on a checking judgment: Since |θ(e)| = |e|, this checking judgment is at
n. Since the mgu θ is over monotypes, #large(θ(A)) = #large(A).
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• Ordinary spine judgments

An ordinary spine judgment at 1 depends on no other judgments: the only spine of size 1 is the empty
spine, so only DeclEmptySpine applies, and it has no premises.

Claim: For all n ≥ 2, the ordinary spine judgment Ψ ` s : A p � C q over spines of size n depends
only on

(a) checking judgments at size n− 1 or smaller, and

(b) ordinary spine judgments at size n− 1 or smaller, and

(c) ordinary spine judgments at size n with strictly smaller #large(A).

Proof. Rule Decl∀Spine depends on an ordinary spine judgment of size n, with a type that has fewer
large connectives. (c)
Rule Decl⊃Spine depends on an ordinary spine judgment of size n, with a type that has fewer large
connectives. (c)
Rule DeclEmptySpine has no premises.
Rule Decl→Spine depends on a checking judgment of size n − 1 or smaller (a) and an ordinary spine
judgment of size n− 1 or smaller (b).

• Recovery spine judgments

Claim: For all n, the recovery spine judgment at n depends only on ordinary spine judgments at n.

Proof. Rules DeclSpineRecover and DeclSpinePass depend only on ordinary spine judgments at n.

• Match judgments

Claim: For all n ≥ 1, the match judgment Ψ ` Π :: ~A ! ⇐ C p over Π of size n depends only on

(a) checking judgments at size n− 1 or smaller, and

(b) match judgments at size n− 1 or smaller, and

(c) match judgments at size n with smaller ~A, and

(d) matchelim judgments at size n with fewer large connectives in ~A.

Proof. Rule DeclMatchEmpty has no premises.
Rule DeclMatchSeq depends on match judgments at n− 1 or smaller (b).
Rule DeclMatchBase depends on a checking judgment at n− 1 or smaller (a).
Rules DeclMatchUnit, DeclMatch×, DeclMatch+k, DeclMatchNeg, and DeclMatchWild depend on match
judgments at n− 1 or smaller (b).
Rule DeclMatch∃ depends on a match judgment at size n with smaller ~A (c).
Rule DeclMatch∧ depends on an matchelim judgment at n, with fewer large connectives in ~A. (d)

• Matchelim judgments

Claim: For all n ≥ 1, the matchelim judgment Ψ / Π ` P :: ~A ! ⇐ C p over Ψ of size n depends only on
match judgments with the same number of large connectives in ~A.

Proof. Rule DeclMatch⊥ has no nontrivial premises.
Rule DeclMatchUnify depends on a match judgment with the same number of large connectives (similar
to DeclCheckUnify, considered above).

Lemma 2 (Declarative Weakening).

(i) If Ψ0, Ψ1 ` t : κ then Ψ0, Ψ, Ψ1 ` t : κ.

(ii) If Ψ0, Ψ1 ` P prop then Ψ0, Ψ, Ψ1 ` P prop.

(iii) If Ψ0, Ψ1 ` P true then Ψ0, Ψ, Ψ1 ` P true.

(iv) If Ψ0, Ψ1 ` A type then Ψ0, Ψ, Ψ1 ` A type.
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Proof. By induction on the derivation.

Lemma 3 (Declarative Term Substitution). Suppose Ψ ` t : κ. Then:

1. If Ψ0, α : κ,Ψ1 ` t ′ : κ then Ψ0, [t/α]Ψ1 ` [t/α]t ′ : κ.

2. If Ψ0, α : κ,Ψ1 ` P prop then Ψ0, [t/α]Ψ1 ` [t/α]P prop.

3. If Ψ0, α : κ,Ψ1 ` A type then Ψ0, [t/α]Ψ1 ` [t/α]A type.

4. If Ψ0, α : κ,Ψ1 ` A ≤P B then Ψ0, [t/α]Ψ1 ` [t/α]A ≤P [t/α]B.

5. If Ψ0, α : κ,Ψ1 ` P true then Ψ0, [t/α]Ψ1 ` [t/α]P true.

Proof. By induction on the derivation of the substitutee.

Lemma 4 (Reflexivity of Declarative Subtyping).
Given Ψ ` A type, we have that Ψ ` A ≤P A.

Proof. By induction on A, writing p for the sign of the subtyping judgment.
Our induction metric is the number of quantifiers on the outside of A, plus one if the polarity of A and

the subtyping judgment do not match up (that is, if neg(A) and P = +, or pos(A) and P = −).

• Case nonpos(A),nonneg(A):

By rule ≤ReflP.

• Case A = ∃b : κ. B and P = +:

Ψ, b : κ `B ≤+ B By i.h. (one less quantifier)
Ψ, b : κ `b : κ By rule UvarSort
Ψ, b : κ `B ≤+ ∃b : κ. B By rule ≤∃R

Ψ `∃b : κ. B ≤+ ∃b : κ. B By rule ≤∃L

• Case A = ∃b : κ. B and P = −:

Ψ `∃b : κ. B ≤+ ∃b : κ. B By i.h. (polarities match)
Ψ `∃b : κ. B ≤− ∃b : κ. B By ≤+

−

• Case A = ∀b : κ. B and P = +:

Ψ `∀b : κ. B ≤− ∀b : κ. B By i.h. (polarities match)
Ψ `∀b : κ. B ≤+ ∀b : κ. B By ≤−

+

• Case A = ∀b : κ. B and P = −:

Ψ, b : κ `B ≤− B By i.h. (one less quantifier)
Ψ, b : κ `b : κ By rule UvarSort
Ψ, b : κ `∀b : κ. B ≤− B By rule ≤∀L

Ψ `∀b : κ. B ≤− ∀b : κ. B By rule ≤∀R

Lemma 5 (Subtyping Inversion).

• If Ψ ` ∃α : κ. A ≤+ B then Ψ,α : κ ` A ≤+ B.

• If Ψ ` A ≤− ∀β : κ. B then Ψ,β : κ ` A ≤− B.
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Proof. By a routine induction on the subtyping derivations.

Lemma 6 (Subtyping Polarity Flip).

• If nonpos(A) and nonpos(B) and Ψ ` A ≤+ B
then Ψ ` A ≤− B by a derivation of the same or smaller size.

• If nonneg(A) and nonneg(B) and Ψ ` A ≤− B
then Ψ ` A ≤+ B by a derivation of the same or smaller size.

• If nonpos(A) and nonneg(A) and nonpos(B) and nonneg(B) and Ψ ` A ≤P B
then A = B.

Proof. By a routine induction on the subtyping derivations.

Lemma 7 (Transitivity of Declarative Subtyping).
Given Ψ ` A type and Ψ ` B type and Ψ ` C type:

(i) If D1 :: Ψ ` A ≤P B and D2 :: Ψ ` B ≤P C
then Ψ ` A ≤P C.

Proof. By lexicographic induction on (1) the sum of head quantifiers in A, B, and C, and (2) the size of the
derivation.

We begin by case analysis on the shape of B, and the polarity of subtyping:

• Case B = ∀β : κ2. B
′, polarity = −:

We case-analyze D1:

– Case Ψ ` τ : κ1 Ψ ` [τ/α]A ′ ≤− B

Ψ ` ∀α : κ1. A
′ ≤− B

≤∀L

Ψ ` τ : κ1 Subderivation
Ψ ` [τ/α]A ′ ≤− B Subderivation
Ψ `B ≤− C Given
Ψ ` [τ/α]A ′ ≤− C By i.h. (A lost a quantifier)
Ψ `A ≤− C By rule ≤∀L

– Case Ψ,β : κ2 ` A ≤− B ′

Ψ ` A ≤− ∀β : κ2. B
′ ≤∀R

We case-analyze D2:

∗ Case Ψ ` τ : κ2 Ψ ` [τ/β]B ′ ≤− C

Ψ ` ∀β : κ2. B
′ ≤− C

≤∀L

Ψ,β : κ2 `A ≤− B ′ By Lemma 5 (Subtyping Inversion) on D1
Ψ ` τ : κ2 Subderivation
Ψ ` [τ/β]B ′ ≤− C Subderivation of D2
Ψ `A ≤− [τ/β]B ′ By Lemma 3 (Declarative Term Substitution)
Ψ `A ≤− C By i.h. (B lost a quantifier)
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∗ Case Ψ, c : κ3 ` B ≤− C ′

Ψ ` B ≤− ∀c : κ3. C ′
≤∀R

Ψ `A ≤− B Given
Ψ, c : κ3 `A ≤− B By Lemma 2 (Declarative Weakening)

Ψ, c : κ3 `B ≤− C ′ Subderivation

Ψ, c : κ3 `A ≤− C ′ By i.h. (C lost a quantifier)
Ψ `B ≤− ∀c : κ3. C ′ By ≤∀R

• Case nonpos(B), polarity = +:

Now we case-analyze D1:

– Case Ψ,α : τ ` A ′ ≤+ B

Ψ ` ∃α : κ1. A
′︸ ︷︷ ︸

A

≤+ B
≤∃L

Ψ,α : τ `A ′ ≤+ B Subderivation
Ψ,α : τ `B ≤+ C By Lemma 2 (Declarative Weakening) (D2)
Ψ,α : τ `A ′ ≤+ C By i.h. (A lost a quantifier)

Ψ `∃α : κ1. A
′ ≤+ C By ≤∃L

– Case Ψ ` A ≤− B nonpos(A) nonpos(B)
Ψ ` A ≤+ B

≤−
+

Now we case-analyze D2:

∗ Case Ψ ` τ : κ3 Ψ ` B ≤+ [τ/c]C ′

Ψ ` B ≤+ ∃c : κ3. C ′︸ ︷︷ ︸
C

≤∃R

Ψ `A ≤+ B Given
Ψ ` τ : κ3 Subderivation of D2
Ψ `B ≤+ [τ/c]C ′ Subderivation of D2
Ψ `A ≤+ [τ/c]C ′ By i.h. (C lost a quantifier)
Ψ `A ≤+ ∃c : κ3. C ′ By ≤∃R

∗ Case Ψ ` B ≤− C nonpos(B) nonpos(C)
Ψ ` B ≤+ C

≤−
+

Ψ `A ≤− B Subderivation of D1
Ψ `B ≤− C Subderivation of D2
Ψ `A ≤− C By i.h. (D1 and D2 smaller)

nonpos(A) Subderivation of D1
nonpos(C) Subderivation of D2

Ψ `A ≤+ C By ≤−
+
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• Case B = ∃β : κ2. B
′, polarity = +:

Now we case-analyze D2:

– Case Ψ ` τ : κ3 Ψ ` B ≤+ [τ/α]C ′

Ψ ` B ≤+ ∃α : κ3. C
′︸ ︷︷ ︸

C

≤∃R

Ψ ` τ : κ3 Subderivation of D2
Ψ `B ≤+ [τ/α]C ′ Subderivation of D2
Ψ `A ≤+ B Given
Ψ `A ≤+ [τ/α]C ′ By i.h. (C lost a quantifier)
Ψ `A ≤+ C By rule ≤∃R

– Case Ψ,β : κ2 ` B ′ ≤+ C

Ψ ` ∃β : κ2. B
′ ≤+ C

≤∃L

Now we case-analyze D1:

∗ Case Ψ ` τ : κ2 Ψ ` A ≤+ [τ/β]B ′

Ψ ` A ≤+ ∃β : κ2. B
′︸ ︷︷ ︸

B

≤∃R

Ψ,β : κ2 `B ′ ≤+ C Subderivation of D2
Ψ ` τ : κ2 Subderivation of D1
Ψ `A ≤+ [τ/β]B ′ Subderivation of D1
Ψ ` [τ/β]B ′ ≤+ C By Lemma 3 (Declarative Term Substitution)
Ψ `A ≤+ C By i.h. (B lost a quantifier)

∗ Case Ψ,α : κ1 ` A ≤+ B

Ψ ` ∃α : κ1. A
′︸ ︷︷ ︸

A

≤+ B
≤∃L

Ψ `B ≤+ C Given
Ψ,α : κ1 `A ′ ≤+ B Subderivation of D1
Ψ,α : κ1 `A ′ ≤+ B By Lemma 2 (Declarative Weakening)
Ψ,α : κ1 `A ′ ≤+ C By i.h. (A lost a quantifier)

Ψ `∃α : κ1. A
′ ≤+ C By ≤∃L

• Case nonneg(B), polarity = −:

We case-analyze D2:

– Case Ψ, c : κ3 ` B ≤+ C ′

Ψ ` B ≤+ ∃c : κ3. C ′︸ ︷︷ ︸
C

≤∀R

Ψ, c : κ3 `B ≤+ C ′ Subderivation of D2
Ψ, c : κ3 `A ≤+ B By Lemma 2 (Declarative Weakening)
Ψ, c : κ3 `A ≤+ C ′ By i.h. (C lost a quantifier)

Ψ `A ≤+ ∀c : κ3. C ′ By ≤∀R
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– Case Ψ ` B ≤+ C nonneg(B) nonneg(C)
Ψ ` B ≤− C

≤+
−

We case-analyze D1:

∗ Case Ψ ` τ : κ1 Ψ ` [τ/α]A ′ ≤− B

Ψ ` ∀α : κ1. A
′︸ ︷︷ ︸

A

≤− B
≤∀L

Ψ `B ≤− C Given
Ψ ` τ : κ1 Subderivation of D1
Ψ ` [τ/α]A ′ ≤− B Subderivation of D1
Ψ ` [τ/α]A ′ ≤− C By i.h. (A lost a quantifier)
Ψ `∀α : κ1. A

′ ≤− C By ≤∀L

∗ Case Ψ ` A ≤+ B nonpos(A) nonpos(B)
Ψ ` A ≤− B

≤+
−

Ψ `A ≤+ B Subderivation of D1
Ψ `B ≤+ C Subderivation of D2
Ψ `A ≤+ C By i.h. (D1 and D2 smaller)

nonneg(A) Subderivation of D2
nonneg(C) Subderivation of D2

Ψ `A ≤− C By ≤+
−

B ′ Substitution and Well-formedness Properties

Lemma 8 (Substitution—Well-formedness).

(i) If Γ ` A p type and Γ ` τ p type then Γ ` [τ/α]A p type.

(ii) If Γ ` P prop and Γ ` τ p type then Γ ` [τ/α]P prop.
Moreover, if p = ! and FEV([Γ ]P) = ∅ then FEV([Γ ][τ/α]P) = ∅.

Proof. By induction on the derivations of Γ ` A p type and Γ ` P prop.

Lemma 9 (Uvar Preservation).
If ∆ −→ Ω then:

(i) If (α : κ) ∈ Ω then (α : κ) ∈ [Ω]∆.

(ii) If (x :Ap) ∈ Ω then (x : [Ω]Ap) ∈ [Ω]∆.

Proof. By induction on Ω, following the definition of context application (Figure 13).

Lemma 10 (Sorting Implies Typing). If Γ ` t : ? then Γ ` t type.

Proof. By induction on the given derivation. All cases are straightforward.

Lemma 11 (Right-Hand Substitution for Sorting). If Γ ` t : κ then Γ ` [Γ ]t : κ.

Proof. By induction on |Γ `t| (the size of t under Γ).

Proof of Lemma 11 (Right-Hand Substitution for Sorting) lem:substitution-sort
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• Cases UnitSort: Here t = 1, so applying Γ to t does not change it: t = [Γ ]t. Since Γ ` t : κ, we have
Γ ` [Γ ]t : κ, which was to be shown.

• Case VarSort: If t is an existential variable α̂, then Γ = Γ0[α̂], so applying Γ to t does not change it,
and we proceed as in the UnitSort case above.

If t is a universal variable α and Γ has no equation for it, then proceed as in the UnitSort case.

Otherwise, t = α and (α= τ) ∈ Γ :

Γ = (ΓL, α : κ, ΓM, α= τ, ΓR)

By the implicit assumption that Γ is well-formed, ΓL, α : κ, ΓM ` τ : κ.
By Lemma 34 (Suffix Weakening), Γ ` τ : κ. Since |Γ `τ| < |Γ `α|, we can apply the i.h., giving

Γ ` [Γ ]τ : κ

By the definition of substitution, [Γ ]τ = [Γ ]α, so we have Γ ` [Γ ]α : κ.

• Case SolvedVarSort: In this case t = α̂ and Γ = (ΓL, α̂= τ, ΓR). Thus [Γ ]t = [Γ ]α̂ = [ΓL]τ. We assume
contexts are well-formed, so all free variables in τ are declared in ΓL. Consequently, |ΓL `τ| = |Γ `τ|,
which is less than |Γ `α̂|. We can therefore apply the i.h. to τ, yielding Γ ` [Γ ]τ : κ. By the definition of
substitution, [Γ ]τ = [Γ ]α̂, so we have Γ ` [Γ ]α̂ : κ.

• Case BinSort: In this case t = t1 ⊕ t2. By i.h., Γ ` [Γ ]t1 : κ and Γ ` [Γ ]t2 : κ. By BinSort,
Γ ` ([Γ ]t1) ⊕ ([Γ ]t2) : κ, which by the definition of substitution is Γ ` [Γ ](t1 ⊕ t2) : κ.

Lemma 12 (Right-Hand Substitution for Propositions). If Γ ` P prop then Γ ` [Γ ]P prop.

Proof. Use inversion (EqProp), apply Lemma 11 (Right-Hand Substitution for Sorting) to each premise, and
apply EqProp again.

Lemma 13 (Right-Hand Substitution for Typing). If Γ ` A type then Γ ` [Γ ]A type.

Proof. By induction on |Γ `A| (the size of A under Γ).
Several cases correspond to cases in the proof of Lemma 11 (Right-Hand Substitution for Sorting):

• the case for UnitWF is like the case for UnitSort;

• the case for SolvedVarSort is like the cases for VarWF and SolvedVarWF,

• the case for VarSort is like the case for VarWF, but in the last subcase, apply Lemma 10 (Sorting Implies
Typing) to move from a sorting judgment to a typing judgment.

• the case for BinWF is like the case for BinSort.

Now, the new cases:

• Case ForallWF: In this case A = ∀α : κ. A0. By i.h., Γ, α : κ ` [Γ, α : κ]A0 type. By the definition
of substitution, [Γ, α : κ]A0 = [Γ ]A0, so by ForallWF, Γ ` ∀α. [Γ ]A0 type, which by the definition of
substitution is Γ ` [Γ ](∀α. A0) type.

• Case ExistsWF: Similar to the ForallWF case.

• Case ImpliesWF, WithWF: Use the i.h. and Lemma 12 (Right-Hand Substitution for Propositions),
then apply ImpliesWF or WithWF.

Lemma 14 (Substitution for Sorting). If Ω ` t : κ then [Ω]Ω ` [Ω]t : κ.

Proof. By induction on |Ω `t| (the size of t under Ω).

Proof of Lemma 14 (Substitution for Sorting) lem:completion-sort
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• Case u : κ ∈ Ω
Ω ` u : κ

VarSort

We have a complete context Ω, so u cannot be an existential variable: it must be some universal
variable α.

If Ω lacks an equation for α, use Lemma 9 (Uvar Preservation) and apply rule UvarSort.

Otherwise, (α= τ ∈ Ω, so we need to show Ω ` [Ω]τ : κ. By the implicit assumption that Ω is well-
formed, plus Lemma 34 (Suffix Weakening), Ω ` τ : κ. By Lemma 11 (Right-Hand Substitution for
Sorting), Ω ` [Ω]τ : κ.

• Case α̂ : κ= τ ∈ Ω
Ω ` α̂ : κ

SolvedVarSort

α̂ : κ= τ ∈Ω Subderivation
Ω = (ΩL, α̂ : κ= τ,ΩR) Decomposing Ω
ΩL ` τ : κ By implicit assumption that Ω is well-formed

ΩL, α̂ : κ= τ,ΩR ` τ : κ By Lemma 34 (Suffix Weakening)
Ω ` [Ω]τ : κ By Lemma 11 (Right-Hand Substitution for Sorting)

Z [Ω]Ω ` [Ω]α̂ : κ [Ω]τ = [Ω]α̂

• Case

Ω ` 1 : ?
UnitSort

Since 1 = [Ω]1, applying UnitSort gives the result.

• Case Ω ` τ1 : ? Ω ` τ2 : ?
Ω ` τ1 ⊕ τ2 : ?

BinSort

By i.h. on each premise, rule BinSort, and the definition of substitution.

• Case

Ω ` zero : N
ZeroSort

Since zero = [Ω]zero, applying ZeroSort gives the result.

• Case Ω ` t : N
Ω ` succ(t) : N

SuccSort

By i.h., rule SuccSort, and the definition of substitution.

Lemma 15 (Substitution for Prop Well-Formedness).
If Ω ` P prop then [Ω]Ω ` [Ω]P prop.

Proof. Only one rule derives this judgment form:

• Case Ω ` t : N Ω ` t ′ : N
Ω ` t = t ′ prop

EqProp
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Ω ` t : N Subderivation
[Ω]Ω ` [Ω]t : N By Lemma 14 (Substitution for Sorting)
Ω ` t ′ : N Subderivation

[Ω]Ω ` [Ω]t ′ : N By Lemma 14 (Substitution for Sorting)
[Ω]Ω ` ([Ω]t) = ([Ω]t ′) prop By EqProp

Z [Ω]Ω ` [Ω](t = t ′) prop By def. of subst.

Lemma 16 (Substitution for Type Well-Formedness). If Ω ` A type then [Ω]Ω ` [Ω]A type.

Proof. By induction on |Ω `A|.
Several cases correspond to those in the proof of Lemma 14 (Substitution for Sorting):

• the UnitWF case is like the UnitSort case (using DeclUnitWF instead of UnitSort);

• the VarWF case is like the VarSort case (using DeclUvarWF instead of UvarSort);

• the SolvedVarWF case is like the SolvedVarSort case.

However, uses of Lemma 11 (Right-Hand Substitution for Sorting) are replaced by uses of Lemma 13
(Right-Hand Substitution for Typing).

Now, the new cases:

• Case Ω,α : κ ` A0 type
Ω ` ∀α : κ. A0 type

ForallWF

Ω,α : κ `A0 : κ ′ Subderivation
[Ω,α : κ](Ω,α : κ) ` [Ω]A0 : κ

′ By i.h.
[Ω]Ω,α : κ ` [Ω]A0 : κ

′ By definition of completion
[Ω]Ω `∀α : κ. [Ω]A0 : κ

′ By DeclAllWF
Z [Ω]Ω ` [Ω](∀α : κ. A0) : κ

′ By def. of subst.

• Case ExistsWF: Similar to the ForallWF case, using DeclExistsWF instead of DeclAllWF.

• Case Ω ` A1 type Ω ` A2 type
Ω ` A1 ⊕ A2 type

BinWF

By i.h. on each premise, rule DeclBinWF, and the definition of substitution.

• Case VecWF: Similar to the BinWF case.

• Case Ω ` P prop Ω ` A0 type
Ω ` P ⊃ A0 type

ImpliesWF

Ω `P prop Subderivation
[Ω]Ω ` [Ω]P prop By Lemma 15 (Substitution for Prop Well-Formedness)

Ω `A0 type Subderivation
[Ω]Ω ` [Ω]A0 type By i.h.

[Ω]Ω ` ([Ω]P) ⊃ ([Ω]A0) type By DeclImpliesWF
Z [Ω]Ω ` [Ω](P ⊃ A0) type By def. of subst.
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• Case Ω ` P prop Ω ` A0 type
Ω ` A0 ∧ P type

WithWF

Similar to the ImpliesWF case.

Lemma 17 (Substitution Stability).
If (Ω,ΩZ) is well-formed and ΩZ is soft and Ω ` A type then [Ω]A = [Ω,ΩZ]A.

Proof. By induction on ΩZ.
Since ΩZ is soft, either (1) ΩZ = · (and the result is immediate) or (2) ΩZ = (Ω ′, α̂ : κ) or (3)

ΩZ = (Ω ′, α̂ : κ= t). However, according to the grammar for complete contexts such asΩZ, (2) is impossible.
Only case (3) remains.

By i.h., [Ω]A = [Ω,Ω ′]A. Use the fact that Ω ` A type implies FV(A) ∩ dom(ΩZ) = ∅.

Lemma 18 (Equal Domains).
If Ω1 ` A type and dom(Ω1) = dom(Ω2) then Ω2 ` A type.

Proof. By induction on the given derivation.

C ′ Properties of Extension

Lemma 19 (Declaration Preservation). If Γ −→ ∆ and u is declared in Γ , then u is declared in ∆.

Proof. By induction on the derivation of Γ −→ ∆.

• Case

· −→ · −→Id

This case is impossible, since by hypothesis u is declared in Γ .

• Case Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A −→ ∆, x : A ′
−→Var

– Case u = x: Immediate.

– Case u 6= x: Since u is declared in (Γ, x : A), it is declared in Γ . By i.h., u is declared in ∆, and
therefore declared in (∆, x : A ′).

• Case Γ −→ ∆

Γ, α : κ −→ ∆,α : κ
−→Uvar

Similar to the −→Var case.

• Case Γ −→ ∆

Γ, α̂ : κ −→ ∆, α̂ : κ
−→Unsolved

Similar to the −→Var case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, α̂ : κ= t −→ ∆, α̂ : κ= t ′
−→Solved

Similar to the −→Var case.
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• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, α= t −→ ∆,α= t ′
−→Eqn

It is given that u is declared in (Γ, α= t). Since α= t is not a declaration, u is declared in Γ .
By i.h., u is declared in ∆, and therefore declared in (∆,α= t ′.

• Case Γ −→ ∆

Γ,Iα̂ −→ ∆,Iα̂
−→Marker

Similar to the −→Eqn case.

• Case Γ −→ ∆

Γ, β̂ : κ ′ −→ ∆, β̂ : κ ′= t
−→Solve

Similar to the −→Var case.

• Case Γ −→ ∆

Γ −→ ∆, α̂ : κ
−→Add

It is given that u is declared in Γ . By i.h., u is declared in ∆, and therefore declared in (∆, α̂ : κ).

• Case Γ −→ ∆

Γ −→ ∆, α̂ : κ= t
−→AddSolved

Similar to the −→Add case.

Lemma 20 (Declaration Order Preservation). If Γ −→ ∆ and u is declared to the left of v in Γ , then u is
declared to the left of v in ∆.

Proof. By induction on the derivation of Γ −→ ∆.

• Case

· −→ · −→Id

This case is impossible, since by hypothesis u and v are declared in Γ .

• Case Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A −→ ∆, x : A ′
−→Var

Consider whether v = x:

– Case v = x:
It is given that u is declared to the left of v in (Γ, x : A), so u is declared in Γ .
By Lemma 19 (Declaration Preservation), u is declared in ∆.
Therefore u is declared to the left of v in (∆, x : A ′).

– Case v 6= x:
Here, v is declared in Γ . By i.h., u is declared to the left of v in ∆.
Therefore u is declared to the left of v in (∆, x : A ′).

• Case Γ −→ ∆

Γ, α : κ −→ ∆,α : κ
−→Uvar

Similar to the −→Var case.
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• Case Γ −→ ∆

Γ, α̂ : κ −→ ∆, α̂ : κ
−→Unsolved

Similar to the −→Var case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, α̂ : κ= t −→ ∆, α̂ : κ= t ′
−→Solved

Similar to the −→Var case.

• Case Γ −→ ∆

Γ, β̂ : κ ′ −→ ∆, β̂ : κ ′= t
−→Solve

Similar to the −→Var case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, α= t −→ ∆,α= t ′
−→Eqn

The equation α̂= t does not declare any variables, so u and v must be declared in Γ .
By i.h., u is declared to the left of v in ∆.
Therefore u is declared to the left of v in ∆, α̂ : κ= t ′.

• Case Γ −→ ∆

Γ,Iα̂ −→ ∆,Iα̂
−→Marker

Similar to the −→Eqn case.

• Case Γ −→ ∆

Γ −→ ∆, α̂ : κ
−→Add

By i.h., u is declared to the left of v in ∆.
Therefore u is declared to the left of v in (∆, α̂ : κ).

• Case Γ −→ ∆

Γ −→ ∆, α̂ : κ= t
−→AddSolved

Similar to the −→Add case.

Lemma 21 (Reverse Declaration Order Preservation). If Γ −→ ∆ and u and v are both declared in Γ and u is
declared to the left of v in ∆, then u is declared to the left of v in Γ .

Proof. It is given that u and v are declared in Γ . Either u is declared to the left of v in Γ , or v is declared to
the left of u. Suppose the latter (for a contradiction). By Lemma 20 (Declaration Order Preservation), v is
declared to the left of u in ∆. But we know that u is declared to the left of v in ∆: contradiction. Therefore
u is declared to the left of v in Γ .

Lemma 22 (Extension Inversion).

(i) If D :: Γ0, α : κ, Γ1 −→ ∆
then there exist unique ∆0 and ∆1
such that ∆ = (∆0, α : κ,∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D.

Moreover, if Γ1 is soft, then ∆1 is soft.
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(ii) If D :: Γ0,Iu, Γ1 −→ ∆
then there exist unique ∆0 and ∆1
such that ∆ = (∆0,Iu, ∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D.

Moreover, if Γ1 is soft, then ∆1 is soft.

Moreover, if dom(Γ0,Iu, Γ1) = dom(∆) then dom(Γ0) = dom(∆0).

(iii) If D :: Γ0, α= τ, Γ1 −→ ∆
then there exist unique ∆0, τ ′, and ∆1
such that ∆ = (∆0, α= τ ′, ∆1) and D ′ :: Γ0 −→ ∆0 and [∆0]τ = [∆0]τ

′ where D ′ < D.

(iv) If D :: Γ0, α̂ : κ= τ, Γ1 −→ ∆
then there exist unique ∆0, τ ′, and ∆1
such that ∆ = (∆0, α̂ : κ= τ ′, ∆1) and D ′ :: Γ0 −→ ∆0 and [∆0]τ = [∆0]τ

′ where D ′ < D.

(v) If D :: Γ0, x : A, Γ1 −→ ∆
then there exist unique ∆0, A ′, and ∆1
such that ∆ = (∆0, x : A

′, ∆1) and D ′ :: Γ0 −→ ∆0 and [∆0]A = [∆0]A
′ where D ′ < D.

Moreover, if Γ1 is soft, then ∆1 is soft.

Moreover, if dom(Γ0, x : A, Γ1) = dom(∆) then dom(Γ0) = dom(∆0).

(vi) If D :: Γ0, α̂ : κ, Γ1 −→ ∆ then either

• there exist unique ∆0, τ ′, and ∆1
such that ∆ = (∆0, α̂ : κ= τ ′, ∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D,
or

• there exist unique ∆0 and ∆1
such that ∆ = (∆0, α̂ : κ,∆1) and D ′ :: Γ0 −→ ∆0 where D ′ < D.

Proof. In each part, we proceed by induction on the derivation of Γ0, . . . , Γ1 −→ ∆.
Note that in each part, the −→Id case is impossible.
Throughout this proof, we shadow ∆ so that it refers to the largest proper prefix of the ∆ in the statement

of the lemma. For example, in the −→Var case of part (i), we really have ∆ = (∆00, x : A ′), but we call ∆00
“∆”.

(i) We have Γ0, α : κ, Γ1 −→ ∆.

• Case Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A︸ ︷︷ ︸
Γ0,α:κ,Γ1

−→ ∆, x : A ′
−→Var

(Γ, x : A) = (Γ0, α : κ, Γ1) Given
= (Γ0, α : κ, Γ ′1, x : A) Since the last element must be equal

(Γ, x : A) = (Γ0, α : κ, Γ ′1, x : A) By transitivity
Γ = (Γ0, α : κ, Γ ′1) By injectivity of syntax

Γ −→ ∆ Subderivation
Γ0, α : κ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ ′1 soft then ∆1 soft ′′

Z (∆, x : A ′) = (∆0, α : κ,∆1, x : A
′) By congruence

Z if Γ ′1, x : A soft then ∆1, x : A ′ soft Since Γ ′1, x : A is not soft
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• Case Γ −→ ∆

Γ, β : κ ′︸ ︷︷ ︸
Γ0,α:κ,Γ1

−→ ∆,β : κ ′
−→Uvar

There are two cases:

– Case α : κ = β : κ ′:
Z (Γ, α : κ) = (Γ0, α : κ, Γ1) where Γ0 = Γ and Γ1 = ·
Z (∆,α : κ) = (∆0, α : κ,∆1) where ∆0 = ∆ and ∆1 = ·
Z if Γ1 soft then ∆1 soft since · is soft

– Case α 6= β:
(Γ, β : κ ′) = (Γ0, α : κ, Γ1) Given

= (Γ0, α : κ, Γ ′1, β : κ ′) Since the last element must be equal
Γ = (Γ0, α : κ, Γ ′1) By injectivity of syntax

Γ −→ ∆ Subderivation
Γ0, α : κ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ ′1 soft then ∆1 soft ′′

Z (∆,β : κ ′) = (∆0, α : κ,∆1, β : κ ′) By congruence
Z if Γ ′1, β : κ ′ soft then ∆1, β : κ ′ soft Since Γ ′1, β : κ ′ is not soft

• Case Γ −→ ∆

Γ, α̂ : κ ′︸ ︷︷ ︸
Γ0,α:κ,Γ1

−→ ∆, α̂ : κ ′
−→Unsolved

(Γ, α̂ : κ ′) = (Γ0, α : κ, Γ1) Given
= (Γ0, α : κ, Γ ′1, α̂ : κ ′) Since the last element must be equal

Γ = (Γ0, α : κ, Γ ′1) By injectivity of syntax

Γ −→ ∆ Subderivation
Γ0, α : κ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ ′1 soft then ∆1 soft ′′

Z (∆, α̂ : κ ′) = (∆0, α : κ,∆1, α̂ : κ ′) By congruence

Suppose Γ ′1, α̂ : κ ′ soft.
Γ ′1 soft By definition of softness
∆1 soft By induction
∆1 soft By definition of softness

Z if Γ ′1, α̂ : κ ′ soft then ∆1, α̂ : κ ′ soft Implication introduction

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, α̂ : κ= t︸ ︷︷ ︸
Γ0,α:κ,Γ1

−→ ∆, α̂ : κ= t ′
−→Solved
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Similar to the −→Unsolved case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, β= t︸ ︷︷ ︸
Γ0,α:κ,Γ1

−→ ∆,β= t ′
−→Eqn

(Γ, β= t) = (Γ0, α : κ, Γ1) Given
= (Γ0, α : κ, Γ ′1, β= t) Since the last element must be equal

Γ = (Γ0, α : κ, Γ ′1) By injectivity of syntax

Γ −→ ∆ Subderivation
Γ0, α : κ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ ′1 soft then ∆1 soft ′′

Z (∆,β= t ′) = (∆0, α : κ,∆1, β= t ′) By congruence
Z if Γ ′1, β= t soft then ∆1, β= t ′ soft Since Γ ′1, β= t is not soft

• Case Γ −→ ∆

Γ,Iα̂︸︷︷︸
Γ0,α:κ,Γ1

−→ ∆,Iα̂
−→Marker

(Γ,Iα̂) = (Γ0, α : κ, Γ1) Given
= (Γ0, α : κ, Γ ′1,Iα̂) Since the last element must be equal

Γ = (Γ0, α : κ, Γ ′1) By injectivity of syntax

Γ −→ ∆ Subderivation
Γ0, α : κ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ ′1 soft then ∆1 soft ′′

Z ∆,Iα̂ = (∆0, α : κ,∆1,Iα̂) By congruence
Z if Γ ′1,Iα̂ soft then ∆1,Iα̂ soft Since Γ ′1,Iα̂ is not soft

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α:κ ′,Γ1

−→ ∆, α̂ : κ
−→Add

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ1 soft then ∆1 soft ′′

Z ∆, α̂ : κ ′ = (∆0, α : κ,∆1, α̂ : κ ′) By congruence of equality

Suppose Γ1 soft.
∆1 soft By i.h.

∆1, α̂ : κ ′ soft By definition of softnesss
Z if Γ1 soft then ∆1, α̂ : κ ′ soft Implication introduction
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• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α:κ,Γ1

−→ ∆, α̂ : κ ′= t
−→AddSolved

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ1 soft then ∆1 soft ′′

Z (∆, α̂ : κ ′= t) = (∆0, α : κ,∆1, α̂ : κ ′= t) By congruence of equality

Suppose Γ1 soft.
∆1 soft By i.h.

(∆1, α̂ : κ ′= t) soft By definition of softnesss
Z if Γ1 soft then ∆1, α̂ : κ ′= t soft Implication introduction

• Case Γ −→ ∆

Γ, β̂ : κ ′︸ ︷︷ ︸
Γ0,α:κ,Γ1

−→ ∆, β̂ : κ ′= t
−→Solve

(Γ, β̂ : κ ′) = (Γ0, α : κ, Γ1) Given
= (Γ0, α : κ, Γ ′1, β̂ : κ ′) Since the final elements are equal

Γ = (Γ0, α : κ, Γ ′1) By injectivity of context syntax

Γ −→ ∆ Subderivation
Γ0, α : κ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

if Γ ′1 soft then ∆1 soft ′′

Z ∆, β̂ : κ ′ = ∆0, α : κ,∆1, β̂ : κ ′ By congruence

Suppose Γ ′1, β̂ : κ ′ soft.
Γ ′1 soft By definition of softness
∆1 soft Using i.h.

∆1, β̂ : κ ′= t soft By definition of softness
Z if Γ ′1, β̂ : κ ′ soft then ∆1, β̂ : κ ′= t soft Implication intro

(ii) We have Γ0,Iu, Γ1 −→ ∆. This part is similar to part (i) above, except for “if dom(Γ0,Iu, Γ1) = dom(∆)
then dom(Γ0) = dom(∆0)”, which follows by i.h. in most cases. In the −→Marker case, either we have
. . . ,Iu ′ where u ′ = u—in which case the i.h. gives us what we need—or we have a matching Iu. In
this latter case, we have Γ1 = ·. We know that dom(Γ0,Iu, Γ1) = dom(∆) and ∆ = (∆0,Iu). Since Γ1 = ·,
we have dom(Γ0,Iu) = dom(∆0,Iu). Therefore dom(Γ0) = dom(∆0).

(iii) We have Γ0, α= τ, Γ1 −→ ∆.

• Case Γ −→ ∆

Γ, β : κ ′︸ ︷︷ ︸
Γ0,α= τ,Γ1

−→ ∆,β : κ ′
−→Uvar

Proof of Lemma 22 (Extension Inversion) lem:extension-inversion



Proof of Lemma 22 (Extension Inversion) lem:extension-inversion 56

(Γ0, α= τ, Γ1) = (Γ, β : κ ′) Given
= (Γ0, α= τ, Γ ′1, β : κ ′) Since the final elements must be equal

Γ = (Γ0, α= τ, Γ ′1) By injectivity of context syntax

∆ = (∆0, α= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆,β : κ ′) = (∆0, α= τ ′, ∆1, β : κ ′) By congruence of equality

• Case Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A︸ ︷︷ ︸
Γ0,α= τ,Γ1

−→ ∆, x : A ′
−→Var

Similar to the −→Uvar case.

• Case Γ −→ ∆

Γ,Iα̂ −→ ∆,Iα̂
−→Marker

Similar to the −→Uvar case.

• Case Γ −→ ∆

Γ, α̂ : κ ′ −→ ∆, α̂ : κ ′
−→Unsolved

Similar to the −→Uvar case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, α̂ : κ ′= t︸ ︷︷ ︸
Γ0,α= τ,Γ1

−→ ∆, α̂ : κ ′= t ′
−→Solved

Similar to the −→Uvar case.

• Case Γ −→ ∆

Γ, β̂ : κ ′︸ ︷︷ ︸
Γ0,α= τ,Γ1

−→ ∆, β̂ : κ ′= t
−→Solve

Similar to the −→Uvar case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, β= t︸ ︷︷ ︸
Γ0,α= τ,Γ1

−→ ∆,β= t ′
−→Eqn

There are two cases:

– Case α = β:

τ = t and Γ1 = · and Γ0 = Γ By injectivity of syntax
Z Γ0 −→ ∆0 Subderivation (Γ0 = Γ and let ∆0 = ∆)
Z (∆,α= t ′) = (∆0, α= t ′, ∆1) where ∆1 = ·
Z [∆0]t = [∆0]t

′ By premise [∆]t = [∆]t ′

– Case α 6= β:
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(Γ0, α= τ, Γ1) = (Γ, β= t) Given
= (Γ0, α= τ, Γ ′1, β= t) Since the final elements must be equal

Γ = (Γ0, α= τ, Γ ′1) By injectivity of context syntax

∆ = (∆0, α= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆,β= t ′) = (∆0, α= τ ′, ∆1, β= t ′) By congruence of equality

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α= τ,Γ1

−→ ∆, α̂ : κ ′
−→Add

∆ = (∆0, α= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆, α̂ : κ ′) = (∆0, α= τ ′, ∆1, α̂ : κ ′) By congruence of equality

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α= τ,Γ1

−→ ∆, α̂ : κ ′= t
−→AddSolved

∆ = (∆0, α= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆, α̂ : κ ′= t) = (∆0, α= τ ′, ∆1, α̂ : κ ′= t) By congruence of equality

(iv) We have Γ0, α̂ : κ= τ, Γ1 −→ ∆.

• Case Γ −→ ∆

Γ, β : κ ′︸ ︷︷ ︸
Γ0,α̂:κ= τ,Γ1

−→ ∆,β : κ ′
−→Uvar

(Γ0, α̂ : κ= τ, Γ1) = (Γ, β : κ ′) Given
= (Γ0, α̂ : κ= τ, Γ ′1, β : κ ′) Since the final elements must be equal

Γ = (Γ0, α̂ : κ= τ, Γ ′1) By injectivity of context syntax

∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆,β : κ ′) = (∆0, α̂ : κ= τ ′, ∆1, β : κ ′) By congruence of equality

• Case Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A︸ ︷︷ ︸
Γ0,α̂:κ= τ,Γ1

−→ ∆, x : A ′
−→Var

Similar to the −→Uvar case.
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• Case Γ −→ ∆

Γ,Iβ̂ −→ ∆,Iβ̂
−→Marker

Similar to the −→Uvar case.

• Case Γ −→ ∆

Γ, β̂ : κ ′ −→ ∆, β̂ : κ ′
−→Unsolved

Similar to the −→Uvar case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, β̂ : κ ′= t︸ ︷︷ ︸
Γ0,α̂:κ= τ,Γ1

−→ ∆, β̂ : κ ′= t ′
−→Solved

There are two cases.

– Case α̂ = β̂:

κ ′ = κ and t = τ and Γ1 = · and Γ = Γ0 By injectivity of syntax
Z (∆, β̂ : κ ′= t ′) = (∆0, β̂ : κ ′= τ ′, ∆1) where τ ′ = t ′ and ∆1 = · and ∆ = ∆0
Z Γ0 −→ ∆0 From subderivation Γ −→ ∆

Z [∆0]τ = [∆0]τ
′ From premise [∆]t = [∆]t ′ and x

– Case α̂ 6= β̂:

(Γ0, α̂ : κ= τ, Γ1) = (Γ, β̂ : κ ′= t) Given
= (Γ0, α̂ : κ= τ, Γ ′1, β̂ : κ ′= t) Since the final elements must be equal

Γ = (Γ0, α̂ : κ= τ, Γ ′1) By injectivity of context syntax

∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′= t ′) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′= t ′) By congruence of equality

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, β= t︸ ︷︷ ︸
Γ0,α̂:κ= τ,Γ1

−→ ∆,β= t ′
−→Eqn

(Γ0, α̂ : κ= τ, Γ1) = (Γ, β= t) Given
= (Γ0, α̂ : κ= τ, Γ ′1, β= t) Since the final elements must be equal

Γ = (Γ0, α̂ : κ= τ, Γ ′1) By injectivity of context syntax

∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆,β= t ′) = (∆0, α̂ : κ= τ ′, ∆1, β= t ′) By congruence of equality

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α̂:κ= τ,Γ1

−→ ∆, β̂ : κ ′
−→Add
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∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′) By congruence of equality

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α̂:κ= τ,Γ1

−→ ∆, β̂ : κ ′= t
−→AddSolved

∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′= t) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′= t) By congruence of equality

• Case Γ −→ ∆

Γ, β̂ : κ ′︸ ︷︷ ︸
Γ0,α̂:κ= τ,Γ1

−→ ∆, β̂ : κ ′= t
−→Solve

(Γ, β̂ : κ ′) = (Γ0, α̂ : κ= τ, Γ1) Given
= (Γ0, α̂ : κ= τ, Γ ′1, β̂ : κ ′) Since the last elements must be equal

Γ = (Γ0, α̂ : κ= τ, Γ ′1) By injectivity of syntax

Γ −→ ∆ Subderivation
Γ0, α̂ : κ= τ, Γ ′1 −→ ∆ By equality

∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.
Z [∆0]τ = [∆0]τ

′ ′′

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′) By congruence of equality

(v) We have Γ0, x : A, Γ1 −→ ∆. This proof is similar to the proof of part (i), except for the domain condition,
which we handle similarly to part (ii).

(vi) We have Γ0, α̂ : κ, Γ1 −→ ∆.

• Case Γ −→ ∆

Γ, β : κ ′︸ ︷︷ ︸
Γ0,α̂:κ,Γ1

−→ ∆,β : κ ′
−→Uvar

(Γ0, α̂ : κ, Γ1) = (Γ, β : κ ′) Given
= (Γ0, α̂ : κ, Γ ′1, β : κ ′) Since the final elements must be equal

Γ = (Γ0, α̂ : κ, Γ ′1) By injectivity of context syntax

By induction, there are two possibilities:

– α̂ is not solved:
∆ = (∆0, α̂ : κ,∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆,β : κ ′) = (∆0, α̂ : κ,∆1, β : κ ′) By congruence of equality
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– α̂ is solved:
∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆,β : κ ′) = (∆0, α̂ : κ= τ ′, ∆1, β : κ ′) By congruence of equality

• Case Γ −→ ∆ [∆]A = [∆]A ′

Γ, x : A︸ ︷︷ ︸
Γ0,α̂:κ,Γ1

−→ ∆, x : A ′
−→Var

Similar to the −→Uvar case.

• Case Γ −→ ∆

Γ,Iβ̂ −→ ∆,Iβ̂
−→Marker

Similar to the −→Uvar case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, β= t −→ ∆,β= t ′
−→Eqn

Similar to the −→Uvar case.

• Case Γ −→ ∆ [∆]t = [∆]t ′

Γ, β̂ : κ ′= t︸ ︷︷ ︸
Γ0,α̂:κ,Γ1

−→ ∆, β̂ : κ ′= t ′
−→Solved

Similar to the −→Uvar case.

• Case Γ −→ ∆

Γ, β̂ : κ ′︸ ︷︷ ︸
Γ0,α̂:κ,Γ1

−→ ∆, β̂ : κ ′
−→Unsolved

– Case α̂ 6= β̂:

(Γ0, α̂ : κ, Γ1) = (Γ, β̂ : κ ′) Given
= (Γ0, α̂ : κ, Γ ′1, β̂ : κ ′) Since the final elements must be equal

Γ = (Γ0, α̂ : κ, Γ ′1) By injectivity of context syntax

By induction, there are two possibilities:
∗ α̂ is not solved:

∆ = (∆0, α̂ : κ,∆1) By i.h.
Z Γ0 −→ ∆0

′′

Z (∆, β̂ : κ ′) = (∆0, α̂ : κ,∆1, β̂ : κ ′) By congruence of equality

∗ α̂ is solved:
∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′) By congruence of equality

– Case α̂ = β̂:
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κ ′ = κ and Γ0 = Γ and Γ1 = · By injectivity of syntax
Z (∆, β̂ : κ ′) = (∆0, α̂ : κ,∆1) where ∆0 = ∆ and ∆1 = ·
Z Γ0 −→ ∆0 From premise Γ −→ ∆

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α̂:κ,Γ1

−→ ∆, β̂ : κ ′
−→Add

By induction, there are two possibilities:

– α̂ is not solved:
∆ = (∆0, α̂ : κ,∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′) = (∆0, α̂ : κ,∆1, β̂ : κ ′) By congruence of equality

– α̂ is solved:
∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′) By congruence of equality

• Case Γ −→ ∆

Γ︸︷︷︸
Γ0,α̂:κ,Γ1

−→ ∆, β̂ : κ ′= t
−→AddSolved

By induction, there are two possibilities:

– α̂ is not solved:
∆ = (∆0, α̂ : κ,∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′= t) = (∆0, α̂ : κ,∆1, β̂ : κ ′= t) By congruence of equality

– α̂ is solved:
∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′= t) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′= t) By congruence of equality

• Case Γ −→ ∆

Γ, β̂ : κ ′︸ ︷︷ ︸
Γ0,α̂:κ,Γ1

−→ ∆, β̂ : κ ′= t
−→Solve

– Case α̂ 6= β̂:

(Γ0, α̂ : κ, Γ1) = (Γ, β̂ : κ ′) Given
= (Γ0, α̂ : κ, Γ ′1, β̂ : κ ′) Since the final elements must be equal

Γ = (Γ0, α̂ : κ, Γ ′1) By injectivity of context syntax

By induction, there are two possibilities:
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∗ α̂ is not solved:
∆ = (∆0, α̂ : κ,∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′= t) = (∆0, α̂ : κ,∆1, β̂ : κ ′= t) By congruence of equality

∗ α̂ is solved:
∆ = (∆0, α̂ : κ= τ ′, ∆1) By i.h.

Z Γ0 −→ ∆0
′′

Z (∆, β̂ : κ ′= t) = (∆0, α̂ : κ= τ ′, ∆1, β̂ : κ ′= t) By congruence of equality

– Case α̂ = β̂:

Γ = Γ0 and κ = κ ′ and Γ1 = · By injectivity of syntax
Z (∆, β̂ : κ ′= t) = (∆0, α̂ : κ= τ ′, ∆1) where ∆0 = ∆ and τ ′ = t and ∆1 = ·
Z Γ0 −→ ∆0 From premise Γ −→ ∆

Lemma 23 (Deep Evar Introduction). (i) If Γ0, Γ1 is well-formed and α̂ is not declared in Γ0, Γ1 then Γ0, Γ1 −→
Γ0, α̂ : κ, Γ1.

(ii) If Γ0, α̂ : κ, Γ1 is well-formed and Γ ` t : κ then Γ0, α̂ : κ, Γ1 −→ Γ0, α̂ : κ= t, Γ1.

(iii) If Γ0, Γ1 is well-formed and Γ ` t : κ then Γ0, Γ1 −→ Γ0, α̂ : κ= t, Γ1.

