
ZU064-05-FPR main 16 August 2020 14:54

Under consideration for publication in J. Functional Programming 1

Implicit self-adjusting computation

for purely functional programs

YAN CHEN and JANA DUNFIELD

Max Planck Institute for Software Systems, Kaiserslautern and Saarbrücken, Germany

(e-mail: chenyan@mpi-sws.org, jd169@queensu.ca)

MATTHEW A. HAMMER

University of Maryland, College Park, Maryland, USA

(e-mail: hammer@mpi-sws.org)

UMUT A. ACAR

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA and INRIA Paris-Rocquencourt, France

(e-mail: umut@cs.cmu.edu)

Abstract

Computational problems that involve dynamic data, such as physics simulations and program devel-

opment environments, have been an important subject of study in programming languages. Building

on this work, recent advances in self-adjusting computation have developed techniques that enable

programs to respond automatically and efficiently to dynamic changes in their inputs. Self-adjusting

programs have been shown to be efficient for a reasonably broad range of problems but the approach

still requires an explicit programming style, where the programmer must use specific monadic types

and primitives to identify, create and operate on data that can change over time.

We describe techniques for automatically translating purely functional programs into self-adjusting

programs. In this implicit approach, the programmer need only annotate the (top-level) input types

of the programs to be translated. Type inference finds all other types, and a type-directed translation

rewrites the source program into an explicitly self-adjusting target program. The type system is

related to information-flow type systems and enjoys decidable type inference via constraint solv-

ing. We prove that the translation outputs well-typed self-adjusting programs and preserves the

source program’s input-output behavior, guaranteeing that translated programs respond correctly to

all changes to their data. Using a cost semantics, we also prove that the translation preserves the

asymptotic complexity of the source program.

1 Introduction

Dynamic changes are pervasive in computational problems: physics simulations often in-

volve moving objects; robots interact with dynamic environments; compilers must respond

to slight modifications in their input programs. Such dynamic changes are often small, or

incremental, and result in only slightly different output, so computations can often respond

to them asymptotically faster than performing a complete re-computation. Such asymptotic

improvements can lead to massive speedup in practice but traditionally require careful

algorithm design and analysis (Chiang and Tamassia, 1992; Guibas, 2004; Demetrescu

et al., 2005), which can be challenging even for seemingly simple problems.

ZU064-05-FPR main 16 August 2020 14:54

2 Y. Chen et al.

Motivated by this problem, researchers have developed language-based techniques that

enable computations to respond to dynamic data changes automatically and efficiently (see

Ramalingam and Reps (1993) for a survey). This line of research, traditionally known

as incremental computation, aims to reduce dynamic problems to static (conventional or

batch) problems by developing compilers that automatically generate code for dynamic re-

sponses. This is challenging, because the compiler-generated code aims to handle changes

asymptotically faster than the source code. Early proposals (Demers et al., 1981; Pugh and

Teitelbaum, 1989; Field and Teitelbaum, 1990) were limited to certain classes of appli-

cations (e.g., attribute grammars), allowed limited forms of data changes, and/or yielded

suboptimal efficiency. Some of these approaches, however, had the important advantage of

being implicit: they required little or no change to the program code to support dynamic

change—conventional programs could be compiled to executables that respond automati-

cally to dynamic changes.

Recent work based on self-adjusting computation made progress towards achieving

efficient incremental computation by providing algorithmic language abstractions to ex-

press computations that respond automatically to changes to their data (Ley-Wild et al.,

2008; Acar et al., 2009). Self-adjusting computation can deliver asymptotically efficient

updates in a reasonably broad range of problem domains (Acar et al., 2010a), and have

even helped solve challenging open problems (Acar et al., 2010b). Existing self-adjusting

computation techniques, however, require the programmer to program explicitly by using

a certain set of primitives (Carlsson, 2002; Ley-Wild et al., 2008; Acar et al., 2009).

Specifically the programmer must manually distinguish stable data, which remains the

same, from changeable data, which can change over time, and operate on changeable

data via a special set of primitives. As a result, rewriting a conventional program into a

self-adjusting program can require extensive changes to the code. For example, a purely

functional program will need to be rewritten in imperative style using write-once, monadic

references.

In this paper, we present techniques for implicit self-adjusting computation that allow

conventional programs to be translated automatically into efficient self-adjusting programs.

Our approach consists of a type system for inferring self-adjusting computation types from

purely functional programs and a type-guided translation algorithm that rewrites purely

functional programs into self-adjusting programs.

Our type system hinges on a key observation connecting self-adjusting computation to

information flow (Pottier and Simonet, 2003; Sabelfeld and Myers, 2003): both involve

tracking data dependencies (of changeable data and sensitive data, respectively) as well

as dependencies between expressions and data. Specifically, we show that a type system

that encodes the changeability of data and expressions in self-adjusting computation as

secrecy of information suffices to statically enforce the invariants needed by self-adjusting

computation. The type system uses polymorphism to capture stable and changeable uses of

the same data or expression. We present a constraint-based formulation of our type system

where the constraints are a strict subset of those needed by traditional information-flow

systems. Consequently, as with traditional information flow, our type system admits an

HM(X) inference algorithm (Odersky et al., 1999) that can infer all type annotations from

top-level type specifications on the input of a program.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 3

Our goal is to translate conventional programs into self-adjusting programs. Types pro-

vide crucial information that enables transformation. First, we present a set of composi-

tional, non-deterministic translation rules. Guided by the types, these rules identify the set

of all changeable expressions that operate on changeable data and rewrite them into the

self-adjusting target language. We then present a deterministic translation algorithm that

applies the compositional rules judiciously, considering the type and context (enclosing

expressions) of each translated subexpression, to generate a well-typed self-adjusting target

program.