Proof.

(i) Assume that Γ0, Γ1 is well-formed. We proceed by induction on Γ1.

• Case Γ1 = ·:
Γ0 ctx Given
α̂ /∈ dom(Γ0) Given
Γ0, α̂ : κ ctx By rule VarCtx

Γ0 −→ Γ0 By Lemma 32 (Extension Reflexivity)
Z Γ0 −→ Γ0, α̂ : κ By rule −→Add

• Case Γ1 = Γ ′1, x : A:

Γ0, Γ
′
1, x : A ctx Given

Γ0, Γ
′
1 ctx By inversion

x /∈ dom(Γ0, Γ
′
1) By inversion (1)

Γ0, Γ
′
1 `A type By inversion

α̂ /∈ dom(Γ0, Γ
′
1, x : A) Given

α̂ 6= x By inversion (2)
Γ0, α̂ : κ, Γ ′1 ctx By i.h.

Γ0, Γ
′
1 −→ Γ0, α̂ : κ, Γ ′1

′′

Γ0, α̂ : κ, Γ ′1 `A type By Lemma 36 (Extension Weakening (Sorts))
x /∈ dom(Γ0, α̂ : κ, Γ ′1) By (1) and (2)

Z Γ0, Γ
′
1, x : A −→ Γ0, α̂ : κ, Γ ′1, x : A By −→Var
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• Case Γ1 = Γ ′1, β : κ ′:

Γ0, Γ
′
1, β : κ ′ ctx Given

Γ0, Γ
′
1 ctx By inversion

β /∈ dom(Γ0, Γ
′
1) By inversion (1)

α̂ /∈ dom(Γ0, Γ
′
1, β : κ ′) Given

α̂ 6= β By inversion (2)
Γ0, α̂ : κ, Γ ′1 ctx By i.h.

Γ0, Γ
′
1 −→ Γ0, α̂ : κ, Γ ′1

′′

β /∈ dom(Γ0, α̂ : κ, Γ ′1) By (1) and (2)
Z Γ0, Γ

′
1, β : κ ′ −→ Γ0, α̂ : κ, Γ ′1, β : κ ′ By −→Uvar

• Case Γ1 = Γ ′1, β̂ : κ ′:

Γ0, Γ
′
1, β̂ : κ ′ ctx Given

Γ0, Γ
′
1 ctx By inversion

β̂ /∈ dom(Γ0, Γ
′
1) By inversion (1)

α̂ /∈ dom(Γ0, Γ
′
1, β̂ : κ ′) Given

α̂ 6= β̂ By inversion (2)
Γ0, α̂ : κ, Γ ′1 ctx By i.h.

Γ0, Γ
′
1 −→ Γ0, α̂ : κ, Γ ′1

′′

β̂ /∈ dom(Γ0, α̂ : κ, Γ ′1) By (1) and (2)
Z Γ0, Γ

′
1, β̂ : κ ′ −→ Γ0, α̂ : κ, Γ ′1, β̂ : κ ′ By −→Unsolved

• Case Γ1 = (Γ ′1, β̂ : κ ′= t):

Γ0, Γ
′
1, β̂ : κ ′= t ctx Given

Γ0, Γ
′
1 ctx By inversion

β̂ /∈ dom(Γ0, Γ
′
1) By inversion (1)

Γ0, Γ
′
1 ` t : κ ′ By inversion

α̂ /∈ dom(Γ0, Γ
′
1, β̂ : κ ′= t) Given

α̂ 6= β̂ By inversion (2)
Γ0, α̂ : κ, Γ ′1 ctx By i.h.

Γ0, Γ
′
1 −→ Γ0, α̂ : κ, Γ ′1

′′

Γ0, α̂ : κ, Γ ′1 ` t : κ ′ By Lemma 36 (Extension Weakening (Sorts))
β̂ /∈ dom(Γ0, α̂ : κ, Γ ′1) By (1) and (2)

Z Γ0, Γ
′
1, β̂ : κ ′= t −→ Γ0, α̂ : κ, Γ ′1, β̂ : κ ′= t By −→Solved

• Case Γ1 = (Γ ′1, β= t):
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Γ0, Γ
′
1, β= t ctx Given

Γ0, Γ
′
1 ctx By inversion

β /∈ dom(Γ0, Γ
′
1) By inversion (1)

Γ0, Γ
′
1 ` t : N By inversion

α̂ /∈ dom(Γ0, Γ
′
1, β= t) Given

α̂ 6= β By inversion (2)
Γ0, α̂ : κ, Γ ′1 ctx By i.h.

Γ0, Γ
′
1 −→ Γ0, α̂ : κ, Γ ′1

′′

Γ0, α̂ : κ, Γ ′1 ` t : N By Lemma 36 (Extension Weakening (Sorts))
β /∈ dom(Γ0, α̂ : κ, Γ ′1) By (1) and (2)

Z Γ0, Γ
′
1, β= t −→ Γ0, α̂ : κ, Γ ′1, β= t By −→Solved

• Case Γ1 = (Γ ′1,Iβ̂):

Γ0, Γ
′
1,Iβ̂ ctx Given

Γ0, Γ
′
1 ctx By inversion

β̂ /∈ dom(Γ0, Γ
′
1) By inversion (1)

α̂ /∈ dom(Γ0, Γ
′
1,Iβ̂) Given

α̂ 6= β̂ By inversion (2)
Γ0, α̂ : κ, Γ ′1 ctx By i.h.

Γ0, Γ
′
1 −→ Γ0, α̂ : κ, Γ ′1

′′

β̂ /∈ dom(Γ0, α̂ : κ, Γ ′1) By (1) and (2)
Z Γ0, Γ

′
1,Iβ̂ −→ Γ0, α̂ : κ, Γ ′1,Iβ̂ By −→Marker

(ii) Assume Γ0, α̂ : κ, Γ1 ctx. We proceed by induction on Γ1:

• Case Γ1 = ·:
Γ0 ` t : κ Given

Γ0, Γ1 ctx Given
Γ0 ctx Since Γ1 = ·

Γ0 −→ Γ0 By Lemma 32 (Extension Reflexivity)
Γ0, α̂ : κ −→ Γ0, α̂ : κ= t By rule −→Solve

Z Γ0, α̂ : κ, Γ1 −→ Γ0, α̂ : κ= t, Γ1 Since Γ1 = ·

• Case Γ1 = (Γ ′1, x : A):

Γ0 ` t : κ Given
Γ0, α̂ : κ, Γ ′1, x : A ctx Given
Γ0, α̂ : κ, Γ ′1 ctx By inversion

Γ0, α̂ : κ, Γ ′1 `A type By inversion
x /∈ dom(Γ0, α̂ : κ, Γ ′1) By inversion (1)

Γ0, α̂ : κ, Γ ′1 −→ Γ0, α̂ : κ= t, Γ1 By i.h.
Γ0, α̂ : κ= t, Γ1 `A type By Lemma 36 (Extension Weakening (Sorts))

x /∈ dom(Γ0, α̂ : κ= t, Γ ′1) since this is the same domain as (1)
Γ0, α̂ : κ, Γ ′1, x : A −→ Γ0, α̂ : κ= t, Γ1, x : A By rule −→Var

• Case Γ1 = (Γ ′1, β : κ ′):
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Γ0 ` t : κ Given
Γ0, α̂ : κ, Γ ′1, β : κ ′ ctx Given
Γ0, α̂ : κ, Γ ′1 ctx By inversion

β /∈ dom(Γ0, α̂ : κ, Γ ′1) By inversion (1)
Γ0, α̂ : κ, Γ ′1 −→ Γ0, α̂ : κ= t, Γ1 By i.h.

β /∈ dom(Γ0, α̂ : κ= t, Γ ′1) since this is the same domain as (1)
Γ0, α̂ : κ, Γ ′1, β : κ ′ −→ Γ0, α̂ : κ= t, Γ1, β : κ ′ By rule −→Uvar

• Case Γ1 = (Γ ′1, β̂ : κ ′):

Γ0 ` t : κ Given
Γ0, α̂ : κ, Γ ′1, β̂ : κ ′ ctx Given
Γ0, α̂ : κ, Γ ′1 ctx By inversion

β̂ /∈ dom(Γ0, α̂ : κ, Γ ′1) By inversion (1)
Γ0, α̂ : κ, Γ ′1 −→ Γ0, α̂ : κ= t, Γ1 By i.h.

β̂ /∈ dom(Γ0, α̂ : κ= t, Γ ′1) since this is the same domain as (1)
Γ0, α̂ : κ, Γ ′1, β̂ : κ ′ −→ Γ0, α̂ : κ= t, Γ1, β̂ : κ ′ By rule −→Unsolved

• Case Γ1 = (Γ ′1, β̂ : κ ′= t ′):

Γ0 ` t ′ : κ Given
Γ0, α̂ : κ, Γ ′1, β̂ : κ ′= t ′ ctx Given
Γ0, α̂ : κ, Γ ′1 ctx By inversion

Γ0, α̂ : κ, Γ ′1 ` t ′ : κ ′ By inversion
β̂ /∈ dom(Γ0, α̂ : κ, Γ ′1) By inversion (1)

Γ0, α̂ : κ, Γ ′1 −→ Γ0, α̂ : κ= t, Γ1 By i.h.
β̂ /∈ dom(Γ0, α̂ : κ= t, Γ ′1) since this is the same domain as (1)

Γ0, α̂ : κ= t, Γ1 ` t ′ : κ ′ By Lemma 36 (Extension Weakening (Sorts))

Γ0, α̂ : κ, Γ ′1, β̂ : κ ′= t ′ −→ Γ0, α̂ : κ= t ′, Γ1, β̂ : κ ′= t ′ By rule −→Solved

• Case Γ1 = (Γ ′1, β= t ′):

Γ0 ` t ′ : κ Given
Γ0, α̂ : κ, Γ ′1, β= t ′ ctx Given
Γ0, α̂ : κ, Γ ′1 ctx By inversion

Γ0, α̂ : κ, Γ ′1 ` t ′ : N By inversion
β /∈ dom(Γ0, α̂ : κ, Γ ′1) By inversion (1)

Γ0, α̂ : κ, Γ ′1 −→ Γ0, α̂ : κ= t, Γ1 By i.h.
β /∈ dom(Γ0, α̂ : κ= t, Γ ′1) since this is the same domain as (1)

Γ0, α̂ : κ= t, Γ1 ` t ′ : N By Lemma 36 (Extension Weakening (Sorts))
Γ0, α̂ : κ, Γ ′1, β= t ′ −→ Γ0, α̂ : κ= t ′, Γ1, β= t ′ By rule −→Eqn

• Case Γ1 = (Γ ′1,Iβ̂):
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Γ0 ` t : κ Given
Γ0, α̂ : κ, Γ ′1,Iβ̂ ctx Given
Γ0, α̂ : κ, Γ ′1 ctx By inversion

β̂ /∈ dom(Γ0, α̂ : κ, Γ ′1) By inversion (1)
Γ0, α̂ : κ, Γ ′1 −→ Γ0, α̂ : κ= t, Γ1 By i.h.

β̂ /∈ dom(Γ0, α̂ : κ= t, Γ ′1) since this is the same domain as (1)
Γ0, α̂ : κ, Γ ′1,Iβ̂ −→ Γ0, α̂ : κ= t, Γ1,Iβ̂ By rule −→Unsolved

(iii) Apply parts (i) and (ii) as lemmas, then Lemma 33 (Extension Transitivity).

Lemma 26 (Parallel Admissibility).
If ΓL −→ ∆L and ΓL, ΓR −→ ∆L, ∆R then:

(i) ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ,∆R

(ii) If ∆L ` τ ′ : κ then ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R.

(iii) If ΓL ` τ : κ and ∆L ` τ ′ type and [∆L]τ = [∆L]τ
′, then ΓL, α̂ : κ= τ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R.

Proof. By induction on ∆R. As always, we assume that all contexts mentioned in the statement of the lemma
are well-formed. Hence, α̂ /∈ dom(ΓL) ∪ dom(ΓR) ∪ dom(∆L) ∪ dom(∆R).

(i) We proceed by cases of ∆R. Observe that in all the extension rules, the right-hand context gets smaller,
so as we enter subderivations of ΓL, ΓR −→ ∆L, ∆R, the context ∆R becomes smaller.

The only tricky part of the proof is that to apply the i.h., we need ΓL −→ ∆L. So we need to make sure
that as we drop items from the right of ΓR and ∆R, we don’t go too far and start decomposing ΓL or
∆L! It’s easy to avoid decomposing ∆L: when ∆R = ·, we don’t need to apply the i.h. anyway. To avoid
decomposing ΓL, we need to reason by contradiction, using Lemma 19 (Declaration Preservation).

• Case ∆R = ·:
We have ΓL −→ ∆L. Applying −→Unsolved to that derivation gives the result.

• Case ∆R = (∆ ′R, β̂): We have β̂ 6= α̂ by the well-formedness assumption.
The concluding rule of ΓL, ΓR −→ ∆L, ∆

′
R, β̂ must have been −→Unsolved or −→Add. In both cases,

the result follows by i.h. and applying −→Unsolved or −→Add.
Note: In −→Add, the left-hand context doesn’t change, so we clearly maintain ΓL −→ ∆L. In
−→Unsolved, we can correctly apply the i.h. because ΓR 6= ·. Suppose, for a contradiction, that
ΓR = ·. Then ΓL = (Γ ′L, β̂). It was given that ΓL −→ ∆L, that is, Γ ′L, β̂ −→ ∆L. By Lemma
19 (Declaration Preservation), ∆L has a declaration of β̂. But then ∆ = (∆L, ∆

′
R, β̂) is not well-

formed: contradiction. Therefore ΓR 6= ·.
• Case ∆R = (∆ ′R, β̂ : κ= t): We have β̂ 6= α̂ by the well-formedness assumption.

The concluding rule must have been −→Solved, −→Solve or −→AddSolved. In each case, apply
the i.h. and then the corresponding rule. (In −→Solved and −→Solve, use Lemma 19 (Declaration
Preservation) to show ΓR 6= ·.)

• Case ∆R = (∆ ′R, α): The concluding rule must have been −→Uvar. The result follows by i.h. and
applying −→Uvar.

• Case ∆R = (∆ ′R, α= τ): The concluding rule must have been −→Eqn. The result follows by i.h.
and applying −→Eqn.

• Case ∆R = (∆ ′R,Iβ̂): Similar to the previous case, with rule −→Marker.

• Case ∆R = (∆ ′R, x : A): Similar to the previous case, with rule −→Var.

(ii) Similar to part (i), except that when ∆R = ·, apply rule −→Solve.
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(iii) Similar to part (i), except that when ∆R = ·, apply rule −→Solved, using the given equality to satisfy
the second premise.

Lemma 27 (Parallel Extension Solution).
If ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R and ΓL ` τ : κ and [∆L]τ = [∆L]τ

′

then ΓL, α̂ : κ= τ, ΓR −→ ∆L, α̂ : κ= τ ′, ∆R.

Proof. By induction on ∆R.
In the case where ∆R = ·, we know that rule −→Solve must have concluded the derivation (we can use

Lemma 19 (Declaration Preservation) to get a contradiction that rules out −→AddSolved); then we have a
subderivation ΓL −→ ∆L, to which we can apply −→Solved.

Lemma 28 (Parallel Variable Update).
If ΓL, α̂ : κ, ΓR −→ ∆L, α̂ : κ= τ0, ∆R and ΓL ` τ1 : κ and ∆L ` τ2 : κ and [∆L]τ0 = [∆L]τ1 = [∆L]τ2
then ΓL, α̂ : κ= τ1, ΓR −→ ∆L, α̂ : κ= τ2, ∆R.

Proof. By induction on ∆R. Similar to the proof of Lemma 27 (Parallel Extension Solution), but applying
−→Solved at the end.

Lemma 29 (Substitution Monotonicity).

(i) If Γ −→ ∆ and Γ ` t : κ then [∆][Γ ]t = [∆]t.

(ii) If Γ −→ ∆ and Γ ` P prop then [∆][Γ ]P = [∆]P.

(iii) If Γ −→ ∆ and Γ ` A type then [∆][Γ ]A = [∆]A.

Proof. We prove each part in turn; part (i) does not depend on parts (ii) or (iii), so we can use part (i) as a
lemma in the proofs of parts (ii) and (iii).

• Proof of Part (i): By lexicographic induction on the derivation of D :: Γ −→ ∆ and Γ ` t : κ. We
proceed by cases on the derivation of Γ ` t : κ.

– Case α̂ : κ ∈ Γ
Γ ` α̂ : κ

VarSort

[Γ ]α̂ = α̂ Since α̂ is not solved in Γ
[∆]α̂ = [∆]α̂ Reflexivity

= [∆][Γ ]α̂ By above equality

– Case (α : κ) ∈ Γ
Γ ` α : κ

VarSort

Consider whether or not there is a binding of the form (α= τ) ∈ Γ .

∗ Case (α= τ) ∈ Γ :
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∆ = (∆0, α= τ ′, ∆1) By Lemma 22 (Extension Inversion) (i)
D ′ :: Γ0 −→ ∆0

′′

D ′ < D ′′

(1) [∆0]τ
′ = [∆0]τ

′′

(2) [∆0][Γ0]τ = [∆0]τ By i.h.
[∆][Γ ]α = [∆0, α= τ ′, ∆1][Γ0, α= τ, Γ1]α By definition

= [∆0, α= τ ′, ∆1][Γ0, α= τ]α Since α /∈ dom(Γ1)

= [∆0, α= τ ′, ∆1][Γ0]τ By definition of substitution
= [∆0][Γ0]τ Since FV([Γ0]τ) ∩ dom(∆1) = ∅
= [∆0]τ

′ By (2) and (1)
= [∆0, α= τ ′]α By definition of substitution
= [∆0, α= τ ′, ∆1]α Since FV([∆0]τ) ∩ dom(∆1) = ∅
= [∆]α By definition of ∆

∗ Case (α= τ) /∈ Γ :

[Γ ]α = α By definition of substitution
[∆][Γ ]α = [∆]α Apply [∆] to both sides

– Case

Γ0, α̂ : κ= τ, Γ1 ` α̂ : κ
SolvedVarSort

Similar to the VarSort case.

– Case

Γ ` 1 : ?
UnitSort

[∆]1 = 1 = [∆][Γ ]1 Since FV(1) = ∅

– Case Γ ` τ1 : ? Γ ` τ2 : ?
Γ ` τ1 ⊕ τ2 : ?

BinSort

[∆][Γ ]τ1 = [∆]τ1 By i.h.
[∆][Γ ]τ2 = [∆]τ2 By i.h.

[∆][Γ ]τ1 ⊕ [∆][Γ ]τ2 = [∆]τ1 ⊕ [∆]τ2 By congruence of equality
[∆][Γ ](τ1 ⊕ τ2) = [∆](τ1 ⊕ τ2) Definition of substitution

– Case

Γ ` zero : N
ZeroSort

[∆]zero = zero = [∆][Γ ]zero Since FV(zero) = ∅

– Case Γ ` t : N
Γ ` succ(t) : N

SuccSort

[∆][Γ ]t = [∆]t By i.h.
succ([∆][Γ ]t) = succ([∆]t) By congruence of equality
[∆][Γ ]succ(t) = [∆]succ(t) By definition of substitution
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• Proof of Part (ii): We have a derivation of Γ ` P prop, and will use the previous part as a lemma.

– Case Γ ` t : N Γ ` t ′ : N
Γ ` t = t ′ prop

EqProp

[∆][Γ ]t = [∆]t By part (i)
[∆][Γ ]t ′ = [∆]t ′ By part (i)

([∆][Γ ]t = [∆][Γ ]t ′) = ([∆]t = [∆]t ′) By congruence of equality
[∆][Γ ](t = t ′) = [∆](t = t ′) Definition of substitution

• Proof of Part (iii): By induction on the derivation of Γ ` A type, using the previous parts as lemmas.

– Case (u : ?) ∈ Γ
Γ ` u type

VarWF

Γ `u : ? By rule VarSort
[∆][Γ ]u = [∆]u By part (i)

– Case (α̂ : ?= τ) ∈ Γ
Γ ` α̂ type

SolvedVarWF

Γ ` α̂ : ? By rule SolvedVarSort
[∆][Γ ]α̂ = [∆]α̂ By part (i)

– Case

Γ ` 1 type
UnitWF

Γ ` 1 : ? By rule UnitSort
[∆][Γ ]1 = [∆]1 By part (i)

– Case Γ ` A1 type Γ ` A2 type
Γ ` A1 ⊕ A2 type

BinWF

[∆][Γ ]A1 = [∆]A1 By i.h.
[∆][Γ ]A2 = [∆]A2 By i.h.

[∆][Γ ]A1 ⊕ [∆][Γ ]A2 = [∆]A1 ⊕ [∆]A2 By congruence of equality
[∆][Γ ](A1 ⊕ A2) = [∆](A1 ⊕ A2) Definition of substitution

– Case VecWF: Similar to the BinWF case.

– Case Γ, α : κ ` A0 type
Γ ` ∀α : κ. A0 type

ForallWF

Γ −→ ∆ Given
Γ, α : κ −→ ∆,α : κ By rule −→Uvar

[∆,α : κ][Γ, α : κ]A0 = [∆,α : κ]A0 By i.h.
[∆][Γ ]A0 = [∆]A0 By definition of substitution

∀α : κ. [∆][Γ ]A0 = ∀α : κ. [∆]A0 By congruence of equality
[∆][Γ ](∀α : κ. A0) = [∆](∀α : κ. A0) By definition of substitution
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– Case ExistsWF: Similar to the ForallWF case.

– Case Γ ` P prop Γ ` A0 type
Γ ` P ⊃ A0 type

ImpliesWF

[∆][Γ ]P = [∆]P By part (ii)
[∆][Γ ]A0 = [∆]A0 By i.h.

[∆][Γ ]P ⊃ [∆][Γ ]A0 = [∆]P ⊃ [∆]A0 By congruence of equality
[∆][Γ ](P ⊃ A0) = [∆](P ⊃ A0) Definition of substitution

– Case Γ ` P prop Γ ` A0 type
Γ ` A0 ∧ P type

WithWF

Similar to the ImpliesWF case.

Lemma 30 (Substitution Invariance).

(i) If Γ −→ ∆ and Γ ` t : κ and FEV([Γ ]t) = ∅ then [∆][Γ ]t = [Γ ]t.

(ii) If Γ −→ ∆ and Γ ` P prop and FEV([Γ ]P) = ∅ then [∆][Γ ]P = [Γ ]P.

(iii) If Γ −→ ∆ and Γ ` A type and FEV([Γ ]A) = ∅ then [∆][Γ ]A = [Γ ]A.

Proof. Each part is a separate induction, relying on the proofs of the earlier parts. In each part, the result
follows by an induction on the derivation of Γ −→ ∆.

The main observation is that ∆ adds no equations for any variable of t, P, and A that Γ does not already
contain, and as a result applying ∆ as a substitution to [Γ ]t does nothing.

Lemma 24 (Soft Extension).
If Γ −→ ∆ and Γ,Θ ctx and Θ is soft, then there exists Ω such that dom(Θ) = dom(Ω) and Γ,Θ −→ ∆,Ω.

Proof. By induction on Θ.

• Case Θ = ·: We have Γ −→ ∆. Let Ω = ·. Then Γ,Θ −→ ∆,Ω.

• Case Θ = (Θ ′, α̂ : κ= t):

Γ,Θ ′ −→ Γ,Ω ′ By i.h.
Z Γ,Θ ′, α̂ : κ= t︸ ︷︷ ︸

Θ

−→ ∆,Ω ′, α̂ : κ= t︸ ︷︷ ︸
Ω

By rule −→Solved

• Case Θ = (Θ ′, α̂ : κ):

If κ = ?, let t = 1; if κ = N, let t = zero.

Γ,Θ ′ −→ Γ,Ω ′ By i.h.
Z Γ,Θ ′, α̂ : κ︸ ︷︷ ︸

Θ

−→ ∆,Ω ′, α̂ : κ= t︸ ︷︷ ︸
Ω

By rule −→Solve

Lemma 31 (Split Extension).
If ∆ −→ Ω
and α̂ ∈ unsolved(∆)
and Ω = Ω1[α̂ : κ= t1]
and Ω is canonical (Definition 3)
and Ω ` t2 : κ
then ∆ −→ Ω1[α̂ : κ= t2].
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Proof. By induction on the derivation of ∆ −→ Ω. Use the fact that Ω1[α̂ : κ= t1] and Ω1[α̂ : κ= t2] agree
on all solutions except the solution for α̂. In the −→Solve case where the existential variable is α̂, use
Ω ` t2 : κ.

C ′.1 Reflexivity and Transitivity

Lemma 32 (Extension Reflexivity).
If Γ ctx then Γ −→ Γ .

Proof. By induction on the derivation of Γ ctx.

• Case

· ctx
EmptyCtx

· −→ · By rule −→Id

• Case Γ ctx x /∈ dom(Γ) Γ ` A type
Γ, x : A ctx

HypCtx

Γ −→ Γ By i.h.
[Γ ]A = [Γ ]A By reflexivity

Γ, x : A −→ Γ, x : A By rule −→Var

• Case Γ ctx u : κ /∈ dom(Γ)

Γ, u : κ ctx
VarCtx

Γ −→ Γ By i.h.
Γ, u : κ −→ Γ, u : κ By rule −→Uvar or −→Unsolved

• Case Γ ctx α̂ /∈ dom(Γ) Γ ` t : κ
Γ, α̂ : κ= t ctx

SolvedCtx

Γ −→ Γ By i.h.
[Γ ]t = [Γ ]t By reflexivity

Γ, α̂ : κ= t −→ Γ, α̂ : κ= t By rule −→Solved

• Case Γ ctx α : κ ∈ Γ (α=−) /∈ Γ Γ ` τ : κ
Γ, α= τ ctx

EqnVarCtx

Γ −→ Γ By i.h.
[Γ ]t = [Γ ]t By reflexivity

Γ, α= t −→ Γ, α= t By rule −→Eqn
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• Case Γ ctx Iu /∈ Γ
Γ,Iu ctx

MarkerCtx

Γ −→ Γ By i.h.
Γ,Iu −→ Γ,Iu By rule −→Marker

Lemma 33 (Extension Transitivity).
If D :: Γ −→ Θ and D ′ :: Θ −→ ∆ then Γ −→ ∆.

Proof. By induction on D ′.

• Case

·︸︷︷︸
Θ

−→ ·︸︷︷︸
∆

−→Id

Γ = · By inversion on D
· −→ · By rule −→Id
Γ −→ ∆ Since Γ = ∆ = ·

• Case Θ ′ −→ ∆ ′ [∆ ′]A = [∆ ′]A ′

Θ ′, x : A︸ ︷︷ ︸
Θ

−→ ∆ ′, x : A ′︸ ︷︷ ︸
∆

−→Var

Γ = (Γ ′, x : A ′′) By inversion on D
[Θ]A ′′ = [Θ]A By inversion on D
Γ ′ −→ Θ ′ By inversion on D
Γ ′ −→ ∆ ′ By i.h.

[∆ ′][Θ ′]A ′′ = [∆ ′][Θ ′]A By congruence of equality
[∆ ′]A ′′ = [∆ ′]A By Lemma 29 (Substitution Monotonicity)

= [∆ ′]A ′ By premise [∆ ′]A = [∆ ′]A ′

Γ ′, x : A ′′ −→ ∆ ′, x : A ′ By −→Var

• Case Θ ′ −→ ∆ ′

Θ ′, α : κ︸ ︷︷ ︸
Θ

−→ ∆ ′, α : κ︸ ︷︷ ︸
∆

−→Uvar

Γ = (Γ ′, α : κ) By inversion on D
Γ ′ −→ Θ ′ By inversion on D
Γ ′ −→ ∆ ′ By i.h.

Γ ′, α : κ −→ ∆ ′, α : κ By −→Uvar

• Case Θ ′ −→ ∆ ′

Θ ′, α̂ : κ︸ ︷︷ ︸
Θ

−→ ∆ ′, α̂ : κ︸ ︷︷ ︸
∆

−→Unsolved

Two rules could have concluded D :: Γ −→ (Θ ′, α̂ : κ):
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– Case Γ ′ −→ Θ ′

Γ ′, α̂ : κ︸ ︷︷ ︸
Γ

−→ Θ ′, α̂ : κ
−→Unsolved

Γ ′ −→ ∆ ′ By i.h.
Γ ′, α̂ : κ −→ ∆ ′, α̂ : κ By rule −→Add

– Case Γ −→ Θ ′

Γ −→ Θ ′, α̂ : κ
−→Add

Γ −→ ∆ ′ By i.h.
Γ −→ ∆ ′, α̂ : κ By rule −→Add

• Case Θ ′ −→ ∆ ′ [∆ ′]t = [∆ ′]t ′

Θ ′, α̂ : κ= t︸ ︷︷ ︸
Θ

−→ ∆ ′, α̂ : κ= t ′︸ ︷︷ ︸
∆

−→Solved

Two rules could have concluded D :: Γ −→ (Θ ′, α̂ : κ= t):

– Case Γ ′ −→ Θ ′ [Θ ′]t ′′ = [Θ ′]t

Γ ′, α̂ : κ= t ′′︸ ︷︷ ︸
Γ

−→ Θ ′, α̂ : κ= t
−→Solved

Γ ′ −→ ∆ ′ By i.h.
[Θ ′]t ′′ = [Θ ′]t Premise

[∆ ′][Θ ′]t ′′ = [∆ ′][Θ ′]t Applying ∆ ′ to both sides
[∆ ′]t ′′ = [∆ ′]t By Lemma 29 (Substitution Monotonicity)

= [∆ ′]t ′ By premise [∆ ′]t = [∆ ′]t ′

Γ ′, α̂ : κ= t ′′ −→ ∆ ′, α̂ : κ= t ′ By rule −→Solved

– Case Γ −→ Θ ′

Γ −→ Θ ′, α̂ : κ= t
−→AddSolved

Γ −→ ∆ ′ By i.h.
Γ −→ ∆ ′, α̂ : κ= t ′ By rule −→AddSolved

• Case Θ ′ −→ ∆ ′ [∆ ′]t = [∆ ′]t ′

Θ ′, α= t︸ ︷︷ ︸
Θ

−→ ∆ ′, α= t ′︸ ︷︷ ︸
∆

−→Eqn
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Γ = (Γ ′, α= t ′′) By inversion on D
Γ ′ −→ Θ ′ By inversion on D

[Θ ′]t ′′ = [Θ ′]t By inversion on D
[∆ ′][Θ ′]t ′′ = [∆ ′][Θ ′]t Applying ∆ ′ to both sides

Γ ′ −→ ∆ ′ By i.h.
[∆ ′]t ′′ = [∆ ′]t By Lemma 29 (Substitution Monotonicity)

= [∆ ′]t ′ By premise [∆ ′]t = [∆ ′]t ′

Γ ′, α= t ′′ −→ ∆ ′, α= t ′ By rule −→Eqn

• Case Θ −→ ∆ ′

Θ −→ ∆ ′, α̂ : κ︸ ︷︷ ︸
∆

−→Add

Γ −→ ∆ ′ By i.h.
Γ −→ ∆ ′, α̂ : κ By rule −→Add

• Case Θ −→ ∆ ′

Θ −→ ∆ ′, α̂ : κ= t︸ ︷︷ ︸
∆

−→AddSolved

Γ −→ ∆ ′ By i.h.
Γ −→ ∆ ′, α̂ : κ= t By rule −→AddSolved

• Case Θ ′ −→ ∆ ′

Θ ′,Iu︸ ︷︷ ︸
Θ

−→ ∆ ′,Iu︸ ︷︷ ︸
∆

−→Marker

Γ = Γ ′,Iu By inversion on D
Γ ′ −→ Θ ′ By inversion on D
Γ ′ −→ ∆ ′ By i.h.

Γ ′,Iu −→ ∆ ′,Iu By −→Uvar

C ′.2 Weakening

Lemma 34 (Suffix Weakening). If Γ ` t : κ then Γ,Θ ` t : κ.

Proof. By induction on the given derivation. All cases are straightforward.

Lemma 35 (Suffix Weakening). If Γ ` A type then Γ,Θ ` A type.

Proof. By induction on the given derivation. All cases are straightforward.

Lemma 36 (Extension Weakening (Sorts)). If Γ ` t : κ and Γ −→ ∆ then ∆ ` t : κ.

Proof. By a straightforward induction on Γ ` t : κ.
In the VarSort case, use Lemma 22 (Extension Inversion) (i) or (v). In the SolvedVarSort case, use Lemma

22 (Extension Inversion) (iv). In the other cases, apply the i.h. to all subderivations, then apply the rule.

Lemma 37 (Extension Weakening (Props)). If Γ ` P prop and Γ −→ ∆ then ∆ ` P prop.
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Proof. By inversion on rule EqProp, and Lemma 36 (Extension Weakening (Sorts)) twice.

Lemma 38 (Extension Weakening (Types)). If Γ ` A type and Γ −→ ∆ then ∆ ` A type.

Proof. By a straightforward induction on Γ ` A type.
In the VarWF case, use Lemma 22 (Extension Inversion) (i) or (v). In the SolvedVarWF case, use Lemma

22 (Extension Inversion) (iv).
In the other cases, apply the i.h. and/or (for ImpliesWF and WithWF) Lemma 37 (Extension Weakening

(Props)) to all subderivations, then apply the rule.

C ′.3 Principal Typing Properties

Lemma 39 (Principal Agreement).

(i) If Γ ` A ! type and Γ −→ ∆ then [∆]A = [Γ ]A.

(ii) If Γ ` P prop and FEV(P) = ∅ and Γ −→ ∆ then [∆]P = [Γ ]P.

Proof. By induction on the derivation of Γ −→ ∆.
Part (i):

• Case Γ0 −→ ∆0 [∆0]t = [∆0]t
′

Γ0, α= t −→ ∆0, α= t ′︸ ︷︷ ︸
∆

−→Eqn

If α /∈ FV(A), then:

[Γ0, α= t]A = [Γ0]A By def. of subst.
= [∆0]A By i.h.
= [∆0, α= t ′]A By def. of subst.

Otherwise, α ∈ FV(A).

Γ0 ` t type Γ is well-formed
Γ0 ` [Γ0]t type By Lemma 13 (Right-Hand Substitution for Typing)

Suppose, for a contradiction, that FEV([Γ0]t) 6= ∅.
Since α ∈ FV(A), we also have FEV([Γ ]A) 6= ∅, a contradiction.
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FEV([Γ0]t) 6= ∅ Assumption (for contradiction)
[Γ0]t = [Γ ]α By def. of subst.

FEV([Γ ]α) 6= ∅ By above equality
α ∈ FV(A) Above

FEV([Γ ]A) 6= ∅ By a property of subst.
Γ `A ! type Given

FEV([Γ ]A) = ∅ By inversion⇒⇐
FEV([Γ0]t) = ∅ By contradiction

Γ0 ` t ! type By PrincipalWF
[Γ0]t = [∆0]t By i.h.

Γ0 ` [∆0]t type By above equality
FEV([∆0]t) = ∅ By above equality

Γ0 `
[
[∆0]t/α

]
A ! type By Lemma 8 (Substitution—Well-formedness) (i)

[Γ0]
[
[∆0]t/α

]
A = [∆0]

[
[∆0]t/α

]
A By i.h. (at

[
[∆0]t/α

]
A)

[Γ0, α= t]A =
[
Γ0
][
[Γ0]t/α

]
A By def. of subst.

=
[
Γ0
][
[∆0]t/α

]
A By above equality

=
[
∆0
][
[∆0]t/α

]
A By above equality

=
[
∆0
][
[∆0]t

′/α
]
A By [∆0]t = [∆0]t

′

= [∆]A By def. of subst.

• Case −→Solved, −→Solve, −→Add, −→Solved: Similar to the −→Eqn case.

• Case −→Id, −→Var, −→Uvar, −→Unsolved, −→Marker:
Straightforward, using the i.h. and the definition of substitution.

Part (ii): Similar to part (i), using part (ii) of Lemma 8 (Substitution—Well-formedness).

Lemma 40 (Right-Hand Subst. for Principal Typing). If Γ ` A p type then Γ ` [Γ ]A p type.

Proof. By cases of p:

• Case p = !:

Γ `A type By inversion
FEV([Γ ]A) = ∅ By inversion

Γ ` [Γ ]A type By Lemma 13 (Right-Hand Substitution for Typing)
Γ −→ Γ By Lemma 32 (Extension Reflexivity)

[Γ ][Γ ]A = [Γ ]A By Lemma 29 (Substitution Monotonicity)
FEV([Γ ][Γ ]A) = ∅ By inversion

Γ ` [Γ ]A ! type By rule PrincipalWF

• Case p = 6 ! :

Γ `A type By inversion
Γ ` [Γ ]A type By Lemma 13 (Right-Hand Substitution for Typing)
Γ `A 6 ! type By rule NonPrincipalWF

Lemma 41 (Extension Weakening for Principal Typing). If Γ ` A p type and Γ −→ ∆ then ∆ ` A p type.
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Proof. By cases of p:

• Case p = 6 ! :

Γ `A type By inversion
∆ `A type By Lemma 38 (Extension Weakening (Types))
∆ `A 6 ! type By rule NonPrincipalWF

• Case p = !:

Γ `A type By inversion
FEV([Γ ]A) = ∅ By inversion

∆ `A type By Lemma 38 (Extension Weakening (Types))
∆ ` [∆]A type By Lemma 13 (Right-Hand Substitution for Typing)

[∆]A = [Γ ]A By Lemma 30 (Substitution Invariance)
FEV([∆]A) = ∅ By congruence of equality

∆ ` [∆]A ! type By rule PrincipalWF

Lemma 42 (Inversion of Principal Typing).

(1) If Γ ` (A→ B) p type then Γ ` A p type and Γ ` B p type.

(2) If Γ ` (P ⊃ A) p type then Γ ` P prop and Γ ` A p type.

(3) If Γ ` (A ∧ P) p type then Γ ` P prop and Γ ` A p type.

Proof. Proof of part 1:
We have Γ ` A→ B p type.

• Case p = 6 ! :

1 Γ `A→ B type By inversion
Γ `A type By inversion on 1
Γ `B type By inversion on 1
Γ `A 6 ! type By rule NonPrincipalWF
Γ `B 6 ! type By rule NonPrincipalWF

• Case p = !:

1 Γ `A→ B type By inversion on Γ ` A→ B ! type
∅ = FEV([Γ ](A→ B)) ′′

= FEV([Γ ]A→ [Γ ]B) By definition of substitution
= FEV([Γ ]A) ∪ FEV([Γ ]B) By definition of FEV(−)

FEV([Γ ]A) = FEV([Γ ]B) = ∅ By properties of empty sets and unions
Γ `A type By inversion on 1
Γ `B type By inversion on 1
Γ `A ! type By rule PrincipalWF
Γ `B ! type By rule PrincipalWF

Part 2: We have Γ ` P ⊃ A p type. Similar to Part 1.
Part 3: We have Γ ` A ∧ P p type. Similar to Part 2.
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C ′.4 Instantiation Extends

Lemma 43 (Instantiation Extension).
If Γ ` α̂ := τ : κ a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case ΓL ` τ : κ
ΓL, α̂ : κ, ΓR︸ ︷︷ ︸

Γ

` α̂ := τ : κ a ΓL, α̂ : κ= τ, ΓR
InstSolve

Follows by Lemma 23 (Deep Evar Introduction) (ii).

• Case
β̂ ∈ unsolved(Γ0[α̂ : κ][β̂ : κ])

Γ0[α̂ : κ][β̂ : κ]︸ ︷︷ ︸
Γ

` α̂ := β̂ : κ a Γ0[α̂ : κ][β̂ : κ= α̂]
InstReach

Follows by Lemma 23 (Deep Evar Introduction) (ii).

• Case Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆
Γ0[α̂ : ?] ` α̂ := τ1 ⊕ τ2 : ? a ∆

InstBin

Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Subderivation
Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] −→ Θ By i.h.

Θ ` α̂2 := [Θ]τ2 : ? a ∆ Subderivation
Θ −→ ∆ By i.h.

Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] −→ ∆ By Lemma 33 (Extension Transitivity)

Γ0[α̂ : ?] −→ Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] By Lemma 23 (Deep Evar Introduction)
(parts (i), (i), and (ii),
using Lemma 33 (Extension Transitivity))

Γ0[α̂ : ?] −→ ∆ By Lemma 33 (Extension Transitivity)

• Case

Γ0[α̂ : N] ` α̂ := zero : N a Γ0[α̂ : N= zero]
InstZero

Follows by Lemma 23 (Deep Evar Introduction) (ii).

• Case Γ [α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆
Γ [α̂ : N] ` α̂ := succ(t1) : N a ∆

InstSucc

By reasoning similar to the InstBin case.

C ′.5 Equivalence Extends

Lemma 44 (Elimeq Extension).
If Γ / s $ t : κ a ∆ then there exists Θ such that Γ,Θ −→ ∆.

Proof of Lemma 44 (Elimeq Extension) lem:elimeq-extension
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Proof. By induction on the given derivation. Note that the statement restricts the output to be a (consistent)
context ∆.

• Case

Γ / α $ α : κ a Γ
ElimeqUvarRefl

Since ∆ = Γ , applying Lemma 32 (Extension Reflexivity) suffices (let Θ = ·).

• Case

Γ / zero $ zero : N a Γ
ElimeqZero

Similar to the ElimeqUvarRefl case.

• Case Γ / σ $ t : N a ∆
Γ / succ(σ) $ succ(t) : N a ∆

ElimeqSucc

Follows by i.h.

• Case Γ0[α̂ : κ] ` α̂ := t : κ a ∆
Γ0[α̂ : κ]︸ ︷︷ ︸

Γ

/ α̂ $ t : κ a ∆
ElimeqInstL

Γ ` α̂ := t : κ a ∆ Subderivation
Γ −→ ∆ By Lemma 43 (Instantiation Extension)

Let Θ = ·.
Z Γ,Θ −→ ∆ By Θ = ·

• Case α /∈ FV([Γ ]t) (α=−) /∈ Γ
Γ / α $ t : κ a Γ, α= t

ElimeqUvarL

Let Θ be (α = t).

Z Γ, α= t︸ ︷︷ ︸
Θ

−→ Γ, α= t By Lemma 32 (Extension Reflexivity)

• Cases ElimeqInstR , ElimeqUvarR:

Similar to the respective L cases.

• Case σ # t

Γ / σ $ t : κ a ⊥
ElimeqClash

The statement says that the output is a (consistent) context ∆, so this case is impossible.

Lemma 45 (Elimprop Extension).
If Γ / P a ∆ then there exists Θ such that Γ,Θ −→ ∆.

Proof. By induction on the given derivation. Note that the statement restricts the output to be a (consistent)
context ∆.

Proof of Lemma 45 (Elimprop Extension) lem:elimprop-extension
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• Case Γ / σ $ t : N a ∆
Γ / σ = t a ∆

ElimpropEq

Γ / σ $ t : N a ∆ Subderivation
Z Γ,Θ −→ ∆ By Lemma 44 (Elimeq Extension)

Lemma 46 (Checkeq Extension).
If Γ ` A ≡ B a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case

Γ ` u $ u : κ a Γ
CheckeqVar

Since ∆ = Γ , applying Lemma 32 (Extension Reflexivity) suffices.

• Cases CheckeqUnit, CheckeqZero: Similar to the CheckeqVar case.

• Case Γ ` τ1 $ τ ′1 : ? a Θ Θ ` [Θ]τ2 $ [Θ]τ ′2 : ? a ∆
Γ ` τ1 ⊕ τ2 $ τ ′1 ⊕ τ ′2 : ? a ∆

CheckeqBin

Γ −→ Θ By i.h.
Θ −→ ∆ By i.h.

Z Γ −→ ∆ By Lemma 33 (Extension Transitivity)

• Case Γ ` σ $ t : N a ∆
Γ ` succ(σ) $ succ(t) : N a ∆

CheckeqSucc

Γ `σ $ t : N a ∆ Subderivation
Z Γ −→ ∆ By i.h.

• Case Γ0[α̂] ` α̂ := t : κ a ∆ α̂ /∈ FV([Γ0[α̂]]t)
Γ0[α̂] ` α̂ $ t : κ a ∆

CheckeqInstL

Γ0[α̂] ` α̂ := t : κ a ∆ Subderivation
Z Γ0[α̂]︸ ︷︷ ︸

Γ

−→ ∆ By Lemma 43 (Instantiation Extension)

• Case CheckeqInstR: Similar to the CheckeqInstL case.

Lemma 47 (Checkprop Extension).
If Γ ` P true a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.
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• Case Γ ` σ $ t : N a ∆
Γ ` σ = t true a ∆

CheckpropEq

Γ `σ $ t : N a ∆ Subderivation
Z Γ −→ ∆ By Lemma 46 (Checkeq Extension)

Lemma 48 (Prop Equivalence Extension).
If Γ ` P ≡ Q a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case Γ ` σ1 $ τ1 : N a Θ Θ ` σ2 $ τ2 : N a ∆
Γ ` (σ1 = σ2) ≡ (τ1 = τ2) a ∆

≡PropEq

Γ `σ1 $ τ1 : N a Θ Subderivation
Γ −→ Θ By Lemma 46 (Checkeq Extension)
Θ `σ2 $ τ2 : N a ∆ Subderivation

Θ −→ ∆ By Lemma 46 (Checkeq Extension)
Z Γ −→ ∆ By Lemma 33 (Extension Transitivity)

Lemma 49 (Equivalence Extension).
If Γ ` A ≡ B a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case

Γ ` α ≡ α a Γ
≡Var

Here ∆ = Γ , so Lemma 32 (Extension Reflexivity) suffices.

• Case

Γ ` α̂ ≡ α̂ a Γ
≡Exvar

Similar to the ≡Var case.

• Case

Γ ` 1 ≡ 1 a Γ
≡Unit

Similar to the ≡Var case.

• Case Γ ` A1 ≡ B1 a Θ Θ ` [Θ]A2 ≡ [Θ]B2 a ∆
Γ ` (A1 ⊕ A2) ≡ (B1 ⊕ B2) a ∆

≡⊕

Γ `A1 ≡ B1 a Θ Subderivation
Γ −→ Θ By i.h.
Θ ` [Θ]A2 ≡ [Θ]B2 a ∆ Subderivation

Θ −→ ∆ By i.h.
Z Γ −→ ∆ By Lemma 33 (Extension Transitivity)

Proof of Lemma 49 (Equivalence Extension) lem:equiv-extension
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• Case ≡Vec: Similar to the ≡⊕ case.

• Cases ≡⊃, ≡∧: Similar to the ≡⊕ case, but with Lemma 48 (Prop Equivalence Extension) on the first
premise.

• Case Γ, α : κ ` A0 ≡ B a ∆,α : κ,∆ ′

Γ ` ∀α : κ. A0 ≡ ∀α : κ. B a ∆
≡∀

Γ, α : κ `A0 ≡ B a ∆,α : κ,∆ ′ Subderivation
Γ, α : κ −→ ∆,α : κ,∆ ′ By i.h.

Z Γ −→ ∆ By Lemma 22 (Extension Inversion) (i)

• Case Γ0[α̂] ` α̂ := τ : ? a ∆ α̂ /∈ FV([Γ0[α̂]]τ)
Γ0[α̂] ` α̂ ≡ τ a ∆

≡InstantiateL

Γ0[α̂] ` α̂ := τ : ? a ∆ Subderivation
Z Γ0[α̂]︸ ︷︷ ︸

Γ

−→ ∆ By Lemma 43 (Instantiation Extension)

• Case ≡InstantiateR: Similar to the ≡InstantiateL case.

C ′.6 Subtyping Extends

Lemma 50 (Subtyping Extension). If Γ ` A <:∓ B a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Case Γ,Iα̂, α̂ : κ ` [α̂/α]A <:− B a ∆,Iα̂, Θ
Γ ` ∀α : κ. A <:− B a ∆

<:∀L

Γ,Iα̂, α̂ : κ ` [α̂/α]A <:− B a ∆,Iα̂, Θ Subderivation
Γ,Iα̂, α̂ : κ −→ ∆,Iα̂, Θ By i.h. (i)

Z Γ −→ ∆ By Lemma 22 (Extension Inversion) (ii)

• Case <:∃R: Similar to the <:∀L case.

• Case Γ, α : κ ` A <:− B a ∆,α : κ,Θ

Γ ` A <:− ∀α : κ. B a ∆
<:∀R

Similar to the <:∀L case, but using part (i) of Lemma 22 (Extension Inversion).

• Case <:∃L: Similar to the <:∀R case.

• Case Γ ` A ≡ B a ∆
Γ ` A <:P B a ∆

<:Equiv

Γ `A ≡ B a ∆ Subderivation
Z Γ −→ ∆ By Lemma 49 (Equivalence Extension)

August 15, 2020



C′.7 Typing Extends 83

C ′.7 Typing Extends

Lemma 51 (Typing Extension).
If Γ ` e⇐ A p a ∆
or Γ ` e⇒ A p a ∆
or Γ ` s : A p� B q a ∆
or Γ ` Π :: ~A q⇐ C p a ∆
or Γ / P ` Π :: ~A ! ⇐ C p a ∆
then Γ −→ ∆.

Proof. By induction on the given derivation.

• Match judgments:

In rule MatchEmpty, ∆ = Γ , so the result follows by Lemma 32 (Extension Reflexivity).

Rules MatchBase, Match×, Match+k and MatchWild each have a single premise in which the contexts
match the conclusion (input Γ and output ∆), so the result follows by i.h. For rule MatchSeq, Lemma
33 (Extension Transitivity) is also needed.

In rule Match∃, apply the i.h., then use Lemma 22 (Extension Inversion) (i).

Match∧: Use the i.h.

MatchNeg: Use the i.h. and Lemma 22 (Extension Inversion) (v).

Match⊥: Immediate by Lemma 32 (Extension Reflexivity).

MatchUnify:

Γ,IP, Θ
′ −→ Θ By Lemma 44 (Elimeq Extension)
Θ −→ ∆,IP, ∆

′ By i.h.
Γ,IP, Θ

′ −→ ∆,IP, ∆
′ By Lemma 33 (Extension Transitivity)

Z Γ −→ ∆ By Lemma 22 (Extension Inversion) (ii)

• Synthesis, checking, and spine judgments: In rules Var, 1I, EmptySpine, and ⊃I⊥, the output context
∆ is exactly Γ , so the result follows by Lemma 32 (Extension Reflexivity).

– Case ∀I: Use the i.h. and Lemma 33 (Extension Transitivity).

– Case ∀Spine, ∃I: By −→Add, Γ −→ Γ, α̂ : κ.
The result follows by i.h. and Lemma 33 (Extension Transitivity).

– Cases ∧I, ⊃Spine: Use Lemma 47 (Checkprop Extension), the i.h., and Lemma 33 (Extension
Transitivity).

– Cases Nil, Cons: Using reasoning found in the ∧I and ⊃I cases.

– Case ⊃I:
Γ,IP, Θ

′ −→ Θ By Lemma 45 (Elimprop Extension)
Θ −→ ∆,IP, ∆ By i.h.

Γ,IP, Θ
′ −→ ∆,IP, ∆ By Lemma 33 (Extension Transitivity)

Z Γ −→ ∆ By Lemma 22 (Extension Inversion)

– Cases →I, Rec: Use the i.h. and Lemma 22 (Extension Inversion).

– Cases Sub, Anno, →E, →Spine, +Ik, ×I:
Use the i.h., and Lemma 33 (Extension Transitivity) as needed.

– Case 1Iα̂: By Lemma 23 (Deep Evar Introduction) (ii).

Proof of Lemma 51 (Typing Extension) lem:typing-extension
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– Case α̂Spine, +Iα̂k, ×Iα̂:
Use Lemma 23 (Deep Evar Introduction) (i) twice, Lemma 23 (Deep Evar Introduction) (ii), the
i.h., and Lemma 33 (Extension Transitivity).

– Case →Iα̂: Use Lemma 23 (Deep Evar Introduction) (i) twice, Lemma 23 (Deep Evar Introduc-
tion) (ii), the i.h. and Lemma 22 (Extension Inversion) (v).

– Case Case: Use the i.h. on the synthesis premise and the match premise, and then Lemma 33
(Extension Transitivity).

C ′.8 Unfiled

Lemma 52 (Context Partitioning).
If ∆,Iα̂, Θ −→ Ω,Iα̂,ΩZ then there is a Ψ such that [Ω,Iα̂,ΩZ](∆,Iα̂, Θ) = [Ω]∆,Ψ.

Proof. By induction on the given derivation.

• Case −→Id: Impossible: ∆,Iα̂, Θ cannot have the form ·.

• Case −→Var: We have ΩZ = (Ω ′Z, x : A) and Θ = (Θ ′, x : A ′). By i.h., there is Ψ ′ such that
[Ω,Iα̂,Ω

′
Z](∆,Iα̂, Θ

′) = [Ω]∆,Ψ ′. Then by the definition of context application, [Ω,Iα̂,Ω
′
Z, x :

A](∆,Iα̂, Θ
′, x : A ′) = [Ω]∆,Ψ ′, x : [Ω ′]A. Let Ψ = (Ψ ′, x : [Ω ′]A).

• Case −→Uvar: Similar to the −→Var case, with Ψ = (Ψ ′, α : κ).

• Cases −→Eqn, −→Unsolved, −→Solved, −→Solve, −→Add, −→AddSolved, −→Marker:

Broadly similar to the −→Uvar case, but the rightmost context element disappears in context applica-
tion, so we let Ψ = Ψ ′.

Lemma 54 (Completing Stability).
If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

Proof. By induction on the derivation of Γ −→ Ω.

• Case

· −→ · −→Id

Immediate.

• Case Γ0 −→ Ω0 [Ω0]A = [Ω0]A
′

Γ0, x : A −→ Ω0, x : A
′ −→Var

Γ0 −→ Ω0 Subderivation
[Ω0]Γ0 = [Ω0]Ω0 By i.h.
[Ω0]A = [Ω0]A

′ Subderivation
[Ω0]Γ0, x : [Ω0]A = [Ω0]Ω0, x : [Ω0]A

′ By congruence of equality
[Ω0, x : A

′](Γ0, x : A) = [Ω0, x : A
′](Ω0, x : A

′) By definition of substitution

• Case Γ0 −→ Ω0

Γ0, α : κ −→ Ω0, α : κ
−→Uvar

Similar to −→Var.

Proof of Lemma 54 (Completing Stability) lem:completes-stability
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• Case Γ0 −→ Ω0

Γ0, α̂ : κ −→ Ω0, α̂ : κ
−→Unsolved

Similar to −→Var.

• Case Γ0 −→ Ω0 [Ω0]t = [Ω0]t
′

Γ0, α̂ : κ= t −→ Ω0, α̂ : κ= t ′
−→Solved

Similar to −→Var.

• Case Γ0 −→ Ω0

Γ0,Iα̂ −→ Ω0,Iα̂
−→Marker

Similar to −→Var.

• Case Γ0 −→ Ω0

Γ0, β̂ : κ ′ −→ Ω0, β̂ : κ ′= t
−→Solve

Similar to −→Var.

• Case Γ0 −→ Ω0 [Ω0]t
′ = [Ω0]t

Γ0, α= t ′ −→ Ω0, α= t
−→Eqn

Γ0 −→ Ω0 Subderivation
[Ω0]t

′ = [Ω0]t Subderivation
[Ω0]Γ0 = [Ω0]Ω0 By i.h.

[[Ω0]t/α]([Ω0]Γ0) = [[Ω0]t/α]([Ω0]Ω0) By congruence of equality
[Ω0, α= t](Γ0, α= t ′) = [Ω0, α= t](Ω0, α= t) By definition of context substitution

• Case Γ −→ Ω0

Γ −→ Ω0, α̂ : κ
−→Add

Γ −→ Ω0 Subderivation
[Ω0]Γ = [Ω0]Ω0 By i.h.

[Ω0, α̂ : κ]Γ = [Ω0, α̂ : κ](Ω0, α̂ : κ) By definition of context substitution

• Case Γ −→ Ω0

Γ −→ Ω0, α̂ : κ= t
−→AddSolved

Similar to the −→Add case.

Lemma 55 (Completing Completeness).

(i) If Ω −→ Ω ′ and Ω ` t : κ then [Ω]t = [Ω ′]t.

(ii) If Ω −→ Ω ′ and Ω ` A type then [Ω]A = [Ω ′]A.

(iii) If Ω −→ Ω ′ then [Ω]Ω = [Ω ′]Ω ′.

Proof.

Proof of Lemma 55 (Completing Completeness) lem:completing-completeness
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• Part (i):

By Lemma 29 (Substitution Monotonicity) (i), [Ω ′]t = [Ω ′][Ω]t. Now we need to show [Ω ′][Ω]t = [Ω]t.
Considered as a substitution, Ω ′ is the identity everywhere except existential variables α̂ and universal
variables α. First, since Ω is complete, [Ω]t has no free existentials. Second, universal variables free in
[Ω]t have no equations in Ω (if they had, their occurrences would have been replaced). But if Ω has
no equation for α, it follows from Ω −→ Ω ′ and the definition of context extension in Figure 15 that
Ω ′ also lacks an equation, so applying Ω ′ also leaves α alone.

Transitivity of equality gives [Ω ′]t = [Ω]t.

• Part (ii): Similar to part (i), using Lemma 29 (Substitution Monotonicity) (iii) instead of (i).

• Part (iii): By induction on the given derivation of Ω −→ Ω ′.

Only cases −→Id, −→Var, −→Uvar, −→Eqn, −→Solved, −→AddSolved and −→Marker are possible. In
all of these cases, we use the i.h. and the definition of context application; in cases −→Var, −→Eqn and
−→Solved, we also use the equality in the premise of the respective rule.

Lemma 56 (Confluence of Completeness).
If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

Proof.
∆1 −→ Ω Given

[Ω]∆1 = [Ω]Ω By Lemma 54 (Completing Stability)
∆2 −→ Ω Given

[Ω]∆2 = [Ω]Ω By Lemma 54 (Completing Stability)
[Ω]∆1 = [Ω]∆2 By transitivity of equality

Lemma 57 (Multiple Confluence).
If ∆ −→ Ω and Ω −→ Ω ′ and ∆ ′ −→ Ω ′ then [Ω]∆ = [Ω ′]∆ ′.

Proof.
∆ −→ Ω Given

[Ω]∆ = [Ω]Ω By Lemma 54 (Completing Stability)
Ω −→ Ω ′ Given

[Ω]Ω = [Ω ′]Ω ′ By Lemma 55 (Completing Completeness) (iii)
= [Ω ′]∆ ′ By Lemma 54 (Completing Stability) (∆ ′ −→ Ω ′ given)

Lemma 59 (Canonical Completion).
If Γ −→ Ω
then there exists Ωcanon such that Γ −→ Ωcanon and Ωcanon −→ Ω and dom(Ωcanon) = dom(Γ) and, for all
α̂ : κ= τ and α= τ in Ωcanon, we have FEV(τ) = ∅.

Proof. By induction on Ω. In Ωcanon, make all solutions (for evars and uvars) canonical by applying Ω to
them, dropping declarations of existential variables that aren’t in dom(Γ).

Lemma 60 (Split Solutions).
If ∆ −→ Ω and α̂ ∈ unsolved(∆)
then there exists Ω1 = Ω ′1[α̂ : κ= t1] such that Ω1 −→ Ω and Ω2 = Ω ′1[α̂ : κ= t2] where ∆ −→ Ω2 and
t2 6= t1 and Ω2 is canonical.

Proof. Use Lemma 59 (Canonical Completion) to get Ωcanon such that ∆ −→ Ωcanon and Ωcanon −→ Ω, where
for all solutions t in Ωcanon we have FEV(t) = ∅.

We have Ωcanon = Ω ′1[α̂ : κ= t1], where FEV(t1) = ∅. Therefore Z Ω ′1[α̂ : κ= t1] −→ Ω.
Now choose t2 as follows:

Proof of Lemma 60 (Split Solutions) lem:split-solutions
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• If κ = ?, let t2 = t1 → t1.

• If κ = N, let t2 = succ(t1).

Thus, Z t2 6= t1. Let Ω2 = Ω ′1[α̂ : κ= t2].

Z ∆ −→ Ω2 By Lemma 31 (Split Extension)

D ′ Internal Properties of the Declarative System

Lemma 61 (Interpolating With and Exists).

(1) If D :: Ψ ` Π :: ~A ! ⇐ C p and Ψ ` P0 true
then D ′ :: Ψ ` Π :: ~A ! ⇐ C ∧ P0 p.

(2) If D :: Ψ ` Π :: ~A ! ⇐ [τ/α]C0 p and Ψ ` τ : κ
then D ′ :: Ψ ` Π :: ~A ! ⇐ (∃α : κ. C0) p.

In both cases, the height of D ′ is one greater than the height of D.
Moreover, similar properties hold for the eliminating judgment Ψ / P ` Π :: ~A ! ⇐ C p.

Proof. By induction on the given match derivation.
In the DeclMatchBase case, for part (1), apply rule ∧I. For part (2), apply rule ∃I.
In the DeclMatchNeg case, part (1), use Lemma 2 (Declarative Weakening) (iii). In part (2), use Lemma

2 (Declarative Weakening) (i).

Lemma 62 (Case Invertibility).
If Ψ ` case(e0, Π) ⇐ C p
then Ψ ` e0 ⇒ A ! and Ψ ` Π :: A ! ⇐ C p and Ψ ` Π covers A !
where the height of each resulting derivation is strictly less than the height of the given derivation.

Proof. By induction on the given derivation.

• Case
Ψ ` case(e0, Π) ⇒ A q Ψ ` A ≤join(pol(B),pol(A)) B

Ψ ` case(e0, Π) ⇐ B p
DeclSub

Impossible, because Ψ ` case(e0, Π) ⇒ A q is not derivable.

• Cases Decl∀I, Decl⊃I: Impossible: these rules have a value restriction, but a case expression is not a
value.

• Case Ψ ` P true Ψ ` case(e0, Π) ⇐ C0 p

Ψ ` case(e0, Π) ⇐ C0 ∧ P p
Decl∧I

Z < n− 1 Ψ ` e0 ⇒ A ! By i.h.
< n− 1 Ψ `Π :: A⇐ C0 p

′′

Z < n− 1 Ψ `Π covers A ′′

≤ n− 1 Ψ `P true Subderivation
Z < n Ψ `Π :: A⇐ C0 ∧ P p By Lemma 61 (Interpolating With and Exists) (1)

Proof of Lemma 62 (Case Invertibility) lem:case-invertibility
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• Case Ψ ` τ : κ Ψ ` case(e0, Π) ⇐ [τ/α]C0

Ψ ` case(e0, Π) ⇐ ∃α : κ. C0 p
Decl∃I

Z Ψ ` e0 ⇒ A ! By i.h.
Ψ `Π :: A⇐ C0 p

′′

Z Ψ `Π covers A ′′

Ψ ` τ : κ Subderivation
Z Ψ `Π :: A⇐ ∃α : κ. C0 p By Lemma 61 (Interpolating With and Exists) (2)

The heights of the derivations are similar to those in the Decl∧I case.

• Cases Decl1I, Decl→I, DeclRec, Decl+Ik, Decl×I, DeclNil, DeclCons:
Impossible, because in these rules e cannot have the form case(e0, Π).

• Case Ψ ` case(e0, Π) ⇒ A ! Ψ ` Π :: A ! ⇐ C p Ψ ` Π covers A !

Ψ ` case(e0, Π) ⇐ C p
DeclCase

Immediate.

E ′ Miscellaneous Properties of the Algorithmic System

Lemma 63 (Well-Formed Outputs of Typing).

(Spines) If Γ ` s : A q� C p a ∆ or Γ ` s : A q� C dpe a ∆
and Γ ` A q type
then ∆ ` C p type.

(Synthesis) If Γ ` e⇒ A p a ∆
then A ` p type.

Proof. By induction on the given derivation.

• Case Anno: Use Lemma 51 (Typing Extension) and Lemma 41 (Extension Weakening for Principal
Typing).

• Case ∀Spine: We have Γ ` (∀α : κ. A0) q type.
By inversion, Γ, α : κ ` A0 q type.
By properties of substitution, Γ, α̂ : κ ` [α̂/α]A0 q type.
Now apply the i.h.

• Case ⊃Spine: Use Lemma 42 (Inversion of Principal Typing) (2), Lemma 47 (Checkprop Extension),
and Lemma 41 (Extension Weakening for Principal Typing).

• Case SpineRecover:

By i.h., ∆ ` C 6 ! type.
We have as premise FEV(C) = ∅.
Therefore ∆ ` C ! type.

• Case SpinePass: By i.h.

• Case EmptySpine: Immediate.

• Case →Spine: Use Lemma 42 (Inversion of Principal Typing) (1), Lemma 51 (Typing Extension), and
Lemma 41 (Extension Weakening for Principal Typing).

• Case α̂Spine: Show that α̂1 → α̂2 is well-formed, then use the i.h.
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F ′ Decidability of Instantiation

Lemma 64 (Left Unsolvedness Preservation).
If Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ := A : κ a ∆ and β̂ ∈ unsolved(Γ0) then β̂ ∈ unsolved(∆).

Proof. By induction on the given derivation.

• Case Γ0 ` τ : κ
Γ0, α̂ : κ, Γ1︸ ︷︷ ︸

Γ

` α̂ := τ : κ a Γ0, α̂ : κ= τ, Γ1︸ ︷︷ ︸
∆

InstSolve

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case
β̂ ∈ unsolved(Γ ′[α̂ : κ][β̂ : κ])

Γ ′[α̂ : κ][β̂ : κ]︸ ︷︷ ︸
Γ

` α̂ := β̂ : κ a Γ ′[α̂ : κ][β̂ : κ= α̂]︸ ︷︷ ︸
∆

InstReach

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case Γ0, α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2, Γ1 ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆
Γ0, α̂ : ?, Γ1 ` α̂ := τ1 ⊕ τ2 : ? a ∆

InstBin

We have β̂ ∈ unsolved(Γ0). Therefore β̂ ∈ unsolved(Γ0, α̂2 : ?).
Clearly, α̂2 ∈ unsolved(Γ0, α̂2 : ?).
We have two subderivations:

Γ0, α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2, Γ1 ` α̂1 := A1 : ? a Θ (1)

Θ ` α̂2 := [Θ]A2 : ? a ∆ (2)

By induction on (1), β̂ ∈ unsolved(Θ).
Also by induction on (1), with α̂2 playing the role of β̂, we get α̂2 ∈ unsolved(Θ).
Since β̂ ∈ Γ0, it is declared to the left of α̂2 in Γ0, α̂2 : ?, α̂1 : ?, α̂= α̂1 ⊕ α̂2, Γ1.
Hence by Lemma 20 (Declaration Order Preservation), β̂ is declared to the left of α̂2 in Θ. That is,
Θ = (Θ0, α̂2 : ?, Θ1), where β̂ ∈ unsolved(Θ0).
By induction on (2), β̂ ∈ unsolved(∆).

• Case

Γ ′[α̂ : N]︸ ︷︷ ︸
Γ

` α̂ := zero : N a Γ ′[α̂ : N= zero]︸ ︷︷ ︸
∆

InstZero

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case Γ [α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆
Γ [α̂ : N] ` α̂ := succ(t1) : N a ∆

InstSucc

We have β̂ ∈ unsolved(Γ0). Therefore β̂ ∈ unsolved(Γ0, α̂1 : N). By i.h., β̂ ∈ unsolved(∆).

Lemma 65 (Left Free Variable Preservation). If

Γ︷ ︸︸ ︷
Γ0, α̂ : κ, Γ1 ` α̂ := t : κ a ∆ and Γ ` s : κ ′ and α̂ /∈ FV([Γ ]s)

and β̂ ∈ unsolved(Γ0) and β̂ /∈ FV([Γ ]s), then β̂ /∈ FV([∆]s).

Proof. By induction on the given instantiation derivation.

Proof of Lemma 65 (Left Free Variable Preservation) lem:left-free-variable-preservation
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• Case Γ0 ` τ : κ
Γ0, α̂ : κ, Γ1 ` α̂ := τ : κ a Γ0, α̂ : κ= τ, Γ1︸ ︷︷ ︸

∆

InstSolve

We have α̂ /∈ FV([Γ ]σ). Since ∆ differs from Γ only in α̂, it must be the case that [Γ ]σ = [∆]σ. It is given
that β̂ /∈ FV([Γ ]σ), so β̂ /∈ FV([∆]σ).

• Case γ̂ ∈ unsolved(Γ [α̂ : κ][γ̂ : κ])

Γ [α̂ : κ][γ̂ : κ] ` α̂ := γ̂ : κ a Γ [α̂ : κ][γ̂ : κ= α̂]︸ ︷︷ ︸
∆

InstReach

Since ∆ differs from Γ only in solving γ̂ to α̂, applying ∆ to a type will not introduce a β̂. We have
β̂ /∈ FV([Γ ]σ), so β̂ /∈ FV([∆]σ).

• Case Γ ′︷ ︸︸ ︷
Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆

Γ [α̂ : ?] ` α̂ := τ1 ⊕ τ2 : ? a ∆
InstBin

We have Γ ` σ type and α̂ /∈ FV([Γ ]σ) and β̂ /∈ FV([Γ ]σ).
By weakening, we get Γ ′ ` σ : κ ′; since α̂ /∈ FV([Γ ]σ) and Γ ′ only adds a solution for α̂, it follows that
[Γ ′]σ = [Γ ]σ.
Therefore α̂1 /∈ FV([Γ ′]σ) and α̂2 /∈ FV([Γ ′]σ) and β̂ /∈ FV([Γ ′]σ).
Since we have β̂ ∈ Γ0, we also have β̂ ∈ (Γ0, α̂2 : ?).
By induction on the first premise, β̂ /∈ FV([Θ]σ).
Also by induction on the first premise, with α̂2 playing the role of β̂, we have α̂2 /∈ FV([Θ]σ).
Note that α̂2 ∈ unsolved(Γ0, α̂2 : ?).
By Lemma 64 (Left Unsolvedness Preservation), α̂2 ∈ unsolved(Θ).
Therefore Θ has the form (Θ0, α̂2 : ?, Θ1).
Since β̂ 6= α̂2, we know that β̂ is declared to the left of α̂2 in (Γ0, α̂2 : ?), so by Lemma 20 (Declaration
Order Preservation), β̂ is declared to the left of α̂2 in Θ. Hence β̂ ∈ Θ0.
Furthermore, by Lemma 43 (Instantiation Extension), we have Γ ′ −→ Θ.
Then by Lemma 36 (Extension Weakening (Sorts)), we have ∆ ` σ : κ ′.
Using induction on the second premise, β̂ /∈ FV([∆]σ).

• Case

Γ ′[α̂ : N]︸ ︷︷ ︸
Γ

` α̂ := zero : N a Γ ′[α̂ : N= zero]︸ ︷︷ ︸
∆

InstZero

We have α̂ /∈ FV([Γ ]σ). Since ∆ differs from Γ only in α̂, it must be the case that [Γ ]σ = [∆]σ. It is given
that β̂ /∈ FV([Γ ]σ), so β̂ /∈ FV([∆]σ).

• Case Θ︷ ︸︸ ︷
Γ ′[α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆

Γ ′[α̂ : N]︸ ︷︷ ︸
Γ

` α̂ := succ(t1) : N a ∆
InstSucc

Proof of Lemma 65 (Left Free Variable Preservation) lem:left-free-variable-preservation
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Γ `σ : κ ′ Given
Θ `σ : κ ′ By weakening

α̂ /∈ FV([Γ ]σ) Given
α̂ /∈ FV([Θ]σ) α̂ /∈ FV([Γ ]σ) and Θ only solves α̂

Θ = (Γ0, α̂1 : N, α̂ : N= succ(α̂1), Γ1) Given
β̂ /∈ unsolved(Γ0) Given
β̂ /∈ unsolved(Γ0, α̂1 : N) α̂1 fresh

β̂ /∈ FV([Γ ]σ) Given
β̂ /∈ FV([Θ]σ) α̂1 fresh

Z β̂ /∈ FV([∆]σ) By i.h.

Lemma 66 (Instantiation Size Preservation). If

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` α̂ := τ : κ a ∆ and Γ ` s : κ ′ and α̂ /∈ FV([Γ ]s), then

|[Γ ]s| = |[∆]s|, where |C| is the plain size of the term C.

Proof. By induction on the given derivation.

• Case Γ0 ` τ : κ
Γ0, α̂ : κ, Γ1︸ ︷︷ ︸

Γ

` α̂ := τ : κ a Γ0, α̂ : κ= τ, Γ1︸ ︷︷ ︸
∆

InstSolve

Since ∆ differs from Γ only in solving α̂, and we know α̂ /∈ FV([Γ ]σ), we have [∆]σ = [Γ ]σ; therefore
|[∆]σ = [Γ ]σ|.

• Case

Γ ′[α̂ : N]︸ ︷︷ ︸
Γ

` α̂ := zero : N a Γ ′[α̂ : N= zero]︸ ︷︷ ︸
∆

InstZero

Similar to the InstSolve case.

• Case
β̂ ∈ unsolved(Γ ′[α̂ : κ][β̂ : κ])

Γ ′[α̂ : κ][β̂ : κ]︸ ︷︷ ︸
Γ

` α̂ := β̂ : κ a Γ ′[α̂ : κ][β̂ : κ= α̂]︸ ︷︷ ︸
∆

InstReach

Here, ∆ differs from Γ only in solving β̂ to α̂. However, α̂ has the same size as β̂, so even if β̂ ∈ FV([Γ ]σ),
we have |[∆]σ = [Γ ]σ|.

• Case Γ ′︷ ︸︸ ︷
Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆

Γ [α̂ : ?] ` α̂ := τ1 ⊕ τ2 : ? a ∆
InstBin

We have Γ ` σ : κ ′ and α̂ /∈ FV([Γ ]σ).
Since α̂1, α̂2 /∈ dom(Γ), we have α̂, α̂1, α̂2 /∈ FV([Γ ]σ).
By Lemma 23 (Deep Evar Introduction), Γ [α̂ : ?] −→ Γ ′.
By Lemma 36 (Extension Weakening (Sorts)), Γ ′ ` σ : κ ′.
Since α̂ /∈ FV(σ), it follows that [Γ ′]σ = [Γ ]σ, and so |[Γ ′]σ| = |[Γ ]σ|.
By induction on the first premise, |[Γ ′]σ| = |[Θ]σ|.
By Lemma 20 (Declaration Order Preservation), since α̂2 is declared to the left of α̂1 in Γ ′, we have
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that α̂2 is declared to the left of α̂1 in Θ.
By Lemma 64 (Left Unsolvedness Preservation), since α̂2 ∈ unsolved(Γ ′), it is unsolved in Θ: that is,
Θ = (Θ0, α̂2 : ?, Θ1).
By Lemma 43 (Instantiation Extension), we have Γ ′ −→ Θ.
By Lemma 36 (Extension Weakening (Sorts)), Θ ` σ : κ ′.
Since α̂2 /∈ FV([Γ ′]σ), Lemma 65 (Left Free Variable Preservation) gives α̂2 /∈ FV([Θ]σ).
By induction on the second premise, |[Θ]σ| = |[∆]σ|, and by transitivity of equality, |[Γ ]σ| = |[∆]σ|.

• Case Γ ′︷ ︸︸ ︷
Γ [α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆

Γ [α̂ : N] ` α̂ := succ(t1) : N a ∆
InstSucc

Γ [α̂ : ?] `σ : κ ′ Given
α̂ /∈ [Γ [α̂ : ?]]σ Given

Γ [α̂ : ?] −→ Γ ′ By Lemma 23 (Deep Evar Introduction)
Γ ′ `σ : κ ′ By Lemma 36 (Extension Weakening (Sorts))

[Γ ′]σ = [Γ [α̂ : ?]]σ Since α̂ /∈ FV([Γ [α̂ : ?]]σ)

|[Γ ′]σ| = |[Γ [α̂ : ?]]σ| By congruence of equality
α̂1 /∈ [Γ ′]σ Since [Γ ′]σ = [Γ [α̂ : ?]]σ, and α̂1 /∈ dom(Γ [α̂ : ?])

|[Γ ′]σ| = |[Θ]σ| By i.h.
|[Γ [α̂ : ?]]σ| = |[Θ]σ| By transitivity of equality

Lemma 67 (Decidability of Instantiation). If Γ = Γ0[α̂ : κ ′] and Γ ` t : κ such that [Γ ]t = t and α̂ /∈ FV(t),
then:

(1) Either there exists ∆ such that Γ0[α̂ : κ ′] ` α̂ := t : κ a ∆, or not.

Proof. By induction on the derivation of Γ ` t : κ.

• Case (u : κ) ∈ Γ
ΓL, α̂ : κ ′, ΓR ` u : κ

VarSort

If κ 6= κ ′, no rule matches and no derivation exists.
Otherwise:

– If (u : κ) ∈ ΓL, we can apply rule InstSolve.

– If u is some unsolved existential variable β̂ and (β̂ : κ) ∈ ΓR, then we can apply rule InstReach.

– Otherwise, u is declared in ΓR and is a universal variable; no rule matches and no derivation exists.

• Case
(β̂ : κ= τ) ∈ Γ
Γ ` β̂ : κ

SolvedVarSort

By inversion, (β̂ : κ= τ) ∈ Γ , but [Γ ]β̂ = β̂ is given, so this case is impossible.

• Case UnitSort:
If κ ′ = ?, then apply rule InstSolve. Otherwise, no rule matches and no derivation exists.

• Case Γ ` τ1 : ? Γ ` τ2 : ?
ΓL, α̂ : κ ′, ΓR︸ ︷︷ ︸

Γ

` τ1 ⊕ τ2 : ?
BinSort

Proof of Lemma 67 (Decidability of Instantiation) lem:instantiation-decidable
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If κ ′ 6= ?, then no rule matches and no derivation exists. Otherwise:
Given, [Γ ](τ1 ⊕ τ2) = τ1 ⊕ τ2 and α̂ /∈ FV([Γ ](τ1 ⊕ τ2)).
If ΓL ` τ1 ⊕ τ2 : ?, then we have a derivation by InstSolve.
If not, the only other rule whose conclusion matches τ1 ⊕ τ2 is InstBin.
First, consider whether ΓL, α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2, ΓR ` α̂1 := t : ? a − is decidable.

By definition of substitution, [Γ ](τ1 ⊕ τ2) = ([Γ ]τ1) ⊕ ([Γ ]τ2). Since [Γ ](τ1 ⊕ τ2) = τ1 ⊕ τ2, we have
[Γ ]τ1 = τ1 and [Γ ]τ2 = τ2.
By weakening, ΓL, α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2, ΓR ` τ1 ⊕ τ2 : ?.
Since Γ ` τ1 : ? and Γ ` τ2 : ?, we have α̂1, α̂2 /∈ FV(τ1) ∪ FV(τ2).
Since α̂ /∈ FV(t) ⊇ FV(τ1), it follows that [Γ ′]τ1 = τ1.
By i.h., either there exists Θ s.t. ΓL, α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2, ΓR ` α̂1 := τ1 : ? a Θ, or not.
If not, then no derivation by InstBin exists.
Otherwise, there exists such a Θ. By Lemma 64 (Left Unsolvedness Preservation), we have α̂2 ∈
unsolved(Θ).
By Lemma 65 (Left Free Variable Preservation), we know that α̂2 /∈ FV([Θ]τ2).
Substitution is idempotent, so [Θ][Θ]τ2 = [Θ]τ2.
By i.h., either there exists ∆ such that Θ ` α̂2 := [Θ]τ2 : κ a ∆, or not.
If not, no derivation by InstBin exists.
Otherwise, there exists such a ∆. By rule InstBin, we have Γ ` α̂ := t : κ a ∆.

• Case

Γ ` zero : N
ZeroSort

If κ ′ 6= N, then no rule matches and no derivation exists. Otherwise, apply rule InstSolve.

• Case Γ ` t0 : N
Γ ` succ(t0) : N

SuccSort

If κ ′ 6= N, then no rule matches and no derivation exists. Otherwise:
If ΓL ` succ(t0) : N, then we have a derivation by InstSolve.
If not, the only other rule whose conclusion matches succ(t0) is InstSucc.
The remainder of this case is similar to the BinSort case, but shorter.

G ′ Separation

Lemma 68 (Transitivity of Separation).
If (ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) and (ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R)
then (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Proof.
(ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) Given
(ΓL, ΓR) −→ (ΘL, ΘR) By Definition 5

ΓL ⊆ ΘL and ΓR ⊆ ΘR ′′

(ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R) Given
(ΘL, ΘR) −→ (∆L, ∆R) By Definition 5

ΘL ⊆ ∆L and ΘR ⊆ ∆R ′′

(ΓL, ΓR) −→ (∆L, ∆R) By Lemma 33 (Extension Transitivity)
ΓL ⊆ ∆L and ΓR ⊆ ∆R By transitivity of ⊆

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Definition 5
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Lemma 69 (Separation Truncation).
If H has the form α : κ or Iα̂ or IP or x :Ap
and (ΓL ∗ (ΓR, H)) −→∗ (∆L ∗ ∆R)
then (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆0) where ∆R = (∆0, H,Θ).

Proof. By induction on ∆R.
If ∆R = (. . . , H), we have (ΓL ∗ ΓR, H) −→∗ (∆L ∗ (∆,H)), and inversion on −→Uvar (if H is (α : κ), or the

corresponding rule for other forms) gives the result (with Θ = ·).
Otherwise, proceed into the subderivation of (ΓL, ΓR, α : κ) −→ (∆L, ∆R), with ∆R = (∆ ′R, ∆

′) where ∆ ′ is
a single declaration. Use the i.h. on ∆ ′R, producing some Θ ′. Finally, let Θ = (Θ ′, ∆ ′).

Lemma 70 (Separation for Auxiliary Judgments).

(i) If ΓL ∗ ΓR ` σ $ τ : κ a ∆
and FEV(σ) ∪ FEV(τ) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(ii) If ΓL ∗ ΓR ` P true a ∆
and FEV(P) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(iii) If ΓL ∗ ΓR / σ $ τ : κ a ∆
and FEV(σ) ∪ FEV(τ) = ∅
then ∆ = (∆L ∗ (∆R, Θ)) and (ΓL ∗ (ΓR, Θ)) −→∗ (∆L ∗ ∆R).

(iv) If ΓL ∗ ΓR / P a ∆
and FEV(P) = ∅
then ∆ = (∆L ∗ (∆R, Θ)) and (ΓL ∗ (ΓR, Θ)) −→∗ (∆L ∗ ∆R).

(v) If ΓL ∗ ΓR ` α̂ := τ : κ a ∆
and (FEV(τ) ∪ {α̂}) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(vi) If ΓL ∗ ΓR ` P ≡ Q a ∆
and FEV(P) ∪ FEV(Q) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(vii) If ΓL ∗ ΓR ` A ≡ B a ∆
and FEV(A) ∪ FEV(B) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Proof. Part (i): By induction on the derivation of the given checkeq judgment. Cases CheckeqVar, CheckeqUnit
and CheckeqZero are immediate (∆L = ΓL and ∆R = ΓR). For case CheckeqSucc, apply the i.h. For cases
CheckeqInstL and CheckeqInstR, use the i.h. (v). For case CheckeqBin, use reasoning similar to that in the ∧I
case of Lemma 72 (Separation—Main) (transitivity of separation, and applying Θ in the second premise).

Part (ii), checkprop: Use the i.h. (i).
Part (iii), elimeq: Cases ElimeqUvarRefl, ElimeqUnit and CheckeqZero are immediate (∆L = ΓL and ∆R =

ΓR). Cases ElimeqUvarL⊥, ElimeqUvarR⊥, ElimeqBinBot and ElimeqClash are impossible (we have ∆, not
⊥). For case ElimeqSucc, apply the i.h. The case for ElimeqBin is similar to the case CheckeqBin in part (i).
For cases ElimeqUvarL and ElimeqUvarR, ∆ = (ΓL, ΓR, α= τ) which, since FEV(τ) ⊆ dom(ΓR), ensures that
(ΓL ∗ (ΓR, α= τ)) −→∗ (∆L ∗ (∆R, α= τ)).

Part (iv), elimprop: Use the i.h. (iii).
Part (v), instjudg:

• Case InstSolve: Here, Γ = (Γ0, α̂ : κ, Γ1) and ∆ = (Γ0, α̂ : κ= τ, Γ1). We have α̂ ∈ dom(ΓR), so the
declaration α̂ : κ is in ΓR. Since FEV(τ) ⊆ dom(ΓR), the context ∆ maintains the separation.

Proof of Lemma 70 (Separation for Auxiliary Judgments) lem:separation-aux
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• Case InstReach: Here, Γ = Γ0[α̂ : κ][β̂ : κ] and ∆ = Γ0[α̂ : κ][β̂ : κ= α̂]. We have α̂ ∈ dom(ΓR), so the
declaration α̂ : κ is in ΓR. Since β̂ is declared to the right of α̂, it too must be in ΓR, which can also be
shown from FEV(β̂) ⊆ dom(ΓR). Both declarations are in ΓR, so the context ∆ maintains the separation.

• Case InstZero: In this rule, ∆ is the same as Γ except for a solution zero, which doesn’t violate
separation.

• Case InstSucc: The result follows by i.h., taking care to keep the declaration α̂1 : N on the right when
applying the i.h., even if α̂ : N is the leftmost declaration in ΓR, ensuring that succ(α̂1) does not violate
separation.

• Case InstBin: As in the InstSucc case, the new declarations should be kept on the right-hand side of
the separator. Otherwise the case is straightforward (using the i.h. twice and transitivity).

Part (vi), propequivjudg: Similar to the CheckeqBin case of part (i), using the i.h. (i).
Part (vii), equivjudg:

• Cases ≡Var, ≡Exvar, ≡Unit: Immediate (∆L = ΓL and ∆R = ΓR).

• Case ≡⊕: Similar to the case CheckeqBin in part (i).

• Case ≡Vec: Similar to the case CheckeqBin in part (i).

• Cases ≡∀, ≡∃: Similar to the case CheckeqBin in part (i).

• Cases ≡⊃, ≡∧: Similar to the case CheckeqBin in part (i), using the i.h. (vi).

• Cases ≡InstantiateL, ≡InstantiateR: Use the i.h. (v).

Lemma 71 (Separation for Subtyping). If ΓL ∗ ΓR ` A <:P B a ∆
and FEV(A) ⊆ dom(ΓR)
and FEV(B) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Proof. By induction on the given derivation. In the <:Equiv case, use Lemma 70 (Separation for Auxiliary
Judgments) (vii). Otherwise, the reasoning needed follows that used in the proof of Lemma 72 (Separation—
Main).

Lemma 72 (Separation—Main).

(Spines) If ΓL ∗ ΓR ` s : A p� C q a ∆
or ΓL ∗ ΓR ` s : A p� C dqe a ∆
and ΓL ∗ ΓR ` A p type
and FEV(A) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) and FEV(C) ⊆ dom(∆R).

(Checking) If ΓL ∗ ΓR ` e⇐ C p a ∆
and ΓL ∗ ΓR ` C p type
and FEV(C) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(Synthesis) If ΓL ∗ ΓR ` e⇒ A p a ∆
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

(Match) If ΓL ∗ ΓR ` Π :: ~A q⇐ C p a ∆
and FEV(~A) = ∅
and FEV(C) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).
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(Match Elim.) If ΓL ∗ ΓR / P ` Π :: ~A ! ⇐ C p a ∆
and FEV(P) = ∅
and FEV(~A) = ∅
and FEV(C) ⊆ dom(ΓR)
then ∆ = (∆L ∗ ∆R) and (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

Proof. By induction on the given derivation.
First, the (Match) judgment part, giving only the cases that motivate the side conditions:

• Case MatchBase: Here we use the i.h. (Checking), for which we need FEV(C) ⊆ dom(ΓR).

• Case Match∧: Here we use the i.h. (Match Elim.), which requires that FEV(P) = ∅, which motivates
FEV(~A) = ∅.

• Case MatchNeg: In its premise, this rule appends a type A ∈ ~A to ΓR and claims it is principal (z : A!),
which motivates FEV(~A = ∅).

Similarly, (Match Elim.):

• Case MatchUnify: Here we use Lemma 70 (Separation for Auxiliary Judgments) (iii), for which we
need FEV(σ) ∪ FEV(τ) = ∅, which motivates FEV(P) = ∅.

Now, we show the cases for the (Spine), (Checking), and (Synthesis) parts.

• Cases Var, 1I, ⊃I⊥: In all of these rules, the output context is the same as the input context, so just
let ∆L = ΓL and ∆R = ΓR.

• Case

ΓL ∗ ΓR ` · : A p� A︸︷︷︸
C

p︸︷︷︸
q

a ΓL ∗ ΓR
EmptySpine

Let ∆L = ΓL and ∆R = ΓR.
We have FEV(A) ⊆ dom(ΓR). Since ∆R = ΓR and C = A, it is immediate that FEV(C) ⊆ dom(∆R).

• Case
ΓL ∗ ΓR ` e⇒ A q a Θ Θ ` A <:P B a ∆

ΓL ∗ ΓR ` e⇐ B p a ∆
Sub

By i.h., Θ = (ΘL ∗ ΘR) and (ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR).
By Lemma 71 (Separation for Subtyping), ∆ = (∆L ∗ ∆R) and (ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R).
By Lemma 68 (Transitivity of Separation), (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R).

• Case Γ ` A! type Γ ` e⇐ [Γ ]A ! a ∆
Γ ` (e : A) ⇒ [∆]A ! a ∆

Anno

By i.h.; since FEV(A) = ∅, the condition on the (Checking) part is trivial.

• Case

Γ [α̂ : ?] ` () ⇐ α̂ a Γ [α̂ : ?= 1]
1Iα̂

Adding a solution with a ground type cannot destroy separation.

• Case v chk-I ΓL, ΓR, α : κ ` v⇐ A0 p a ∆,α : κ,Θ

ΓL, ΓR ` v⇐ ∀α : κ. A0 p a ∆
∀I

Proof of Lemma 72 (Separation—Main) lem:separation-main
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FEV(∀α : κ. A0) ⊆ dom(ΓR) Given
FEV(A0) ⊆ dom(ΓR, α : κ) From definition of FEV

(∆,α : κ,Θ) = (∆L ∗ ∆ ′R) By i.h.
(ΓL ∗ (ΓR, α : κ)) −→∗ (∆L ∗ ∆ ′R) ′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 69 (Separation Truncation)
∆ ′R = (∆R, α : κ,Θ) ′′

(∆,α : κ,Θ) = (∆L ∗ ∆ ′R) Above
= (∆L, ∆

′
R) Definition of ∗

= (∆L, ∆R, α : κ,Θ) By above equation
Z ∆ = (∆L, ∆R) α not multiply declared

• Case ΓL, ΓR, α̂ : κ ` e s : [α̂/α]A0 � C q a ∆
ΓL, ΓR ` e s : ∀α : κ. A0 p� C q a ∆

∀Spine

FEV(∀α : κA0. ) ⊆ dom(ΓR) Given
FEV([α̂/α]A0) ⊆ dom(ΓR, α̂ : κ) From definition of FEV

Z ∆ = (∆L ∗ ∆R) By i.h.
(ΓL ∗ (ΓR, α̂ : κ)) −→∗ (∆L ∗ ∆R) ′′

Z FEV(C) ⊆ dom(∆R)
′′

dom(ΓL) ⊆ dom(∆L) By Definition 5
dom(ΓR, α̂ : κ) ⊆ dom(∆R) By Definition 5

dom(ΓR) ∪ {α̂} ⊆ dom(∆R) By definition of dom(−)

dom(ΓR) ⊆ dom(∆R) Property of ⊆

(ΓL, ΓR) −→ (∆L, ∆R) By Lemma 51 (Typing Extension)

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Definition 5

• Case e not a case ΓL ∗ ΓR ` P true a Θ Θ ` e⇐ [Θ]A0 p a ∆
ΓL ∗ ΓR ` e⇐ (A0 ∧ P) p a ∆

∧I

ΓL ∗ ΓR ` (A0 ∧ P) p type Given
ΓL ∗ ΓR `P prop By inversion
ΓL ∗ ΓR `A0 p type By inversion

FEV(A0 ∧ P) ⊆ dom(ΓR) Given
FEV(P) ⊆ dom(ΓR) By def. of FEV

FEV(A0) ⊆ dom(ΓR)
′′

Θ = (ΘL ∗ ΘR) By Lemma 70 (Separation for Auxiliary Judgments) (i)
(ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) ′′

Proof of Lemma 72 (Separation—Main) lem:separation-main
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FEV(A0) ⊆ dom(ΓR) Above
dom(ΓR) ⊆ dom(ΘR) By Definition 5
FEV(A0) ⊆ dom(ΘR) By previous line

FEV([Θ]A0) ⊆ dom(ΘR) Previous line and (ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR)
ΓL ∗ ΓR ` (A0 ∧ P) p type Given
ΓL ∗ ΓR `A0 p type By inversion

Θ `A0 p type By Lemma 41 (Extension Weakening for Principal Typing)
Θ ` [Θ]A0 p type By Lemma 13 (Right-Hand Substitution for Typing)

Z ∆ = (∆L ∗ ∆R) By i.h.
(ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R) ′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 68 (Transitivity of Separation)

• Case Nil: Similar to a section of the ∧I case.

• Case Cons: Similar to the ∧I case, with an extra use of the i.h. for the additional second premise.

• Case v chk-I ΓL ∗ (ΓR,IP) / P a Θ Θ ` v⇐ [Θ]A0 ! a ∆,IP, ∆ ′

ΓL ∗ ΓR ` v⇐ P ⊃ A0 ! a ∆
⊃I

ΓL ∗ ΓR ` (P ⊃ A0) ! type Given
ΓL ∗ ΓR `P ⊃ A0 prop By inversion

FEV(P ⊃ A0) = ∅ ′′

FEV(P) = ∅ By def. of FEV

ΓL ∗ (ΓR,IP) / P a Θ Subderivation
Θ = (ΘL ∗ (ΘR, ΘZ)) By Lemma 70 (Separation for Auxiliary Judgments) (iv)

(ΓL ∗ (ΓR,IP, ΘZ)) −→∗ (ΘL ∗ (ΘR, ΘZ)) ′′

ΓL ∗ ΓR ` (P ⊃ A0) ! type Given
ΓL, ΓR `A0 ! type By Lemma 42 (Inversion of Principal Typing) (2)

ΓL, ΓR,IP, ΘZ `A0 ! type By Lemma 35 (Suffix Weakening)
Θ ` [Θ]A0 ! type By Lemmas 41 and 40

FEV(A0) = ∅ Above and def. of FEV
FEV(A0) ⊆ dom(ΘR, ΘZ) Immediate

(∆,IP, ∆
′) = (∆L ∗ ∆ ′R) By i.h.

(ΘL ∗ (ΘR, ΘZ)) −→∗ (∆L ∗ ∆ ′R) ′′

(ΓL ∗ (ΓR,IP)) −→∗ (∆L ∗ ∆ ′R) By Lemma 68 (Transitivity of Separation)
Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 69 (Separation Truncation)

∆ ′R = (∆R,IP, . . . )
′′

Z ∆ = (∆L, ∆R) Similar to the ∀I case

• Case ∃I: Similar to the ∀Spine case.

• Case ΓL ∗ ΓR ` P true a Θ Θ ` e s : [Θ]A0 p� C q a ∆
ΓL ∗ ΓR ` e s : P ⊃ A0 p� C q a ∆

⊃Spine

Proof of Lemma 72 (Separation—Main) lem:separation-main
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ΓL ∗ ΓR ` (P ⊃ A0) p type Given
ΓL ∗ ΓR `P prop By inversion
ΓL, ΓR `P true a Θ Subderivation
Θ = (ΘL ∗ ΘR) By Lemma 70 (Separation for Auxiliary Judgments) (i)

(ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) ′′

Θ ` e s : [Θ]A0 p� C q a ∆ Subderivation
(∆,IP, ∆

′) = (∆L ∗ ∆ ′R) By i.h.
(ΘL ∗ ΘR) −→∗ (∆L ∗ ∆ ′R) ′′

Z FEV(C) ⊆ dom(∆R)
′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 68 (Transitivity of Separation)

• Case ΓL, ΓR, x :Cp ` v⇐ C p a ∆, x :Cp,Θ
ΓL, ΓR ` rec x. v⇐ C p a ∆

Rec

ΓL ∗ ΓR `C p type Given
FEV(C) ⊆ dom(ΓR) Given

ΓL ∗ (ΓR, x :Cp) `C p type By weakening and Definition 4
ΓL, ΓR, x :Cp ` v⇐ C p a ∆, x :Cp,Θ Subderivation

(∆, x :Cp,Θ) = (∆L, ∆
′
R) By i.h.

(ΓL ∗ ΓR) −→∗ (∆L ∗ ∆ ′R) ′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 69 (Separation Truncation)
∆ ′R = (∆R, x :Cp, . . . )

′′

Z ∆ = (∆L, ∆R) Similar to the ∀I case

• Case ΓL, ΓR, x :Ap ` e⇐ B p a ∆, x :Ap,Θ
ΓL, ΓR ` λx. e⇐ A→ B p a ∆

→I

ΓL ∗ ΓR ` (A→ B) p type Given
ΓL ∗ ΓR `B p type By inversion

FEV(A→ B) ⊆ dom(ΓR) Given
FEV(A) ⊆ dom(ΓR) By def. of FEV

ΓL ∗ (ΓR, x :Ap) `B p type By weakening and Definition 4
ΓL, ΓR, x :Ap ` e⇐ B p a ∆, x :Ap,Θ Subderivation

(∆, x :Ap,Θ) = (∆L, ∆
′
R) By i.h.

(ΓL ∗ ΓR) −→∗ (∆L ∗ ∆ ′R) ′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 69 (Separation Truncation)
∆ ′R = (∆R, x :Ap, . . . )

′′

Z ∆ = (∆L, ∆R) Similar to the ∀I case

• Case Γ0[α̂1:?, α̂2:?, α̂:?= α̂1→α̂2], x : α̂1 ` e0 ⇐ α̂2 a ∆, x : α̂1 , ∆ ′

Γ0[α̂ : ?]︸ ︷︷ ︸
ΓL∗ΓR

` λx. e0 ⇐ α̂ a ∆
→Iα̂

We have (ΓL ∗ ΓR) = Γ0[α̂ : ?]. We also have FEV(α̂) ⊆ dom(ΓR). Therefore α̂ ∈ dom(ΓR) and

Γ0[α̂ : ?] = ΓL, Γ2, α̂ : ?, Γ3

Proof of Lemma 72 (Separation—Main) lem:separation-main
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where ΓR = (Γ2, α̂ : ?, Γ3).

Then the input context in the premise has the following form:

Γ0[α̂1:?, α̂2:?, α̂:?= α̂1→α̂2], x : α̂1 = ΓL, Γ2, α̂1:?, α̂2:?, α̂:?= α̂1→α̂2, Γ3, x : α̂1
Let us separate this context at the same point as Γ0[α̂ : ?], that is, after ΓL and before Γ2, and call the
resulting right-hand context Γ ′R. That is,

Γ0[α̂1:?, α̂2:?, α̂:?= α̂1→α̂2], x : α̂1 = ΓL ∗
(
Γ2, α̂1:?, α̂2:?, α̂:?= α̂1→α̂2, Γ3, x : α̂1︸ ︷︷ ︸

Γ ′
R

)

FEV(α̂) ⊆ dom(ΓR) Given
ΓL ∗ Γ ′R ` e0 ⇐ α̂2 a ∆, x : α̂1 , ∆ ′ Subderivation
ΓL ∗ Γ ′R ` α̂2 6 ! type α̂2 ∈ dom(Γ ′R)

FEV(α̂2) ⊆ dom(Γ ′R) α̂2 ∈ dom(Γ ′R)

(∆, x : α̂1, ∆
′) = (∆L, ∆

′
R) By i.h.

(ΓL ∗ Γ ′R) −→∗ (∆L ∗ ∆ ′R) ′′

Z ∆ = (∆L, ∆R) Similar to the ∀I case
Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) ′′

• Case Γ ` e⇒ A p a Θ Θ ` s : [Θ]A p� C dqe a ∆
Γ ` e s⇒ C q a ∆

→E

Use the i.h. and Lemma 68 (Transitivity of Separation), with Lemma 91 (Well-formedness of Algorith-
mic Typing) and Lemma 13 (Right-Hand Substitution for Typing).

• Case Γ ` s : A !� C 6 ! a ∆ FEV([∆]C) = ∅
Γ ` s : A !� C d!e a ∆

SpineRecover

Use the i.h.

• Case Γ ` s : A p� C q a ∆
(
(p = 6 ! ) or (q = !) or (FEV([∆]C) 6= ∅)

)
Γ ` s : A p� C dqe a ∆

SpinePass

Use the i.h.

• Case ΓL ∗ ΓR ` e⇐ A1 p a Θ Θ ` s : [Θ]A2 p� C q a ∆
ΓL ∗ ΓR ` e s : A1 → A2 p� C q a ∆

→Spine

Proof of Lemma 72 (Separation—Main) lem:separation-main
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Γ ` (A1 → A2) p type Given
Γ `A1 type By inversion

FEV(A1 → A2) ⊆ dom(ΓR) Given
FEV(A1) ⊆ dom(ΓR) By def. of FEV

Θ = (ΘL, ΘR) By i.h.
(ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) ′′

Γ `A2 type By inversion
Γ ` [Θ]A2 type By Lemma 13 (Right-Hand Substitution for Typing)

FEV(A2) ⊆ dom(ΓR) By def. of FEV
Z ∆ = (∆L, ∆R) By i.h.

(ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R) ′′

Z FEV(C) ⊆ dom(∆R)
′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 68 (Transitivity of Separation)

• Case Γ ` e⇐ Ak p a ∆
Γ ` injk e⇐ A1 +A2 p a ∆

+Ik

Use the i.h. (inverting Γ ` (A1 +A2) p type).

• Case Γ ` e1 ⇐ A1 p a Θ Θ ` e2 ⇐ [Θ]A2 p a ∆
Γ ` 〈e1, e2〉⇐ A1 ×A2 p a ∆

×I

Γ ` (A1 ×A2) p type Given
Γ `A1 p type By inversion
Γ ` e1 ⇐ A1 p a Θ Subderivation
Θ = (ΘL, ΘR) By i.h.

(ΓL ∗ ΓR) −→∗ (ΘL ∗ ΘR) ′′

Γ `A2 type By inversion
Γ −→ Θ By Lemma 51 (Typing Extension)
Θ `A2 type By Lemma 36 (Extension Weakening (Sorts))
Θ ` [Θ]A2 type By Lemma 13 (Right-Hand Substitution for Typing)
Θ ` e2 ⇐ [Θ]A2 p a ∆ Subderivation

∆ = (∆L, ∆R) By i.h.
(ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R) ′′

Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 68 (Transitivity of Separation)

Proof of Lemma 72 (Separation—Main) lem:separation-main
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• Case Γ [α̂2:?, α̂1:?, α̂:?= α̂1×α̂2] ` e1 ⇐ α̂1 a Θ Θ ` e2 ⇐ [Θ]α̂2 a ∆
Γ [α̂ : ?] ` 〈e1, e2〉⇐ α̂ a ∆

×Iα̂

We have (ΓL ∗ ΓR) = Γ0[α̂ : ?]. We also have FEV(α̂) ⊆ dom(ΓR). Therefore α̂ ∈ dom(ΓR) and

Γ0[α̂ : ?] = ΓL, Γ2, α̂ : ?, Γ3

where ΓR = (Γ2, α̂ : ?, Γ3).

Then the input context in the premise has the following form:

Γ0[α̂1:?, α̂2:?, α̂:?= α̂1×α̂2] = (ΓL, Γ2, α̂1:?, α̂2:?, α̂:?= α̂1×α̂2, Γ3)

Let us separate this context at the same point as Γ0[α̂ : ?], that is, after ΓL and before Γ2, and call the
resulting right-hand context Γ ′R:

Γ0[α̂1:?, α̂2:?, α̂:?= α̂1×α̂2] = ΓL ∗
(
Γ2, α̂1:?, α̂2:?, α̂:?= α̂1×α̂2, Γ3︸ ︷︷ ︸

Γ ′
R

)
FEV(α̂) ⊆ dom(ΓR) Given
ΓL ∗ Γ ′R ` e1 ⇐ α̂1 a Θ Subderivation

FEV(α̂2) ⊆ dom(Γ ′R) α̂2 ∈ dom(Γ ′R)

Θ = (ΘL, ΘR) By i.h.
(ΓL ∗ Γ ′R) −→∗ (ΘL ∗ ΘR) ′′

Θ ` e2 ⇐ [Θ]α̂2 a ∆ Subderivation
dom(Γ ′R) ⊆ dom(ΘR) By Definition 5
FEV(α̂2) ⊆ dom(ΘR) By above ⊆

FEV([ΘR]α̂2) ⊆ dom(ΘR) By Definition 4
Z ∆ = (∆L, ∆R) By i.h.

(ΘL ∗ ΘR) −→∗ (∆L ∗ ∆R) ′′

ΓR = (Γ2, α̂ : ?, Γ3) Above
Γ ′R = (Γ2, α̂1:?, α̂2:?, α̂ : ?= α̂1×α̂2, Γ3) Above

By Lemma 23 (Deep Evar Introduction) (i), (i), (ii) and the definition of separation, we can show

(ΓL ∗ (Γ2, α̂ : ?, Γ3)) −→∗ (ΓL ∗ (Γ2, α̂1:?, α̂2:?, α̂:?= α̂1×α̂2, Γ3))

(ΓL ∗ ΓR) −→∗ (ΓL ∗ Γ ′R) By above equalities
Z (ΓL ∗ ΓR) −→∗ (∆L ∗ ∆R) By Lemma 68 (Transitivity of Separation) twice

• Case Γ [α̂1 : ?, α̂2 : ?, α̂ : ?= α̂1+α̂2] ` e⇐ α̂k a ∆
Γ [α̂ : ?] ` injk e⇐ α̂ a ∆

+Iα̂k

Similar to the ×Iα̂ case, but simpler.

• Case Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1→α̂2] ` e s0 : (α̂1 → α̂2) � C a ∆
Γ [α̂ : ?] ` e s0 : α̂ � C a ∆

α̂Spine

Similar to the ×Iα̂ and +Iα̂k cases, except that (because we’re in the spine part of the lemma) we have
to show that FEV(C) ⊆ dom(∆R). But we have the same C in the premise and conclusion, so we get
that by applying the i.h.

Proof of Lemma 72 (Separation—Main) lem:separation-main
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• Case Γ ` e⇒ A ! a Θ Θ ` Π :: A q⇐ [Θ]C p a ∆ Π ` [∆]A covers ∆
Γ ` case(e, Π) ⇐ C p a ∆

Case

Use the i.h. and Lemma 68 (Transitivity of Separation).

H ′ Decidability of Algorithmic Subtyping

H ′.1 Lemmas for Decidability of Subtyping

Lemma 73 (Substitution Isn’t Large).
For all contexts Θ, we have #large([Θ]A) = #large(A).

Proof. By induction on A, following the definition of substitution.

Lemma 74 (Instantiation Solves).
If Γ ` α̂ := τ : κ a ∆ and [Γ ]τ = τ and α̂ /∈ FV([Γ ]τ) then |unsolved(Γ)| = |unsolved(∆)|+ 1.

Proof. By induction on the given derivation.

• Case ΓL ` τ : κ
ΓL, α̂ : κ, ΓR ` α̂ := τ : κ a ΓL, α̂ : κ= τ, ΓR

InstSolve

It is evident that |unsolved(ΓL, α̂ : κ, ΓR)| = |unsolved(ΓL, α̂ : κ= τ, ΓR)|+ 1.

• Case
β̂ ∈ unsolved(Γ [α̂ : κ][β̂ : κ])

Γ [α̂ : κ][β̂ : κ] ` α̂ := β̂︸︷︷︸
τ

: κ a Γ [α̂ : κ][β̂ : κ= α̂]
InstReach

Similar to the previous case.

• Case Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆
Γ0[α̂ : ?] ` α̂ := τ1 ⊕ τ2 : ? a ∆

InstBin

|unsolved(Γ0[α̂2 : ?, α̂1 : ?, α̂= α̂1 ⊕ α̂2])| = |unsolved(Γ0[α̂])|+ 1 Immediate
|unsolved(Γ0[α̂2 : ?, α̂1 : ?, α̂= α̂1 ⊕ α̂2])| = |unsolved(Θ)|+ 1 By i.h.

|unsolved(Γ)| = |unsolved(Θ)| Subtracting 1
Z = |unsolved(∆)|+ 1 By i.h.

• Case

Γ [α̂ : N] ` α̂ := zero : N a Γ [α̂ : N= zero]
InstZero

Similar to the InstSolve case.

• Case Γ0[α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆
Γ0[α̂ : N] ` α̂ := succ(t1) : N a ∆

InstSucc

|unsolved(∆)|+ 1 = |unsolved(Γ0[α̂1 : N, α̂ : N= succ(α̂1)])| By i.h.
Z = |unsolved(Γ0[α̂ : N])| By definition of unsolved(−)

Proof of Lemma 75 (Checkeq Solving) lem:checkeq-solving
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Lemma 75 (Checkeq Solving). If Γ ` s $ t : κ a ∆ then either ∆ = Γ or |unsolved(∆)| < |unsolved(Γ)|.

Proof. By induction on the given derivation.

• Case

Γ ` u $ u : κ a Γ︸︷︷︸
∆

CheckeqVar

Here ∆ = Γ .

• Cases CheckeqUnit, CheckeqZero: Similar to the CheckeqVar case.

• Case Γ ` σ $ t : N a ∆
Γ ` succ(σ) $ succ(t) : N a ∆

CheckeqSucc

Follows by i.h.

• Case Γ0[α̂] ` α̂ := t : κ a ∆ α̂ /∈ FV(t)
Γ0[α̂]︸ ︷︷ ︸
Γ

` α̂ $ t : κ a ∆
CheckeqInstL

Γ0[α̂] ` α̂ := t : κ a ∆ Subderivation
Γ ` α̂ := t : κ a ∆ Γ = Γ0[α̂]

∆ = Γ or |unsolved(∆)| = |unsolved(Γ)|− 1 By Lemma 74 (Instantiation Solves)
Z ∆ = Γ or |unsolved(∆)| < |unsolved(Γ)|

• Case Γ [α̂ : κ] ` α̂ := t : κ a ∆ α̂ /∈ FV(t)
Γ [α̂ : κ] ` t $ α̂ : κ a ∆

CheckeqInstR

Similar to the CheckeqInstL case.

• Case Γ ` σ1 $ τ1 : ? a Θ Θ ` [Θ]σ2 $ [Θ]τ2 : ? a ∆
Γ ` σ1 ⊕ σ2︸ ︷︷ ︸

σ

$ τ1 ⊕ τ2︸ ︷︷ ︸
t

: ? a ∆
CheckeqBin

Γ `σ1 $ τ1 : ? a Θ Subderivation
Θ = Γ or |unsolved(Θ)| < |unsolved(Γ)| By i.h.

– Θ = Γ :
Θ ` [Θ]σ2 $ [Θ]τ2 : ? a ∆ Subderivation
Γ ` [Γ ]σ2 $ [Γ ]τ2 : ? a ∆ By Θ = Γ

Z ∆ = Γ or |unsolved(Γ)| = |unsolved(∆)|+ 1 By i.h.

– |unsolved(Θ)| < |unsolved(Γ)|:

Θ ` [Θ]σ2 $ [Θ]τ2 : ? a ∆ Subderivation
∆ = Θ or |unsolved(∆)| < |unsolved(Θ)| By i.h.

If∆ = Θ then substituting∆ forΘ in |unsolved(Θ)| < |unsolved(Γ)| gives |unsolved(∆)| < |unsolved(Γ)|.
If |unsolved(∆)| < |unsolved(Θ)| then transitivity of < gives |unsolved(∆)| < |unsolved(Γ).
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Lemma 76 (Prop Equiv Solving).
If Γ ` P ≡ Q a ∆ then either ∆ = Γ or |unsolved(∆)| < |unsolved(Γ)|.

Proof. Only one rule can derive the judgment:

• Case Γ ` σ1 $ t1 : N a Θ Θ ` [Θ]σ2 $ [Θ]t2 : N a ∆
Γ ` (σ1 = σ2) ≡ (t1 = t2) a ∆

≡PropEq

By Lemma 75 (Checkeq Solving) on the first premise,
either Θ = Γ or |unsolved(Θ)| < |unsolved(Γ)|.

In the former case, the result follows from Lemma 75 (Checkeq Solving) on the second premise.

In the latter case, applying Lemma 75 (Checkeq Solving) to the second premise either gives ∆ = Θ, and
therefore

|unsolved(∆)| < |unsolved(Γ)|

or gives |unsolved(∆)| < |unsolved(Θ)|, which also leads to |unsolved(∆)| < |unsolved(Γ)|.

Lemma 77 (Equiv Solving).
If Γ ` A ≡ B a ∆ then either ∆ = Γ or |unsolved(∆)| < |unsolved(Γ)|.

Proof. By induction on the given derivation.

• Case

Γ ` α ≡ α a Γ
≡Var

Here ∆ = Γ .

• Cases ≡Exvar, ≡Unit: Similar to the ≡Var case.

• Case Γ ` A1 ≡ B1 a Θ Θ ` [Θ]A2 ≡ [Θ]B2 a ∆
Γ ` (A1 ⊕ A2) ≡ (B1 ⊕ B2) a ∆

≡⊕

By i.h., either Θ = Γ or |unsolved(Θ)| < |unsolved(Γ)|.

In the former case, apply the i.h. to the second premise. Now either ∆ = Θ—and therefore ∆ = Γ—or
|unsolved(∆)| < |unsolved(Θ)|. Since Θ = Γ , we have |unsolved(∆)| < |unsolved(Γ)|.

In the latter case, we have |unsolved(Θ)| < |unsolved(Γ)|. By i.h. on the second premise, either ∆ = Θ,
and substituting ∆ for Θ gives |unsolved(∆)| < |unsolved(Γ)|—or |unsolved(∆)| < |unsolved(Θ)|, which
combined with |unsolved(Θ)| < |unsolved(Γ)| gives |unsolved(∆)| < |unsolved(Γ)|.

• Case ≡Vec: Similar to the ≡⊕ case.

• Case Γ, α : κ ` A0 ≡ B0 a ∆,α : κ,∆ ′

Γ ` ∀α : κ. A0 ≡ ∀α : κ. B0 a ∆
≡∀

By i.h., either (∆,α : κ,∆ ′) = (Γ, α : κ), or |unsolved(∆,α : κ,∆ ′)| < |unsolved(Γ, α : κ)|.

In the former case, Lemma 22 (Extension Inversion) (i) tells us that ∆ ′ = ·. Thus, (∆,α : κ) = (Γ, α : κ),
and so ∆ = Γ .

In the latter case, we have |unsolved(∆,α : κ,∆ ′)| < |unsolved(Γ, α : κ)|, that is:

|unsolved(∆)|+ 0+ |unsolved(∆ ′)| < |unsolved(Γ)|+ 0

Since |unsolved(∆ ′)| cannot be negative, we have |unsolved(∆)| < |unsolved(Γ)|.

Proof of Lemma 77 (Equiv Solving) lem:equiv-solving
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• Case Γ ` P ≡ Q a Θ Θ ` [Θ]A0 ≡ [Θ]B0 a ∆
Γ ` P ⊃ A0 ≡ Q ⊃ B0 a ∆

≡⊃

Similar to the ≡⊕ case, but using Lemma 76 (Prop Equiv Solving) on the first premise instead of the
i.h.

• Case Γ ` P ≡ Q a Θ Θ ` [Θ]A0 ≡ [Θ]B0 a ∆
Γ ` A0 ∧ P ≡ B0 ∧ Q a ∆

≡∧

Similar to the ≡∧ case.

• Case Γ0[α̂] ` α̂ := τ : ? a ∆ α̂ /∈ FV(τ)
Γ0[α̂]︸ ︷︷ ︸
Γ

` α̂ ≡ τ a ∆
≡InstantiateL

By Lemma 74 (Instantiation Solves), |unsolved(∆)| = |unsolved(Γ)|− 1.

• Case Γ0[α̂] ` α̂ := τ : ? a ∆ α̂ /∈ FV(τ)
Γ0[α̂] ` τ ≡ α̂ a ∆

≡InstantiateR

Similar to the ≡InstantiateL case.

Lemma 78 (Decidability of Propositional Judgments).
The following judgments are decidable, with ∆ as output in (1)–(3), and ∆⊥ as output in (4) and (5).

We assume σ = [Γ ]σ and t = [Γ ]t in (1) and (4). Similarly, in the other parts we assume P = [Γ ]P and (in
part (3)) Q = [Γ ]Q.

(1) Γ ` σ $ t : κ a ∆

(2) Γ ` P true a ∆

(3) Γ ` P ≡ Q a ∆

(4) Γ / σ $ t : κ a ∆⊥

(5) Γ / P a ∆⊥

Proof. Since there is no mutual recursion between the judgments, we can prove their decidability in order,
separately.

(1) Decidability of Γ ` σ $ t : κ a ∆: By induction on the sizes of σ and t.

• Cases CheckeqVar, CheckeqUnit, CheckeqZero: No premises.

• Case CheckeqSucc: Both σ and t get smaller in the premise.

• Cases CheckeqInstL, CheckeqInstR: Follows from Lemma 67 (Decidability of Instantiation).

(2) Decidability of Γ ` P true a ∆: By induction on σ and t. But we have only one rule deriving this judgment
form, CheckpropEq, which has the judgment in (1) as a premise, so decidability follows from part (1).

(3) Decidability of Γ ` P ≡ Q a ∆: By induction on P and Q. But we have only one rule deriving this
judgment form, ≡PropEq, which has two premises of the form (1), so decidability follows from part (1).

(4) Decidability of Γ / σ $ t : κ a ∆⊥: By lexicographic induction, first on the number of unsolved variables
(both universal and existential) in Γ , then on σ and t. We also show that the number of unsolved
variables is nonincreasing in the output context (if it exists).

Proof of Lemma 78 (Decidability of Propositional Judgments) lem:prop-decidable
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• Cases ElimeqUvarRefl, ElimeqZero: No premises, and the output is the same as the input.

• Case ElimeqClash: The only premise is the clash judgment, which is clearly decidable. There is no
output.

• Case ElimeqBin: In the first premise, we have the same Γ but both σ and t are smaller. By i.h.,
the first premise is decidable; moreover, either some variables in Θ were solved, or no additional
variables were solved.
If some variables in Θ were solved, the second premise is smaller than the conclusion according to
our lexicographic measure, so by i.h., the second premise is decidable.
If no additional variables were solved, then Θ = Γ . Therefore [Θ]τ2 = [Γ ]τ2. It is given that σ = [Γ ]σ
and t = [Γ ]t, so [Γ ]τ2 = τ2. Likewise, [Θ]τ ′2 = [Γ ]τ ′2 = τ ′2, so we aremaking a recursive call on a
strictly smaller subterm.
Regardless, ∆⊥ is either ⊥, or is a ∆ which has no more unsolved variables than Θ, which in turn
has no more unsolved variables than Γ .

• Case ElimeqBinBot:
The premise is invoked on subterms, and does not yield an output context.

• Case ElimeqSucc: Both σ and t get smaller. By i.h., the output context has fewer unsolved
variables, if it exists.

• Cases ElimeqInstL, ElimeqInstR: Follows from Lemma 67 (Decidability of Instantiation). Further-
more, by Lemma 74 (Instantiation Solves), instantiation solves a variable in the output.

• Cases ElimeqUvarL, ElimeqUvarR: These rules have no nontrivial premises, and α is solved in the
output context.

• Cases ElimeqUvarL⊥, ElimeqUvarR⊥: These rules have no nontrivial premises, and produce the
output context ⊥.

(5) Decidability of Γ / P a ∆⊥: By induction on P. But we have only one rule deriving this judgment form,
ElimpropEq, for which decidability follows from part (4).

Lemma 79 (Decidability of Equivalence).
Given a context Γ and types A, B such that Γ ` A type and Γ ` B type and [Γ ]A = A and [Γ ]B = B, it is
decidable whether there exists ∆ such that Γ ` A ≡ B a ∆.

Proof. Let the judgment Γ ` A ≡ B a ∆ be measured lexicographically by

(E1) #large(A) + #large(B);

(E2) |unsolved(Γ)|, the number of unsolved existential variables in Γ ;

(E3) |A|+ |B|.

• Cases ≡Var, ≡Exvar, ≡Unit: No premises.

• Case Γ ` A1 ≡ B1 a Θ Θ ` [Θ]A2 ≡ [Θ]B2 a ∆
Γ ` A1 ⊕ A2 ≡ B1 ⊕ B2 a ∆

≡⊕

In the first premise, part (E1) either gets smaller (if A2 or B2 have large connectives) or stays the same.
Since the first premise has the same input context, part (E2) remains the same. However, part (E3)
gets smaller.

In the second premise, part (E1) either gets smaller (if A1 or B1 have large connectives) or stays the
same.

• Case ≡Vec: Similar to a special case of ≡⊕, where two of the types are monotypes.

Proof of Lemma 79 (Decidability of Equivalence) lem:equiv-decidable
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• Case Γ, α : κ ` A0 ≡ B0 a ∆,α : κ,∆ ′

Γ ` ∀α : κ. A0︸ ︷︷ ︸
A

≡ ∀α : κ. B0︸ ︷︷ ︸
B

a ∆
≡∀

Since #large(A0) + #large(B0) = #large(A) + #large(B) − 2, the first part of the measure gets smaller.

• Case Γ ` P ≡ Q a Θ Θ ` [Θ]A0 ≡ [Θ]B0 a ∆
Γ ` P ⊃ A0︸ ︷︷ ︸

A

≡ Q ⊃ B0︸ ︷︷ ︸
B

a ∆
≡⊃

The first premise is decidable by Lemma 78 (Decidability of Propositional Judgments) (3).

For the second premise, by Lemma 73 (Substitution Isn’t Large), #large([Θ]A0) = #large(A0) and
#large([Θ]B0) = #large(B0). Since #large(A) = #large(A0) + 1 and #large(B) = #large(B0) + 1, we
have

#large([Θ]A0) + #large([Θ]B0) < #large(A) + #large(B)

which makes the first part of the measure smaller.

• Case Γ ` P ≡ Q a Θ Θ ` [Θ]A0 ≡ [Θ]B0 a ∆
Γ ` A0 ∧ P ≡ B0 ∧ Q a ∆

≡∧

Similar to the ≡⊃ case.

• Case Γ [α̂] ` α̂ := τ : ? a ∆ α̂ /∈ FV(τ)
Γ [α̂] ` α̂ ≡ τ a ∆

≡InstantiateL

Follows from Lemma 67 (Decidability of Instantiation).

• Case ≡InstantiateR: Similar to the ≡InstantiateL case.

H ′.2 Decidability of Subtyping

Theorem 1 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ` A type and Γ ` B type and [Γ ]A = A and [Γ ]B = B, it is
decidable whether there exists ∆ such that Γ ` A <:P B a ∆.

Proof. Let the judgments be measured lexicographically by #large(A) + #large(B).
For each subtyping rule, we show that every premise is smaller than the conclusion, or already known to

be decidable. The condition that [Γ ]A = A and [Γ ]B = B is easily satisfied at each inductive step, using the
definition of substitution.

Now, we consider the rules deriving Γ ` A <:P B a ∆.

• Case A not headed by ∀/∃
B not headed by ∀/∃ Γ ` A ≡ B a ∆

Γ ` A <:P B a ∆
<:Equiv

In this case, we appeal to Lemma 79 (Decidability of Equivalence).

• Case B not headed by ∀
Γ,Iα̂, α̂ : κ ` [α̂/α]A <:− B a ∆,Iα̂, Θ

Γ ` ∀α : κ. A <:− B a ∆
<:∀L

The premise has one fewer quantifier.

Proof of Theorem 1 (Decidability of Subtyping) thm:subtyping-decidable
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• Case Γ, β : κ ` A <:− B a ∆,β : κ,Θ

Γ ` A <:− ∀β : κ. B a ∆
<:∀R

The premise has one fewer quantifier.

• Case Γ, α : κ ` A <:+ B a ∆,α : κ,Θ

Γ ` ∃α : κ. A <:+ B a ∆
<:∃L

The premise has one fewer quantifier.

• Case A not headed by ∃
Γ,Iβ̂, β̂ : κ ` A <:+ [β̂/β]B a ∆,Iβ̂, Θ

Γ ` A <:+ ∃β : κ. B a ∆
<:∃R

The premise has one fewer quantifier.

• Case

Γ ` A <:− B a ∆
neg(A)
nonpos(B)

Γ ` A <:+ B a ∆
<:−+L

Consider whether B is negative.

– Case neg(B):

B = ∀β : κ. B ′ Definition of neg(B)
Γ, β : κ `A <:− B ′ a ∆,β : κ,Θ Inversion on the premise

There is one fewer quantifier in the subderivation.

– Case nonneg(B):
In this case, B is not headed by a ∀.

A = ∀α : κ. A ′ Definition of neg(A)
Γ,Iα̂, α̂ : κ ` [α̂/α]A ′ <:− ′ a ∆,Iα̂, Θ Inversion on the premise

There is one fewer quantifier in the subderivation.

• Case

Γ ` A <:− B a ∆
nonpos(A)
neg(B)

Γ ` A <:+ B a ∆
<:−+R

B = ∀β : κ. B ′ Definition of neg(B)
Γ, β : κ `A <:− B ′ a ∆,β : κ,Θ Inversion on the premise

There is one fewer quantifier in the subderivation.

• Case

Γ ` A <:+ B a ∆
pos(A)
nonneg(B)

Γ ` A <:− B a ∆
<:+−L

This case is similar to the <:−+R case.

Proof of Theorem 1 (Decidability of Subtyping) thm:subtyping-decidable
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• Case

Γ ` A <:+ B a ∆
nonneg(A)
pos(B)

Γ ` A <:− B a ∆
<:+−R

This case is similar to the <:−+L case.

H ′.3 Decidability of Matching and Coverage

Lemma 80 (Decidability of Guardedness Judgment).
For any set of branches Π, the relation Π guarded is decidable.

Proof. This follows via a routine induction on Π, counting the number of branch lists.

Lemma 81 (Decidability of Expansion Judgments).
Given branches Π, it is decidable whether:

(1) there exists a unique Π ′ such that Π ×
; Π ′;

(2) there exist unique ΠL and ΠR such that Π +
; ΠL ‖ ΠR;

(3) there exists a unique Π ′ such that Π var
; Π ′;

(4) there exists a unique Π ′ such that Π 1
; Π ′.

(5) there exist unique Π[] and Π:: such that Π Vec
; Π[] ‖ Π::.

Proof. In each part, by induction on Π: Every rule either has no premises, or breaks down Π in its nontrivial
premise.

Lemma 82 (Expansion Shrinks Size).
We define the size of a pattern |p| as follows:

|x| = 0
|_| = 0
|〈p, p ′〉| = 1+ |p|+ |p ′|
|()| = 0
|inj1 p| = 1+ |p|
|inj2 p| = 1+ |p|
|[]| = 1
|p :: p ′| = 1+ |p|+ |p ′|

We lift size to branches π = ~p⇒ e as follows:

|p1, . . . , pn ⇒ e| = |p1|+ . . .+ |pn|

We lift size to branch lists Π = π1 || . . . ||πn as follows:

|π1 || . . . ||πn| = |π1|+ . . .+ |πn|

Now, the following properties hold:

1. If Π var
; Π ′ then |Π| = |Π ′|.

2. If Π 1
; Π ′ then |Π| = |Π ′|.

3. If Π ×
; Π ′ then |Π| ≤ |Π ′|.
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4. If Π +
; ΠL ‖ ΠR then |Π| ≤ |Π1| and |Π| ≤ |Π2|.

5. If Π Vec
; Π[] ‖ Π:: then |Π[]| ≤ |Π| and |Π::| ≤ |Π|.

6. If Π guarded and Π Vec
; Π[] ‖ Π:: then |Π[]| < |Π| and |Π::| < |Π|.

Proof. Properties 1-5 follow by a routine induction on the derivation of the expansion judgement. Since
expansion only ever removes pattern constructors, and only ever adds wildcards, it never increases the size
of the resulting branch list.

Case 6 for vectors proceeds by induction on the derivation of Π guarded, and furthermore depends upon
the proof for case 5.

1. Case

[],~p⇒ e ||Π guarded

By inversion on the expansion derivation, we know Π
Vec
; Π[] ‖ Π::.

By part 5, we know that |Π[]| ≤ |Π| and |Π::| ≤ |Π|.
By the definition of size, we know that |~p⇒ e| < |[],~p⇒ e|.
Z Hence |~p⇒ e ||Π[]| < |[],~p⇒ e ||Π|.
By the definition of size, we know that |Π| < |[],~p⇒ e ||Π|.
Z Hence |Π::| < |[],~p⇒ e ||Π|.

2. Case

p :: p ′,~p⇒ e ||Π guarded

By inversion on the expansion derivation, we know Π
Vec
; Π[] ‖ Π::.

By part 5, we know that |Π[]| ≤ |Π| and |Π::| ≤ |Π|.
By the definition of size, we know that |p, p ′,~p⇒ e| < |p :: p ′,~p⇒ e|.
Z Hence |p, p ′,~p⇒ e ||Π::| < |p :: p ′,~p⇒ e ||Π|.
By the definition of size, we know that |Π| < |p :: p ′,~p⇒ e ||Π|.
Z Hence |Π[]| < |[],~p⇒ e ||Π|.

3. Case Π guarded

_,~p⇒ e ||Π guarded

By inversion on the expansion derivation, we know Π
Vec
; Π[] ‖ Π::.

By induction, |Π[]| < |Π| and |Π::| < |Π|.
Z By the definition of size, |_,~p⇒ e ||Π[]| < |_,~p⇒ e ||Π|
Z By the definition of size, |_,~p⇒ e ||Π::| < |_,~p⇒ e ||Π|

4. Case Π guarded

x,~p⇒ e ||Π guarded

Similar to previous case.

Theorem 2 (Decidability of Coverage).
Given a context Γ , branches Π and types ~A, it is decidable whether Γ ` Π covers ~A q is derivable.

Proof of Theorem 2 (Decidability of Coverage) thm:coverage-decidable
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Proof. By induction on, lexicographically, (1) the size |Π| of the branch list Π and then (2) the number of ∧
connectives in ~A, and then (3) the size of ~A, considered to be the sum of the sizes |A| of each type A in ~A
(treating constraints s = t as size 1).

(For CoversVar, Covers×, CoversVec, CoversVec6 ! , and Covers+, we also use the appropriate part of Lemma
81 (Decidability of Expansion Judgments), as well as Lemma 82 (Expansion Shrinks Size).)

• Case CoversEmpty: No premises.

• Case CoversVar: The number of ∧ connectives does not grow, and the size of the branch list stays the
same, and ~A gets smaller.

• Case Covers1: The number of ∧ connectives and the size of the branch list stays the same, and ~A gets
smaller.

• Case Covers∧: The size of the branch list stays the same, and the number of ∧ connectives in ~A goes
down. This lets us analyze the two possibilities for the coverage-with-assumptions judgement:

– Case CoversEq: The first premise is decidable by Lemma 78 (Decidability of Propositional Judg-
ments) (4). The number of ∧ connectives in ~A gets smaller (note that applying ∆ as a substitution
cannot add ∧ connectives).

– Case CoversEqBot: The premise is decidable by Lemma 78 (Decidability of Propositional Judg-
ments) (4).

• Case Covers∧6 ! : The size of the branch list stays the same, and the number of ∧ connectives in ~A goes
down.

• Case Covers×: The size of the branch list does not grow, the number of ∧ connectives stays the same,
and ~A gets smaller, since |A1|+ |A2| < |A1 ×A2|.

• Case Covers+: Here we have ~A = (A1+A2, ~B). In the first premise, we have (A1, ~B), which is smaller
than ~A, and in the second premise we have (A2, ~B), which is likewise smaller. (In both premises, the
size of the branch list does not grow, and the number of ∧ connectives stays the same.)

• Case CoversVec:

Since Π guarded is decidable, and Π Vec
; Π[] ‖ Π:: is decidable, then we know that the size of the branch

lists Π[] and Π:: is strictly smaller than Π.

This lets us analyze the two cases for each premise, noting that the assumption is decidable by Lemma
78 (Decidability of Propositional Judgments) (4).

– Case CoversEq: The first premise (that t = zero) is decidable by Lemma 78 (Decidability of
Propositional Judgments) (4). The size of Π[] is strictly smaller than Π’s size, so we can still
appeal to induction (note ∆ as a substitution cannot add change the size of a branch list).

– Case CoversEqBot: Decidable by Lemma 78 (Decidability of Propositional Judgments) (4).

The cons case is nearly identical:

– Case CoversEq: The first premise (that t = succ(n)) is decidable by Lemma 78 (Decidability
of Propositional Judgments) (4). The size of Π[] is strictly smaller than Π’s size, so we can still
appeal to induction (note ∆ as a substitution cannot add change the size of a branch list).

– Case CoversEqBot: Decidable by Lemma 78 (Decidability of Propositional Judgments) (4).

• Case CoversVec6 ! :

Since Π guarded is decidable, and Π Vec
; Π[] ‖ Π:: is decidable, then we know that the size of the branch

lists Π[] and Π:: is strictly smaller than Π.

• Case Covers∃: The size of the branch list does not grow, and ~A gets smaller.
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• Case CoversEq: The first premise is decidable by Lemma 78 (Decidability of Propositional Judgments)
(4). The number of ∧ connectives in ~A gets smaller (note that applying ∆ as a substitution cannot add
∧ connectives).

• Case CoversEqBot: Decidable by Lemma 78 (Decidability of Propositional Judgments) (4).

H ′.4 Decidability of Typing

Theorem 3 (Decidability of Typing).

(i) Synthesis: Given a context Γ , a principality p, and a term e,
it is decidable whether there exist a type A and a context ∆ such that
Γ ` e⇒ A p a ∆.

(ii) Spines: Given a context Γ , a spine s, a principality p, and a type A such that Γ ` A type,
it is decidable whether there exist a type B, a principality q and a context ∆ such that
Γ ` s : A p� B q a ∆.

(iii) Checking: Given a context Γ , a principality p, a term e, and a type B such that Γ ` B type,
it is decidable whether there is a context ∆ such that
Γ ` e⇐ B p a ∆.

(iv) Matching: Given a context Γ , branches Π, a list of types ~A, a type C, and a principality p, it is decidable
whether there exists ∆ such that Γ ` Π :: ~A q⇐ C p a ∆.

Also, if given a proposition P as well, it is decidable whether there exists ∆ such that Γ / P ` Π :: ~A ! ⇐
C p a ∆.

Proof. For rules deriving judgments of the form

Γ ` e⇒ − − a −
Γ ` e⇐ B p a −
Γ ` s : B p� − − a −

Γ ` Π :: ~A q⇐ C p a −

(where we write “−” for parts of the judgments that are outputs), the following induction measure on such
judgments is adequate to prove decidability:〈

e/s/Π,

⇒⇐ /�, #large(B), B

Match, ~A, match judgment form

〉

where 〈. . . 〉 denotes lexicographic order, and where (when comparing two judgments typing terms of the
same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second line).
That is, ⇒ ≺ ⇐ /� / Match

Two match judgments are compared according to, first, the list of branches Π (which is a subterm of the
containing case expression, allowing us to invoke the i.h. for the Case rule), then the size of the list of types
~A (considered to be the sum of the sizes |A| of each type A in ~A), and then, finally, whether the judgment is
Γ/P ` . . . or Γ ` . . . , considering the former judgment (Γ/P ` . . . ) to be larger.

Note that this measure only uses the input parts of the judgments, leading to a straightforward decidability
argument.

We will show that in each rule deriving a synthesis, checking, spine or match judgment, every premise is
smaller than the conclusion.

• Case EmptySpine: No premises.
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• Case →Spine: In each premise, the expression/spine gets smaller (we have e s in the conclusion, e in
the first premise, and s in the second premise).

• Case Var: No nontrivial premises.

• Case Sub: The first premise has the same subject term e as the conclusion, but the judgment is smaller
because our measure considers synthesis to be smaller than checking.

The second premise is a subtyping judgment, which by Theorem 1 is decidable.

• Case Anno: It is easy to show that the judgment Γ ` A ! type is decidable. The second premise types
e, but the conclusion types (e : A), so the first part of the measure gets smaller.

• Cases 1I, 1Iα̂: No premises.

• Case ∀I: Both the premise and conclusion type e, and both are checking; however, #large(A0) <
#large(∀α : κ. A0), so the premise is smaller.

• Case ∀Spine: Both the premise and conclusion type e s, and both are spine judgments; however,
#large(−) decreases.

• Case ∧I: By Lemma 78 (Decidability of Propositional Judgments) (2), the first premise is decidable.
For the second premise, #large([Θ]A0) = #large(A0) < #large(A0 ∧ P).

• Case ∃I: Both the premise and conclusion type e, and both are checking; however, #large(−) decreases
so the premise is smaller.

• Case ⊃I: For the first premise, use Lemma 78 (Decidability of Propositional Judgments) (5). In the
second premise, #large(−) gets smaller (similar to the ∧I case).

• Case ⊃I⊥: The premise is decidable by Lemma 78 (Decidability of Propositional Judgments) (5).

• Case ⊃Spine: Similar to the ∧I case.

• Cases →I, →Iα̂: In the premise, the term is smaller.

• Cases →E: In all premises, the term is smaller.

• Cases +Ik, +Iα̂k, ×I, ×Iα̂: In all premises, the term is smaller.

• Case Case: In the first premise, the term is smaller. In the second premise, we have a list of branches
that is a proper subterm of the case expression. The third premise is decidable by Theorem 2.

We now consider the match rules:

• Case MatchEmpty: No premises.

• Case MatchSeq: In each premise, the list of branches is properly contained in Π, making each premise
smaller by the first part (“e/s/Π”) of the measure.

• Case MatchBase: The term e in the premise is properly contained in Π.

• Cases Match∃, Match×, Match+k, MatchNeg, MatchWild: Smaller by part (2) of the measure.

• Case Match∧: The premise has a smaller ~A, so it is smaller by the ~A part of the measure. (The premise
is the other judgment form, so it is larger by the “match judgment form” part, but ~A lexicographically
dominates.)

• Case Match⊥: For the premise, use Lemma 78 (Decidability of Propositional Judgments) (4).

• Case MatchUnify:

Lemma 78 (Decidability of Propositional Judgments) (4) shows that the first premise is decidable.
The second premise has the same (single) branch and list of types, but is smaller by the “match judg-
ment form” part of the measure.
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I ′ Determinacy

Lemma 83 (Determinacy of Auxiliary Judgments).

(1) Elimeq: Given Γ , σ, t, κ such that FEV(σ) ∪ FEV(t) = ∅ and D1 :: Γ / σ $ t : κ a ∆⊥1 and D2 :: Γ / σ $ t :
κ a ∆⊥2 ,
it is the case that ∆⊥1 = ∆⊥2 .

(2) Instantiation: Given Γ , α̂, t, κ such that α̂ ∈ unsolved(Γ) and Γ ` t : κ and α̂ /∈ FV(t)
and D1 :: Γ ` α̂ := t : κ a ∆1 and D2 :: Γ ` α̂ := t : κ a ∆2
it is the case that ∆1 = ∆2.

(3) Symmetric instantiation:

Given Γ , α̂, β̂, κ such that α̂, β̂ ∈ unsolved(Γ) and α̂ 6= β̂
and D1 :: Γ ` α̂ := β̂ : κ a ∆1 and D2 :: Γ ` β̂ := α̂ : κ a ∆2
it is the case that ∆1 = ∆2.

(4) Checkeq: Given Γ , σ, t, κ such that D1 :: Γ ` σ $ t : κ a ∆1 and D2 :: Γ ` σ $ t : κ a ∆2
it is the case that ∆1 = ∆2.

(5) Elimprop: Given Γ , P such that D1 :: Γ / P a ∆⊥1 and D2 :: Γ / P a ∆⊥2
it is the case that ∆1 = ∆2.

(6) Checkprop: Given Γ , P such that D1 :: Γ ` P true a ∆1 and D2 :: Γ ` P true a ∆2,
it is the case that ∆1 = ∆2.

Proof.
Proof of Part (1) (Elimeq).
Rule ElimeqZero applies if and only if σ = t = zero.

Rule ElimeqSucc applies if and only if σ and t are headed by succ.
Now suppose σ = α.

• Rule ElimeqUvarRefl applies if and only if t = α. (Rule ElimeqClash cannot apply; rules ElimeqUvarL and
ElimeqUvarR have a free variable condition; rules ElimeqUvarL⊥ and ElimeqUvarR⊥ have a condition
that σ 6= t.)
In the remainder, assume t 6= alpha.

• If α ∈ FV(t), then rule ElimeqUvarL⊥ applies, and no other rule applies (including ElimeqUvarR⊥ and
ElimeqClash).

In the remainder, assume α /∈ FV(t).

• Consider whether ElimeqUvarR⊥ applies. The conclusion matches if we have t = β for some β 6= α
(that is, σ = α and t = β). But ElimeqUvarR⊥ has a condition that β ∈ FV(σ), and σ = α, so the
condition is not satisfied.

In the symmetric case, use the reasoning above, exchanging L’s and R’s in the rule names.

Proof of Part (2) (Instantiation).
Rule InstBin applies if and only if t has the form t1 ⊕ t2.

Rule InstZero applies if and only if t has the form zero.
Rule InstSucc applies if and only if t has the form succ(t0).
If t has the form β̂, then consider whether β̂ is declared to the left of α̂ in the given context:

• If β̂ is declared to the left of α̂, then rule InstReach cannot be used, which leaves only InstSolve.

• If β̂ is declared to the right of α̂, then InstSolve cannot be used because β̂ is not well-formed under Γ0
(the context to the left of α̂ in InstSolve). That leaves only InstReach.

• α̂ cannot be β̂, because it is given that α̂ /∈ FV(t) = FV(β̂) = {β̂}.
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Proof of Part (3) (Symmetric instantiation).
InstBin, InstZero and InstSucc cannot have been used in either derivation.

Suppose that InstSolve concludedD1. Then ∆1 is the same as Γ with α̂ solved to β̂. Moreover, β̂ is declared
to the left of α̂ in Γ . Thus, InstSolve cannot conclude D2. However, InstReach can conclude D2, but produces
a context ∆2 which is the same as Γ but with α̂ solved to β̂. Therefore ∆1 = ∆2.

The other possibility is that InstReach concluded D1. Then ∆1 is the same as Γ with β̂ solved to α̂, with
α̂ declared to the left of β̂ in Γ . Thus, InstReach cannot conclude D2. However, InstSolve can conclude D2,
producing a context ∆2 which is the same as Γ but with β̂ solved to α̂. Therefore ∆1 = ∆2.

Proof of Part (4) (Checkeq).
Rule CheckeqVar applies if and only if σ = t = α̂ or σ = t = α (note the free variable conditions in
CheckeqInstL and CheckeqInstR).

Rule CheckeqUnit applies if and only if σ = t = 1.
Rule CheckeqBin applies if and only if σ and t are both headed by the same binary connective.
Rule CheckeqZero applies if and only if σ = t = zero.
Rule CheckeqSucc applies if and only if σ and t are headed by succ.
Now suppose σ = α̂. If t is not an existential variable, then CheckeqInstR cannot be used, which leaves

only CheckeqInstL. If t is an existential variable, that is, some β̂ (distinct from α̂), and is unsolved, then both
CheckeqInstL and CheckeqInstR apply, but by part (3), we get the same output context from each.

The t = α̂ subcase is similar.

Proof of Part (5) (Elimprop). There is only one rule deriving this judgment; the result follows by part (1).

Proof of Part (6) (Checkprop). There is only one rule deriving this judgment; the result follows by part
(4).

Lemma 84 (Determinacy of Equivalence).

(1) Propositional equivalence: Given Γ , P, Q such that D1 :: Γ ` P ≡ Q a ∆1 and D2 :: Γ ` P ≡ Q a ∆2,
it is the case that ∆1 = ∆2.

(2) Type equivalence: Given Γ , A, B such that D1 :: Γ ` A ≡ B a ∆1 and D2 :: Γ ` A ≡ B a ∆2,
it is the case that ∆1 = ∆2.

Proof.
Proof of Part (1) (propositional equivalence). Only one rule derives judgments of this form; the result
follows from Lemma 83 (Determinacy of Auxiliary Judgments) (4).

Proof of Part (2) (type equivalence). If neither A nor B is an existential variable, they must have the same
head connectives, and the same rule must conclude both derivations.

If A and B are the same existential variable, then only ≡Exvar applies (due to the free variable conditions
in ≡InstantiateL and ≡InstantiateR).

If A and B are different unsolved existential variables, the judgment matches the conclusion of both
≡InstantiateL and ≡InstantiateR, but by part (3) of Lemma 83 (Determinacy of Auxiliary Judgments), we get
the same output context regardless of which rule we choose.

Theorem 4 (Determinacy of Subtyping).

(1) Subtyping: Given Γ , e, A, B such that D1 :: Γ ` A <:P B a ∆1 and D2 :: Γ ` A <:P B a ∆2,
it is the case that ∆1 = ∆2.

Proof. First, we consider whether we are looking at positive or negative subtyping, and then consider the
outermost connective of A and B:
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• If Γ ` A <:+ B a ∆1 and Γ ` A <:+ B a ∆2, then we know the last rule ending the derivation of D1
and D2 must be:

B
∀ ∃ other

∀ <:−+R, <:
−
+L <:∃R <:−+L

A ∃ <:∃L <:∃L <:∃L
other <:−+R <:∃R <:Equiv

The only case in which there are two possible final rules is in the ∀/∀ case. In this case, regardless of
the choice of rule, by inversion we get subderivations Γ ` A <:− B a ∆1 and Γ ` A <:− B a ∆2.

• If Γ ` A <:− B a ∆1 and Γ ` A <:− B a ∆2, then we know the last rule ending the derivation of D1
and D2 must be:

B
∀ ∃ other

∀ <:∀R <:∀L <:∀L
A ∃ <:∀R <:+−L, <:

+
−R <:+−L

other <:∀R <:+−R <:Equiv

The only case in which there are two possible final rules is in the ∀/∀ case. In this case, regardless of
the choice of rule, by inversion we get subderivations Γ ` A <:+ B a ∆1 and Γ ` A <:+ B a ∆2.

As a result, the result follows by a routine induction.

Theorem 5 (Determinacy of Typing).

(1) Checking: Given Γ , e, A, p such that D1 :: Γ ` e⇐ A p a ∆1 and D2 :: Γ ` e⇐ A p a ∆2,
it is the case that ∆1 = ∆2.

(2) Synthesis: Given Γ , e such that D1 :: Γ ` e⇒ B1 p1 a ∆1 and D2 :: Γ ` e⇒ B2 p2 a ∆2,
it is the case that B1 = B2 and p1 = p2 and ∆1 = ∆2.

(3) Spine judgments:

Given Γ , e, A, p such that D1 :: Γ ` e : A p� C1 q1 a ∆1 and D2 :: Γ ` e : A p� C2 q2 a ∆2,
it is the case that C1 = C2 and q1 = q2 and ∆1 = ∆2.

The same applies for derivations of the principality-recovering judgments Γ ` e : A p� Ck dqke a ∆k.

(4) Match judgments:

Given Γ , Π, ~A, p, C such that D1 :: Γ ` Π :: ~A q⇐ C p a ∆1 and D2 :: Γ ` Π :: ~A q⇐ C p a ∆2,
it is the case that ∆1 = ∆2.

Given Γ , P, Π, ~A, p, C
such that D1 :: Γ / P ` Π :: ~A ! ⇐ C p a ∆1 and D2 :: Γ / P ` Π :: ~A ! ⇐ C p a ∆2,
it is the case that ∆1 = ∆2.

Proof.
Proof of Part (1) (checking).

The rules with a checking judgment in the conclusion are: 1I, 1Iα̂, ∀I, ∧I, ∃I, ⊃I, ⊃I⊥, →I, →Iα̂, Rec, +Ik,
+Iα̂k, ×I, ×Iα̂, Case, Nil, Cons.

The table below shows which rules apply for given e and A. The extra “chk-I?” column highlights the role
of the “chk-I” (“check-intro”) category of syntactic forms: we restrict the introduction rules for ∀ and ⊃ to
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type only these forms. For example, given e = x and A = (∀α : κ. A0), we need not choose between Sub and
∀I: the latter is ruled out by its chk-I premise.

A
Note 1

chk-I? ∀ ⊃ ∃ ∧ → + × 1 α̂ α Vec

λx. e0 chk-I ∀I ⊃I/⊃I⊥ ∃I ∧I →I ∅ ∅ ∅ →Iα̂ ∅ ∅
rec x. v Note 2 Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec ∅
injk e0 chk-I ∀I ⊃I/⊃I⊥ ∃I ∧I ∅ +Ik ∅ ∅ +Iα̂k ∅ ∅
〈e1, e2〉 chk-I ∀I ⊃I/⊃I⊥ ∃I ∧I ∅ ∅ ×I ∅ ×Iα̂ ∅ ∅
() chk-I ∀I ⊃I/⊃I⊥ ∃I ∧I ∅ ∅ ∅ 1I 1Iα̂ ∅ ∅

e [] chk-I ∀I ⊃I/⊃I⊥ ∃I ∧I ∅ ∅ ∅ ∅ ∅ ∅ Nil
e1 :: e2 chk-I ∀I ⊃I/⊃I⊥ ∃I ∧I ∅ ∅ ∅ ∅ ∅ ∅ Cons
case(e0, Π) Note 3 Case Case Case Case Case Case Case Case Case Case Case
x Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub
(e0 : A) Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub
e1 s Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub Sub

Notes:

• Note 1: The choice between⊃I and⊃I⊥ is resolved by Lemma 83 (Determinacy of Auxiliary Judgments)
(5).

• Note 2: Fixed points are a checking form, but not an introduction form. So if e is rec x. v, we need not
choose between an introduction rule for a large connective and the Rec rule: only the Rec rule is viable.
Large connectives must, therefore, be introduced inside the typing of the body v.

• Note 3: Case expressions are a checking form, but not an introduction form. So if e is a case expression,
we need not choose between an introduction rule for a large connective and the Case rule: only the
Case rule is viable. Large connectives must, therefore, be introduced inside the branches.

Proof of Part (2) (synthesis). Only four rules have a synthesis judgment in the conclusion: Var, Anno and→E Rule Var applies if and only if e has the form x. Rule Anno applies if and only if e has the form (e0 : A).
Otherwise, the judgment can be derived only if e has the form e1 e2, by →E.

Proof of Part (3) (spine judgments). For the ordinary spine judgment, rule EmptySpine applies if and only
if the given spine is empty. Otherwise, the choice of rule is determined by the head constructor of the input
type: →/→Spine; ∀/∀Spine; ⊃/⊃Spine; α̂/α̂Spine.

For the principality-recovering spine judgment: If p = 6 ! , only rule SpinePass applies. If p = ! and q = !,
only rule SpinePass applies. If p = ! and q = 6 ! , then the rule is determined by FEV(C): if FEV(C) = ∅ then
only SpineRecover applies; otherwise, FEV(C) 6= ∅ and only SpinePass applies.

Proof of Part (4) (matching). First, the elimination judgment form Γ / P ` . . . : It cannot be the case that
both Γ / σ $ t : κ a ⊥ and Γ / σ $ t : κ a Θ, so either Match⊥ concludes both D1 and D2 (and the result
follows), or MatchUnify concludes both D1 and D2 (in which case, apply the i.h.).

Now the main judgment form, without “/ P”: either Π is empty, or has length one, or has length greater
than one. MatchEmpty applies if and only if Π is empty, and MatchSeq applies if and only if Π has length
greater than one. So in the rest of this part, we assume Π has length one.

Moreover, MatchBase applies if and only if ~A has length zero. So in the rest of this part, we assume the
length of ~A is at least one.
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Let A be the first type in ~A. Inspection of the rules shows that given particular A and ρ, where ρ is the
first pattern, only a single rule can apply, or no rule (“∅”) can apply, as shown in the following table:

A

∃ ∧ + × Vec other

injk ρ0 Match∃ Match∧ Match+k ∅ ∅ ∅
ρ 〈ρ1, ρ2〉 Match∃ Match∧ ∅ Match× ∅ ∅

z Match∃ Match∧ MatchNeg MatchNeg MatchNeg MatchNeg
_ Match∃ Match∧ MatchWild MatchWild MatchWild MatchWild
[] Match∃ Match∧ ∅ ∅ MatchNil ∅
ρ1 :: ρ2 Match∃ Match∧ ∅ ∅ MatchCons ∅

J ′ Soundness

J ′.1 Instantiation

Lemma 85 (Soundness of Instantiation).
If Γ ` α̂ := τ : κ a ∆ and α̂ /∈ FV([Γ ]τ) and [Γ ]τ = τ and ∆ −→ Ω then [Ω]α̂ = [Ω]τ.

Proof. By induction on the derivation of Γ ` α̂ := τ : κ a ∆.

• Case Γ0 ` τ : κ
Γ0, α̂ : κ, Γ1 ` α̂ := τ : κ a Γ0, α̂ : κ= τ, Γ1︸ ︷︷ ︸

∆

InstSolve

[∆]α̂ = [∆]τ By definition
Z [Ω]α̂ = [Ω]τ By Lemma 29 (Substitution Monotonicity) to each side

• Case
β̂ ∈ unsolved(Γ [α̂ : κ][β̂ : κ])

Γ [α̂ : κ][β̂ : κ] ` α̂ := β̂︸︷︷︸
τ

: κ a Γ [α̂ : κ][β̂ : κ= α̂]︸ ︷︷ ︸
∆

InstReach

[∆]β̂ = [∆]α̂ By definition
[Ω][∆]β̂ = [Ω][∆]α̂ Applying Ω to each side

Z [Ω] β̂︸︷︷︸
τ

= [Ω]α̂ By Lemma 29 (Substitution Monotonicity) to each side

• Case Γ ′︷ ︸︸ ︷
Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 ⊕ α̂2] ` α̂1 := τ1 : ? a Θ Θ ` α̂2 := [Θ]τ2 : ? a ∆

Γ0[α̂ : ?] ` α̂ := τ1 ⊕ τ2 : ? a ∆
InstBin
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∆ −→ Ω Given
Γ ′ ` α̂1 := τ1 : ? a Θ Subderivation

Θ −→ ∆ By Lemma 43 (Instantiation Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)

[Ω]α̂1 = [Ω]τ1 By i.h.

Θ ` α̂2 := [Θ]τ2 : ? a ∆ Subderivation
[Ω]α̂2 = [Ω][Θ]τ2 By i.h.

= [Ω]τ2 By Lemma 29 (Substitution Monotonicity)

([Ω]τ1) ⊕ ([Ω]τ2) = ([Ω]α̂1) ⊕ ([Ω]α̂2) By above equalities
= [Ω](α̂1 ⊕ α̂2) By definition of substitution
= [Ω]([Γ ′]α̂) By definition of substitution
= [Ω]α̂ By Lemma 29 (Substitution Monotonicity)

Z [Ω] (τ1 ⊕ τ2)︸ ︷︷ ︸
τ

= [Ω]α̂ By definition of substitution

• Case

Γ0[α̂ : N] ` α̂ := zero : N a Γ0[α̂ : N= zero]
InstZero

Similar to the InstSolve case.

• Case Γ0[α̂1 : N, α̂ : N= succ(α̂1)] ` α̂1 := t1 : N a ∆
Γ0[α̂ : N] ` α̂ := succ(t1) : N a ∆

InstSucc

Similar to the InstBin case, but simpler.

Lemma 86 (Soundness of Checkeq).
If Γ ` σ $ t : κ a ∆ where ∆ −→ Ω then [Ω]σ = [Ω]t.

Proof. By induction on the given derivation.

• Case

Γ ` u $ u : κ a Γ
CheckeqVar

Z [Ω]u = [Ω]u By reflexivity of equality

• Cases CheckeqUnit, CheckeqZero: Similar to the CheckeqVar case.

• Case Γ ` σ0 $ t0 : N a ∆
Γ ` succ(σ0) $ succ(t0) : N a ∆

CheckeqSucc

Γ `σ0 $ t0 : N a ∆ Subderivation
[Ω]σ0 = [Ω]t0 By i.h.

succ([Ω]σ0) = succ([Ω]t0) By congruence
Z [Ω](succ(σ0)) = [Ω](succ(t0)) By definition of substitution

Proof of Lemma 86 (Soundness of Checkeq) lem:checkeq-soundness
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• Case Γ ` σ0 $ t0 : ? a Θ Θ ` [Θ]σ1 $ [Θ]t1 : ? a ∆
Γ ` σ0 ⊕ σ1 $ t0 ⊕ t1 : ? a ∆

CheckeqBin

Γ `σ0 $ t0 : N a ∆ Subderivation
Θ ` [Θ]σ1 $ [Θ]t1 : ? a ∆ Subderivation

∆ −→ Ω Given
Θ −→ ∆ By Lemma 46 (Checkeq Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)

[Ω]σ0 = [Ω]t0 By i.h. on first subderivation
[Ω][Θ]σ1 = [Ω][Θ]t1 By i.h. on second subderivation
[Ω][Θ]σ1 = [Ω]σ1 By Lemma 29 (Substitution Monotonicity)
[Ω][Θ]t1 = [Ω]t1 By Lemma 29 (Substitution Monotonicity)

[Ω]σ1 = [Ω]t1 By transitivity of equality
[Ω]σ0 ⊕ [Ω]σ1 = [Ω]t0 ⊕ [Ω]t1 By congruence of equality

Z [Ω](σ0 ⊕ σ1) = [Ω](t0 ⊕ t1) By definition of substitution

• Case Γ [α̂] ` α̂ := t : κ a ∆ α̂ /∈ FV(t)
Γ [α̂] ` α̂ $ t : κ a ∆

CheckeqInstL

Γ [α̂] ` α̂ := t : κ a ∆ Subderivation
α̂ /∈ FV(t) Premise

Z [Ω]α̂ = [Ω]t By Lemma 85 (Soundness of Instantiation)

• Case Γ [α̂ : κ] ` α̂ := σ : κ a ∆ α̂ /∈ FV(t)
Γ [α̂ : κ] ` σ $ α̂ : κ a ∆

CheckeqInstR

Similar to the CheckeqInstL case.

Lemma 87 (Soundness of Propositional Equivalence).
If Γ ` P ≡ Q a ∆ where ∆ −→ Ω then [Ω]P = [Ω]Q.

Proof. By induction on the given derivation.

• Case Γ ` σ1 $ t1 : N a Θ Θ ` [Θ]σ2 $ [Θ]t2 : N a ∆
Γ ` (σ1 = σ2) ≡ (t1 = t2) a ∆

≡PropEq

∆ −→ Ω Given
Θ −→ ∆ By Lemma 46 (Checkeq Extension) (on 2nd premise)
Θ −→ Ω By Lemma 33 (Extension Transitivity)
Γ `σ1 $ t1 : N a Θ Given

[Ω]σ1 = [Ω]t1 By Lemma 86 (Soundness of Checkeq)
Θ ` [Θ]σ2 $ [Θ]t2 : N a ∆ Given

[Ω][Θ]σ2 = [Ω][Θ]t2 By Lemma 86 (Soundness of Checkeq)
[Ω][Θ]σ2 = [Ω]σ2 By Lemma 29 (Substitution Monotonicity)
[Ω][Θ]t2 = [Ω]t2 By Lemma 29 (Substitution Monotonicity)

[Ω]σ2 = [Ω]t2 By transitivity of equality
([Ω]σ1 = [Ω]σ2) = ([Ω]t1 = [Ω]t2) By congruence of equality

Z [Ω](σ1 = σ2) = [Ω](t1 = t2) By definition of substitution
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Lemma 88 (Soundness of Algorithmic Equivalence).
If Γ ` A ≡ B a ∆ where ∆ −→ Ω then [Ω]A = [Ω]B.

Proof. By induction on the given derivation.

• Case

Γ ` α ≡ α a Γ
≡Var

Z [Ω]α = [Ω]α By reflexivity of equality

• Cases ≡Exvar, ≡Unit: Similar to the ≡Var case.

• Case Γ ` A1 ≡ B1 a Θ Θ ` [Θ]A2 ≡ [Θ]B2 a ∆
Γ ` A1 ⊕ A2 ≡ B1 ⊕ B2 a ∆

≡⊕

∆ −→ Ω Given
Θ ` [Θ]A2 ≡ [Θ]B2 a ∆ Subderivation

Θ −→ ∆ By Lemma 49 (Equivalence Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)

Γ `A1 ≡ B1 a Θ Subderivation
[Ω]A1 = [Ω]B1 By i.h.

∆ −→ Ω Given
[Ω][Θ]A2 = [Ω][Θ]B2 By i.h.

[Ω]A2 = [Ω]B2 By Lemma 29 (Substitution Monotonicity)

Z ([Ω]A1) ⊕ ([Ω]A2) = ([Ω]B1) ⊕ ([Ω]B2) By above equations

• Case Γ, α : κ ` A0 ≡ B0 a ∆,α : κ,∆ ′

Γ ` ∀α : κ. A0 ≡ ∀α : κ. B0 a ∆
≡∀

Γ, α : κ `A0 ≡ B0 a ∆,α : κ,∆ ′ Subderivation
∆ −→ Ω Given

Γ, α : κ, · −→ ∆,α : κ,∆ ′ By Lemma 49 (Equivalence Extension)

Proof of Lemma 88 (Soundness of Algorithmic Equivalence) lem:equiv-soundness
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∆ ′ soft Since · is soft
∆,α : κ,∆ ′ −→ Ω,α : κ,ΩZ By Lemma 24 (Soft Extension)

Γ, α : κ `A0 type By validity on subderivation
Γ, α : κ `B0 type By validity on subderivation

FV(A0) ⊆ dom(Γ, α : κ) By well-typing of A0
FV(B0) ⊆ dom(Γ, α : κ) By well-typing of B0
Γ, α : κ −→ Ω,α : κ By −→Uvar
FV(A0) ⊆ dom(Ω,α : κ) By Lemma 20 (Declaration Order Preservation)
FV(B0) ⊆ dom(Ω,α : κ) By Lemma 20 (Declaration Order Preservation)

[Ω,α : κ,ΩZ]A0 = [Ω,α : κ]A0 By definition of substitution, since FV(A0) ∩ dom(ΩZ) = ∅
[Ω,α : κ,ΩZ]B0 = [Ω,α : κ]B0 By definition of substitution, since FV(B0) ∩ dom(ΩZ) = ∅

[Ω,α : κ]A0 = [Ω,α : κ]B0 By transitivity of equality
[Ω]A0 = [Ω]B0 From definition of substitution

∀α : κ. [Ω]A0 = ∀α : κ. [Ω]B0 Adding quantifier to each side
[Ω](∀α : κ. A0) = [Ω](∀α : κ. B0) By definition of subsitution

• Case Γ ` P ≡ Q a Θ Θ ` [Θ]A0 ≡ [Θ]B0 a ∆
Γ ` P ⊃ A0 ≡ Q ⊃ B0 a ∆

≡⊃

∆ −→ Ω Given
Θ ` [Θ]A0 ≡ [Θ]B0 a ∆ Subderivation

Θ −→ ∆ By Lemma 49 (Equivalence Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)
Γ `P ≡ Q a Θ Subderivation

[Ω]P = [Ω]Q By Lemma 87 (Soundness of Propositional Equivalence)

Θ ` [Θ]A0 ≡ [Θ]B0 a ∆ Subderivation
[Ω][Θ]A0 = [Ω][Θ]B0 By i.h.

[Ω]A0 = [Ω]B0 By Lemma 29 (Substitution Monotonicity)

• Case Γ ` P ≡ Q a Θ Θ ` [Θ]A0 ≡ [Θ]B0 a ∆
Γ ` A0 ∧ P ≡ B0 ∧ Q a ∆

≡∧

Similar to the ≡⊃ case.

• Case Γ [α̂] ` α̂ := τ : ? a ∆ α̂ /∈ FV(τ)
Γ [α̂] ` α̂ ≡ τ︸︷︷︸

A

a ∆
≡InstantiateL

Γ [α̂] ` α̂ := τ : ? a ∆ Subderivation
Z [Ω]α̂ = [Ω]τ By Lemma 85 (Soundness of Instantiation)

• Case ≡InstantiateR: Similar to the ≡InstantiateL case.

J ′.2 Soundness of Checkprop

Lemma 89 (Soundness of Checkprop).
If Γ ` P true a ∆ and ∆ −→ Ω then Ψ ` [Ω]P true.

Proof of Lemma 89 (Soundness of Checkprop) lem:checkprop-soundness
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Proof. By induction on the derivation of Γ ` P true a ∆.

• Case Γ ` σ $ t : N a ∆
Γ ` σ = t︸ ︷︷ ︸

P

true a ∆
CheckpropEq

Γ `σ $ t : N a ∆ Subderivation
[Ω]σ = [Ω]t By Lemma 86 (Soundness of Checkeq)

Ψ ` [Ω]σ = [Ω]t true By DeclCheckpropEq
Ψ ` [Ω](σ = t) true By def. of subst.

Z Ψ ` [Ω]P true By P = (σ = t)

J ′.3 Soundness of Eliminations (Equality and Proposition)

Lemma 90 (Soundness of Equality Elimination).
If [Γ ]σ = σ and [Γ ]t = t and Γ ` σ : κ and Γ ` t : κ and FEV(σ) ∪ FEV(t) = ∅, then:

(1) If Γ / σ $ t : κ a ∆
then ∆ = (Γ,Θ) where Θ = (α1= t1, . . . , αn= tn) and
for all Ω such that Γ −→ Ω
and all t ′ such that Ω ` t ′ : κ ′,
it is the case that [Ω,Θ]t ′ = [θ][Ω]t ′, where θ = mgu(σ, t).

(2) If Γ / σ $ t : κ a ⊥ then mgu(σ, t) = ⊥ (that is, no most general unifier exists).

Proof. First, we need to recall a few properties of term unification.

(i) If σ is a term, then mgu(σ, σ) = id.

(ii) If f is a unary constructor, then mgu(f(σ), f(t)) = mgu(σ, t), supposing that mgu(σ, t) exists.

(iii) If f is a binary constructor, and σ = mgu(f(σ1, σ2), f(t1, t2)) and σ1 = mgu(σ1, t1)
and σ2 = mgu([σ1]σ2, [σ1]t2), then σ = σ2 ◦ σ1 = σ1 ◦ σ2.

(iv) If α /∈ FV(t), then mgu(α, t) = (α= t).

(v) If f is an n-ary constructor, and σi and ti (for i ≤ n) have no unifier, then f(σ1, . . . , σn) and f(t1, . . . , tn)
have no unifier.

We proceed by induction on the derivation of Γ / σ $ t : κ a ∆⊥, proving both parts with a single
induction.

• Case

Γ / α $ α : κ a Γ
ElimeqUvarRefl

Here we have ∆ = Γ , so we are in part (1).
Let θ = id (which is mgu(σ, σ)).
We can easily show [id][Ω]α = [Ω,α] = [Ω, ·]α.

• Case

Γ / zero $ zero : N a Γ
ElimeqZero

Similar to the ElimeqUvarRefl case.
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• Case
Γ / t1 $ t2 : N a ∆⊥

Γ / succ(t1) $ succ(t2) : N a ∆⊥
ElimeqSucc

We distinguish two subcases:

– Case ∆⊥ = ∆:
Since we have the same output context in the conclusion and premise, the “for all t ′ . . . ” part
follows immediately from the i.h. (1).
The i.h. also gives us θ0 = mgu(t1, t2).
Let θ = θ0. By property (ii), mgu(t1, t2) = mgu(succ(t1), succ(t2)) = θ.

– Case ∆⊥ = ⊥:

Γ / t1 $ t2 : N a ⊥ Subderivation
mgu(t1, t2) = ⊥ By i.h. (2)

Z mgu(succ(t1), succ(t2)) = ⊥ By contrapositive of property (ii)

• Case α /∈ FV(t) (α=−) /∈ Γ
Γ / α $ t : κ a Γ, α= t

ElimeqUvarL

Here ∆ 6= ⊥, so we are in part (1).

[Ω,α= t]t ′ =
[
[Ω]t/α

]
[Ω]t ′ By a property of substitution

= [Ω][t/α][Ω]t ′ By a property of substitution
= [Ω][θ][Ω]t ′ By mgu(α, t) = (α/t)

Z = [θ][Ω]t ′ By a property of substitution (θ creates no evars)

• Case α /∈ FV(t) (α=−) /∈ Γ
Γ / t $ α : κ a Γ, α= t

ElimeqUvarR

Similar to the ElimeqUvarL case.

• Case

Γ / 1 $ 1 : ? a Γ
ElimeqUnit

Similar to the ElimeqUvarRefl case.

• Case
Γ / τ1 $ τ

′
1 : ? a Θ Θ / [Θ]τ1 $ [Θ]τ ′2 : ? a ∆⊥

Γ / τ1 ⊕ τ2 $ τ ′1 ⊕ τ ′2 : ? a ∆⊥
ElimeqBin

Either ∆⊥ is some ∆, or it is ⊥.

– Case ∆⊥ = ∆:
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Γ / τ1 $ τ ′1 : ? a Θ Subderivation
Θ = (Γ, ∆1) By i.h. (1)

(IH-1st) [Ω,∆1]u1 = [θ1][Ω]u1
′′ for all Ω ` u1 : κ ′

θ1 = mgu(τ1, τ ′1)
′′

Θ / [Θ]τ1 $ [Θ]τ ′2 : ? a ∆ Subderivation
∆ = (Θ,∆2) By i.h. (1)

(IH-2nd) [Ω,∆1, ∆2]u2 = [θ2][Ω,∆1]u2
′′ for all Ω ` u2 : κ ′

θ2 = mgu(τ2, τ ′2)
′′

Suppose Ω ` u : κ ′.

[Ω,∆1, ∆2]u = [θ2][Ω,∆1]u By (IH-2nd), with u2 = u
= [θ2][θ1][Ω]u By (IH-1st), with u1 = u

Z = [Ω][θ2 ◦ θ1]u By a property of substitution

Z θ2 ◦ θ1 = mgu((τ1 ⊕ τ2), (τ ′1 ⊕ τ ′2)) By property (iii) of substitution

– Case ∆⊥ = ⊥:
Use the i.h. (2) on the second premise to show mgu(τ2, τ ′2) = ⊥, then use property (v) of unifica-
tion to show mgu((τ1 ⊕ τ2), (τ ′1 ⊕ τ ′2)) = ⊥.

• Case Γ / τ1 $ τ
′
1 : ? a ⊥

Γ / τ1 ⊕ τ2 $ τ ′1 ⊕ τ ′2 : ? a ⊥
ElimeqBinBot

Similar to the ⊥ subcase for ElimeqSucc, but using property (v) instead of property (ii).

• Case σ # t

Γ / σ $ t : κ a ⊥
ElimeqClash

Since σ # t, we know σ and t have different head constructors, and thus no unifier.
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Theorem 6 (Soundness of Algorithmic Subtyping).
If [Γ ]A = A and [Γ ]B = B and Γ ` A type and Γ ` B type and ∆ −→ Ω and Γ ` A <:P B a ∆ then
[Ω]∆ ` [Ω]A ≤P [Ω]B.

Proof. By induction on the given derivation.

• Case B not headed by ∀ Γ,Iα̂, α̂ : κ ` [α̂/α]A0 <:− B a ∆,Iα̂, Θ
Γ ` ∀α : κ. A0 <:− B a ∆

<:∀L

Let Ω ′ = (Ω, |Iα̂, Θ|).

Γ,Iα̂, α̂ : κ ` [α̂/α]A0 <:− B a ∆,Iα̂, Θ Subderivation

∆ −→ Ω Given
(∆,Iα̂, Θ) −→ Ω ′ By Lemma 25 (Filling Completes)

Γ `∀α : κ. A0 type Given
Γ, α : κ `A0 type By inversion (ForallWF)

Γ,Iα̂, α̂ : κ ` [α̂/α]A0 type By a property of substitution
Γ `B type Given

[Ω ′](∆,Iα̂, Θ) ` [Ω ′][α̂/α]A0 ≤− [Ω ′]B By i.h.
Ω `B type By Lemma 36 (Extension Weakening (Sorts))

[Ω ′]B = [Ω]B By Lemma 17 (Substitution Stability)
[Ω ′](∆,Iα̂, Θ) ` [Ω ′][α̂/α]A0 ≤− [Ω]B By above equality
[Ω ′](∆,Iα̂, Θ) `

[
[Ω ′]α̂/α

]
[Ω ′]A0 ≤− [Ω]B By distributivity of substitution

Γ,Iα̂, α̂ : κ ` α̂ : κ By VarSort
Γ,Iα̂, α̂ : κ −→ ∆,Iα̂, Θ By Lemma 50 (Subtyping Extension)

Θ is soft By Lemma 22 (Extension Inversion) (ii)
∆,Iα̂, Θ ` α̂ : κ By Lemma 36 (Extension Weakening (Sorts))

(∆,Iα̂, Θ) −→ Ω ′ Above
[Ω ′]Ω ′ ` [Ω ′]α̂ : κ By Lemma 14 (Substitution for Sorting)

[Ω ′](∆,Iα̂, Θ) ` [Ω ′]α̂ : κ By Lemma 54 (Completing Stability)

[Ω ′](∆,Iα̂, Θ) `∀α : κ. [Ω ′]A0 ≤− [Ω]B By ≤∀L
[Ω ′](∆,Iα̂, Θ) `∀α : κ. [Ω,α : κ]A0 ≤− [Ω]B By Lemma 17 (Substitution Stability)

[Ω]∆ `∀α : κ. [Ω,α : κ]A0 ≤− [Ω]B By Lemma 52 (Context Partitioning) + thinning
[Ω]∆ `∀α : κ. [Ω]A0 ≤− [Ω]B By def. of substitution
[Ω]∆ ` [Ω](∀α : κ. A0) ≤− [Ω]B By def. of substitution

• Case <:∃R: Similar to the <:∀L case.

• Case Γ, β : κ ` A <:− B0 a ∆,β : κ,Θ

Γ ` A <:− ∀β : κ. B0 a ∆
<:∀R
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Proof of Theorem 6 (Soundness of Algorithmic Subtyping) thm:subtyping-soundness 128

Γ, β : κ `A <:− B0 a ∆,β : κ,Θ Subderivation
Let ΩZ = |Θ| .
Let Ω ′ = (Ω,β : κ,ΩZ).

(∆,β : κ,Θ) −→ Ω ′ By Lemma 25 (Filling Completes)

Γ `A type Given
Γ, β : κ `A type By Lemma 35 (Suffix Weakening)

Γ `∀β : κ. B0 type Given
Γ, β : κ `B0 type By inversion (ForallWF)

[Ω ′](∆,β : κ,Θ) ` [Ω ′]A ≤− [Ω ′]B0 By i.h.
Γ, β : κ −→ ∆,β : κ,Θ By Lemma 50 (Subtyping Extension)

Θ is soft By Lemma 22 (Extension Inversion) (i)
[Ω,β : κ](∆,β : κ) ` [Ω,β : κ]A ≤− [Ω,β : κ]B0 By Lemma 17 (Substitution Stability)
[Ω,β : κ](∆,β : κ) ` [Ω]A ≤− [Ω]B0 By def. of substitution

[Ω]∆ ` [Ω]A ≤− ∀β : κ. [Ω]B0 By ≤∀R
[Ω]∆ ` [Ω]A ≤− [Ω](∀β : κ. B0) By def. of substitution

• Case <:∃L: Similar to the <:∀R case.

• Case Γ ` A ≡ B a ∆
Γ ` A <:P B a ∆

<:Equiv

Γ `A ≡ B a ∆ Subderivation
∆ −→ Ω Given

[Ω]A = [Ω]B By Lemma 88 (Soundness of Algorithmic Equivalence)
Γ −→ ∆ By Lemma 49 (Equivalence Extension)
Γ `A type Given

[Ω]Ω ` [Ω]A type By Lemma 16 (Substitution for Type Well-Formedness)
[Ω]∆ ` [Ω]A type By Lemma 54 (Completing Stability)

Z [Ω]∆ ` [Ω]A ≤P [Ω]B By ≤ReflP

• Case

Γ ` A <:− B a ∆
neg(A)
nonpos(B)

Γ ` A <:+ B a ∆
<:−+L

Γ `A <:− B a ∆ By inversion
neg(A) By inversion
nonpos(B) By inversion
nonpos(A) since neg(A)

[Ω]Γ ` [Ω]A ≤− [Ω]B By induction
Z [Ω]Γ ` [Ω]A ≤+ [Ω]B By ≤−

+

• Case

Γ ` A <:− B a ∆
nonpos(A)
neg(B)

Γ ` A <:+ B a ∆
<:−+R

Similar to the <:−+L case.
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• Case

Γ ` A <:+ B a ∆
pos(A)
nonneg(B)

Γ ` A <:− B a ∆
<:+−L

Similar to the <:−+L case.

• Case

Γ ` A <:+ B a ∆
nonneg(A)
pos(B)

Γ ` A <:− B a ∆
<:+−R

Similar to the <:−+L case.

J ′.4 Soundness of Typing

Theorem 7 (Soundness of Match Coverage).

1. If Γ ` Π covers ~A q and Γ ` ~A q types and [Γ ]~A = ~A and Γ −→ Ω then [Ω]Γ ` Π covers ~A q.

2. If Γ / P ` Π covers ~A ! and Γ −→ Ω and Γ ` ~A ! types and [Γ ]~A = ~A and [Γ ]P = P then [Ω]Γ / P `
Π covers ~A !.

Proof. By mutual induction on the given algorithmic coverage derivation.

1. • Case

·⇒ e1 || . . . ` · covers Γ
CoversEmpty

[Ω]Γ ` ·⇒ e1 || . . . covers · By DeclCoversEmpty

• Cases CoversVar, Covers1, Covers×, Covers+, Covers∃, Covers∧, CoversVec, Covers∧6 ! , CoversVec6 ! :

Use the i.h. and apply the corresponding declarative rule.

2. • Case
Γ / [Γ ]t1 $ [Γ ]t2 : κ a ∆ [∆]Π ` [∆]~A covers ∆

Γ / t1 = t2 ` Π covers ~A !
CoversEq

Γ / [Γ ]t1 $ [Γ ]t2 : κ a ∆ Subderivation

∆ ` [∆]Π covers [∆]~A Subderivation
[Ω]∆ ` [∆]Π covers [∆]A0, [∆]~A) By i.h.

∆ = (Γ,Θ) By Lemma 90 (Soundness of Equality Elimination) (1)
mgu(t1, t2) = θ ′′

. . . ′′

[Ω]∆ = [θ][Ω]Γ By Lemma 95 (Substitution Upgrade) (iii)
[∆]Π = [θ]Π By Lemma 95 (Substitution Upgrade) (iv)

([∆]~A) = ([θ]A0, [θ]~A) By Lemma 95 (Substitution Upgrade) (i)

[θ][Ω]Γ ` [θ]Π covers [θ]~A By above equalities

Z [Ω]Γ / t1 = t2 `Π covers ~A By DeclCoversEq
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• Case Γ / [Γ ]t1 $ [Γ ]t2 : κ a ⊥
Γ / t1 = t2 ` Π covers ~A !

CoversEqBot

Γ / [Γ ]t1 $ [Γ ]t2 : κ a ⊥ Subderivation

mgu([Γ ]t1, [Γ ]t2) = ⊥ By Lemma 90 (Soundness of Equality Elimination) (2)
mgu(t1, t2) = ⊥ By given equality

Z [Ω]Γ / t1 = t2 `Π covers ~A By DeclCoversEqBot

Lemma 91 (Well-formedness of Algorithmic Typing).
Given Γ ctx:

(i) If Γ ` e⇒ A p a ∆ then ∆ ` A p type.

(ii) If Γ ` s : A p� B q a ∆ and Γ ` A p type then ∆ ` B q type.

Proof. 1. Suppose Γ ` e⇒ A p a ∆:

• Case (x :Ap) ∈ Γ
Γ ` x⇒ [Γ ]A p a Γ

Var

Γ = (Γ0, x :Ap, Γ1) (x :Ap) ∈ Γ
Γ `A p type Follows from Γ ctx

• Case Γ ` A! type Γ ` e⇐ [Γ ]A ! a ∆
Γ ` (e : A) ⇒ [∆]A ! a ∆

Anno

Γ `A ! type By inversion
Γ −→ ∆ By Lemma 51 (Typing Extension)
∆ `A ! type By Lemma 41 (Extension Weakening for Principal Typing)

Z ∆ ` [∆]A ! type By Lemma 39 (Principal Agreement) (i)

• Case

Γ ` e⇒ A p a Θ Θ ` s : [Θ]A p� C q a ∆
p = 6 ! or q = !
or FEV([∆]C) 6= ∅

Γ ` e s⇒ C q a ∆
→E

Γ ` e⇒ A p a Θ By inversion
Θ `A p type By induction
Θ ` [Θ]A p type By Lemma 40 (Right-Hand Subst. for Principal Typing)

Θ ctx By implicit assumption
Θ ` s : [Θ]A p� C q a ∆ By inversion

Z ∆ `C q type By mutual induction

2. Suppose Γ ` s : A p� B q a ∆ and Γ ` A p type:
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• Case

Γ ` · : A p� A p a Γ
EmptySpine

Γ `A p type Given

• Case Γ ` e⇐ A p a Θ Θ ` s : [Θ]B p� C q a ∆
Γ ` e s : A→ B p� C q a ∆

→Spine

Γ `A→ B p type Given
Γ `B p type By Lemma 42 (Inversion of Principal Typing)
Θ `B p type By Lemma 41 (Extension Weakening for Principal Typing)
Θ ` [Θ]B p type By Lemma 40 (Right-Hand Subst. for Principal Typing)
∆ `C q type By induction

• Case Γ, α̂ : κ ` e s : [α̂/α]A � C q a ∆
Γ ` e s : ∀α : κ. A p� C q a ∆

∀Spine

Γ `∀α : κ. A p type Given
Γ `∀α : κ. A type By inversion

Γ, α : κ `A type By inversion
Γ, α̂ : κ, α : κ `A type By weakening

Γ, α̂ : κ ` [α̂/α]A type By substitution
Z ∆ `C q type By induction

• Case Γ ` P true a Θ Θ ` e s : [Θ]A p� C q a ∆
Γ ` e s : P ⊃ A p� C q a ∆

⊃Spine

Γ `P ⊃ A p type Given
Γ `P prop By Lemma 42 (Inversion of Principal Typing)
Γ `A p type ′′

Γ −→ Θ By Lemma 47 (Checkprop Extension)
Θ `A p type By Lemma 41 (Extension Weakening for Principal Typing)
Θ ` [Θ]A p type By Lemma 40 (Right-Hand Subst. for Principal Typing)

Z ∆ `C q type By induction

• Case Θ︷ ︸︸ ︷
Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1 → α̂2] ` e s : (α̂1 → α̂2) � C a ∆

Γ [α̂ : ?] ` e s : α̂ � C a ∆
α̂Spine

Θ ` α̂1 → α̂2 type By rules
Z ∆ `C q type By induction

Theorem 8 (Eagerness of Types).

(i) If D derives Γ ` e⇐ A p a ∆ and Γ ` A p type and A = [Γ ]A then D is eager.
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(ii) If D derives Γ ` e⇒ A p a ∆ then D is eager.

(iii) If D derives Γ ` s : A p� B q a ∆ and Γ ` A p type and A = [Γ ]A then D is eager.

(iv) If D derives Γ ` s : A p� B dqe a ∆ and Γ ` A p type and A = [Γ ]A then D is eager.

(v) If D derives Γ ` Π :: ~A q⇐ C p a ∆ and Γ ` ~A q types and [Γ ]~A = ~A and Γ ` C p type
then D is eager.

(vi) If D derives Γ / P ` Π :: ~A ! ⇐ C p a ∆ and Γ ` P prop and FEV(P) = ∅ and [Γ ]P = P

and Γ ` ~A ! types and Γ ` C p type
then D is eager.

Proof. By induction on the given derivation.
Part (i), checking

• Case Rec: By i.h. (i).

• Case Sub: By i.h. (ii) and (i).

• Case ∀I, ∃I: By i.h. (i).

• Case ∧I:

Substitution is idempotent, so in the last premise [Θ][Θ]A0 = [Θ]A0 and we can use the i.h. (i).

• Case ⊃I: Similar to the ∧I case.

• Case ⊃I⊥: This rule has no subderivations of the relevant form, so the case is trivial.

• Case →I: By i.h. (i).

• Case →Iα̂:

In the premise,
[
Γ0[α̂1:?, α̂2:?, α̂:?= α̂1→α̂2], x : α̂1 ] = α̂2 so we can use the i.h. (i).

• Case +Ik: By i.h. (i).

• Case +Iα̂k: Similar to the →Iα̂ case.

• Case ×I:
By i.h. (i) on the first subderivation, then i.h. (i) on the second subderivation (using the fact that
[Θ][Θ]A2 = [Θ]A2).

• Case ×Iα̂: Similar to the →Iα̂ case.

• Case Nil: This rule has no subderivations of the relevant form, so the case is trivial.

• Case Cons:

By i.h. (i) on the subderivations typing e1 and e2, using [Γ ′][Γ ′]A0 = [Γ ′]A0 and [Θ][Θ](Vec α̂ A0) =
[Θ](Vec α̂ A0).

• Case

Γ ` e⇒ B q a Θ
Θ ` Π :: [Θ]B q⇐ [Θ]A p a ∆
∆ ` Π covers [∆]B q

Γ ` case(e, Π) ⇐ A p a ∆
Case

D1 :: Γ ` e⇒ B ! a Θ Subderivation
[Θ]B = B and D1 eager By i.h. (ii)

D2 :: Θ ` Π :: [Θ]B⇐ [Θ]A p a ∆ Subderivation
D2 eager By i.h. (v)

By Definition 8, the given derivation is eager.
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Part (ii), synthesis

• Case Var: Substitution is idempotent: [Γ ][Γ ]A0 = [Γ ]A0.

By inversion, ∆ = Γ and A = [Γ ]A0 where (x : A0p) ∈ Γ .

Using the above equations, we have

[Γ ][Γ ]A0 = [Γ ]A0
[Γ ]A = A

[∆]A = A

This rule has no subderivations, so there is nothing else to show.

• Case Anno: By inversion, A = [∆]A0.

Substitution is idempotent, so [Γ ][Γ ]A0 = [Γ ]A0 and we can use the i.h. (i) to show that the checking
subderivation is eager.

The type in the conclusion is [∆]A0, which by idempotence is equal to [∆][∆]A0. Since A = [∆]A0, we
have A = [∆]A.

• Case Γ ` e⇒ B p a Θ Θ ` s : B p� A dqe a ∆
Γ ` e s⇒ A q a ∆

→E

D1 :: Γ ` e⇒ B p a Θ Subderivation
B = [Θ]B and D1 eager By i.h. (ii) on D1

D2 :: Θ ` s : B p� A dqe a ∆ Subderivation
B = [Θ]B Above
A = [Θ]A and D2 eager By i.h. (iv) on D2

Z A = [Θ]A Above
Z D1 eager Above
Z D2 eager Above

Parts (iii) and (iv), spines

• Case Γ, α̂ : κ ` e s0 : [α̂/α]A0 6 ! � C q a ∆
Γ ` e s0 : ∀α : κ. A0 p� C q a ∆

∀Spine

It is given that [Γ ]
(
∀α : κ. A0

)
=
(
∀α : κ. A0

)
.

Therefore, [Γ ]A0 = A0.

Since α̂ is not solved in Γ, α̂ : κ, we also have

[Γ, α̂ : κ][α̂/α]A0 = [α̂/α]A0

By i.h., C = [∆]C and all subderivations are eager. Since the output type and output context of the
conclusion are C and ∆, the same as the premise, we have C = [∆]C.

• Case Γ ` P true a Θ Θ ` e s0 : [Θ]A0 p� C q a ∆
Γ ` e s0 : P ⊃ A0 p� C q a ∆

⊃Spine

Substitution is idempotent, so [Θ][Θ]A0 = [Θ]A0, and we can apply the i.h. showing C = [∆]C and that
all subderivations are eager. Since the output type and output context of the conclusion are C and ∆,
the same as the premise, we have C = [∆]C.
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• Case SpineRecover: By i.h. (iii).

• Case SpinePass: By i.h. (iii).

• Case

Γ ` · : A p� A︸︷︷︸
C

p︸︷︷︸
q

a Γ︸︷︷︸∆ EmptySpine

We have [Γ ]A = A. Since C = A, we also have [Γ ]C = C; since Γ = ∆, we also have [∆]C = C, which
was to be shown.

• Case Γ ` e⇐ A1 p a Θ Θ ` s : [Θ]A2 p� C q a ∆
Γ ` e s : A1 → A2 p� C q a ∆

→Spine

We have [Γ ](A1 → A2) = A1 → A2. Therefore, [Γ ]A1 = A1. By i.h. on the first subderivation, its
subderivations are eager.

Substitution is idempotent, so [Θ][Θ]A2 = [Θ]A2. By i.h. on the second subderivation, [∆]C = C (and
its subderivations are eager).

Since the output type and output context of the conclusion are C and ∆, the same as the premise, we
have C = [∆]C; we also showed that all subderivations are eager.

• Case Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1→α̂2] ` e s0 : (α̂1 → α̂2) � C a ∆
Γ0[α̂ : ?] ` e s0 : α̂ � C a ∆

α̂Spine

By definition of substitution,[
Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1→α̂2]](α̂1 → α̂2) = (α̂1 → α̂2)

Therefore, we can apply the i.h.

Since the output type and output context of the conclusion are C and ∆, the same as the premise, we
have C = [∆]C; we also showed that all subderivations are eager.

Parts (v) and (vi), pattern matching
Part (v), rules MatchEmpty, etc.: By i.h. (v) and, in MatchBase, i.h. (i). MatchSeq: By i.h. (v), using

idempotency of substitution for ~A.
Part (vi), rule Match⊥: trivial. Part (vi), rule MatchUnify: by the assumption Γ ` ~A ! types, the vector ~A

has no existential variables at all, so in the second premise, ~A = [Γ ]~A and we can apply the i.h. (v).

Theorem 9 (Soundness of Algorithmic Typing).
Given ∆ −→ Ω:

(i) If Γ ` e⇐ A p a ∆ and Γ ` A p type and A = [Γ ]A then [Ω]∆ ` [Ω]e⇐ [Ω]A p.

(ii) If Γ ` e⇒ A p a ∆ then [Ω]∆ ` [Ω]e⇒ [Ω]A p.

(iii) If Γ ` s : A p� B q a ∆ and Γ ` A p type and A = [Γ ]A then [Ω]∆ ` [Ω]s : [Ω]A p� [Ω]B q.

(iv) If Γ ` s : A p� B dqe a ∆ and Γ ` A p type and A = [Γ ]A then [Ω]∆ ` [Ω]s : [Ω]A p� [Ω]B dqe.

(v) If Γ ` Π :: ~A q⇐ C p a ∆ and Γ ` ~A ! types and [Γ ]~A = ~A and Γ ` C p type
then p ` [Ω]∆ :: [Ω]Π ! ⇐ [Ω]~A q[Ω]C.

(vi) If Γ / P ` Π :: ~A ! ⇐ C p a ∆ and Γ ` P prop and FEV(P) = ∅ and [Γ ]P = P

and Γ ` ~A ! types and Γ ` C p type
then [Ω]∆ / [Ω]P ` [Ω]Π :: [Ω]~A ! ⇐ [Ω]C p.
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Proof. By induction, using the measure in Definition 7.
Where the i.h. is used, we elide the reasoning establishing the condition [Γ ]A = A for parts (i), (iii), (iv),

(v) and (vi): this condition follows from Theorem 8, which ensures that the appropriate condition holds for
all subderivations.

• Case (x :Ap) ∈ Γ
Γ ` x⇒ [Γ ]A p a Γ

Var

(x :Ap) ∈ Γ Premise
(x :Ap) ∈∆ Γ = ∆

∆ −→ Ω Given
(x : [Ω]Ap) ∈ [Ω]Γ By Lemma 9 (Uvar Preservation) (ii)

[Ω]Γ ` [Ω]x⇒ [Ω]A p By DeclVar
∆ −→ Ω Given
Γ −→ Ω Γ = ∆

[Ω]A = [Ω][Γ ]A By Lemma 29 (Substitution Monotonicity) (iii)
Z [Ω]Γ ` [Ω]x⇒ [Ω][Γ ]A p By above equality

• Case
Γ ` e⇒ A q a Θ Θ ` A <:join(pol(B),pol(A)) B a ∆

Γ ` e⇐ B p a ∆
Sub

Γ ` e⇒ A q a Θ Subderivation
Θ `A <:P B a ∆ Subderivation

Θ −→ ∆ By Lemma 51 (Typing Extension)
∆ −→ Ω Given
Θ −→ Ω By Lemma 33 (Extension Transitivity)
[Ω]Θ ` [Ω]e⇒ [Ω]A q By i.h.
[Ω]Θ = [Ω]∆ By Lemma 56 (Confluence of Completeness)
[Ω]∆ ` [Ω]e⇒ [Ω]A q By above equality

Θ `A <:join(pol(B),pol(A)) B a ∆ Subderivation
[Ω]∆ ` [Ω]A ≤join(pol(B),pol(A)) [Ω]B By Theorem 6

Z [Ω]∆ ` [Ω]e⇐ [Ω]B p By DeclSub

• Case Γ ` A0! type Γ ` e0 ⇐ [Γ ]A0 ! a ∆
Γ ` (e0 : A0) ⇒ [∆]A0 ! a ∆

Anno

Γ ` e0 ⇐ [Γ ]A0 ! a ∆ Subderivation
[Ω]∆ ` [Ω]e0 ⇐ [Ω][Γ ]A0 ! By i.h.

Γ `A0! type Subderivation
Γ `A0 type By inversion

FEV(A0) = ∅ ′′
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Γ −→ ∆ By Lemma 51 (Typing Extension)
∆ −→ Ω Given
Γ −→ Ω By Lemma 33 (Extension Transitivity)
Ω `A0 type By Lemma 36 (Extension Weakening (Sorts))

[Ω]Ω ` [Ω]A0 type By Lemma 16 (Substitution for Type Well-Formedness)
[Ω]Ω = [Ω]∆ By Lemma 54 (Completing Stability)
[Ω]∆ ` [Ω]A0 type By above equality

[Ω][Γ ]A0 = [Ω]A0 By Lemma 29 (Substitution Monotonicity) (iii)
[Ω]∆ ` [Ω]e0 ⇐ [Ω]A0 ! By above equality

[Ω]∆ ` ([Ω]e0 : [Ω]A0) ⇒ [Ω]A0 ! By DeclAnno
[Ω]A0 = A0 From definition of substitution

Z [Ω]∆ ` [Ω](e0 : A0) ⇒ [Ω]A0 ! By above equality

• Case

Γ ` () ⇐ 1 p a Γ︸︷︷︸
∆

1I

[Ω]∆ ` () ⇐ 1 p By Decl1I
Z [Ω]∆ ` [Ω]() ⇐ [Ω]1 p By definition of substitution

• Case

Γ0[α̂ : ?] ` () ⇐ α̂ 6 ! a Γ0[α̂ : ?= 1]︸ ︷︷ ︸
∆

1Iα̂

Γ0[α̂ : ?= 1] −→ Ω Given
[Ω]α̂ = [Ω][∆]α̂ By Lemma 29 (Substitution Monotonicity) (i)

= [Ω]1 By definition of context application
= 1 By definition of context application

[Ω]∆ ` () ⇐ 1 6 ! By Decl1I
Z [Ω]∆ ` [Ω]() ⇐ [Ω]α̂ 6 ! By above equality

• Case v chk-I Γ, α : κ ` v⇐ A0 p a ∆,α : κ,Θ

Γ ` v⇐ ∀α : κ. A0 p a ∆
∀I

∆ −→ Ω Given
∆,α −→ Ω,α By −→Uvar
Γ, α −→ ∆,α,Θ By Lemma 51 (Typing Extension)
Θ soft By Lemma 22 (Extension Inversion) (i) (with ΓR = ·, which is soft)

∆,α,Θ︸ ︷︷ ︸
∆ ′

−→ Ω,α, |Θ|︸ ︷︷ ︸
Ω ′

By Lemma 25 (Filling Completes)
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Γ, α ` v⇐ A0 p a ∆ ′ Subderivation

[Ω ′]∆ ′ ` [Ω]v⇐ [Ω ′]A0 p By i.h.
[Ω ′]A0 = [Ω]A0 By Lemma 17 (Substitution Stability)
[Ω ′]∆ ′ ` [Ω]v⇐ [Ω]A0 p By above equality

∆,α,Θ︸ ︷︷ ︸
∆ ′

−→ Ω,α, |Θ|︸ ︷︷ ︸
Ω ′

Above

Θ is soft Above
[Ω ′]∆ ′ = ([Ω]∆,α) By Lemma 53 (Softness Goes Away)
[Ω]∆,α ` [Ω]v⇐ [Ω]A0 p By above equality

[Ω]∆ ` [Ω]v⇐ ∀α. [Ω]A0 p By Decl∀I
Z [Ω]∆ ` [Ω]v⇐ [Ω](∀α. A0) p By definition of substitution

• Case Γ, α̂ : κ ` e s0 : [α̂/α]A0 6 ! � C q a ∆
Γ ` e s0 : ∀α : κ. A0 p� C q a ∆

∀Spine

Γ, α̂ : κ ` e s0 : [α̂/α]A0 6 ! � C q a ∆ Subderivation
[Ω]∆ ` [Ω](e s0) : [Ω][α̂/α]A0 6 ! � [Ω]C q By i.h.
[Ω]∆ ` [Ω](e s0) :

[
[Ω]α̂/α

]
[Ω]A0 6 ! � [Ω]C q By a property of substitution

Γ, α̂ : κ ` α̂ : κ By VarSort
Γ, α̂ : κ −→ ∆ By Lemma 51 (Typing Extension)

∆ ` α̂ : κ By Lemma 36 (Extension Weakening (Sorts))
∆ −→ Ω Given
[Ω]∆ ` [Ω]α̂ : κ By Lemma 58 (Bundled Substitution for Sorting)

[Ω]∆ ` [Ω](e s0) : ∀α : κ. [Ω]A0 p� [Ω]C q By Decl∀Spine
Z [Ω]∆ ` [Ω](e s0) : [Ω](∀α : κ. A0) p� [Ω]C q By def. of subst.

• Case e chk-I Γ ` P true a Θ Θ ` e⇐ [Θ]A0 p a ∆
Γ ` e⇐ A0 ∧ P p a ∆

∧I

Γ `P true a Θ Subderivation
∆ −→ Ω Given
Θ −→ ∆ By Lemma 51 (Typing Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)
[Ω]Θ ` [Ω]P true By Lemma 89 (Soundness of Checkprop)
[Ω]∆ ` [Ω]P true By Lemma 56 (Confluence of Completeness)

Θ ` e⇐ [Θ]A0 p a ∆ Subderivation
[Ω]∆ ` [Ω]e⇐ ([Ω][Θ]A0) p By i.h.
[Ω]∆ ` [Ω]e⇐ ([Ω][Θ]A0) ∧ [Ω]P p By Decl∧I

[Ω][Θ]A0 = [Ω]A0 By Lemma 29 (Substitution Monotonicity) (iii)
[Ω]∆ ` [Ω]e⇐ ([Ω]A0) ∧ [Ω]P p By above equality

Z [Ω]∆ ` [Ω]e⇐ [Ω](A0 ∧ P) p By def. of substitution
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• Case Γ ` t = zero true a ∆
Γ ` [] ⇐ (Vec t A) p a ∆

Nil

Γ ` t = zero true a ∆ Subderivation
∆ −→ Ω Given
[Ω]∆ ` [Ω](t = zero) true By Lemma 89 (Soundness of Checkprop)
[Ω]∆ ` [Ω]t = zero true By def. of substitution

Z [Ω]∆ ` [Ω][] ⇐ (Vec [Ω]t [Ω]A) p By DeclNil

• Case

Γ,Iα̂, α̂ : N ` t = succ(α̂) true a Γ ′
Γ ′ ` e1 ⇐ [Γ ′]A0 p a Θ
Θ ` e2 ⇐ [Θ](Vec α̂ A0) 6 ! a ∆,Iα̂, ∆ ′

Γ ` e1 :: e2 ⇐ (Vec t A0) p a ∆
Cons

Γ,Iα̂, α̂ : N ` t = succ(α̂) true a Γ ′ Subderivation
∆ −→ Ω Given
Γ ′ −→ Θ By Lemma 51 (Typing Extension)
Θ −→ ∆,Iα̂, ∆

′ By Lemma 51 (Typing Extension)
∆,Iα̂, ∆

′ −→ Ω ′ By Lemma 25 (Filling Completes)
Γ ′ −→ Ω ′ By Lemma 33 (Extension Transitivity)

[Ω ′]Γ ′ ` [Ω ′](t = succ(α̂)) true By Lemma 89 (Soundness of Checkprop)
[Ω ′](∆,Iα̂, ∆

′) ` [Ω ′](t = succ(α̂)) true By Lemma 56 (Confluence of Completeness)
[Ω ′](∆,Iα̂, ∆

′) ` [Ω](t = succ(α̂)) true By Lemma 17 (Substitution Stability)
[Ω]∆ ` [Ω](t = succ(α̂)) true By Lemma 52 (Context Partitioning) + thinning

1 [Ω]∆ ` ([Ω]t) = succ([Ω]α̂) true By def. of substitution

Γ ′ ` e1 ⇐ [Γ ′]A0 p a Θ Subderivation
[Ω ′]Θ ` [Ω ′]e1 ⇐ ([Ω ′][Γ ′]A0) p By i.h.

[Ω ′][Γ ′]A0 = [Ω ′]A0 By Lemma 29 (Substitution Monotonicity) (iii)
[Ω ′]Θ ` [Ω ′]e1 ⇐ [Ω ′]A0 p By above equality

2 [Ω]∆ ` [Ω]e1 ⇐ [Ω]A0 p Similar to above

Θ ` e2 ⇐ [Θ](Vec α̂ A0) 6 ! a ∆,Iα̂, ∆ ′ Subderivation
[Ω ′](∆,Iα̂, ∆

′) ` [Ω ′]e2 ⇐ [Ω ′][Θ](Vec α̂ A0) 6 ! By i.h.
[Ω]∆ ` [Ω]e2 ⇐ [Ω](Vec α̂ A0) 6 ! Similar to above

3 [Ω]∆ ` [Ω]e2 ⇐ (Vec ([Ω]α̂) [Ω]A0) p By def. of substitution

[Ω]∆ ` ([Ω]e1) :: [Ω]e2 ⇐ Vec ([Ω]t) [Ω]A0 p By DeclCons (premises: 1, 2, 3)
Z [Ω]∆ ` [Ω](e1 :: e2) ⇐ [Ω](Vec t A0) p By def. of substitution
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• Case e chk-I Γ, α̂ : κ ` e⇐ [α̂/α]A0 a ∆
Γ ` e⇐ ∃α : κ. A0 p a ∆

∃I

Γ, α̂ : κ ` e⇐ [α̂/α]A0 a ∆ Subderivation
[Ω]∆ ` [Ω]e⇐ [Ω][α̂/α]A0 By i.h.

[Ω]∆ ` [Ω]e⇐ [
[Ω]α̂/α

]
[Ω]A0 By a property of substitution

Γ, α̂ : κ ` α̂ : κ By VarSort
Γ, α̂ : κ −→ ∆ By Lemma 51 (Typing Extension)

∆ ` α̂ : κ By Lemma 36 (Extension Weakening (Sorts))
∆ −→ Ω Given
[Ω]∆ ` [Ω]α̂ : κ By Lemma 58 (Bundled Substitution for Sorting)

[Ω]∆ ` [Ω]e⇐ ∃α : κ. [Ω]A0 p By Decl∃I
Z [Ω]∆ ` [Ω]e⇐ [Ω](∃α : κ. A0) p By def. of subst.

• Case v chk-I Γ,IP / P a Θ+ Θ+ ` v⇐ [Θ+]A0 ! a ∆,IP, ∆ ′

Γ ` v⇐ P ⊃ A0 ! a ∆
⊃I

Γ `A ! type Given
FEV([Γ ]A) = ∅ By inversion on rule PrincipalWF
FEV([Γ ]P) = ∅ A = (P ⊃ A0)

Γ,IP / P a Θ+ Subderivation
Γ,IP / σ $ t : κ a Θ+ By inversion

FEV([Γ ]σ) ∪ FEV([Γ ]t) = ∅ By FEV([Γ ]P) = ∅ above

Θ+ = (Γ,IP, Θ) By Lemma 90 (Soundness of Equality Elimination)
[Ω ′, Θ]t ′ = [θ][Γ,IP]t

′ ′′ (for all Ω ′ extending (Γ,IP) and t ′ s.t. Ω ′ ` t ′ : κ ′)
θ = mgu(σ, t) ′′

∆ −→ Ω Given
Θ+ −→ ∆,IP, ∆

′ By Lemma 51 (Typing Extension)
Γ,IP, Θ −→ ∆,IP, ∆

′ By above equalities
Let Ω+ = (Ω,IP, ∆

′).
∆,IP, Θ −→ Ω,IP, ∆

′ By repeated −→Eqn
Θ+ −→ Ω+ By Lemma 33 (Extension Transitivity)

[Ω ′, Θ]B = [θ][Γ,IP]B By Lemma 95 (Substitution Upgrade) (i)
(for all Ω ′ extending (Γ,IP and B s.t. Ω ′ ` B : κ ′)
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Θ+ ` v⇐ [Θ+]A0 ! a ∆,IP, ∆ ′ Subderivation
[Ω+](∆,IP, ∆

′) ` [Ω]v⇐ [Ω+][Θ+]A0 ! By i.h.

Γ,IP, Θ −→ Ω,IP, ∆
′ By Lemma 33 (Extension Transitivity)

Γ −→ Ω By Lemma 22 (Extension Inversion)
[Ω+][Θ+]A0 = [Ω+]A0 By Lemma 29 (Substitution Monotonicity)

= [θ][Ω,IP]A0 Above, with (Ω,IP) as Ω ′ and A0 as B
= [θ][Ω]A0 By def. of substitution

[Ω,IP, Θ](∆,IP, ∆
′) = [θ][Ω]∆ By Lemma 95 (Substitution Upgrade) (iii)

[θ][Ω]∆ ` [Ω][θ]v⇐ [θ][Ω]A0 ! By above equalities

[Ω+](∆,IP, ∆
′) / (σ = t) ` [Ω]v⇐ [Ω]A0 ! By DeclCheckUnify

[Ω+](∆,IP, ∆
′) = [Ω]∆ From def. of context application

[Ω]∆ / (σ = t) ` [Ω]v⇐ [Ω]A0 ! By above equality
[Ω]∆ ` [Ω]v⇐ (σ = t) ⊃ [Ω]A0 ! By Decl⊃I
[Ω]∆ ` [Ω]v⇐ ([Ω]σ = [Ω]t) ⊃ [Ω]A0 ! By FEV condition above

• Case v chk-I Γ,IP / P a ⊥
Γ ` v⇐ P ⊃ A0 ! a Γ︸︷︷︸

∆

⊃I⊥

Γ,IP / P a ⊥ Subderivation
Γ,IP / σ $ t : κ a ⊥ By inversion

P = (σ = t) ′′

FEV([Γ ]σ) ∪ FEV([Γ ]t) = ∅ As in ⊃I case (above)
mgu(σ, t) = ⊥ By Lemma 90 (Soundness of Equality Elimination)

[Ω]∆ / (σ = t) ` [Ω]v⇐ [Ω]A0 ! By DeclCheck⊥
[Ω]∆ ` [Ω]v⇐ (σ = t) ⊃ [Ω]A0 ! By Decl⊃I
[Ω]∆ ` [Ω]v⇐ (

[Ω](σ = t)
)
⊃ [Ω]A0 ! By above FEV condition

Z [Ω]∆ ` [Ω]v⇐ [Ω]
(
P ⊃ A0

)
! By def. of subst.

Let Ω ′ = Ω.
Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity)
Z ∆ −→ Ω ′ Given

• Case Γ ` P true a Θ Θ ` e s0 : [Θ]A0 p� C q a ∆
Γ ` e s0 : P ⊃ A0 p� C q a ∆

⊃Spine

Θ ` e s0 : [Θ]A0 p� C q a ∆ Subderivation

Θ −→ ∆ By Lemma 51 (Typing Extension)
∆ −→ Ω Given
Θ −→ Ω By Lemma 33 (Extension Transitivity)
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[Ω]∆ ` [Ω](e s0) : [Ω][Θ]A0 p� [Ω]C q By i.h.
[Ω][Θ]A0 = [Ω]A0 By Lemma 29 (Substitution Monotonicity) (iii)

[Ω]∆ ` [Ω](e s0) : [Ω]A0 p� [Ω]C q By above equality

Γ `P true a Θ Subderivation
[Ω]Θ ` [Ω]P true By Lemma 97 (Completeness of Checkprop)
[Ω]Θ = [Ω]∆ By Lemma 56 (Confluence of Completeness)
[Ω]∆ ` [Ω]P true By above equality

[Ω]∆ ` [Ω](e s0) : ([Ω]P) ⊃ [Ω]A0 p� [Ω]C q By Decl⊃Spine
Z [Ω]∆ ` [Ω](e s0) : [Ω](P ⊃ A0) p� [Ω]C q By def. of subst.
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• Case Γ, x :A1 p ` e0 ⇐ A2 p a ∆, x :A1 p,Θ
Γ ` λx. e0 ⇐ A1 → A2 p a ∆

→I

∆ −→ Ω Given
∆, x :A1 p −→ Ω, x : [Ω]A1 p By −→Var
Γ, x :A1 p −→ ∆, x :A1 p,Θ By Lemma 51 (Typing Extension)

Θ soft By Lemma 22 (Extension Inversion) (v)
(with ΓR = ·, which is soft)

∆, x :A1 p,Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]A1 p, |Θ|︸ ︷︷ ︸
Ω ′

By Lemma 25 (Filling Completes)

Γ, x :A1 p ` e0 ⇐ A2 p a ∆ ′ Subderivation

[Ω ′]∆ ′ ` [Ω]e0 ⇐ [Ω ′]A2 p By i.h.
[Ω ′]A2 = [Ω]A2 By Lemma 17 (Substitution Stability)
[Ω ′]∆ ′ ` [Ω]e0 ⇐ [Ω]A2 p By above equality

∆, x :A1 p,Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]A1 p, |Θ|︸ ︷︷ ︸
Ω ′

Above

Θ soft Above
[Ω ′]∆ ′ = ([Ω]∆, x : [Ω]A1 p) By Lemma 53 (Softness Goes Away)

[Ω]∆, x : [Ω]A1 p ` [Ω]e0 ⇐ [Ω]A2 p By above equality

[Ω]∆ ` λx. [Ω]e0 ⇐ ([Ω]A1) → ([Ω]A2) p By Decl→I
Z [Ω]∆ ` [Ω](λx. e0) ⇐ [Ω](A1 → A2) p By definition of substitution

• Case v chk-I Γ, x :Ap ` v⇐ A p a ∆, x :Ap,Θ
Γ ` rec x. v⇐ A p a ∆

Rec

Similar to the →I case, applying DeclRec instead of Decl→I.
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• Case Γ [α̂1:?, α̂2:?, α̂ : ?= α̂1→α̂2], x : α̂1 6 ! ` e0 ⇐ α̂2 6 ! a ∆, x : α̂1 6 ! , Θ
Γ [α̂ : ?] ` λx. e0 ⇐ α̂ 6 ! a ∆

→Iα̂

Γ [α̂1:?, α̂2:?, α̂ : ?= α̂1→α̂2], x : α̂ 6 ! −→ ∆, x : α̂ 6 ! , Θ By Lemma 51 (Typing Extension)
Θ soft By Lemma 22 (Extension Inversion) (v)

(with ΓR = ·, which is soft)
Γ [α̂1:?, α̂2:?, α̂ : ?= α̂1→α̂2] −→ ∆ ′′

∆ −→ Ω Given
∆, x : α̂1 6 ! −→ Ω, x : [Ω]α̂1 6 ! By −→Var

∆, x : α̂1 6 ! , Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]α̂1 6 ! , |Θ|︸ ︷︷ ︸
Ω ′

By Lemma 25 (Filling Completes)

Γ [α̂1:?, α̂2:?, α̂ : ?= α̂1→α̂2], x : α̂1 6 ! ` e0 ⇐ α̂2 6 ! a ∆, x : α̂1 6 ! , Θ Subderivation

[Ω ′]∆ ′ ` [Ω ′]e0 ⇐ [Ω ′]α̂2 6 ! By i.h.
[Ω ′]α̂2 =

[
Ω, x : [Ω]α̂1 6 !

]
α̂2 By Lemma 17 (Substitution Stability)

= [Ω]α̂2 By definition of substitution
[Ω ′]∆ ′ =

[
Ω, x : [Ω]α̂1 6 !

](
∆, x : α̂1 6 !

)
By Lemma 53 (Softness Goes Away)

= [Ω]∆, x : [Ω]α̂1 6 ! By definition of context substitution
[Ω]∆, x : [Ω]α̂1 6 ! ` [Ω]e0 ⇐ [Ω]α̂2 6 ! By above equalities

[Ω]∆ ` λx. [Ω]e0 ⇐ ([Ω]α̂1) → [Ω]α̂2 6 ! By Decl→I

Γ [α̂1:?, α̂2:?, α̂ : ?= α̂1→α̂2] −→ Ω Above and Lemma 33 (Extension Transitivity)

[Ω]α̂ = [Ω][Γ ]α̂ By Lemma 29 (Substitution Monotonicity) (i)
= [Ω]

(
([Γ ]α̂1) → [Γ ]α̂2

)
By definition of substitution

= ([Ω][Γ ]α̂1) → ([Ω][Γ ]α̂2) By definition of substitution
= ([Ω]α̂1) → ([Ω]α̂2) By Lemma 29 (Substitution Monotonicity) (i)

Z [Ω]∆ ` [Ω](λx. e0) ⇐ [Ω]α̂ 6 ! By above equality

• Case Γ ` e0 ⇒ A q a Θ Θ ` s0 : A q� C dpe a ∆
Γ ` e0 s0 ⇒ C p a ∆

→E

Γ ` e0 ⇒ A q a Θ Subderivation
Θ ` s0 : A q� C dpe a ∆ Subderivation

Γ −→ Θ and Θ −→ ∆ By Lemma 51 (Typing Extension)
∆ −→ Ω Given
Θ −→ Ω By Lemma 33 (Extension Transitivity)
Γ −→ Ω By Lemma 33 (Extension Transitivity)

[Ω]Γ = [Ω]Θ = [Ω]∆ By Lemma 56 (Confluence of Completeness)
[Ω]Γ ` [Ω]e0 ⇒ [Ω]A q By i.h.
[Ω]∆ ` [Ω]e0 ⇒ [Ω]A q By above equality
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[Ω]Θ ` [Ω]s0 : [Ω]A q� [Ω]C dpe By i.h.

Z [Ω]∆ ` [Ω](e0 s0) ⇒ [Ω]C p By rule Decl→E

• Case Γ ` s : A !� C 6 ! a ∆ FEV(C) = ∅
Γ ` s : A !� C d!e a ∆

SpineRecover

Γ ` s : A !� C 6 ! a ∆ Subderivation
[Ω]Γ ` [Ω]s : [Ω]A !� [Ω]C q By i.h.

We show the quantified premise of DeclSpineRecover, namely,

for all C ′.
if [Ω]Θ ` s : [Ω]A !� C ′ 6 ! then C ′ = [Ω]C

Suppose we have C ′ such that [Ω]Γ ` s : [Ω]A ! � C ′ 6 ! . To apply DeclSpineRecover, we need to show
C ′ = [Ω]C.

[Ω]Γ ` [Ω]s : [Ω]A !� C ′ 6 ! Assumption
Ωcanon −→ Ω By Lemma 59 (Canonical Completion)

dom(Ωcanon) = dom(Γ) ′′

Γ −→ Ωcanon
′′

[Ω]Γ = [Ωcanon]Γ By Lemma 57 (Multiple Confluence)
[Ω]A = [Ωcanon]A By Lemma 55 (Completing Completeness) (ii)

[Ωcanon]Γ ` [Ω]s : [Ωcanon]A !� C ′ 6 ! By above equalities

Γ ` s : [Γ ]A !� C ′′ q a ∆ ′′ By Theorem 12 (iii)
Ωcanon −→ Ω ′′ ′′

∆ ′′ −→ Ω ′′ ′′

C ′ = [Ω ′′]C ′′ ′′

Γ ` s : [Γ ]A !� C ′′ q a ∆ ′′ Above
[Γ ]A = A Given
Γ ` s : A !� C ′′ q a ∆ ′′ By above equality
Γ ` s : A !� C 6 ! a ∆ Subderivation

C ′′ = C and q = 6 ! and ∆ ′′ = ∆ By Theorem 5

C ′ = [Ω ′′]C ′′ Above
= [Ω ′′]C By above equality
= [Ωcanon]C By Lemma 55 (Completing Completeness) (ii)
= [Ω]C By Lemma 55 (Completing Completeness) (ii)

We have thus shown the above “for all C ′. . . . ” statement.

Z [Ω]Γ ` [Ω]s : [Ω]A !� [Ω]C d!e By DeclSpineRecover
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• Case Γ ` s : A p� C q a ∆
(
(p = 6 ! ) or (q = !) or (FEV(C) 6= ∅)

)
Γ ` s : A p� C dqe a ∆

SpinePass

Γ ` s : A p� C q a ∆ Subderivation
[Ω]Γ ` [Ω]s : [Ω]A p� [Ω]C q By i.h.

Z [Ω]Γ ` [Ω]s : [Ω]A p� [Ω]C dqe By DeclSpinePass

• Case

Γ ` · : A p� A p a Γ
EmptySpine

Z [Ω]Γ ` · : [Ω]A p� [Ω]A p By DeclEmptySpine

• Case Γ ` e0 ⇐ A1 p a Θ Θ ` s0 : [Θ]A2 p� C q a ∆
Γ ` e0 s0 : A1 → A2 p� C q a ∆

→Spine

∆ −→ Ω Given
Θ −→ ∆ By Lemma 51 (Typing Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)

Γ ` e0 ⇐ A1 p a Θ Subderivation
[Ω]Θ ` [Ω]e0 ⇐ [Ω]A1 p By i.h.
[Ω]Θ = [Ω]∆ By Lemma 56 (Confluence of Completeness)
[Ω]∆ ` [Ω]e0 ⇐ [Ω]A1 p By above equality

Θ ` s0 : [Θ]A2 p� C q a ∆ Subderivation
[Ω]∆ ` [Ω]s0 : [Ω][Θ]A2 p� [Ω]C q By i.h.

[Ω][Θ]A2 = [Ω]A2 By Lemma 29 (Substitution Monotonicity)
[Ω]∆ ` [Ω]s0 : [Ω]A2 p� [Ω]C q By above equality

[Ω]∆ ` [Ω](e0 s0) : ([Ω]A1) → [Ω]A2 p� [Ω]C q By Decl→Spine
Z [Ω]∆ ` [Ω](e0 s0) : [Ω](A1 → A2) p� [Ω]C q By def. of subst.

• Case Γ ` e0 ⇐ Ak p a ∆
Γ ` injk e0 ⇐ A1 +A2 p a ∆

+Ik

Γ ` e0 ⇐ Ak p a ∆ Subderivation
[Ω]∆ ` [Ω]e0 ⇐ [Ω]Ak p By i.h.
[Ω]∆ ` injk [Ω]e0 ⇐ ([Ω]A1) + ([Ω]A2) p By Decl+Ik

Z [Ω]∆ ` [Ω](injk e0) ⇐ [Ω](A1 +A2) p By def. of substitution

• Case Γ [α̂1 : ?, α̂2 : ?, α̂ : ?= α̂1+α̂2] ` e0 ⇐ α̂k 6 ! a ∆
Γ [α̂ : ?] ` injk e0 ⇐ α̂ 6 ! a ∆

+Iα̂k
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Γ [. . . , α̂ : ?= α̂1+α̂2] ` e0 ⇐ α̂k 6 ! a ∆ Subderivation
[Ω]∆ ` [Ω]e0 ⇐ [Ω]α̂k 6 ! By i.h.
[Ω]∆ ` injk [Ω]e0 ⇒ ([Ω]α̂1) + ([Ω]α̂2) 6 ! By Decl+Ik

([Ω]α̂1) + ([Ω]α̂2) = [Ω]α̂ Similar to the →Iα̂ case (above)
Z [Ω]∆ ` [Ω](injk e0) ⇒ [Ω]α̂ 6 ! By above equality / def. of subst.

• Case Γ ` e1 ⇐ A1 p a Θ Θ ` e2 ⇐ [Θ]A2 p a ∆
Γ ` 〈e1, e2〉⇐ A1 ×A2 p a ∆

×I

Θ ` e2 ⇐ [Θ]A2 p a ∆ Subderivation
Θ −→ ∆ By Lemma 51 (Typing Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)

Γ ` e1 ⇐ A1 p a Θ Subderivation
[Ω]Θ ` [Ω]e1 ⇐ [Ω]A1 p By i.h.
[Ω]∆ ` [Ω]e1 ⇐ [Ω]A1 p By Lemma 56 (Confluence of Completeness)

Θ ` e2 ⇐ [Θ]A2 p a ∆ Subderivation
[Ω]∆ ` [Ω]e2 ⇐ [Ω][Θ]A2 p By i.h.

Γ `A1 ×A2 type Given
Γ `A2 type By inversion

Γ −→ Θ By Lemma 51 (Typing Extension)
Θ `A2 type By Lemma 38 (Extension Weakening (Types))

[Ω]∆ ` [Ω]e2 ⇐ [Ω]A2 p By Lemma 29 (Substitution Monotonicity)

[Ω]∆ ` 〈[Ω]e1, [Ω]e2〉⇐ ([Ω]A1)× [Ω]A2 p By Decl×I
Z [Ω]∆ ` [Ω]〈e1, e2〉⇐ [Ω](A1 ×A2) p By def. of substitution

• Case Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1×α̂2] ` e1 ⇐ α̂1 6 ! a Θ Θ ` e2 ⇐ [Θ]α̂2 6 ! a ∆
Γ [α̂ : ?] ` 〈e1, e2〉⇐ α̂ 6 ! a ∆

×Iα̂

∆ −→ Ω Given
Θ −→ ∆ By Lemma 51 (Typing Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)

Γ [. . . , α̂ : ?= α̂1×α̂2] ` e1 ⇐ α̂1 6 ! a Θ Subderivation
[Ω]Θ ` [Ω]e1 ⇐ [Ω]α̂1 6 ! By i.h.
[Ω]Θ = [Ω]∆ By Lemma 56 (Confluence of Completeness)
[Ω]∆ ` [Ω]e1 ⇐ [Ω]α̂1 6 ! By above equality

Θ ` e2 ⇐ [Θ]α̂2 6 ! a ∆ Subderivation
[Ω]∆ ` [Ω]e2 ⇐ [Ω][Θ]α̂2 6 ! By i.h.

[Ω][Θ]α̂2 = [Ω]α̂2 By Lemma 29 (Substitution Monotonicity)
[Ω]∆ ` [Ω]e2 ⇐ [Ω]α̂2 6 ! By above equality

[Ω]∆ ` 〈[Ω]e1, [Ω]e2〉⇐ ([Ω]α̂1)× [Ω]α̂2 6 ! By Decl×I
([Ω]α̂1)× [Ω]α̂2 = [Ω]α̂ Similar to the →Iα̂ case (above)

Z [Ω]∆ ` [Ω]〈e1, e2〉⇐ [Ω]α̂ 6 ! By above equality
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• Case Γ [α̂2 : ?, α̂1 : ?, α̂ : ?= α̂1→α̂2] ` e0 s0 : (α̂1 → α̂2) 6 ! � C 6 ! a ∆
Γ [α̂ : ?] ` e0 s0 : α̂ 6 ! � C 6 ! a ∆

α̂Spine

Γ [. . . , α̂ : ?= α̂1→α̂2] ` e0 s0 : (α̂1 → α̂2) 6 ! � C 6 ! a ∆ Subderivation
[Ω]∆ ` [Ω](e0 s0) : [Ω](α̂1 → α̂2) 6 ! � [Ω]C 6 ! By i.h.

[Ω](α̂1 → α̂2) = [Ω]α̂ Similar to the →Iα̂ case
Z [Ω]∆ ` [Ω](e0 s0) : [Ω]α̂ 6 ! � [Ω]C 6 ! By above equality

• Case Γ ` e0 ⇒ B q a Θ Θ ` Π :: [Θ]B q⇐ [Θ]C p a ∆ ∆ ` Π covers [∆]B q
Γ ` case(e0, Π) ⇐ C p a ∆

Case

Γ ` e0 ⇒ B ! a Θ Subderivation
Θ −→ ∆ By Lemma 51 (Typing Extension)
Θ −→ Ω By Lemma 33 (Extension Transitivity)
[Ω]Θ ` [Ω]e0 ⇒ [Ω]B ! By i.h.
[Ω]∆ ` [Ω]e0 ⇒ [Ω]B ! By Lemma 56 (Confluence of Completeness)

Θ ` Π :: [Θ]B⇐ [Θ]C p a ∆ Subderivation

Γ ` e0 ⇒ B ! a Θ Subderivation
Θ `B ! type By Lemma 63 (Well-Formed Outputs of Typing) (Synthesis)

Γ `C p type Given
Γ −→ Θ By Lemma 51 (Typing Extension)
Θ `C p type By Lemma 41 (Extension Weakening for Principal Typing)
Θ ` [Θ]C p type By Lemma 40 (Right-Hand Subst. for Principal Typing)

[Ω]∆ ` [Ω]Π :: [Ω]B⇐ [Ω][Θ]C p By i.h. (v)
[Ω][Θ]C = [Ω]C By Lemma 29 (Substitution Monotonicity)

[Ω]∆ ` [Ω]Π :: [Ω]B⇐ [Ω]C p By above equalities

Assume Ω such that ∆ −→ Ω.
Assume D such that [Ω]∆ ` e⇒ D q.
Hence [Ω]Γ ` e⇒ D q.
By Theorem 12, there exist B ′ and Θ ′ such that Γ ` e0 ⇒ B ′ q a Θ ′ and Ω −→ Ω ′ and D = [Ω ′]B ′ and
B ′ = [Θ ′]B ′.
By Lemma 5 (Determinacy of Typing), we know Θ ′ = Θ and B ′ = B, which means D = [Ω][∆]B.
By Lemma 7 (Soundness of Match Coverage), [Ω]∆ ` [Ω]Π covers [Ω][∆]B q.
Hence [Ω]∆ ` [Ω]Π covers D q.
By rule DeclCase, [Ω]∆ ` [Ω]case(e0, Π) ⇐ [Ω]C p

Part (v):

• Case MatchEmpty: Apply rule DeclMatchEmpty.

• Case Γ ` e⇐ C p a ∆
(·⇒ e) ` · :: C p⇐ ∆ Γ a

MatchBase

Apply the i.h. and DeclMatchBase.

• Case MatchUnit: Apply the i.h. and DeclMatchUnit.
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• Case
Γ ` π :: ~A q⇐ C p a Θ Θ ` Π ′ :: ~A q⇐ C p a ∆

Γ ` π ||Π ′ :: ~A q⇐ C p a ∆
MatchSeq

Apply the i.h. to each premise, using lemmas for well-formedness under Θ; then apply DeclMatchSeq.

• Cases Match∃, Match∧, MatchWild, MatchNil, MatchCons:

Apply the i.h. and the corresponding declarative match rule.

• Cases Match×, Match+k:

We have Γ ` ~A ! types, so the first type in ~A has no free existential variables.
Apply the i.h. and the corresponding declarative match rule.

• Case
A not headed by ∧ or ∃ Γ, z :A ! ` ~ρ⇒ e ′ :: ~A q⇐ C p a ∆, z :A !, ∆ ′

Γ ` z,~ρ⇒ e :: A, ~A q⇐ C p a ∆
MatchNeg

Construct Ω ′ and show ∆, z :A !, ∆ ′ −→ Ω ′ as in the →I case.
Use the i.h., then apply rule DeclMatchNeg.

Part (vi):

• Case Γ / σ $ τ : κ a ⊥
Γ / σ = τ ` ~ρpe :: ~A ! ⇐ C p a Γ

Match⊥

Γ / σ $ τ : κ a ⊥ Subderivation
[Γ ](σ = τ) = (σ = τ) Given

(σ = τ) = [Γ ](σ = τ) Given
= [Ω](σ = τ) By Lemma 29 (Substitution Monotonicity) (i)

mgu(σ, τ) = ⊥ By Lemma 90 (Soundness of Equality Elimination)
mgu([Ω]σ, [Ω]τ) = ⊥ By above equality

Z [Ω]Γ / [Ω](σ = τ) ` [Ω](~ρpe) :: [Ω]~A⇐ [Ω]C p By DeclMatch⊥

• Case
Γ,IP / σ $ τ : κ a Γ ′ Γ ′ ` ~ρ⇒ e :: ~A q⇐ C p a ∆,IP, ∆ ′

Γ / σ = τ ` ~ρ⇒ e :: ~A ! ⇐ C p a ∆
MatchUnify

Γ,IP / σ $ τ : κ a Γ ′ Subderivation
(σ = τ) = [Γ ](σ = τ) Given

= [Ω](σ = τ) By Lemma 29 (Substitution Monotonicity) (i)
Γ ′ = (Γ,IP, Θ) By Lemma 90 (Soundness of Equality Elimination)
Θ = ((α1= t1), . . . , (αn= tn))

′′

θ = mgu([Ω]σ, [Ω]τ) ′′

[Ω,IP, Θ]t
′ = [θ][Ω,IP]t

′ ′′ for all Ω,IP ` t ′ : κ ′

Γ,IP, Θ ` ~ρ⇒ e :: ~A⇐ C p a ∆,IP, ∆ ′ Subderivation

[Ω,IP, Θ](∆,IP, ∆
′) ` [Ω,IP, Θ](~ρ⇒ e) :: [Ω,IP, Θ]~A⇐ [Ω,IP, Θ]C p By i.h.
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(Ω,IP, Θ) = [θ](Ω,IP) By Lemma 95 (Substitution Upgrade) (iii)
[Ω,IP, Θ]~A = [θ][Ω,IP]~A By Lemma 95 (Substitution Upgrade) (i)
[Ω,IP, Θ]C = [θ][Ω,IP]C By Lemma 95 (Substitution Upgrade) (i)

[Ω,IP, Θ](~ρ⇒ e) = [θ][Ω](~ρ⇒ e) By Lemma 95 (Substitution Upgrade) (iv)

θ([Ω,IP]Γ) ` [θ][Ω](~ρ⇒ e) :: θ([Ω,IP]~A) ⇐ θ([Ω,IP]C) p By above equalities
θ([Ω]Γ) ` [θ][Ω](~ρ⇒ e) :: θ([Ω]~A) ⇐ θ([Ω]C) p Subst. not affected by IP

Z [Ω]Γ / [Ω](σ = τ) ` [Ω](~ρ⇒ e) :: [Ω]~A⇐ [Ω]C p By DeclMatchUnify

K ′ Completeness

K ′.1 Completeness of Auxiliary Judgments

Lemma 92 (Completeness of Instantiation).
Given Γ −→ Ω and dom(Γ) = dom(Ω) and Γ ` τ : κ and τ = [Γ ]τ and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(τ):
If [Ω]α̂ = [Ω]τ
then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Γ ` α̂ := τ : κ a ∆.

Proof. By induction on τ.
We have [Ω]Γ ` [Ω]α̂ ≤P [Ω]A. We now case-analyze the shape of τ.

• Case τ = β̂:

α̂ /∈ FV(β̂) Given
α̂ 6= β̂ From definition of FV(−)

β̂ ∈ unsolved(Γ) From [Γ ]β̂ = β̂

Let Ω ′ = Ω.
Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity)

Now consider whether α̂ is declared to the left of β̂, or vice versa.

– Case Γ = Γ0[α̂ : κ][β̂ : κ]:

Let ∆ = Γ0[α̂ : κ][β̂ : κ= α̂].
Γ ` α̂ := β̂ : κ a ∆ By InstReach

[Ω]α̂ = [Ω]β̂ Given
Γ −→ Ω Given

Z ∆ −→ Ω By Lemma 27 (Parallel Extension Solution)
Z dom(∆) = dom(Ω ′) dom(∆) = dom(Γ) and dom(Ω ′) = dom(Ω)

– Case (Γ = Γ0[β̂ : κ][α̂ : κ]:
Similar, but using InstSolve instead of InstReach.

• Case τ = α:

We have [Ω]α̂ = α, so (since Ω is well-formed), α is declared to the left of α̂ in Ω.
We have Γ −→ Ω.
By Lemma 21 (Reverse Declaration Order Preservation), we know that α is declared to the left of α̂ in
Γ ; that is, Γ = ΓL[α : κ][α̂ : κ].
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Let ∆ = ΓL[α : κ][α̂ : κ=α] and Ω ′ = Ω.
By InstSolve, ΓL[α : κ][α̂ : κ] ` α̂ := α : κ a ∆.
By Lemma 27 (Parallel Extension Solution), ΓL[α : κ][α̂ : κ=α] −→ Ω.
We have dom(∆) = dom(Γ) and dom(Ω ′) = dom(Ω); therefore, dom(∆) = dom(Ω ′).

• Case τ = 1:

Similar to the τ = α case, but without having to reason about where α is declared.

• Case τ = zero:

Similar to the τ = 1 case.

• Case τ = τ1 ⊕ τ2:

[Ω]α̂ = [Ω](τ1 ⊕ τ2) Given
= ([Ω]τ1) ⊕ ([Ω]τ2) By definition of substitution

τ1 ⊕ τ2 = [Γ ](τ1 ⊕ τ2) Given
τ1 = [Γ ]τ1 By definition of substitution and congruence
τ2 = [Γ ]τ2 Similarly

α̂ /∈ FV(τ1 ⊕ τ2) Given
α̂ /∈ FV(τ1) From definition of FV(−)

α̂ /∈ FV(τ2) Similarly

Γ = Γ0[α̂ : ?] By α̂ ∈ unsolved(Γ)

Γ −→ Ω Given
Γ0[α̂ : ?] −→ Γ0[α̂2 : ?, α̂1 : ?, α̂ : ?] By Lemma 23 (Deep Evar Introduction) (i) twice
. . . , α̂2, α̂1 ` α̂1 ⊕ α̂2 : ? Straightforward

Γ0[α̂2, α̂1, α̂] −→ Γ0[α̂2, α̂1, α̂= α̂1 ⊕ α̂2] By Lemma 23 (Deep Evar Introduction) (ii)
Γ0[α̂] −→ Γ0[α̂2, α̂1, α̂= α̂1 ⊕ α̂2] By Lemma 33 (Extension Transitivity)

(In the last few lines above, and the rest of this case, we omit the “: ?” annotations in contexts.)

Since α̂ ∈ unsolved(Γ) and Γ −→ Ω, we know that Ω has the form Ω0[α̂= τ0].

To show that we can extend this context, we apply Lemma 23 (Deep Evar Introduction) (iii) twice to
introduce α̂2= τ2 and α̂1= τ1, and then Lemma 28 (Parallel Variable Update) to overwrite τ0:

Ω0[α̂= τ0]︸ ︷︷ ︸
Ω

−→ Ω0[α̂2= τ2, α̂1= τ1, α̂= α̂1 ⊕ α̂2]

We have Γ −→ Ω, that is,
Γ0[α̂] −→ Ω0[α̂= τ0]

By Lemma 26 (Parallel Admissibility) (i) twice, inserting unsolved variables α̂2 and α̂1 on both contexts
in the above extension preserves extension:

Γ0[α̂2, α̂1, α̂] −→ Ω0[α̂2 = τ2, α̂1= τ1, α̂= τ0] By Lemma 26 (Parallel Admissibility) (ii) twice
Γ0[α̂2, α̂1, α̂= α̂1⊕α̂2]︸ ︷︷ ︸

Γ1

−→ Ω0[α̂2 = τ2, α̂1= τ1, α̂= α̂1⊕α̂2]︸ ︷︷ ︸
Ω1

By Lemma 28 (Parallel Variable Update)

Since α̂ /∈ FV(τ), it follows that [Γ1]τ = [Γ ]τ = τ.
Therefore α̂1 /∈ FV(τ1) and α̂1, α̂2 /∈ FV(τ2).
By Lemma 55 (Completing Completeness) (i) and (iii), [Ω1]Γ1 = [Ω]Γ and [Ω1]α̂1 = τ1.
By i.h., there are ∆2 and Ω2 such that Γ1 ` α̂1 := τ1 : κ a ∆2 and ∆2 −→ Ω2 and Ω1 −→ Ω2.
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Next, note that [∆2][∆2]τ2 = [∆2]τ2.
By Lemma 64 (Left Unsolvedness Preservation), we know that α̂2 ∈ unsolved(∆2).
By Lemma 65 (Left Free Variable Preservation), we know that α̂2 /∈ FV([∆2]τ2).
By Lemma 33 (Extension Transitivity), Ω −→ Ω2.
We know [Ω2]∆2 = [Ω]Γ because:

[Ω2]∆2 = [Ω2]Ω2 By Lemma 54 (Completing Stability)
= [Ω]Ω By Lemma 55 (Completing Completeness) (iii)
= [Ω]Γ By Lemma 54 (Completing Stability)

By Lemma 55 (Completing Completeness) (i), we know that [Ω2]α̂2 = [Ω1]α̂2 = τ2.
By Lemma 55 (Completing Completeness) (i), we know that [Ω2]τ2 = [Ω]τ2.
Hence we know that [Ω2]∆2 ` [Ω2]α̂2 ≤P [Ω2]τ2.
By i.h., we have ∆ and Ω ′ such that ∆2 ` α̂2 := [∆2]τ2 : κ a ∆ and Ω2 −→ Ω ′ and ∆ −→ Ω ′.
By rule InstBin, Γ ` α̂ := τ : κ a ∆.
By Lemma 33 (Extension Transitivity), Ω −→ Ω ′.

• Case τ = succ(τ0):

Similar to the τ = τ1 ⊕ τ2 case, but simpler.

Lemma 93 (Completeness of Checkeq).
Given Γ −→ Ω and dom(Γ) = dom(Ω)
and Γ ` σ : κ and Γ ` τ : κ
and [Ω]σ = [Ω]τ
then Γ ` [Γ ]σ $ [Γ ]τ : κ a ∆
where ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′.

Proof. By mutual induction on the sizes of [Γ ]σ and [Γ ]τ.
We distinguish cases of [Γ ]σ and [Γ ]τ.

• Case [Γ ]σ = [Γ ]τ = 1:

Z Γ ` 1 $ 1 : ? a Γ︸︷︷︸
∆

By CheckeqUnit

Let Ω ′ = Ω.
Γ −→ Ω Given

Z ∆ −→ Ω ′ ∆ = Γ and Ω ′ = Ω
Z dom(Γ) = dom(Ω) Given
Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity)

• Case [Γ ]σ = [Γ ]t = zero:

Similar to the case for 1, applying CheckeqZero instead of CheckeqUnit.

• Case [Γ ]σ = [Γ ]t = α:

Similar to the case for 1, applying CheckeqVar instead of CheckeqUnit.

• Case [Γ ]σ = α̂ and [Γ ]t = β̂:

– If α̂ = β̂: Similar to the case for 1, applying CheckeqVar instead of CheckeqUnit.

– If α̂ 6= β̂:
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Γ −→ Ω Given
α̂ /∈ FV( β̂︸︷︷︸

[Γ ]t

) By definition of FV(−)

[Ω]σ = [Ω]t Given
[Ω][Γ ]σ = [Ω][Γ ]t By Lemma 29 (Substitution Monotonicity) (i) twice

[Ω]α̂ = [Ω][Γ ]t [Γ ]σ = α̂

dom(Γ) = dom(Ω) Given
Γ ` α̂ := [Γ ]t : κ a ∆ By Lemma 92 (Completeness of Instantiation)

Z Ω −→ Ω ′ ′′

Z ∆ −→ Ω ′′

Z dom(∆) = dom(Ω ′) ′′

Z Γ ` α̂ $ [Γ ]t : κ a ∆ By CheckeqInstL

• Case [Γ ]σ = α̂ and [Γ ]t = 1 or zero or α:

Similar to the previous case, except:

α̂ /∈ FV( 1︸︷︷︸
[Γ ]t

) By definition of FV(−)

and similarly for 1 and α.

• Case [Γ ]t = α̂ and [Γ ]σ = 1 or zero or α: Symmetric to the previous case.

• Case [Γ ]σ = α̂ and [Γ ]t = succ([Γ ]t0):

If α̂ /∈ FV([Γ ]t0), then α̂ /∈ FV([Γ ]t). Proceed as in the previous several cases.

The other case, α̂ ∈ FV([Γ ]t0), is impossible:

We have α̂ � [Γ ]t0.
Therefore α̂ ≺ succ([Γ ]t0), that is, α̂ ≺ [Γ ]t.
By a property of substitutions, [Ω]α̂ ≺ [Ω][Γ ]t.
Since Γ −→ Ω, by Lemma 29 (Substitution Monotonicity) (i), [Ω][Γ ]t = [Ω]t, so [Ω]α̂ ≺ [Ω]t.
But it is given that [Ω]α̂ = [Ω]t, a contradiction.

• Case [Γ ]t = α̂ and [Γ ]σ = succ([Γ ]σ0): Symmetric to the previous case.

• Case [Γ ]σ = [Γ ]σ1 ⊕ [Γ ]σ2 and [Γ ]t = [Γ ]t1 ⊕ [Γ ]t2:

Γ −→ Ω Given
Γ ` [Γ ]σ1 $ [Γ ]t1 : ? a Θ By i.h.

Θ −→ Ω0
′′

Ω −→ Ω0
′′

dom(Θ) = dom(Ω0)
′′

Θ ` [Θ][Γ ]σ2 $ [Θ][Γ ]t2 : ? a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Z Γ ` [Γ ]σ1 ⊕ [Γ ]σ2 $ [Γ ]t1 ⊕ [Γ ]t2) : ? a ∆ By CheckeqBin
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• Case [Γ ]σ = α̂ and [Γ ]t = t1 ⊕ t2: Similar to the α̂/succ(−) case, showing the impossibility of
α̂ ∈ FV([Γ ]tk) for k = 1 and k = 2.

• Case [Γ ]t = α̂ and [Γ ]σ = σ1 ⊕ σ2: Symmetric to the previous case.

Lemma 94 (Completeness of Elimeq).
If [Γ ]σ = σ and [Γ ]t = t and Γ ` σ : κ and Γ ` t : κ and FEV(σ) ∪ FEV(t) = ∅ then:

(1) If mgu(σ, t) = θ
then Γ / σ $ t : κ a (Γ, ∆)
where ∆ has the form α1= t1, . . . , αn= tn
and for all u such that Γ ` u : κ, it is the case that [Γ, ∆]u = θ([Γ ]u).

(2) If mgu(σ, t) = ⊥ (that is, no most general unifier exists) then Γ / σ $ t : κ a ⊥.

Proof. By induction on the structure of [Γ ]σ and [Γ ]t.

• Case [Ω]σ = t = zero:

mgu(zero, zero) = · By properties of unification
Γ / zero $ zero : N a Γ By rule ElimeqZero

Z Γ / zero $ zero : N a Γ, ∆ where ∆ = ·
Z Suppose Γ ` u : κ ′.

[Γ, ∆]u = [Γ ]u where ∆ = ·
= θ([Γ ]u) where θ is the identity

• Case σ = succ(σ ′) and t = succ(t ′):

– Case mgu(succ(σ ′), succ(t ′)) = θ:

mgu(σ ′, t ′) = mgu(succ(σ ′), succ(t ′)) = θ By properties of unification
succ(σ ′) = [Γ ]succ(σ ′) Given

= succ([Γ ]σ ′) By definition of substitution
σ ′ = [Γ ]σ ′ By injectivity of successor

succ(t ′) = [Γ ]succ(t ′) Given
= succ([Γ ]t ′) By definition of substitution

t ′ = [Γ ]t ′ By injectivity of successor
Γ / σ ′ $ t ′ : N a Γ, ∆ By i.h.

Z [Γ, ∆]u = θ([Γ ]u) for all u such that . . . ′′

Z Γ / succ(σ ′) $ succ(t ′) : N a Γ, ∆ By rule ElimeqSucc

– Case mgu(succ(σ ′), succ(t ′)) = ⊥:

mgu(σ ′, t ′) = mgu(succ(σ ′), succ(t ′)) = ⊥ By properties of unification
succ(σ ′) = [Γ ]succ(σ ′) Given

= succ([Γ ]σ ′) By definition of substitution
σ ′ = [Γ ]σ ′ By injectivity of successor

succ(t ′) = [Γ ]succ(t ′) Given
= succ([Γ ]t ′) By definition of substitution

t ′ = [Γ ]t ′ By injectivity of successor
Γ / σ ′ $ t ′ : N a ⊥ By i.h.

Z Γ / succ(σ ′) $ succ(t ′) : N a ⊥ By rule ElimeqSucc
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• Case σ = σ1 ⊕ σ2 and t = t1 ⊕ t2:
First we establish some properties of the subterms:

σ1 ⊕ σ2 = [Γ ](σ1 ⊕ σ2) Given
= [Γ ]σ1 ⊕ [Γ ]σ2 By definition of substitution

Z [Γ ]σ1 = σ1 By injectivity of ⊕
Z [Γ ]σ2 = σ2 By injectivity of ⊕

t1 ⊕ t2 = [Γ ](t1 ⊕ t2) Given
= [Γ ]t1 ⊕ [Γ ]t2 By definition of substitution

Z [Γ ]t1 = t1 By injectivity of ⊕
Z [Γ ]t2 = t2 By injectivity of ⊕

– Subcase mgu(σ, t) = ⊥:

∗ Subcase mgu(σ1, t1) = ⊥:

Γ / σ1 $ t1 : κ a ⊥ By i.h.
Γ / σ1 ⊕ σ2 $ t1 ⊕ t2 : κ a ⊥ By rule ElimeqBinBot

∗ Subcase mgu(σ1, t1) = θ1 and mgu(θ1(σ2), θ1(t2)) = ⊥:

Γ / σ1 $ t1 : κ a Γ, ∆1 By i.h.
[Γ, ∆1]u = θ1([Γ ]u) for all u such that . . . ′′

[Γ, ∆1]σ2 = θ1([Γ ]σ2) Above line with σ2 as u
= θ1(σ2) [Γ ]σ2 = σ2

[Γ, ∆1]t2 = θ1([Γ ]t2) Above line with t2 as u
= θ1(t2) Since [Γ ]σ2 = σ2

mgu([Γ, ∆1]σ2, [Γ, ∆1]t2) = θ2 By transitivity of equality

[Γ, ∆1][Γ, ∆1]σ2 = [Γ, ∆1]σ2 By Lemma 29 (Substitution Monotonicity)
[Γ, ∆1][Γ, ∆1]t2 = [Γ, ∆1]t2 By Lemma 29 (Substitution Monotonicity)

Γ, ∆1 / [Γ, ∆1]σ2 $ [Γ, ∆1]t2 : κ a ⊥ By i.h.
Z Γ / σ1 ⊕ σ2 $ t1 ⊕ t2 : κ a ⊥ By rule ElimeqBin

– Subcase mgu(σ, t) = θ:

mgu(σ1 ⊕ σ2, t1 ⊕ t2) = θ = θ2 ◦ θ1 By properties of unifiers
mgu(σ1, t1) = θ1

′′

mgu(θ1(σ2), θ1(t2)) = θ2
′′

Γ / σ1 $ t1 : κ a Γ, ∆1 By i.h.
* [Γ, ∆1]u = θ1([Γ ]u) for all u such that . . . ′′

[Γ, ∆1]σ2 = θ1([Γ ]σ2) Above line with σ2 as u
= θ1(σ2) [Γ ]σ2 = σ2

[Γ, ∆1]t2 = θ1([Γ ]t2) Above line with t2 as u
= θ1(t2) [Γ ]σ2 = σ2

mgu([Γ, ∆1]σ2, [Γ, ∆1]t2) = θ2 By transitivity of equality
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[Γ, ∆1][Γ, ∆1]σ2 = [Γ, ∆1]σ2 By Lemma 29 (Substitution Monotonicity)
[Γ, ∆1][Γ, ∆1]t2 = [Γ, ∆1]t2 By Lemma 29 (Substitution Monotonicity)

Γ, ∆1 / [Γ, ∆1]σ2 $ [Γ, ∆1]t2 : κ a Γ, ∆1, ∆2 By i.h.
** [Γ, ∆1, ∆2]u

′ = θ2([Γ, ∆1]u
′) for all u ′ such that . . . ′′

Z Γ / σ1 ⊕ σ2 $ t1 ⊕ t2 : κ a Γ, ∆1, ∆2 By rule ElimeqBin

Z Suppose Γ ` u : κ ′.
[Γ, ∆1, ∆2]u = θ2([Γ, ∆1]u) By **

= θ2(θ1([Γ ]u)) By *
= θ([Γ ]u) θ = θ2 ◦ θ1

• Case σ = α:

– Subcase α ∈ FV(t):

mgu(α, t) = ⊥ By properties of unification
Z Γ / α $ t : κ a ⊥ By rule ElimeqUvarL⊥

– Subcase α /∈ FV(t):

mgu(α, t) = [t/α] By properties of unification
(α = t ′) /∈ Γ [Γ ]α = α

Z Γ / α $ t : κ a Γ, α= t By rule ElimeqUvarL

Z Suppose Γ ` u : κ ′.
[Γ, α= t]u = [Γ ]([t/α]u) By definition of substitution

=
[
[Γ ]t/α

]
[Γ ]u By properties of substitution

= [t/α][Γ ]u [Γ ]t = t

• Case t = α: Similar to previous case.

Lemma 95 (Substitution Upgrade).
If ∆ has the form α1= t1, . . . , αn= tn
and, for all u such that Γ ` u : κ, it is the case that [Γ, ∆]u = θ([Γ ]u),
then:

(i) If Γ ` A type then [Γ, ∆]A = θ([Γ ]A).

(ii) If Γ −→ Ω then [Ω]Γ = θ([Ω]Γ).

(iii) If Γ −→ Ω then [Ω,∆](Γ, ∆) = θ([Ω]Γ).

(iv) If Γ −→ Ω then [Ω,∆]e = θ([Ω]e).

Proof. Part (i): By induction on the given derivation, using the given “for all” at the leaves.
Part (ii): By induction on the given derivation, using part (i) in the −→Var case.
Part (iii): By induction on ∆. In the base case (∆ = ·), use part (ii). Otherwise, use the i.h. and the

definition of context substitution.
Part (iv): By induction on e, using part (i) in the e = (e0 : A) case.
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Lemma 96 (Completeness of Propequiv).
Given Γ −→ Ω
and Γ ` P prop and Γ ` Q prop
and [Ω]P = [Ω]Q
then Γ ` [Γ ]P ≡ [Γ ]Q a ∆
where ∆ −→ Ω ′ and Ω −→ Ω ′.

Proof. By induction on the given derivations. There is only one possible case:

• Case Γ ` σ1 : N Γ ` σ2 : N
Γ ` σ1 = σ2 prop

EqProp
Γ ` τ1 : N Γ ` τ2 : N
Γ ` τ1 = τ2 prop

EqProp

[Ω](σ1 = σ2) = [Ω](τ1 = τ2) Given
[Ω]σ1 = [Ω]τ1 Definition of substitution
[Ω]σ2 = [Ω]τ2

′′

Γ `σ1 : N Subderivation
Γ ` τ1 : N Subderivation
Γ ` [Γ ]σ1 $ [Γ ]σ2 : N a Θ By Lemma 93 (Completeness of Checkeq)

Θ −→ Ω0
′′

Ω −→ Ω0
′′

Γ `σ2 : N Subderivation
Θ `σ2 : N By Lemma 36 (Extension Weakening (Sorts))
Θ ` τ2 : N Similarly
Θ ` [Θ]τ1 $ [Θ]τ2 : N a ∆ By Lemma 93 (Completeness of Checkeq)

Z ∆ −→ Ω0
′′

Ω0 −→ Ω ′ ′′

[Θ]τ1 = [Θ][Γ ]τ1 By Lemma 29 (Substitution Monotonicity) (i)
[Θ]τ2 = [Θ][Γ ]τ2

′′

Θ ` [Θ][Γ ]τ1 $ [Θ][Γ ]τ2 : N a ∆ By above equalities
Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Γ ` ([Γ ]σ1 = [Θ]σ2) ≡ ([Γ ]τ1 = [Θ]τ2) a Γ By ≡PropEq
Z Γ ` ([Γ ]σ1 = [Γ ]σ2) ≡ ([Γ ]τ1 = [Γ ]τ2) a Γ By above equalities

Lemma 97 (Completeness of Checkprop).
If Γ −→ Ω and dom(Γ) = dom(Ω)
and Γ ` P prop
and [Γ ]P = P
and [Ω]Γ ` [Ω]P true
then Γ ` P true a ∆
where ∆ −→ Ω ′ and Ω −→ Ω ′ and dom(∆) = dom(Ω ′).

Proof. Only one rule, DeclCheckpropEq, can derive [Ω]Γ ` [Ω]P true, so by inversion, P has the form (t1 = t2)
where [Ω]t1 = [Ω]t2.
By inversion on Γ ` (t1 = t2) prop, we have Γ ` t1 : N and Γ ` t2 : N.
Then by Lemma 93 (Completeness of Checkeq), Γ ` [Γ ]t1 $ [Γ ]t2 : N a ∆ where ∆ −→ Ω ′ and Ω −→ Ω ′.
By CheckpropEq, Γ ` (t1 = t2) true a ∆.
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K ′.2 Completeness of Equivalence and Subtyping

Lemma 98 (Completeness of Equiv).
If Γ −→ Ω and Γ ` A type and Γ ` B type
and [Ω]A = [Ω]B
then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` [Γ ]A ≡ [Γ ]B a ∆.

Proof. By induction on the derivations of Γ ` A type and Γ ` B type.
We distinguish cases of the rule concluding the first derivation. In the first four cases (ImpliesWF, WithWF,

ForallWF, ExistsWF), it follows from [Ω]A = [Ω]B and the syntactic invariant that Ω substitutes terms t
(rather than types A) that the second derivation is concluded by the same rule. Moreover, if none of these
three rules concluded the first derivation, the rule concluding the second derivation must not be ImpliesWF,
WithWF, ForallWF or ExistsWF either.

Because Ω is predicative, the head connective of [Γ ]A must be the same as the head connective of [Ω]A.
We distinguish cases that are imposs. (impossible), fully written out, and similar to fully-written-out

cases. For the lower-right case, where both [Γ ]A and [Γ ]B have a binary connective ⊕, it must be the same
connective.

The Vec type is omitted from the table, but can be treated similarly to ⊃ and ∧.

[Γ ]B
⊃ ∧ ∀β. B ′ ∃β. B ′ 1 α β̂ B1 ⊕ B2

⊃ Implies imposs. imposs. imposs. imposs. imposs. imposs. imposs.

∧ imposs. With imposs. imposs. imposs. imposs. imposs. imposs.

∀α. A ′ imposs. imposs. Forall imposs. imposs. imposs. imposs. imposs.

∃α. A ′ imposs. imposs. imposs. Exists imposs. imposs. imposs. imposs.

1 imposs. imposs. imposs. imposs. 2.Units imposs. 2.BEx.Unit imposs.

[Γ ]A α imposs. imposs. imposs. imposs. imposs. 2.Uvars 2.BEx.Uvar imposs.

α̂ imposs. imposs. imposs. imposs. 2.AEx.Unit 2.AEx.Uvar
2.AEx.SameEx
2.AEx.OtherEx 2.AEx.Bin

A1 ⊕ A2 imposs. imposs. imposs. imposs. imposs. imposs. 2.BEx.Bin 2.Bins

• Case Γ ` P prop Γ ` A0 type
Γ ` P ⊃ A0 type

ImpliesWF

This case of the rule concluding the first derivation coincides with the Implies entry in the table.

We have [Ω]A = [Ω]B, that is, [Ω](P ⊃ A0) = [Ω]B.
Because Ω is predicative, B must have the form Q ⊃ B0, where [Ω]P = [Ω]Q and [Ω]A0 = [Ω]B0.
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Γ `P prop Subderivation
Γ `A0 type Subderivation
Γ `Q ⊃ B0 type Given
Γ `Q prop By inversion on rule ImpliesWF
Γ `B0 type ′′

Γ ` [Γ ]P ≡ [Γ ]Q a Θ By Lemma 96 (Completeness of Propequiv)
Θ −→ Ω0

′′

Ω −→ Ω0
′′

Γ −→ Θ By Lemma 48 (Prop Equivalence Extension)
Γ `A0 type Above
Γ `B0 type Above

[Ω]A0 = [Ω]B0 Above
[Ω0]A0 = [Ω0]B0 By Lemma 55 (Completing Completeness) (ii) twice

Γ ` [Γ ]A0 ≡ [Γ ]B0 a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)
Γ ` ([Γ ]P ⊃ [Γ ]A0) ≡ ([Γ ]Q ⊃ [Γ ]B0) a ∆ By ≡⊃

Z Γ ` [Γ ](P ⊃ A0) ≡ [Γ ](Q ⊃ B0) a ∆ By definition of substitution

• Case WithWF: Similar to the ImpliesWF case, coinciding with the With entry in the table.

• Case Γ, α : κ ` A0 type
Γ ` ∀α : κ. A0 type

ForallWF

This case coincides with the Forall entry in the table.

Γ −→ Ω Given
Γ, α : κ −→ Ω,α : κ By −→Uvar
Γ, α : κ `A0 type Subderivation

B = ∀α : κ. B0 Ω predicative
[Ω]A0 = [Ω]B0 From definition of substitution

Γ, α : κ ` [Γ ]A0 ≡ [Γ ]B0 a ∆0 By i.h.
∆0 −→ Ω0

′′

Ω,α : κ −→ Ω0
′′

Z Ω −→ Ω ′ and Ω0 = (Ω ′, α : κ, . . . ) By Lemma 22 (Extension Inversion) (i)
∆0 = (∆,α : κ,∆ ′) By Lemma 22 (Extension Inversion) (i)

Z ∆ −→ Ω ′ ′′

Γ `∀α : κ. [Γ ]A0 ≡ ∀α : κ. [Γ ]B0 a ∆ By ≡∀
Z Γ ` [Γ ](∀α : κ. A0) ≡ [Γ ](∀α : κ. B0) a ∆ By definition of substitution

• Case ExistsWF: Similar to the ForallWF case. (This is the Exists entry in the table.)

• Case BinWF: If BinWF also concluded the second derivation, then the proof is similar to the ImpliesWF
case, but on the first premise, using the i.h. instead of Lemma 96 (Completeness of Propequiv). This is
the 2.Bins entry in the lower right corner of the table.

Proof of Lemma 98 (Completeness of Equiv) lem:equiv-completeness



Proof of Lemma 98 (Completeness of Equiv) lem:equiv-completeness 159

If BinWF did not conclude the second derivation, we are in the 2.AEx.Bin or 2.BEx.Bin entries; see
below.

In the remainder, we cover the 4 × 4 region in the lower right corner, starting from 2.Units. We already
handled the 2.Bins entry in the extreme lower right corner. At this point, we split on the forms of [Γ ]A and
[Γ ]B instead; in the remaining cases, one or both types is atomic (e.g. 2.Uvars, 2.AEx.Bin) and we will not
need to use the induction hypothesis.

• Case 2.Units: [Γ ]A = [Γ ]B = 1

Z Γ ` 1 ≡ 1 a Γ By ≡Unit
Γ −→ Ω Given

Let Ω ′ = Ω ′.
Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity) and Ω ′ = Ω

• Case 2.Uvars: [Γ ]A = [Γ ]B = α

Γ −→ Ω Given
Let Ω ′ = Ω ′.

Z Γ `α ≡ α a Γ By ≡Var
Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity) and Ω ′ = Ω

• Case 2.AExUnit: [Γ ]A = α̂ and [Γ ]B = 1

Γ −→ Ω Given
1 = [Ω]1 By definition of substitution
α̂ /∈ FV(1) By definition of FV(−)

[Ω]α̂ = [Ω]1 Given

Γ ` α̂ := 1 : ? a ∆ By Lemma 92 (Completeness of Instantiation) (1)
Z Ω −→ Ω ′ ′′

Z ∆ −→ Ω ′ ′′

1 = [Γ ]1 By definition of substitution
α̂ /∈ FV(1) By definition of FV(−)

Z Γ ` α̂ ≡ 1 a ∆ By ≡InstantiateL

• Case 2.BExUnit: [Γ ]A = 1 and [Γ ]B = α̂

Symmetric to the 2.AExUnit case.

• Case 2.AEx.Uvar: [Γ ]A = α̂ and [Γ ]B = α

Similar to the 2.AEx.Unit case, using β = [Ω]β = [Γ ]β and α̂ /∈ FV(β).

• Case 2.BExUvar: [Γ ]A = 1 and [Γ ]B = α̂

Symmetric to the 2.AExUvar case.

• Case 2.AEx.SameEx: [Γ ]A = α̂ = β̂ = [Γ ]B
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Γ ` α̂ ≡ α̂ a Γ By ≡Exvar (α̂ = β̂)
[Γ ]α̂ = α̂ α̂ unsolved in Γ

Z Γ ` [Γ ]α̂ ≡ [Γ ]β̂ a Γ By above equality + α̂ = β̂

Γ −→ Ω Given
Z ∆ −→ Ω ∆ = Γ

Let Ω ′ = Ω.
Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity) and Ω ′ = Ω

• Case 2.AEx.OtherEx: [Γ ]A = α̂ and [Γ ]B = β̂ and α̂ 6= β̂
Either α̂ ∈ FV([Γ ]β̂), or α̂ /∈ FV([Γ ]β̂).

– α̂ ∈ FV([Γ ]β̂):
We have α̂ � [Γ ]β̂.
Therefore α̂ = [Γ ]β̂, or α̂ ≺ [Γ ]β̂.
But we are in Case 2.AEx.OtherEx, so the former is impossible.
Therefore, α̂ ≺ [Γ ]β̂.
By a property of substitutions, [Ω]α̂ ≺ [Ω][Γ ]β̂.
Since Γ −→ Ω, by Lemma 29 (Substitution Monotonicity) (iii), [Ω][Γ ]β̂ = [Ω]β̂, so [Ω]α̂ ≺ [Ω]β̂.
But it is given that [Ω]α̂ = [Ω]β̂, a contradiction.

– α̂ /∈ FV([Γ ]β̂):

Γ ` α̂ := [Γ ]β̂ : ? a ∆ By Lemma 92 (Completeness of Instantiation)
Z Γ ` α̂ ≡ [Γ ]β̂ a ∆ By ≡InstantiateL
Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

• Case 2.AEx.Bin: [Γ ]A = α̂ and [Γ ]B = B1 ⊕ B2
Since [Γ ]B is an arrow, it cannot be exactly α̂. By the same reasoning as in the previous case (2.AEx.OtherEx),
α̂ /∈ FV([Γ ]β̂).

Γ ` α̂ := [Γ ]B : ? a ∆ By Lemma 92 (Completeness of Instantiation)
Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z Γ ` [Γ ]A︸︷︷︸
α̂

≡ [Γ ]B︸︷︷︸
B1⊕B2

a ∆ By ≡InstantiateL

• Case 2.BEx.Bin: [Γ ]A = A1 ⊕ A2 and [Γ ]B = β̂

Symmetric to the 2.AEx.Bin case, applying ≡InstantiateR instead of ≡InstantiateL.

Theorem 10 (Completeness of Subtyping).
If Γ −→ Ω and dom(Γ) = dom(Ω) and Γ ` A type and Γ ` B type
and [Ω]Γ ` [Ω]A ≤P [Ω]B
then there exist ∆ and Ω ′ such that ∆ −→ Ω ′

and dom(∆) = dom(Ω ′)
and Ω −→ Ω ′

and Γ ` [Γ ]A <:P [Γ ]B a ∆.

Proof. By induction on the number of ∀/∃ quantifiers in [Ω]A and [Ω]B.
It is straightforward to show dom(∆) = dom(Ω ′); for examples of the necessary reasoning, see the proof

of Theorem 12.
We have [Ω]Γ ` [Ω]A ≤join(pol(B),pol(A)) [Ω]B.
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• Case [Ω]Γ ` [Ω]A type nonpos([Ω]A)

[Ω]Γ ` [Ω]A ≤− [Ω]A︸ ︷︷ ︸
[Ω]B

≤Refl−

First, we observe that, since applying Ω as a substitution leaves quantifiers alone, the quantifiers that
head A must also head B. For convenience, we alpha-vary B to quantify over the same variables as A.

– If A is headed by ∀, then [Ω]A = (∀α : κ. [Ω]A0) = (∀α : κ. [Ω]B0) = [Ω]B.
Let Γ0 = (Γ, α : κ,Iα̂, α̂ : κ).
Let Ω0 = (Ω,α : κ,Iα̂, α̂ : κ=α).

∗ If pol(A0) ∈ {−, 0}, then:
(We elide the straightforward use of lemmas about context extension.)

[Ω0]Γ0 ` [Ω]A0 ≤− [Ω]A0 By ≤Refl−
[Ω0]Γ0 ` [Ω0][α̂/α]A0 ≤− A0 By def. of subst.
∆0 −→ Ω ′0 By i.h. (fewer quantifiers)
Ω0 −→ Ω ′0

′′

Γ0 ` [Γ0][α̂/α]A0 <:− [Γ ]B0 a ∆0 ′′

Γ0 ` [α̂/α][Γ0]A0 <:− [Γ ]B0 a ∆0 α̂ unsolved in Γ0
Γ0 ` [α̂/α][Γ ]A0 <:− [Γ ]B0 a ∆0 Γ0 substitutes as Γ

Γ, α : κ `∀α : κ. [Γ ]A0 <:− [Γ ]B0 a ∆,α : κ,Θ By <:∀L
Γ `∀α : κ. [Γ ]A0 <:− ∀α : κ. [Γ ]B0 a ∆ By <:∀R

Z Γ ` [Γ ](∀α : κ. A0) <:− [Γ ](∀α : κ. B0) a ∆ By def. of subst.
Z ∆ −→ Ω By lemma
Z Ω −→ Ω ′0 By lemma

∗ If pol(A0) = +, then proceed as above, but apply ≤Refl+ instead of ≤Refl−, and apply <:+−L
after applying the i.h. (Rule <:+−R also works.)

– If A is not headed by ∀:
We have nonneg([Ω]A). Therefore nonneg(A), and thus A is not headed by ∃. Since the same
quantifiers must also head B, the conditions in rule <:Equiv are satisfied.

Γ −→ Ω Given
Γ ` [Γ ]A ≡ [Γ ]B a ∆ By Lemma 98 (Completeness of Equiv)

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z Γ ` [Γ ]A <:− [Γ ]B a ∆ By <:Equiv

• Case ≤Refl+: Symmetric to the ≤Refl− case, using <:−+L (or <:−+R), and <:∃R/<:∃L instead of
<:∀L/<:∀R.

• Case [Ω]Γ ` τ : κ [Ω]Γ ` [τ/α][Ω]A0 ≤− [Ω]B

[Ω]Γ ` ∀α : κ. [Ω]A0︸ ︷︷ ︸
[Ω]A

≤− [Ω]B
≤∀L

We begin by considering whether or not [Ω]B is headed by a universal quantifier.

– [Ω]B = (∀β : κ ′. B ′):
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[Ω]Γ, β : κ ′ ` [Ω]A ≤− B ′ By Lemma 5 (Subtyping Inversion)

The remaining steps are similar to the ≤∀R case.

– [Ω]B not headed by ∀:

[Ω]Γ ` τ : κ Subderivation
Γ −→ Ω Given

Γ,Iα̂ −→ Ω,Iα̂ By −→Marker
Γ,Iα̂, α̂ : κ −→ Ω,Iα̂, α̂ : κ= τ︸ ︷︷ ︸

Ω0

By −→Solve

[Ω]Γ = [Ω0](Γ,Iα̂, α̂ : κ) By definition of context application (lines 16, 13)

[Ω]Γ ` [τ/α][Ω]A0 ≤− [Ω]B Subderivation
[Ω0](Γ,Iα̂, α̂ : κ) ` [τ/α][Ω]A0 ≤− [Ω]B By above equality
[Ω0](Γ,Iα̂, α̂ : κ) `

[
[Ω0]α̂/α

]
[Ω]A0 ≤− [Ω]B By definition of substitution

[Ω0](Γ,Iα̂, α̂ : κ) `
[
[Ω0]α̂/α

]
[Ω0]A0 ≤− [Ω0]B By definition of substitution

[Ω0](Γ,Iα̂, α̂ : κ) ` [Ω0][α̂/α]A0 ≤− [Ω0]B By distributivity of substitution

Γ,Iα̂, α̂ ` [Γ,Iα̂, α̂ : κ][α̂/α]A0 <:− [Γ,Iα̂, α̂ : κ]B a ∆0 By i.h. (A lost a quantifier)
∆0 −→ Ω ′′ ′′

Ω0 −→ Ω ′′ ′′

Γ,Iα̂, α̂ : κ ` [Γ ][α̂/α]A0 <:− [Γ ]B a ∆0 By definition of substitution

Γ,Iα̂, α̂ : κ −→ ∆0 By Lemma 50 (Subtyping Extension)
∆0 = (∆,Iα̂, Θ) By Lemma 22 (Extension Inversion) (ii)
Γ −→ ∆ ′′

Ω ′′ = (Ω ′,Iα̂,ΩZ) By Lemma 22 (Extension Inversion) (ii)
Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′′ Above
Ω,Iα̂, α̂ : κ= τ −→ Ω ′,Iα̂,ΩZ By above equalities

Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) (ii)

Γ,Iα̂, α̂ : κ ` [Γ ][α̂/α]A0 <:− [Γ ]B a ∆,Iα̂, Θ By above equality ∆0 = (∆,Iα̂, Θ)

Γ,Iα̂, α̂ : κ ` [α̂/α][Γ ]A0 <:− [Γ ]B a ∆,Iα̂, Θ By def. of subst. ([Γ ]α̂ = α̂ and [Γ ]α = α)
[Γ ]B not headed by ∀ From the case assumption

Γ `∀α : κ. [Γ ]A0 <:− [Γ ]B a ∆ By <:∀L
Z Γ ` [Γ ](∀α : κ. A0) <:− [Γ ]B a ∆ By definition of substitution

• Case [Ω]Γ, β : κ ` [Ω]A ≤− [Ω]B0

[Ω]Γ ` [Ω]A ≤− ∀β : κ. [Ω]B0︸ ︷︷ ︸
[Ω]B

≤∀R
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B = ∀β : κ. B0 Ω predicative
[Ω]Γ ` [Ω]A ≤− [Ω]B Given
[Ω]Γ ` [Ω]A ≤− ∀β. [Ω]B0 By above equality

[Ω]Γ, β : κ ` [Ω]A ≤− [Ω]B0 Subderivation
[Ω,β : κ](Γ, β : κ) ` [Ω,β : κ]A ≤− [Ω,β : κ]B0 By definitions of substitution

Γ, β : κ ` [Γ, β:κ]A <:− [Γ, β:κ]B0 a ∆ ′ By i.h. (B lost a quantifier)
∆ ′ −→ Ω ′0

′′

Ω,β : κ −→ Ω ′0
′′

Γ, β : κ ` [Γ ]A <:− [Γ ]B0 a ∆ ′ By definition of substitution

Γ, β : κ −→ ∆ ′ By Lemma 43 (Instantiation Extension)
∆ ′ = (∆,β : κ,Θ) By Lemma 22 (Extension Inversion) (i)
Γ −→ ∆ ′′

∆,β : κ,Θ −→ Ω ′0 By ∆ ′ −→ Ω ′0 and above equality
Ω ′0 = (Ω ′, β : κ,ΩR) By Lemma 22 (Extension Inversion) (i)

Z ∆ −→ Ω ′ ′′

Γ, β : κ ` [Γ ]A <:− [Γ ]B0 a ∆,β : κ,Θ By above equality
Ω,β : κ −→ Ω ′, β : κ,ΩR By above equality

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Γ ` [Γ ]A <:− ∀β : κ. [Γ ]B0 a ∆ By <:∀R
Z Γ ` [Γ ]A <:− [Γ ](∀β : κ. B0) a ∆ By definition of substitution

• Case [Ω]Γ, α : κ ` [Ω]A0 ≤+ [Ω]B

[Ω]Γ ` ∃α : κ. [Ω]A0︸ ︷︷ ︸
[Ω]A

≤+ [Ω]B
≤∃L

A = ∃α : κ. A0 Ω predicative
[Ω]Γ ` [Ω]A) ≤+ [Ω]B Given
[Ω]Γ ` [Ω]∃α : κ. A0 ≤+ [Ω]B By above equality

[Ω]Γ, α : κ ` [Ω]A0 ≤+ [Ω]B Subderivation
[Ω,α : κ](Γ, α : κ) ` [Ω,α : κ]A0 ≤+ [Ω,α : κ]B By definitions of substitution

Γ, α : κ ` [Γ, β:κ]A0 <:+ [Γ, β:κ]B a ∆ ′ By i.h. (A lost a quantifier)
∆ ′ −→ Ω ′0

′′

Ω,α : κ −→ Ω ′0
′′

Γ, α : κ ` [Γ ]A <:+ [Γ ]B0 a ∆ ′ By definition of substitution

Γ, α : κ −→ ∆ ′ By Lemma 43 (Instantiation Extension)
∆ ′ = (∆,α : κ,Θ) By Lemma 22 (Extension Inversion) (i)
Γ −→ ∆ ′′

∆,α : κ,Θ −→ Ω ′0 By ∆ ′ −→ Ω ′0 and above equality
Ω ′0 = (Ω ′, α : κ,ΩR) By Lemma 22 (Extension Inversion) (i)

Z ∆ −→ Ω ′ ′′
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Γ, α : κ ` [Γ ]A0 <:+ [Γ ]B a ∆,α : κ,Θ By above equality
Ω,α : κ −→ Ω ′, α : κ,ΩR By above equality

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Γ `∃α : κ. [Γ ]A0 <:+ [Γ ]B a ∆ By <:∀R
Z Γ ` [Γ ](∃α : κ. A0) <:+ [Γ ]B a ∆ By definition of substitution

• Case Ψ ` τ : κ Ψ ` [Ω]A ≤+ [τ/β]B0

Ψ ` [Ω]A ≤+ ∃β : κ. B0︸ ︷︷ ︸
[Ω]B

≤∃R

We consider whether [Ω]A is headed by an existential.

If [Ω]A = ∃α : κ ′. A ′:

[Ω]Γ, α : κ ′ `A ′ ≤+ [Ω]B By Lemma 5 (Subtyping Inversion)

The remaining steps are similar to the ≤∃L case.

If [Ω]A not headed by ∃:

[Ω]Γ ` τ : κ Subderivation
Γ −→ Ω Given

Γ,Iα̂ −→ Ω,Iα̂ By −→Marker
Γ,Iα̂, α̂ : κ −→ Ω,Iα̂, α̂ : κ= τ︸ ︷︷ ︸

Ω0

By −→Solve

[Ω]Γ = [Ω0](Γ,Iα̂, α̂ : κ) By definition of context application (lines 16, 13)

[Ω]Γ ` [Ω]A ≤+ [τ/β][Ω]B0 Subderivation
[Ω0](Γ,Iα̂, α̂ : κ) ` [Ω]A ≤+ [τ/β][Ω]B0 By above equality
[Ω0](Γ,Iα̂, α̂ : κ) ` [Ω]A ≤+

[
[Ω0]α̂/β

]
[Ω]B0 By definition of substitution

[Ω0](Γ,Iα̂, α̂ : κ) ` [Ω0]A ≤+
[
[Ω0]α̂/β

]
[Ω0]B0 By definition of substitution

[Ω0](Γ,Iα̂, α̂ : κ) ` [Ω0]A ≤+ [Ω0][α̂/β]B0 By distributivity of substitution

Γ,Iα̂, α̂ ` [Γ,Iα̂, α̂ : κ]A <:+ [Γ,Iα̂, α̂ : κ][α̂/β]B0 a ∆0 By i.h. (B lost a quantifier)
∆0 −→ Ω ′′ ′′

Ω0 −→ Ω ′′ ′′

Γ,Iα̂, α̂ : κ ` [Γ ][α̂/β]B0 <:+ [Γ ]B a ∆0 By definition of substitution
Γ,Iα̂, α̂ : κ −→ ∆0 By Lemma 50 (Subtyping Extension)

∆0 = (∆,Iα̂, Θ) By Lemma 22 (Extension Inversion) (ii)
Γ −→ ∆ ′′

Ω ′′ = (Ω ′,Iα̂,ΩZ) By Lemma 22 (Extension Inversion) (ii)
Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′′ Above
Ω,Iα̂, α̂ : κ= τ −→ Ω ′,Iα̂,ΩZ By above equalities

Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) (ii)
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Γ,Iα̂, α̂ : κ ` [Γ ]A <:+ [Γ ][α̂/β]B0 a ∆,Iα̂, Θ By above equality ∆0 = (∆,Iα̂, Θ)

Γ,Iα̂, α̂ : κ ` [Γ ]A <:+ [α̂/β][Γ ]B0 a ∆,Iα̂, Θ By def. of subst. ([Γ ]α̂ = α̂ and [Γ ]β = β)
[Γ ]A not headed by ∃ From the case hypothesis

Γ ` [Γ ]A <:+ ∃β : κ. [Γ ]B0 a ∆ By <:∃R
Z Γ ` [Γ ]A <:+ [Γ ](∃β : κ. B0) a ∆ By definition of substitution

K ′.3 Completeness of Typing

Lemma 99 (Variable Decomposition). If Π var
; Π ′, then

1. if Π 1
; Π ′′ then Π ′′ = Π ′.

2. if Π ×
; Π ′′′ then there exists Π ′′ such that Π ′′′ var

; Π ′′ and Π ′′ var
; Π ′,

3. if Π +
; ΠL ‖ ΠR then ΠL

var
; Π ′ and ΠR

var
; Π ′,

4. if Π Vec
; Π[] ‖ Π:: then Π ′ = Π[].

Proof. Each of these follows by induction on Π and decomposition of the two input derivations.

Lemma 100 (Pattern Decomposition and Substitution).

1. If Π var
; Π ′ then [Ω]Π

var
; [Ω]Π ′.

2. If Π 1
; Π ′ then [Ω]Π

1
; [Ω]Π ′.

3. If Π ×
; Π ′ then [Ω]Π

×
; [Ω]Π ′.

4. If Π +
; Π1 ‖ Π2 then [Ω]Π

+
; [Ω]Π1 ‖ [Ω]Π2.

5. If Π Vec
; Π1 ‖ Π2 then [Ω]Π

Vec
; [Ω]Π1 ‖ [Ω]Π2.

6. If [Ω]Π
var
; Π ′ then there is Π ′′ such that [Ω]Π ′′ = Π ′ and Π var

; Π ′′.

7. If [Ω]Π
1
; Π ′ then there is Π ′′ such that [Ω]Π ′′ = Π ′ and Π 1

; Π ′′.

8. If [Ω]Π
×
; Π ′ then there is Π ′′ such that [Ω]Π ′′ = Π ′ and Π ×

; Π ′′.

9. If [Ω]Π
+
; Π ′1 ‖ Π ′2 then there are Π1 and Π2 such that [Ω]Π1 = Π

′
1 and [Ω]Π2 = Π

′
2 and Π +

; Π1 ‖ Π2.

10. If [Ω]Π
Vec
; Π ′1 ‖ Π ′2 then there are Π1 and Π2 such that [Ω]Π1 = Π ′1 and [Ω]Π2 = Π ′2 and Π Vec

;

Π1 ‖ Π2.

Proof. Each case is proved by induction on the relevant derivation.

Lemma 101 (Pattern Decomposition Functionality).

1. If Π var
; Π ′ and Π var

; Π ′′ then Π ′ = Π ′′.

2. If Π 1
; Π ′ and Π 1

; Π ′′ then Π ′ = Π ′′.

3. If Π ×
; Π ′ and Π ×

; Π ′′ then Π ′ = Π ′′.

4. If Π +
; Π1 ‖ Π2 and Π +

; Π ′1 ‖ Π ′2 then Π1 = Π ′1 and Π2 = Π ′2.

5. If Π Vec
; Π1 ‖ Π2 and Π Vec

; Π1 ‖ Π2 then Π1 = Π ′1 and Π2 = Π ′2.

Proof. By induction on the derivation of Π var
; Π ′.
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Lemma 102 (Decidability of Variable Removal). For all Π, either there exists a Π ′ such that Π var
; Π ′ or

there does not.

Proof. This follows from an induction on the structure of Π.

Lemma 103 (Variable Inversion).

1. If Π var
; Π ′ and Ψ ` Π covers A, ~Aq then Ψ ` Π ′ covers ~Aq.

2. If Π var
; Π ′ and Γ ` Π covers A, ~A q then Γ ` Π ′ covers ~A q.

Proof. This follows by induction on the relevant derivations.

Theorem 11 (Completeness of Match Coverage).

1. If Γ ` ~A q types and [Γ ]~A = ~A and (for all Ω such that Γ −→ Ω, we have [Ω]Γ ` [Ω]Π covers [Ω]~A q)
then Γ ` Π covers ~A q.

2. If [Γ ]~A = ~A and [Γ ]P = P and Γ ` ~A ! types and (for all Ω such that Γ −→ Ω, we have [Ω]Γ / [Ω]P `
[Ω]Π covers [Ω]~A !)
then Γ / P ` Π covers ~A !.

Proof. By mutual induction, with the induction metric lexicographically ordered on the number of pattern
constructor symbols in the branches of Π, the number of connectives in ~A, and 1 if P is present/0 if it is
absent.

1. Assume Γ ` ~A q types and [Γ ]~A = ~A and (for allΩ such that Γ −→ Ω, we have [Ω]Γ ` [Ω]Π covers [Ω]~A q)

• Case ~A = ·:
Choose a completing substitution Ω.
Then we have [Ω]Γ ` [Ω]Π covers · q.
By inversion, we see that DeclCoversEmpty was the last rule, and that we have [Ω]Γ ` [Ω]·⇒ e1 || . . . covers ·q.
Hence by CoversEmpty, we have Γ ` ·⇒ e1 || . . . covers · q.

• Case ~A = A, ~B:
By Lemma 102 (Decidability of Variable Removal) either

– Case Π var
; Π ′:

Assume Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](A, ~B) q.
By Lemma 100 (Pattern Decomposition and Substitution), [Ω]Π

var
; [Ω]Π ′.

By Lemma 103 (Variable Inversion), [Ω]Γ ` [Ω]Π ′ covers [Ω]~B q.
So for all Ω such that Γ −→ Ω, [Ω]Γ ` [Ω]Π ′ covers [Ω]~B q.
By induction, Γ ` Π ′ covers ~B q.
Z By rule CoversVar, Γ ` Π covers A, ~B q.

– Case ∀Π ′.¬(Π var
; Π ′):

∗ Case α̂, ~B:
This case is impossible. Choose a completing substitution Ω such that [Ω]α̂ = 1→ 1, and
then by assumption we have [Ω]Γ ` [Ω]Π covers 1→ 1, [Ω]~B q. By inversion we have that
[Ω]Π

var
; Π ′. By Lemma 100 (Pattern Decomposition and Substitution), we have a Π ′′

such that [Ω]Π ′′ = Π ′, and Π var
; Π ′′. This yields the contradiction.

∗ Case C→ D, ~B:
∗ Case ∀α : κ. A, ~B:
∗ Case α, ~B:

Similar to the α̂ case.
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∗ Case ~A = 1, ~B:
Choose an arbitrary Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](1, ~B) q.
By inversion, we know the rule DeclCovers1 applies (since the variable case has been ruled out).
Hence [Ω]Π

1
; Π ′′ and [Ω]Γ ` Π ′′ covers [Ω]~B q.

By Lemma 100 (Pattern Decomposition and Substitution), there is a Π ′ such that
[Ω]Π ′ = Π ′′ and Π 1

; Π ′.

Assume Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](1, ~B) q.
By inversion, we know the rule DeclCovers1 applies (since the variable case has been ruled out).
Hence [Ω]Π

1
; Π ′′ and [Ω]Γ ` Π ′′ covers [Ω]~B q.

By Lemma 100 (Pattern Decomposition and Substitution),
there is a Π̂ ′’ such that Π ′′ = [Ω]Π̂ ′’ and Π 1

; P̂i
′
.

By Lemma 101 (Pattern Decomposition Functionality), we know Π̂ ′ = Π ′.
So for all Ω such that Γ −→ Ω, [Ω]Γ ` [Ω]Π ′ covers [Ω]~B q.
By induction, Γ ` Π ′ covers ~B q.
By rule Covers1, Γ ` Π covers A, ~B q.

∗ Case C×D, ~B:
Choose an arbitrary Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](C×D, ~B) q.
By inversion, we know the rule DeclCovers× applies (since the variable case has been ruled out).
Hence [Ω]Π

×
; Π ′′ and [Ω]Γ ` Π ′′ covers [Ω](C,D, ~B) q.

By Lemma 100 (Pattern Decomposition and Substitution), there is a Π ′ such that
[Ω]Π ′ = Π ′′ and Π ×

; Π ′.

Assume Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](C×D, ~B) q.
By inversion, we know the rule DeclCovers× applies (since the variable case has been ruled out).
Hence [Ω]Π

×
; Π ′′ and [Ω]Γ ` Π ′′ covers [Ω](C,D, ~B) q.

By Lemma 100 (Pattern Decomposition and Substitution),
there is a Π̂ ′’ such that Π ′′ = [Ω]Π̂ ′’ and Π ×

; P̂i
′
.

By Lemma 101 (Pattern Decomposition Functionality), we know Π̂ ′ = Π ′.
So for all Ω such that Γ −→ Ω, [Ω]Γ ` [Ω]Π ′ covers [Ω](C,D, ~B) q.
By induction, Γ ` Π ′ covers C,D, ~B q.
By rule Covers×, Γ ` Π covers C×D, ~B q.

∗ Case C+D, ~B:
Choose an arbitrary Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](C×D, ~B) q.
By inversion, we know the rule DeclCovers+ applies (since the variable case has been ruled out).
Hence [Ω]Π

+
; Π ′1 ‖ Π ′2 and [Ω]Γ ` Π ′1 covers [Ω](C, ~B) q and [Ω]Γ ` Π ′2 covers [Ω](D, ~B) q.

By Lemma 100 (Pattern Decomposition and Substitution), there is a Π1 and Π2 such that
[Ω]Π1 = Π

′
1 and [Ω]Π2 = Π

′
2 and Π +

; Π1 ‖ Π2.

Assume Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](C×D, ~B) q.
By inversion, we know the rule DeclCovers+ applies (since the variable case has been ruled out).
Hence [Ω]Π

+
; Π̂ ′1 ‖ Π̂ ′2 and [Ω]Γ ` Π̂ ′1 covers [Ω](C, ~B) q and [Ω]Γ ` Π̂ ′2 covers [Ω](D, ~B) q.
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By Lemma 100 (Pattern Decomposition and Substitution),
there is a Π̂1’ such that Π̂ ′1 = [Ω]Π̂1 and Π̂ ′2 = [Ω]Π̂2 and Π +

; P̂i1 ‖ Π̂2.
By Lemma 101 (Pattern Decomposition Functionality), we know Π̂i = Πi.

So for all Ω such that Γ −→ Ω, [Ω]Γ ` [Ω]Π1 covers [Ω](C, ~B) q.
So for all Ω such that Γ −→ Ω, [Ω]Γ ` [Ω]Π2 covers [Ω](D, ~B) q.
By induction, Γ ` Π1 covers C, ~B q.
By induction, Γ ` Π2 covers D, ~B q.
By rule Covers+, Γ ` Π covers C+D, ~B q.

∗ Case Vec n A, ~B:
Similar to the previous case.

∗ Case ∃α : κ. C, ~B:

Assume Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](∃α : κ. C, ~B) q.
By inversion, we know the rule DeclCovers∃ applies.
Hence [Ω]Γ, α : κ ` [Ω]Π covers [Ω](C, ~B) q.

So for all Ω such that Γ −→ Ω, [Ω](Γ, α : κ) ` [Ω]Π covers [Ω](C, ~B) q.
By induction, Γ, α : κ ` Π covers C, ~B q.
By rule Covers∃, Γ ` Π covers ∃α : κ. C, ~B q.

∗ Case C ∧ P, ~B:
· Case q = 6 ! : Similar to the previous case.
· Case q = !:

Assume Ω such that Γ −→ Ω.
By assumption, [Ω]Γ ` [Ω]Π covers [Ω](C ∧ P, ~B) q.
By inversion, we know the rule DeclCovers∧ applies.
Hence [Ω]Γ / [Ω]P ` [Ω]Π covers [Ω](C, ~B) !.

So for all Ω such that Γ −→ Ω, [Ω](Γ, α : κ) / [Ω]P ` [Ω]Π covers [Ω](C, ~B) !.
By mutual induction, Γ / P ` Π covers C, ~B !.
By rule Covers∧, Γ ` Π covers C ∧ P, ~B !.

2. Assume [Γ ]~A = ~A and [Γ ]P = P and Γ ` ~A ! types and (for all Ω such that Γ −→ Ω, we have
[Ω]Γ / [Ω]P ` [Ω]Π covers [Ω]~A !).

Let (t1 = t2) be P.
Consider whether the mgu(t1, t2) exists

• Case θ = mgu(t1, t2):

mgu(t1, t2) = θ Premise
Γ / t1 $ t2 : κ a Γ,Θ By Lemma 94 (Completeness of Elimeq) (1)
Γ / [Γ ]t1 $ [Γ ]t2 : κ a Γ,Θ Follows from given assumption

Assume Ω such that Γ,Θ −→ Ω.
By Lemma 59 (Canonical Completion), there is a Ω ′ such that [Ω]Γ = [Ω ′]Γ and dom(Γ) =
dom(Γ ′).
Moreover, by Lemma 22 (Extension Inversion), we can construct a Ω ′′ such that Ω ′ = Ω ′′, Θ and
Γ −→ Ω ′.
By assumption, [Ω ′′]Γ / [Ω ′′](t1 = t2) ` [Ω ′′]Π covers ~A!.
There is only one way this derivation could be constructed:
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– Case
θ = mgu(t1, t2) [θ][Ω ′′]Γ ` [θ][Ω ′′]Π covers [θ][Ω ′′]~A !

[Ω ′′]Γ / [Ω ′′](t1 = t2) ` [Ω ′′]Π covers [Ω ′′]~A!
DeclCoversEq

[θ][Ω ′′]Γ ` [θ][Ω ′′]Π covers ([θ][Ω ′′]~A) Subderivation
[θ][Ω ′′]Γ = [Ω ′′, Θ](Γ,Θ) By Lemma 95 (Substitution Upgrade) (iii)
[θ][Ω ′′]Π = [Ω ′′, Θ]Π By Lemma 95 (Substitution Upgrade) (iv)

([θ][Ω ′′]~A) = ([Ω,Θ][Γ,Θ]~A) By Lemma 95 (Substitution Upgrade) (i)
[Ω ′′, Θ](Γ,Θ) ` [Ω ′′, Θ]Π covers [Ω ′′, Θ][Γ,Θ]~A By above equalities

[Ω ′](Γ,Θ) ` [Ω ′]Π covers [Ω ′][Γ,Θ]~A By above equalities
[Ω](Γ,Θ) ` [Ω]Π covers [Ω][Γ,Θ]~A By above equalities

So we know by induction that Γ,Θ ` [Γ,Θ]Π covers [Γ,Θ]~A !.

Hence by CoversEq we have Γ / t1 = t2 ` Π covers ~A !.

• Case mgu(t1, t2) = ⊥:

mgu(t1, t2) = ⊥ Premise
Γ / t1 $ t2 : κ a ⊥ By Lemma 94 (Completeness of Elimeq) (2)
Γ / [Γ ]t1 $ [Γ ]t2 : κ a ⊥ Follows from given assumption

Z Γ / t1 = t2 `Π covers ~A By CoversEqBot

Theorem 12 (Completeness of Algorithmic Typing). Given Γ −→ Ω such that dom(Γ) = dom(Ω):

(i) If Γ ` A p type and [Ω]Γ ` [Ω]e⇐ [Ω]A p and p ′ v p
then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` e⇐ [Γ ]A p ′ a ∆.

(ii) If Γ ` A p type and [Ω]Γ ` [Ω]e⇒ A p
then there exist ∆, Ω ′, A ′, and p ′ v p
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` e⇒ A ′ p ′ a ∆ and A ′ = [∆]A ′ and A = [Ω ′]A ′.

(iii) If Γ ` A p type and [Ω]Γ ` [Ω]s : [Ω]A p� B q and p ′ v p
then there exist ∆, Ω ′, B ′ and q ′ v q
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` s : [Γ ]A p ′ � B ′ q ′ a ∆ and B ′ = [∆]B ′ and B = [Ω ′]B ′.

(iv) If Γ ` A p type and [Ω]Γ ` [Ω]s : [Ω]A p� B dqe and p ′ v p
then there exist ∆, Ω ′, B ′, and q ′ v q
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` s : [Γ ]A p ′ � B ′ dq ′e a ∆ and B ′ = [∆]B ′ and B = [Ω ′]B ′.

(v) If Γ ` ~A ! types and Γ ` C p type and [Ω]Γ ` [Ω]Π :: [Ω]~A q⇐ [Ω]C p and p ′ v p
then there exist ∆, Ω ′, and C
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ ` Π :: [Γ ]~A q⇐ [Γ ]C p ′ a ∆.
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(vi) If Γ ` ~A ! types and Γ ` P prop and FEV(P) = ∅ and Γ ` C p type
and [Ω]Γ / [Ω]P ` [Ω]Π :: [Ω]~A ! ⇐ [Ω]C p
and p ′ v p
then there exist ∆, Ω ′, and C
such that ∆ −→ Ω ′ and dom(∆) = dom(Ω ′) and Ω −→ Ω ′

and Γ / [Γ ]P ` Π :: [Γ ]~A ! ⇐ [Γ ]C p ′ a ∆.

Proof. By induction, using the measure in Definition 7.

• Case (x :Ap) ∈ [Ω]Γ

[Ω]Γ ` x⇒ A p
DeclVar

(x :Ap) ∈ [Ω]Γ Premise
Γ −→ Ω Given

(x :A ′ p) ∈ Γ where [Ω]A ′ = A From definition of context application
Let ∆ = Γ .

Let Ω ′ = Ω.
Z Γ −→ Ω Given
Z Ω −→ Ω By Lemma 32 (Extension Reflexivity)
Z Γ ` x⇒ [Γ ]A ′ p a Γ By Var
Z [Γ ]A ′ = [Γ ][Γ ]A ′ By idempotence of substitution
Z dom(Γ) = dom(Ω) Given

Γ −→ Ω Given
[Ω][Γ ]A ′ = [Ω]A ′ By Lemma 29 (Substitution Monotonicity) (iii)

Z = A By above equality

• Case
[Ω]Γ ` [Ω]e⇒ B q [Ω]Γ ` B ≤join(pol(A),pol(B)) [Ω]A

[Ω]Γ ` [Ω]e⇐ [Ω]A p
DeclSub

[Ω]Γ ` [Ω]e⇒ B q Subderivation
Γ ` e⇒ B ′ q a Θ By i.h.
B = [Ω]B ′ ′′

Θ −→ Ω0
′′

Ω −→ Ω0
′′

dom(Θ) = dom(Ω0)
′′

Γ −→ Ω Given
Γ −→ Ω0 By Lemma 33 (Extension Transitivity)
[Ω]Γ `B ≤join(pol(A),pol(B)) [Ω]A Subderivation
[Ω]Γ = [Ω]Θ By Lemma 56 (Confluence of Completeness)
[Ω]Θ `B ≤join(pol(A),pol(B)) [Ω]A By above equalities
Θ −→ Ω0 Above
Θ `B ′ <:join(pol(A),pol(B)) A a ∆ By Theorem 10

Ω0 −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z ∆ −→ Ω ′ By Lemma 33 (Extension Transitivity)
Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Z Γ ` e⇐ A p a ∆ By Sub
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• Case [Ω]Γ ` [Ω]A type [Ω]Γ ` [Ω]e0 ⇐ [Ω]A !
[Ω]Γ ` [Ω](e0 : A) ⇒ A !

DeclAnno

[Ω]Γ ` [Ω]e0 ⇐ [Ω]A ! Subderivation
[Ω]A = [Ω][Γ ]A By Lemma 29 (Substitution Monotonicity)
[Ω]Γ ` [Ω]e0 ⇐ [Ω][Γ ]A ! By above equality
Γ ` e0 ⇐ [Γ ]A ! a ∆ By i.h.

Z ∆ −→ Ω ′′

Z Ω −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

∆ −→ Ω ′ By Lemma 33 (Extension Transitivity)

Γ `A ! type Given

Z Γ ` (e0 : A) ⇒ [∆]A ! a ∆ By Anno
Z [∆]A = [∆][∆]A By idempotence of substitution

A = [Ω]A Above
= [Ω ′]A By Lemma 55 (Completing Completeness) (ii)

Z = [Ω ′][∆]A By Lemma 29 (Substitution Monotonicity)

• Case

[Ω]Γ ` () ⇐ 1 p
Decl1I

We have [Ω]A = 1. Either [Γ ]A = 1, or [Γ ]A = α̂ where α̂ ∈ unsolved(Γ).

In the former case:

Let ∆ = Γ .
Let Ω ′ = Ω.

Z Γ −→ Ω Given
Z Ω −→ Ω ′ By Lemma 32 (Extension Reflexivity)
Z dom(Γ) = dom(Ω) Given

Γ ` () ⇐ 1 p a Γ By 1I
Z Γ ` () ⇐ [Γ ]1 p a Γ 1 = [Γ ]1

In the latter case, since A = α̂ and Γ ` α̂ p type is given, it must be the case that p = 6 ! .

Γ0[α̂ : ?] ` () ⇐ α̂ 6 ! a Γ0[α̂ : ?= 1] By 1Iα̂
Z Γ0[α̂ : ?] ` () ⇐ [

Γ0[α̂ : ?]
]
α̂ 6 ! a Γ0[α̂ : ?= 1] By def. of subst.

Γ0[α̂ : ?] −→ Ω Given
Z Γ0[α̂ : ?= 1] −→ Ω By Lemma 27 (Parallel Extension Solution)
Z Ω −→ Ω By Lemma 32 (Extension Reflexivity)

• Case v chk-I [Ω]Γ, α : κ ` [Ω]v⇐ A0 p

[Ω]Γ ` [Ω]v⇐ ∀α : κ. A0 p
Decl∀I
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[Ω]A = ∀α : κ. A0 Given
= ∀α : κ. [Ω]A ′ By def. of subst. and predicativity of Ω

A0 = [Ω]A ′ Follows from above equality
[Ω]Γ, α : κ ` [Ω]v⇐ [Ω]A ′ p Subderivation and above equality

Γ −→ Ω Given
Γ, α : κ −→ Ω,α : κ By −→Uvar

[Ω]Γ, α : κ = [Ω,α : κ](Γ, α : κ) By definition of context substitution
[Ω,α : κ](Γ, α : κ) ` [Ω]v⇐ [Ω]A ′ p By above equality
[Ω,α : κ](Γ, α : κ) ` [Ω]v⇐ [Ω,α : κ]A ′ p By definition of substitution

Γ, α : κ ` v⇐ [Γ, α : κ]A ′ p a ∆ ′ By i.h.
∆ ′ −→ Ω ′0

′′

Ω,α : κ −→ Ω ′0
′′

dom(∆ ′) = dom(Ω ′0)
′′

Γ, α : κ −→ ∆ ′ By Lemma 51 (Typing Extension)
∆ ′ = (∆,α : κ,Θ) By Lemma 22 (Extension Inversion) (i)

∆,α : κ,Θ −→ Ω ′0 By above equality
Ω ′0 = (Ω ′, α : κ,ΩZ) By Lemma 22 (Extension Inversion) (i)

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) on Ω,α : κ −→ Ω ′0

Γ, α : κ ` v⇐ [Γ, α : κ]A ′ p a ∆,α : κ,Θ By above equality
Γ, α : κ ` v⇐ [Γ ]A ′ p a ∆,α : κ,Θ By definition of substitution

Γ ` v⇐ ∀α : κ. [Γ ]A ′ p a ∆ By ∀I
Z Γ ` v⇐ [Γ ](∀α : κ. A ′) p a ∆ By definition of substitution

• Case [Ω]Γ ` τ : κ [Ω]Γ ` [Ω](e s0) : [τ/α][Ω]A0 6 ! � B q

[Ω]Γ ` [Ω](e s0) : ∀α : κ. [Ω]A0 p� B q
Decl∀Spine

[Ω]Γ ` τ : κ Subderivation

Γ −→ Ω Given
Γ, α̂ : κ −→ Ω, α̂ : κ= τ By −→Solve

[Ω]Γ ` [Ω](e s0) : [τ/α][Ω]A0 6 ! � B q Subderivation
τ = [Ω]τ FEV(τ) = ∅

[τ/α][Ω]A0 = [τ/α][Ω, α̂ : κ= τ]A0 By def. of subst.
=
[
[Ω]τ/α

][
Ω, α̂ : κ= τ

]
A0 By above equality

=
[
Ω, α̂ : κ= τ

]
[α̂/α]A0 By distributivity of substitution

[Ω]Γ = [Ω, α̂ : κ= τ](Γ, α̂ : κ) By definition of context application
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[Ω, α̂ : κ= τ](Γ, α̂ : κ) ` [Ω](e s0) :
[
Ω, α̂ : κ= τ

]
[α̂/α]A0 6 ! � B q By above equalities

Γ, α̂ : κ ` e s0 : [Γ, α̂ : κ][α̂/α]A0 6 ! � B ′ q a ∆ By i.h.
B = [Ω, α̂ : κ= τ]B ′ ′′

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ ′′

Z B ′ −→ [∆]B ′ ′′

Z B −→ [Ω ′]B ′ ′′

[Γ, α̂ : κ][α̂/α]A0 = [Γ ][α̂/α]A0 By def. of context application
= [α̂/α][Γ ]A0 Γ does not subst. for α

Γ, α̂ : κ ` e s0 : [α̂/α][Γ ]A0 6 ! � B ′ q a ∆ By above equality
Γ ` e s0 : ∀α : κ. [Γ ]A0 p� B ′ q a ∆ By ∀Spine

Z Γ ` e s0 : [Γ ](∀α : κ. A0) p� B ′ q a ∆ By def. of subst.

• Case v chk-I [Ω]Γ / [Ω]P ` [Ω]v⇐ [Ω]A0 !
[Ω]Γ ` [Ω]v⇐ ([Ω]P) ⊃ [Ω]A0 !

Decl⊃I

[Ω]Γ / [Ω]P ` [Ω]v⇐ [Ω]A0 ! Subderivation

The concluding rule in this subderivation must be DeclCheck⊥ or DeclCheckUnify. In either case, [Ω]P
has the form (σ ′ = τ ′) where σ ′ = [Ω]σ and τ ′ = [Ω]τ.

– Case mgu([Ω]σ, [Ω]τ) = ⊥
[Ω]Γ / [Ω](σ = τ) ` [Ω]v⇐ [Ω]A0 !

DeclCheck⊥

We have mgu([Ω]σ, [Ω]τ) = ⊥. To apply Lemma 94 (Completeness of Elimeq) (2), we need to
show conditions 1–5.

*** Γ ` (σ = τ) ⊃ A0 ! type Given
[Ω]
(
(σ=τ) ⊃ A0

)
= [Γ ]

(
(σ=τ) ⊃ A0

)
By Lemma 39 (Principal Agreement) (i)

[Ω]σ = [Γ ]σ By a property of subst.
[Ω]τ = [Γ ]τ Similar

Γ `σ : κ By inversion
3 Γ ` [Γ ]σ : κ By Lemma 11 (Right-Hand Substitution for Sorting)
4 Γ ` [Γ ]τ : κ Similar

mgu([Ω]σ, [Ω]τ) = ⊥ Given
mgu([Γ ]σ, [Γ ]τ) = ⊥ By above equalities

FEV(σ) ∪ FEV(τ) = ∅ By inversion on ***
FEV([Ω]σ) ∪ FEV([Ω]τ) = ∅ By a property of complete contexts

5 FEV([Γ ]σ) ∪ FEV([Γ ]τ) = ∅ By above equalities
1 [Γ ][Γ ]σ = [Γ ]σ By idempotence of subst.
2 [Γ ][Γ ]τ = [Γ ]τ By idempotence of subst.
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Γ / [Γ ]σ $ [Γ ]τ : κ a ⊥ By Lemma 94 (Completeness of Elimeq) (2)
Γ,IP / [Γ ]σ = [Γ ]τ a ⊥ By ElimpropEq

Γ ` v⇐ ([Γ ]σ = [Γ ]τ) ⊃ [Γ ]A0 ! a Γ By ⊃I⊥
Z Γ ` v⇐ [Γ ]

(
(σ = τ) ⊃ A0

)
! a Γ By def. of subst.

Z Γ −→ Ω Given
Z Ω −→ Ω By Lemma 32 (Extension Reflexivity)
Z dom(Γ) = dom(Ω) Given

– Case mgu([Ω]σ, [Ω]τ) = θ θ([Ω]Γ) ` θ([Ω]e) ⇐ θ([Ω]A0) !
[Ω]Γ / (([Ω]σ) = [Ω]τ) ` [Ω]e⇐ [Ω]A0 !

DeclCheckUnify

We have mgu([Ω]σ, [Ω]τ) = θ, and will need to apply Lemma 94 (Completeness of Elimeq) (1).
That lemma has five side conditions, which can be shown exactly as in the DeclCheck⊥ case above.

mgu(σ, τ) = θ Premise
Let Ω0 = (Ω,IP).

Γ −→ Ω Given
Γ,IP −→ Ω0 By −→Marker

dom(Γ) = dom(Ω) Given
dom(Γ,IP) = dom(Ω0) By def. of dom(−)

Γ,IP / [Γ ]σ $ [Γ ]τ : κ a Γ,IP, Θ By Lemma 94 (Completeness of Elimeq) (1)

Γ,IP / [Γ ]σ = [Γ ]τ a Γ,IP, Θ By ElimpropEq
EQ0 for all Γ,IP ` u : κ. [Γ,IP, Θ]u = θ([Γ,IP]u)

′′

Γ `P ⊃ A0 ! type Given
Γ `A0 ! type By inversion

Γ −→ Ω Given
EQa [Γ ]A0 = [Ω]A0 By Lemma 39 (Principal Agreement) (i)

Let Ω1 = (Ω,IP, Θ).
θ([Ω]Γ) ` θ(e) ⇐ θ([Ω]A0) ! Subderivation

Γ,IP, Θ −→ Ω1 By induction on Θ

θ([Ω]A0) = θ([Γ ]A0) By above equality EQa
= [Γ,IP, Θ]A0 By Lemma 95 (Substitution Upgrade) (i) (with EQ0)
= [Ω1]A0 By Lemma 39 (Principal Agreement) (i)
= [Ω1][Γ,IP, Θ]A0 By Lemma 29 (Substitution Monotonicity) (iii)

θ([Ω]Γ) = [Ω1](Γ,IP, Θ) By Lemma 95 (Substitution Upgrade) (iii)
θ([Ω]e) = [Ω1]e By Lemma 95 (Substitution Upgrade) (iv)

[Ω1](Γ,IP, Θ) ` [Ω1]e⇐ [Ω1][Γ,IP, Θ]A0 ! By above equalities

dom(Γ,IP, Θ) = dom(Ω1) dom(Γ) = dom(Ω)
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Γ,IP, Θ ` e⇐ [Γ,IP, Θ]A0 ! a ∆ ′ By i.h.
∆ ′ −→ Ω ′2

′′

Ω1 −→ Ω ′2
′′

dom(∆ ′) = dom(Ω ′2)
′′

∆ ′ = (∆,IP, ∆
′′) By Lemma 22 (Extension Inversion) (ii)

Ω ′2 = (Ω ′,IP,ΩZ) By Lemma 22 (Extension Inversion) (ii)
Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′2 By Lemma 33 (Extension Transitivity)
Ω,IP −→ Ω ′,IP,ΩZ By above equalities

Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) (ii)
Z dom(∆) = dom(Ω ′) ′′

Γ,IP, Θ ` e⇐ [Γ,IP, Θ]A0 ! a ∆,IP, ∆ ′′ By above equality
Γ ` e⇐ ([Γ ]σ = [Γ ]τ) ⊃ [Γ ]A0 ! a ∆ By ⊃I

Z Γ ` e⇐ [Γ ](P ⊃ A0) ! a ∆ By def. of subst.

• Case [Ω]Γ ` [Ω]P true [Ω]Γ ` [Ω](e s0) : [Ω]A0 p� B q

[Ω]Γ ` [Ω](e s0) : ([Ω]P) ⊃ [Ω]A0 p� B q
Decl⊃Spine

[Ω]Γ ` [Ω]P true Subderivation
[Ω]Γ ` [Ω][Γ ]P true By Lemma 29 (Substitution Monotonicity) (ii)
Γ ` [Γ ]P true a Θ By Lemma 97 (Completeness of Checkprop)

Θ −→ Ω1
′′

Ω −→ Ω1
′′

dom(Θ) = dom(Ω1)
′′

Γ −→ Ω Given
[Ω]Γ = [Ω1]Θ By Lemma 57 (Multiple Confluence)

[Ω]A0 = [Ω1]A0 By Lemma 55 (Completing Completeness) (ii)

[Ω]Γ ` [Ω](e s0) : [Ω]A0 p� B q Subderivation
[Ω1]Θ ` [Ω](e s0) : [Ω1]A0 p� B q By above equalities

Θ ` e s0 : [Θ]A0 p� B ′ q a ∆ By i.h.
Z B ′ = [∆]B ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z B = [Ω ′]B ′ ′′

Z ∆ −→ Ω ′ ′′

Ω1 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)
[Θ]A0 = [Θ][Γ ]A0 By Lemma 29 (Substitution Monotonicity) (iii)

Θ ` e s0 : [Θ][Γ ]A0 p� B ′ q a ∆ By above equality
Γ ` e s0 : ([Γ ]P) ⊃ [Γ ]A0 p� B ′ q a ∆ By ⊃Spine

Z Γ ` e s0 : [Γ ](P ⊃ A0) p� B ′ q a ∆ By def. of subst.
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• Case [Ω]Γ ` [Ω]e0 ⇐ A ′k p

[Ω]Γ ` injk [Ω]e0 ⇐ A ′1 +A
′
2︸ ︷︷ ︸

[Ω]A

p
Decl+Ik

Either [Γ ]A = A1 +A2 (where [Ω]Ak = A ′k) or [Γ ]A = α̂ ∈ unsolved(Γ).

In the former case:

[Ω]Γ ` [Ω]e0 ⇐ A ′k p Subderivation
[Ω]Γ ` [Ω]e0 ⇐ [Ω]Ak p [Ω]Ak = A ′k
Γ ` e0 ⇐ [Γ ]Ak p a ∆ By i.h.

Z ∆ −→ Ω ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ ′′

Γ ` injk e0 ⇐ ([Γ ]A1) + ([Γ ]A2) p a ∆ By +Ik
Z Γ ` injk e0 ⇐ [Γ ](A1 +A2) p a ∆ By def. of subst.

In the latter case, A = α̂ and [Ω]A = [Ω]α̂ = A ′1 +A
′
2 = τ

′
1 + τ

′
2.

By inversion on Γ ` α̂ p type, it must be the case that p = 6 ! .

Γ −→ Ω Given
Γ = Γ0[α̂ : ?] α̂ ∈ unsolved(Γ)

Ω = Ω0[α̂ : ?= τ0] By Lemma 22 (Extension Inversion) (vi)

Let Ω2 = Ω0[α̂1 : ?= τ
′
1, α̂1 : ?= τ

′
2, α̂ : ?= α̂1+α̂2].

Let Γ2 = Γ0[α̂1 : ?, α̂2 : ?, α̂ : ?= α̂1+α̂2].

Γ −→ Γ2 By Lemma 23 (Deep Evar Introduction) (iii) twice
and Lemma 26 (Parallel Admissibility) (ii)

Ω −→ Ω2 By Lemma 23 (Deep Evar Introduction) (iii) twice
and Lemma 26 (Parallel Admissibility) (iii)

Γ2 −→ Ω2 By Lemma 26 (Parallel Admissibility) (ii), (ii), (iii)

[Ω]Γ ` [Ω]e0 ⇐ [Ω2]α̂k 6 ! Subd. and A ′k = τ ′k = [Ω2]α̂k
[Ω]Γ = [Ω2]Γ2 By Lemma 57 (Multiple Confluence)

[Ω2]Γ2 ` e0 ⇐ [Ω2]α̂k 6 ! By above equality
Γ2 ` e0 ⇐ [Γ2]α̂k 6 ! a ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Ω2 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)
Γ ` injk e0 ⇒ α̂ 6 ! a ∆ By +Iα̂k

Z Γ ` injk e0 ⇒ [Γ ]α̂ 6 ! a ∆ α̂ ∈ unsolved(Γ)

• Case [Ω]Γ, x :A ′1 p ` [Ω]e0 ⇐ A ′2 p

[Ω]Γ ` λx. [Ω]e0 ⇐ A ′1 → A ′2 p
Decl→I

We have [Ω]A = A ′1 → A ′2. Either [Γ ]A = A1 → A2 where A ′1 = [Ω]A1 and A ′2 = [Ω]A2—or [Γ ]A = α̂
and [Ω]α̂ = A ′1 → A ′2.
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In the former case:

[Ω]Γ, x :A ′1 p ` [Ω]e0 ⇐ A ′2 p Subderivation

A ′1 = [Ω]A1 Known in this subcase
= [Ω][Γ ]A1 By Lemma 30 (Substitution Invariance)

[Ω]A ′1 = [Ω][Ω][Γ ]A1 Applying Ω on both sides
= [Ω][Γ ]A1 By idempotence of substitution

[Ω]Γ, x :A ′1 p = [Ω, x :A ′1 p](Γ, x : [Γ ]A1 p) By definition of context application

[Ω, x :A ′1 p](Γ, x : [Γ ]A1 p) ` [Ω]e0 ⇐ A ′2 p By above equality

Γ −→ Ω Given
Γ, x : [Γ ]A1 p −→ Ω, x :A ′1 p By −→Var

dom(Γ) = dom(Ω) Given
dom(Γ, x : [Γ ]A1 p) = Ω, x :A ′1 p By def. of dom(−)

Γ, x : [Γ ]A1 p ` e0 ⇐ A2 p a ∆ ′ By i.h.
∆ ′ −→ Ω ′0

′′

dom(∆ ′) = dom(Ω ′0)
′′

Ω, x :A ′1 p −→ Ω ′0
′′

Ω ′0 = (Ω ′, x :A ′1 p,ΩZ) By Lemma 22 (Extension Inversion) (v)
Z Ω −→ Ω ′ ′′

Γ, x : [Γ ]A1 p −→ ∆ ′ By Lemma 51 (Typing Extension)
∆ ′ = (∆, x : · · · , Θ) By Lemma 22 (Extension Inversion) (v)

∆, x : · · · , Θ −→ Ω ′, x :A ′1 p,ΩZ By above equalities
Z ∆ −→ Ω ′ By Lemma 22 (Extension Inversion) (v)
Z dom(∆) = dom(Ω ′) ′′

Γ, x : [Γ ]A1 p ` e0 ⇐ [Γ ]A2 p a ∆, x : · · ·p,Θ By above equality
Γ ` λx. e0 ⇐ ([Γ ]A1) → ([Γ ]A2) p a ∆ By →I

Z Γ ` λx. e0 ⇐ [Γ ](A1 → A2) p a ∆ By definition of substitution

In the latter case ([Γ ]A = α̂ ∈ unsolved(Γ) and [Ω]α̂ = A ′1 → A ′2 = τ
′
1 → τ ′2):

By inversion on Γ ` α̂ p type, it must be the case that p = 6 ! .
Since α̂ ∈ unsolved(Γ), the context Γ must have the form Γ0[α̂ : ?].
Let Γ2 = Γ0[α̂1 : ?, α̂2 : ?, α̂ : ?= α̂1→α̂2].
Γ −→ Γ2 By Lemma 23 (Deep Evar Introduction) (iii) twice

and Lemma 26 (Parallel Admissibility) (ii)
[Ω]α̂ = τ ′1 → τ ′2 Known in this subcase

Γ −→ Ω Given
Ω = Ω0[α̂ : ?= τ0] By Lemma 22 (Extension Inversion) (vi)

Let Ω2 = Ω0[α̂1 : ?= τ
′
1, α̂1 : ?= τ

′
2, α̂ : ?= α̂1→α̂2].
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Γ −→ Γ2 By Lemma 23 (Deep Evar Introduction) (iii) twice
and Lemma 26 (Parallel Admissibility) (ii)

Ω −→ Ω2 By Lemma 23 (Deep Evar Introduction) (iii) twice
and Lemma 26 (Parallel Admissibility) (iii)

Γ2 −→ Ω2 By Lemma 26 (Parallel Admissibility) (ii), (ii), (iii)

[Ω]Γ, x : τ ′1 6 ! ` [Ω]e0 ⇐ τ ′2 6 ! Subderivation
[Ω]Γ = [Ω2]Γ2 By Lemma 57 (Multiple Confluence)
τ ′2 = [Ω]α̂2 From above equality

= [Ω2]α̂2 By Lemma 55 (Completing Completeness) (i)
τ ′1 = [Ω2]α̂1 Similar

[Ω2]Γ2, x : τ
′
1 6 ! = [Ω2, x : τ

′
1 6 ! ](Γ2, x : α̂1 6 ! ) By def. of context application

[Ω2, x : τ
′
1 6 ! ](Γ2, x : α̂1 6 ! ) ` [Ω]e0 ⇐ [Ω2]α̂2 6 ! By above equalities

dom(Γ) = dom(Ω) Given
dom(Γ2, x : α̂1 6 ! ) = dom(Ω2, x : τ

′
1 6 ! ) By def. of Γ2 and Ω2

Γ2, x : α̂1 6 ! ` e0 ⇐ [Γ2, x : α̂1 6 ! ]α̂2 6 ! a ∆+ By i.h.
∆+ −→ Ω+ ′′

dom(∆+) = dom(Ω+) ′′

Ω2 −→ Ω+ ′′

Γ2, x : α̂1 6 ! −→ ∆+ By Lemma 51 (Typing Extension)
∆+ = (∆, x : α̂1 6 ! , ∆Z) By Lemma 22 (Extension Inversion) (v)
Ω+ = (Ω ′, x : . . . 6 ! ,ΩZ) By Lemma 22 (Extension Inversion) (v)

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Ω −→ Ω2 Above
Ω −→ Ω+ By Lemma 33 (Extension Transitivity)

Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) (v)
Γ ` λx. e0 ⇐ α̂ 6 ! a ∆ By →Iα̂
α̂ = [Γ ]α̂ α̂ ∈ unsolved(Γ)

Z Γ ` λx. e0 ⇐ [Γ ]α̂ 6 ! a ∆ By above equality
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• Case [Ω]Γ, x : [Ω]Ap ` [Ω]v⇐ [Ω]A p

[Ω]Γ ` rec x. [Ω]v⇐ [Ω]A p
DeclRec

[Ω]Γ, x : [Ω]Ap ` [Ω]v⇐ [Ω]A p Subderivation

[Ω]Γ, x : [Ω]Ap = [Ω, x : [Ω]Ap](Γ, x : [Γ ]Ap) By definition of context application

[Ω, x : [Ω]Ap](Γ, x : [Γ ]Ap) ` [Ω]v⇐ [Ω]A p By above equality

Γ −→ Ω Given
Γ, x : [Γ ]Ap −→ Ω, x : [Ω]Ap By −→Var

dom(Γ) = dom(Ω) Given
dom(Γ, x : [Γ ]Ap) = Ω, x : [Ω]Ap By def. of dom(−)

Γ, x : [Γ ]Ap ` v⇐ [Γ ]A p a ∆ ′ By i.h.
∆ ′ −→ Ω ′0

′′

dom(∆ ′) = dom(Ω ′0)
′′

Ω, x : [Ω]Ap −→ Ω ′0
′′

Ω ′0 = (Ω ′, x : [Ω]Ap,Θ) By Lemma 22 (Extension Inversion) (v)
Z Ω −→ Ω ′ ′′

Γ, x : [Γ ]Ap −→ ∆ ′ By Lemma 51 (Typing Extension)
∆ ′ = (∆, x : · · · , Θ) By Lemma 22 (Extension Inversion) (v)

∆, x : · · · , Θ −→ Ω ′, x : [Ω]Ap,Θ By above equalities
Z ∆ −→ Ω ′ By Lemma 22 (Extension Inversion) (v)
Z dom(∆) = dom(Ω ′) ′′

Γ, x : [Γ ]Ap ` v⇐ [Γ ]A p a ∆, x : [Γ ]Ap,Θ By above equality
Z Γ ` rec x. v⇐ [Γ ]A p a ∆ By Rec

• Case [Ω]Γ ` [Ω]e0 ⇒ A q [Ω]Γ ` [Ω]s0 : A q� C dpe
[Ω]Γ ` [Ω](e0 s0) ⇒ C p

Decl→E

[Ω]Γ ` [Ω]e0 ⇒ A q Subderivation
Γ ` e0 ⇒ A ′ q a Θ By i.h.

Θ −→ ΩΘ
′′

dom(Θ) = dom(ΩΘ)
′′

Ω −→ ΩΘ
′′

A = [ΩΘ]A
′ ′′

A ′ = [Θ]A ′ ′′
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Γ −→ Ω Given
[Ω]Γ = [ΩΘ]Θ By Lemma 57 (Multiple Confluence)
[Ω]Γ ` [Ω]s0 : A q� C dpe Subderivation

[ΩΘ]Θ ` [Ω]s0 : [ΩΘ]A
′ q� C dpe By above equalities

Θ ` s0 : [Θ]A ′ q� C ′ dpe a ∆ By i.h.
Z C ′ = [∆]C ′ ′′

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

ΩΘ −→ Ω ′ ′′

Z C = [Ω ′]C ′ ′′

Θ ` s0 : A ′ q� C ′ dpe a ∆ By above equality
Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Z Γ ` e0 s0 ⇒ C ′ p a ∆ By →E
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• Case

[Ω]Γ ` [Ω]s : [Ω]A !� C 6 !
for all C2.

if [Ω]Γ ` [Ω]s : [Ω]A !� C2 6 ! then C2 = C
[Ω]Γ ` [Ω]s : [Ω]A !� C d!e

DeclSpineRecover

Γ −→ Ω Given
[Ω]Γ ` [Ω]s : [Ω]A !� C 6 ! Subderivation
Γ ` s : [Γ ]A !� C ′ 6 ! a ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z C = [Ω ′]C ′ ′′

Z C ′ = [∆]C ′ ′′

Suppose, for a contradiction, that FEV([∆]C ′) 6= ∅.
That is, there exists some α̂ ∈ FEV([∆]C ′).

∆ −→ Ω2 By Lemma 60 (Split Solutions)
Ω ′1[α̂ : κ= t1]︸ ︷︷ ︸

Ω1

−→ Ω ′ ′′

Ω2 = Ω ′1[α̂ : κ= t2]
′′

t2 6= t1
′′

(NEQ) [Ω2]α̂ 6= [Ω ′1]α̂ By def. of subst. (t2 6= t1)
(EQ) [Ω2]β̂ = [Ω ′1]β̂ for all β̂ 6= α̂ By construction of Ω2

and Ω2 canonical

Choose α̂R such that α̂R ∈ FEV(C ′) and either α̂R = α̂ or α̂ ∈ FEV([∆]α̂R).
Then either α̂R = α̂, or α̂R is declared to the right of α̂ in ∆.

[Ω2]C
′ 6= [Ω ′]C ′ From (NEQ) and (EQ)
Γ ` s : [Γ ]A !� C ′ 6 ! a ∆ Above

[Ω2]Γ ` [Ω2]s : [Ω2][Γ ]A !� [Ω2]C
′ 6 ! By Theorem 9

Γ ` s : [Γ ]A !� C ′ 6 ! a ∆ Above
Γ `A ! type Given
Γ ` [Γ ]A ! type By Lemma 13 (Right-Hand Substitution for Typing)

FEV([Γ ]A) = ∅ By inversion
FEV([Γ ]A) ⊆ dom(·) Property of ⊆

∆ = (∆L ∗ ∆R) By Lemma 72 (Separation—Main) (Spines)
(Γ ∗ ·) −→∗ (∆L ∗ ∆R) ′′

FEV(C ′) ⊆ dom(∆R)
′′

α̂R ∈FEV(C ′) Above
α̂R ∈ dom(∆R) Property of ⊆

dom(∆L) ∩ dom(∆R) = ∅ ∆ well-formed
α̂R /∈ dom(∆L)

dom(Γ) ⊆ dom(∆L) By Definition 5
α̂R /∈ dom(Γ)
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[Ω2]Γ ` [Ω2]s : [Ω2][Γ ]A !� [Ω2]C
′ 6 ! Above

Ω2 and Ω1 differ only at α̂ Above
FEV([Γ ]A) = ∅ Above
[Ω2][Γ ]A = [Ω1][Γ ]A By preceding two lines

Γ ` [Γ ]A type Above
Γ −→ Ω2 By Lemma 33 (Extension Transitivity)
Ω2 ` [Γ ]A type By Lemma 38 (Extension Weakening (Types))

dom(Ω2) = dom(Ω1) Ω1 and Ω2 differ only at α̂
Ω1 ` [Γ ]A type By Lemma 18 (Equal Domains)

Γ ` [Γ ]A type Above
Ω ` [Γ ]A type By Lemma 38 (Extension Weakening (Types))

[Ω1][Γ ]A = [Ω ′][Γ ]A = [Ω][Γ ]A By Lemma 55 (Completing Completeness) (ii) twice
= [Ω]A By Lemma 29 (Substitution Monotonicity) (iii)

[Ω]Γ = [Ω ′]Γ By Lemma 57 (Multiple Confluence)
= [Ω1]Γ By Lemma 57 (Multiple Confluence)
= [Ω2]Γ Follows from α̂R /∈ dom(Γ)

[Ω2]s = [Ω]s Ω2 and Ω differ only in α̂

[Ω]Γ ` [Ω]s : [Ω]A !� [Ω2]C
′ 6 ! By above equalities

C = [Ω ′]C ′ Above
[Ω ′]C ′ 6= [Ω2]C

′ By def. of subst.
C 6= [Ω2]C

′ By above equality
C = [Ω2]C

′ Instantiating “for all C2” with C2 = [Ω2]C
′⇒⇐

FEV([∆]C ′) = ∅ By contradiction

Z Γ ` s : [Γ ]A !� C ′ d!e a ∆ By SpineRecover

• Case [Ω]Γ ` [Ω]s : [Ω]A p� C q

[Ω]Γ ` [Ω]s : [Ω]A p� C dqe
DeclSpinePass

[Ω]Γ ` [Ω]s : [Ω]A p� C q Subderivation
Γ ` s : [Γ ]A p� C ′ q a ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ ′′

Z C ′ = [∆]C ′ ′′

Z C = [Ω ′]C ′ ′′

We distinguish cases as follows:

– If p = 6 ! or q = !, then we can just apply SpinePass:
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Z Γ ` s : [Γ ]A p� C ′ dqe a ∆ By SpinePass

– Otherwise, p = ! and q = 6 ! . If FEV(C) 6= ∅, we can apply SpinePass, as above. If FEV(C) = ∅,
then we instead apply SpineRecover:

Z Γ ` s : [Γ ]A p� C ′ d!e a ∆ By SpineRecover

Here, q ′ = ! and q = 6 ! , so q ′ v q.

• Case

[Ω]Γ ` · : [Ω]A p� [Ω]A p
DeclEmptySpine

Z Γ ` · : [Γ ]A p� [Γ ]A p a Γ By EmptySpine
Z [Γ ]A = [Γ ][Γ ]A By idempotence of substitution
Z Γ −→ Ω Given
Z dom(Γ) = dom(Ω) Given
Z [Ω][Γ ]A = [Ω]A By Lemma 29 (Substitution Monotonicity) (iii)
Z Ω −→ Ω By Lemma 32 (Extension Reflexivity)

• Case [Ω]Γ ` [Ω]e0 ⇐ [Ω]A1 q [Ω]Γ ` [Ω]s0 : [Ω]A2 q� B p

[Ω]Γ ` [Ω](e0 s0) : ([Ω]A1) → ([Ω]A2) q� B p
Decl→Spine

[Ω]Γ ` [Ω]e0 ⇐ [Ω]A1 q Subderivation
Γ ` e0 ⇐ A ′ q a Θ By i.h.

Θ −→ ΩΘ
′′

Ω −→ ΩΘ
′′

A = [ΩΘ]A
′ ′′

A ′ = [Θ]A ′ ′′

[Ω]Γ ` [Ω]s0 : [Ω]A2 q� B p Subderivation

Γ ` s0 : A2 q� B p a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ ′′

Z B ′ = [∆]B ′ ′′

Z B = [Ω ′]B ′ ′′

Z Γ ` e0 s0 : A1 → A2 q� B p a ∆ By →Spine
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• Case [Ω]Γ ` [Ω]P true [Ω]Γ ` [Ω]e⇐ [Ω]A0 p

[Ω]Γ ` [Ω]e⇐ ([Ω]A0) ∧ [Ω]P p
Decl∧I

If e not a case, then:

[Ω]Γ ` [Ω]P true Subderivation
Γ `P true a Θ By Lemma 97 (Completeness of Checkprop)

Θ −→ Ω ′0
′′

Ω −→ Ω ′0
′′

Γ −→ Ω Given
Γ −→ Ω ′0 By Lemma 33 (Extension Transitivity)

[Ω]Γ = [Ω]Ω By Lemma 54 (Completing Stability)
= [Ω ′0]Ω

′
0 By Lemma 55 (Completing Completeness) (iii)

= [Ω ′0]Θ By Lemma 56 (Confluence of Completeness)

Γ `A0 ∧ P p type Given
Γ `A0 p type By inversion

[Ω]A0 = [Ω ′0]A0 By Lemma 55 (Completing Completeness) (ii)

[Ω]Γ ` [Ω]e⇐ [Ω]A0 p Subderivation
[Ω ′0]Θ ` [Ω]e⇐ [Ω ′0]A0 p By above equalities

Θ ` e⇐ [Θ]A0 p a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Ω ′0 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Z Γ ` e⇐ A0 ∧ P p a ∆ By ∧I

Otherwise, we have e = case(e0, Π). Let n be the height of the given derivation.

n− 1 [Ω]Γ ` [Ω](case(e0, Π)) ⇐ [Ω]A0 p Subderivation
n− 2 [Ω]Γ ` [Ω]e0 ⇒ B ! By Lemma 62 (Case Invertibility)
n− 2 [Ω]Γ ` [Ω]Π :: B⇐ [Ω]A0 p

′′

n− 2 [Ω]Γ ` [Ω]Π covers B ′′

n− 1 [Ω]Γ ` [Ω]P true Subderivation
n− 1 [Ω]Γ ` [Ω]Π :: B⇐ ([Ω]A0) ∧ ([Ω]P) p By Lemma 61 (Interpolating With and Exists) (1)
n− 1 [Ω]Γ ` [Ω]Π :: B⇐ [Ω](A0 ∧ P) p By def. of subst.

Γ ` e0 ⇒ B ′ ! a Θ By i.h.
Θ −→ Ω ′0

′′

Ω −→ Ω ′0
′′

B = [Ω ′0]B
′ ′′

= [Ω ′0][Θ]B
′ By Lemma 30 (Substitution Invariance)

[Ω]Γ = [Ω ′0]Θ By Lemma 57 (Multiple Confluence)
[Ω](A0 ∧ P) = [Ω ′0](A0 ∧ P) By Lemma 55 (Completing Completeness) (ii)
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n− 1 [Ω ′0]Θ ` [Ω]Π :: [Ω ′0][Θ]B
′ ⇐ [Ω ′0](A0 ∧ P) p By above equalities

Θ ` Π :: [Θ]B ′ ⇐ A0 ∧ P p a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Ω ′0 −→ Ω ′ ′′

Θ `Π covers [Θ]B ′ By Theorem 11
Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)
Z Γ ` case(e0, Π) ⇐ A0 ∧ P p a ∆ By Case

• Case [Ω]Γ ` τ : κ [Ω]Γ ` e⇐ [τ/α][Ω]A0 6 !
[Ω]Γ ` e⇐ ∃α : κ. [Ω]A0 p

Decl∃I

[Ω]Γ ` e⇐ [τ/α][Ω]A0 6 ! Subderivation
Let Ω0 = (Ω, α̂ : ?= τ).

[Ω]Γ = [Ω0](Γ, α̂ : ?) By def. of context substitution
[Ω0](Γ, α̂ : ?) ` e⇐ [τ/α][Ω]A0 6 ! By above equality
[τ/α][Ω]A0 = [Ω, α̂ : ?= τ][α̂/α]A0 By a property of substitution
[Ω0](Γ, α̂ : ?) ` e⇐ [Ω0][α̂/α]A0 6 ! By above equality

Γ, α̂ : ? ` e⇐ [α̂/α]A0 6 ! a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Ω0 −→ Ω ′ ′′

Ω −→ Ω0 By −→AddSolved
Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Z Γ ` e⇐ ∃α : κ. A0 p a ∆ By ∃I

• Case DeclNil: Similar to the first part of the Decl∧I case.

• Case

[Ω]Γ ` ([Ω]t) = succ(t2) true
[Ω]Γ ` [Ω]e1 ⇐ [Ω]A0 p
[Ω]Γ ` [Ω]e2 ⇐ (

Vec t2 [Ω]A0
)
6 !

[Ω]Γ ` ([Ω]e1) :: ([Ω]e2) ⇐ (
Vec ([Ω]t) [Ω]A0

)
p

DeclCons

Let Ω+ = (Ω,Iα̂, α̂ : N= t2).

[Ω]Γ ` ([Ω]t) = succ(t2) true Subderivation
[Ω+](Γ,Iα̂, α̂ : N) ` ([Ω]t) = [Ω+]succ(α̂) true Defs. of extension and subst.

1 Γ,Iα̂, α̂ : N ` t = succ(α̂) true a Γ ′ By Lemma 97 (Completeness of Checkprop)
Γ ′ −→ Ω ′0

′′

Ω+ −→ Ω ′0
′′
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Γ,Iα̂, α̂ : N −→ Γ ′ By Lemma 47 (Checkprop Extension)
Γ,Iα̂, α̂ : N −→ Ω ′0 By Lemma 33 (Extension Transitivity)

[Ω]Γ = [Ω]Ω By Lemma 54 (Completing Stability)
= [Ω+]Ω+ By def. of context application
= [Ω ′0]Ω

′
0 By Lemma 55 (Completing Completeness) (iii)

= [Ω ′0]Γ
′ By Lemma 56 (Confluence of Completeness)

[Ω]A0 = [Ω+]A0 By def. of context application
= [Ω ′0]A0 By Lemma 55 (Completing Completeness) (ii)

[Ω]Γ ` [Ω]e1 ⇐ [Ω]A0 p Subderivation
[Ω ′0]Γ

′ ` [Ω]e1 ⇐ [Ω ′0]A0 p By above equalities
2 Γ ′ ` e1 ⇐ [Γ ′]A0 p a Θ By i.h.

Θ −→ Ω ′′0
′′

Ω ′0 −→ Ω ′′0
′′

[Ω]Γ ` [Ω]e2 ⇐ (
Vec t2 [Ω]A0

)
6 ! Subderivation

[Ω]Γ ` [Ω]e2 ⇐ (
Vec ([Ω+]α̂) [Ω]A0

)
6 ! By def. of substitution

[Ω ′′0 ]Θ ` [Ω]e2 ⇐ (
Vec ([Ω ′′0 ]α̂) [Ω

′′
0 ]A0

)
6 ! By lemmas

[Ω ′′0 ]Θ ` [Ω]e2 ⇐ [Ω ′′0 ]
(
Vec α̂ A0

)
6 ! By def. of subst.

3 Θ ` e2 ⇐ [Θ]A0 p a ∆,Iα̂, ∆ ′ By i.h.
∆,Iα̂, ∆

′ −→ Ω ′′ ′′

dom(∆,Iα̂, ∆
′) = dom(Ω ′′) ′′

Ω ′′0 −→ Ω ′′ ′′

Ω ′′ = (Ω,Iα̂, . . . ) By Lemma 22 (Extension Inversion) (ii)
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

(Γ ′,Iα̂, . . . ) −→ Ω ′ By Lemma 33 (Extension Transitivity)
Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) (ii)

Z Γ ` e1 :: e2 ⇐ (Vec t A0) p a ∆ By Cons

• Case [Ω]Γ ` [Ω]e1 ⇐ A ′1 p [Ω]Γ ` [Ω]e2 ⇐ A ′2 p

[Ω]Γ ` 〈[Ω]e1, [Ω]e2〉⇐ A ′1 ×A ′2 p
Decl×I

Either [Γ ]A = A1 ×A2 or [Γ ]A = α̂ ∈ unsolved(Γ).

– In the first case ([Γ ]A = A1 ×A2), we have A ′1 = [Ω]A1 and A ′2 = [Ω]A2.
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[Ω]Γ ` [Ω]e1 ⇐ A ′1 p Subderivation
[Ω]Γ ` [Ω]e1 ⇐ [Ω]A1 p [Ω]A1 = A

′
1

Γ ` e1 ⇐ [Γ ]A1 p a Θ By i.h.
Θ −→ ΩΘ

′′

dom(Θ) = dom(ΩΘ)
′′

Ω −→ ΩΘ
′′

[Ω]Γ ` [Ω]e2 ⇐ A ′2 p Subderivation
[Ω]Γ ` [Ω]e2 ⇐ [Ω]A2 p [Ω]A2 = A

′
2

Γ −→ Θ By Lemma 51 (Typing Extension)
[Ω]Γ = [ΩΘ]Θ By Lemma 57 (Multiple Confluence)

[Ω]A2 = [ΩΘ]A2 By Lemma 55 (Completing Completeness) (ii)

[ΩΘ]Θ ` [Ω]e2 ⇐ [ΩΘ]A2 p By above equalities
Θ ` e2 ⇐ [Γ ]A2 p a ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

ΩΘ −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)
Γ ` 〈e1, e2〉⇐ ([Γ ]A1)× ([Γ ]A2) p a ∆ By ×I

Z Γ ` 〈e1, e2〉⇐ [Γ ](A1 ×A2) p a ∆ By def. of subst.

– In the second case, where [Γ ]A = α̂, combine the corresponding subcase for Decl+Ik with some
straightforward additional reasoning about contexts (because here we have two subderivations,
rather than one).

• Case [Ω]Γ ` [Ω]e0 ⇒ C q
[Ω]Γ ` [Ω]Π :: C ! ⇐ [Ω]A p ∀D.[Ω]Γ ` [Ω]e0 ⇒ D q ⊃ [Ω]Γ ` [Ω]Π covers D !

[Ω]Γ ` case([Ω]e0, [Ω]Π) ⇐ [Ω]A p
DeclCase

[Ω]Γ ` [Ω]e0 ⇒ C q Subderivation
Γ ` e0 ⇒ C ′ q a Θ By i.h.

Θ −→ ΩΘ
′′

dom(Θ) = dom(ΩΘ)
′′

Ω −→ ΩΘ
′′

C = [ΩΘ]C
′ ′′

Θ `C ′ q type By Lemma 63 (Well-Formed Outputs of Typing)
FEV(C ′) = ∅ By inversion
[ΩΘ]C

′ = C ′ By a property of substitution
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Γ −→ Ω Given
∆ −→ Ω Given
Θ −→ Ω By Lemma 33 (Extension Transitivity)
[Ω]Γ = [Ω]Θ = [Ω]∆ By Lemma 56 (Confluence of Completeness)
Γ −→ Θ By Lemma 51 (Typing Extension)
Γ −→ ΩΘ By Lemma 33 (Extension Transitivity)

[Ω]Γ = [ΩΘ]Θ By Lemma 57 (Multiple Confluence)
Γ `A type Given + inversion
Ω `A type By Lemma 38 (Extension Weakening (Types))

[Ω]A = [ΩΘ]A By Lemma 55 (Completing Completeness) (ii)
[Ω]Γ ` [Ω]Π :: C⇐ [Ω]A p Subderivation

[ΩΘ]Θ ` [Ω]Π :: [ΩΘ]C
′ ⇐ [ΩΘ]A p By above equalities

Θ ` Π :: C ′ ⇐ [Θ]A p a ∆ By i.h. (v)
Z ∆ −→ Ω ′ ′′

dom(∆) = dom(Ω ′) ′′

ΩΘ −→ Ω ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

[Ω]Γ ` [Ω]Π covers C Instantiation of quantifier
[Ω]Γ = [Ω]∆ Above

= [Ω ′]∆ By Lemma 57 (Multiple Confluence)
[Ω ′]∆ ` [Ω]Π covers C ′ By above equalities
∆ −→ Ω ′ By Lemma 33 (Extension Transitivity)

Γ `C ′ ! type Given
Γ −→ ∆ By Lemma 51 (Typing Extension) & 33
∆ `C ′ ! type By Lemma 41 (Extension Weakening for Principal Typing)

[∆]C ′ = C ′ By FEV(C ′) = ∅ and a property of subst.
∆ `Π covers C ′ By Theorem 11

Z Γ ` case(e0, Π) ⇐ [Γ ]A p a ∆ By Case

• Case [Ω]Γ ` [Ω]e1 ⇐ A1 p [Ω]Γ ` [Ω]e2 ⇐ A2 p

[Ω]Γ ` 〈[Ω]e1, [Ω]e2〉⇐ A1 ×A2︸ ︷︷ ︸
[Ω]A

p
Decl×I

Either A = α̂ where [Ω]α̂ = A1 ×A2, or A = A ′1 ×A ′2 where A1 = [Ω]A ′1 and A2 = [Ω]A ′2.

In the former case (A = α̂):

We have [Ω]α̂ = A1 ×A2. Therefore A1 = [Ω]A ′1 and A2 = [Ω]A ′2. Moreover, Γ = Γ0[α̂ : κ].

[Ω]Γ ` [Ω]e1 ⇐ [Ω]A ′1 p Subderivation
Let Γ ′ = Γ0[α̂1 : κ, α̂2 : κ, α̂ : κ= α̂1+α̂2].
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[Ω]Γ = [Ω]Γ ′ By def. of context substitution
[Ω]Γ ′ ` [Ω]e1 ⇐ [Ω]A ′1 p By above equality
Γ ′ ` e1 ⇐ [Γ ′]A ′1 p

′ a Θ By i.h.
Θ −→ Ω1

′′

Ω −→ Ω1
′′

dom(Θ) = dom(Ω1)
′′

[Ω]Γ ` [Ω]e2 ⇐ [Ω]A ′2 p Subderivation

[Ω]Γ = [Ω1]Θ By Lemma 57 (Multiple Confluence)
[Ω]A ′2 = [Ω1]A

′
2 By Lemma 55 (Completing Completeness) (ii)

[Ω1]Θ ` [Ω]e2 ⇐ [Ω1]A
′
2 p By above equalities

Θ ` e2 ⇐ [Θ]A ′2 p
′ a ∆ By i.h.

Z dom(∆) = dom(Ω ′) ′′

Z ∆ −→ Ω ′ ′′

Ω1 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)
Z Γ ` 〈e1, e2〉⇐ α̂ p ′ a ∆ By ×Iα̂

In the latter case (A = A ′1 ×A ′2):

[Ω]Γ ` [Ω]e1 ⇐ A1 p Subderivation
[Ω]Γ ` [Ω]e1 ⇐ [Ω]A ′1 p A1 = [Ω]A ′1
Γ ` e1 ⇐ [Γ ]A ′1 p a Θ By i.h.

Θ −→ Ω0
′′

dom(Θ) = dom(Ω0)
′′

Ω −→ Ω0
′′

[Ω]Γ ` [Ω]e2 ⇐ A2 p Subderivation
[Ω]Γ ` [Ω]e2 ⇐ [Ω]A ′2 p A2 = [Ω]A ′2
Γ `A ′1 ×A ′2 p type Given (A = A ′1 ×A ′2)
Γ `A ′2 type By inversion

Γ −→ Ω Given
Γ −→ Ω0 By Lemma 33 (Extension Transitivity)
Ω0 `A ′2 type By Lemma 38 (Extension Weakening (Types))

[Ω]Γ ` [Ω]e2 ⇐ [Ω0]A
′
2 p By Lemma 55 (Completing Completeness)

[Ω]Γ ` [Ω]e2 ⇐ [Ω0][Θ]A
′
2 p By Lemma 29 (Substitution Monotonicity) (iii)

[Ω]Θ ` [Ω]e2 ⇐ [Ω0][Θ]A
′
2 p By Lemma 57 (Multiple Confluence)

Θ ` e2 ⇐ [Θ]A ′2 p a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Ω0 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 33 (Extension Transitivity)

Γ ` 〈e1, e2〉⇐ ([Ω]A1)× ([Ω]A2) p a ∆ By ×I
Z Γ ` 〈e1, e2〉⇐ [Ω](A1 ×A2) p a ∆ By def. of substitution

Now we turn to parts (v) and (vi), completeness of matching.
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• Case DeclMatchEmpty: Apply rule MatchEmpty.

• Case DeclMatchSeq: Apply the i.h. twice, along with standard lemmas.

• Case DeclMatchBase: Apply the i.h. (i) and rule MatchBase.

• Case DeclMatchUnit: Apply the i.h. and rule MatchUnit.

• Case DeclMatch∃: By i.h. and rule Match∃.

• Case DeclMatch×: By i.h. and rule Match×.

• Case DeclMatch+k: By i.h. and rule Match+k.

• Case
[Ω]Γ / P ` ~ρ⇒ e :: [Ω]A, [Ω]~A ! ⇐ [Ω]C p

[Ω]Γ ` ~ρ⇒ e :: ([Ω]A ∧ [Ω]P), [Ω]~A ! ⇐ [Ω]C p
DeclMatch∧

To apply the i.h. (vi), we will show (1) Γ ` (A, ~A) ! types, (2) Γ ` P prop, (3) FEV(P) = ∅, (4)
Γ ` C p type, (5) [Ω]Γ / [Ω]P ` ~ρ⇒ [Ω]e :: [Ω]~A ! ⇐ [Ω]C p, and (6) p ′ v p.

Γ ` (A ∧ P, ~A) ! types Given
Γ ` (A ∧ P) ! type By inversion on PrincipalTypevecWF
Γ `A ! type By Lemma 42 (Inversion of Principal Typing) (3)

(2) Γ `P prop ′′

(3) FEV(P) = ∅ By inversion
(1) Γ ` (A, ~A) ! types By inversion and PrincipalTypevecWF

(4) Γ `C p type Given
(5) [Ω]Γ / P `~ρ⇒ [Ω]e :: [Ω]A, [Ω]~A⇐ [Ω]C p Subderivation
(6) p ′ vp Given

Γ / [Γ ]P ` ~ρ⇒ e :: [Γ ](A, ~A) ⇐ [Γ ]C p ′ a ∆ By i.h. (vi)
Z ∆ −→ Ω ′ ′′

Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ ′′

Γ / [Γ ]P ` ~ρ⇒ e :: [Γ ]A, [Γ ]~A) ⇐ [Γ ]C p ′ a ∆ By def. of subst.
Γ ` ~ρ⇒ e :: ([Γ ]A ∧ [Γ ]P), [Γ ]~A) ⇐ [Γ ]C p ′ a ∆ By Match∧

Z Γ ` ~ρ⇒ e :: [Γ ]
(
(A ∧ P), ~A

)⇐ [Γ ]C p ′ a ∆ By def. of subst.

• Case DeclMatchNeg: By i.h. and rule MatchNeg.

• Case DeclMatchWild: By i.h. and rule MatchWild.

• Case DeclMatchNil: Similar to the DeclMatch∧ case.

• Case DeclMatchCons: Similar to the DeclMatch∃ and DeclMatch∧ cases.

• Case mgu([Ω]σ, [Ω]τ) = ⊥
[Ω]Γ / [Ω]σ = [Ω]τ ` [Ω](~ρ⇒ e) :: [Ω]~A ! ⇐ [Ω]C p

DeclMatch⊥
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Z Γ −→ Ω Given
FEV(σ = τ) = ∅ Given

[Ω]σ = [Γ ]σ By Lemma 39 (Principal Agreement) (i)
[Ω]τ = [Γ ]τ Similar

mgu([Ω]σ, [Ω]τ) = ⊥ Given
mgu([Γ ]σ, [Γ ]τ) = ⊥ By above equalities

Γ / σ $ τ : κ a ⊥ By Lemma 94 (Completeness of Elimeq) (2)
Z Γ / [Γ ]σ = [Γ ]τ ` ~ρ⇒ e :: [Γ ]~A⇐ [Γ ]C p a Γ By Match⊥

Z Ω −→ Ω By Lemma 32 (Extension Reflexivity)
Z dom(Γ) = dom(Ω) Given

• Case mgu([Ω]σ, [Ω]τ) = θ θ([Ω]Γ) ` θ(~ρ⇒ [Ω]e) :: θ([Ω]~A) ! ⇐ θ([Ω]C) p

[Ω]Γ / [Ω]σ = [Ω]τ ` ~ρ⇒ [Ω]e :: [Ω]~A ! ⇐ [Ω]C p
DeclMatchUnify

([Ω]σ = [Γ ]σ) and ([Ω]τ = [Γ ]τ) As in DeclMatch⊥ case
mgu([Ω]σ, [Ω]τ) = θ Given
mgu([Γ ]σ, [Γ ]τ) = θ By above equalities

Γ / σ $ τ : κ a (Γ,Θ) By Lemma 94 (Completeness of Elimeq) (1)
Θ = (α1= t1, . . . , αn= tn)

′′

[Γ,Θ]u = θ([Γ ]u) ′′ for all Γ ` u : κ

θ([Ω]Γ) ` θ(~ρ⇒ [Ω]e) :: θ([Ω]~A) ⇐ θ([Ω]C) p Subderivation

θ([Ω]Γ) = [Ω,IP, Θ](Γ,IP, Θ) By Lemma 95 (Substitution Upgrade) (iii)
θ([Ω]~A) = [Ω,IP, Θ]~A By Lemma 95 (Substitution Upgrade) (i) (over ~A)
θ([Ω]C) = [Ω,IP, Θ]C By Lemma 95 (Substitution Upgrade) (i)

θ(~ρ⇒ [Ω]e) = [Ω,IP, Θ](~ρ⇒ e) By Lemma 95 (Substitution Upgrade) (iv)

[Ω,IP, Θ](Γ,IP, Θ) ` [Ω,IP, Θ](~ρ⇒ e) :: [Ω,IP, Θ]~A⇐ [Ω,IP, Θ]C p By above equalities

Γ,IP, Θ ` (~ρ⇒ e) :: [Γ,IP, Θ]~A⇐ [Γ,IP, Θ]C p a ∆,IP, ∆ ′ By i.h.
∆,IP, ∆

′ −→ Ω ′,IP,Ω
′′ ′′

Ω,IP, Θ −→ Ω ′,IP,Ω
′′ ′′

dom(∆,IP, ∆
′) = dom(Ω ′,IP,Ω

′′) ′′

Z ∆ −→ Ω ′ By Lemma 22 (Extension Inversion) (ii)
Z dom(∆) = dom(Ω ′) ′′

Z Ω −→ Ω ′ By Lemma 22 (Extension Inversion) (ii)

Z Γ / [Γ ]σ = [Γ ]τ ` ~ρ⇒ e :: [Γ ]~A⇐ [Γ ]C p a ∆ By MatchUnify
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