Level ML

AFL

e e : τ

e′ : τ ′

v

w

Type inference Evaluation

in k steps

Evaluation

in Θ(k) steps

Type-

Directed

Translation

Type

Soundness

Observational

Equivalence

Fig. 1. Visualizing the translation between the source language Level ML and the target language

AFL, and related properties.

Taken together, the type system, its inference algorithm, and the translation algorithm

enable translating purely functional source programs to self-adjusting target programs us-

ing top-level type annotations on the input type of the source program. These top-level type

annotations simply mark what part of the input data is subject to change. Type inference

assigns types to the rest of the program and the translation algorithm translates the program

into self-adjusting target code. Figure 1 illustrates how source programs written in Level

ML, a purely functional subset of ML with level types, can be translated to self-adjusting

programs in the target language AFL, a language for self-adjusting computation with

explicit primitives (Acar et al., 2006b). We prove three critical properties of the approach.

• Type soundness. On source code of a given type, the translation algorithm produces

well-typed self-adjusting code of a corresponding target type (Theorem 6.1).

• Observational equivalence. The translated self-adjusting program, when evaluated,

produces the same value as the source program (Theorem 6.5).

• Asymptotic complexity. The time to evaluate the translated program is asymptoti-

cally the same as the time to evaluate the source program (Theorem 6.14).

Type soundness and observational equivalence together imply a critical consistency

property: that self-adjusting programs respond correctly to changing data (via the con-

sistency of the target self-adjusting language (Acar et al., 2006b)). The third property

shows that the translated program takes asymptotically as long to evaluate (from scratch)

as the corresponding source program. To prove this complexity result, we use a cost se-

mantics (Sands, 1990; Sansom and Peyton Jones, 1995) that enables precise reasoning

about the complexity of the evaluation time. The time for incremental updates via change

propagation is usually asymptotically more efficient than running from scratch. Proving a

ZU064-05-FPR main 16 August 2020 14:54

4 Y. Chen et al.

tight bound on the complexity of change propagation is beyond the scope of this paper.

Interested readers can refer to Ley-Wild et al. (2009) for more detail.

We have implemented our approach as an extension of Standard ML and the MLton

compiler (MLton). The implementation takes SML code annotated with level types and

generates self-adjusting code that can be linked with a previously published, publicly

available library for self-adjusting computation (Acar et al., 2009). We evaluate the ef-

fectiveness of our compiler by considering a range of benchmarks involving lists, vectors,

and matrices, as well as a ray tracer. For these benchmarks, our compiler incrementalizes

existing code with only trivial amounts of annotation. The resulting programs are often

asymptotically more efficient, leading to orders of magnitude speedups in practice. A

detailed experimental evaluation is beyond the scope of this paper; interested readers can

refer to Chen et al. (2012).

Since our approach simply generates target code, it is agnostic to implementation details

of the explicit self-adjusting computation mechanisms employed in the target language and

thus could be applied more broadly, at least for other strict languages with self-adjusting

libraries (Carlsson, 2002).

Paper guide. To describe our approach in the overview section (Section 2), we start

with the translation problem and work back to the type system, because we feel that

motivates well the problem and our proposed solution. When presenting the technical

material, however, we start with the type system, because the details of the translation

algorithm and our theorems rely on it. We first present the static semantics (the syntax and

the type system) (Sections 3 and 4), and then describe the target language AFL (Section 5)

and the translation (Section 6). Finally, we discuss related work (Section 7) and conclude.

Previous version. This article is an extended version of a paper that appeared in the

Proceedings of the 2011 International Conference on Functional Programming (Chen et al.,

2011). Apart from many smaller improvements and corrections, this version fixes a major

problem with one of the proofs. Note that only the proof was flawed, not its conclusion;

the claimed results do, in fact, hold.

2 Overview

We present an informal overview of our approach via examples in an extension of SML

with features for implicit self-adjusting computation. An implementation of this approach,

including support for algebraic datatypes, Hindley-Milner polymorphism and imperative

programs, was described in Chen et al. (2012). However, to simplify the theoretical pre-

sentation, our formalism will only consider a core subset of this language. We start with a

brief description of our target language, explicit self-adjusting computation, as laid out in

previous work. After this description, we outline our proposed approach.

2.1 Explicit self-adjusting computation

The key concept behind explicit approaches is the notion of a modifiable (reference), which

stores changeable values that can change over time (Acar et al., 2006b). The program-

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 5

mer operates on modifiables with mod, read, and write constructs to create, read from,

and write into modifiables. The run-time system of a self-adjusting language uses these

constructs to represent the execution as a (directed, acyclic) dependency graph, enabling

efficient change propagation when the data changes in small amounts.

As an example, consider a trivial program that computes x2 + y:

squareplus: int * int → int
fun squareplus (x, y) =

let x2 = x * x in
let r = x2 + y in

r

To make this program self-adjusting with respect to changes in y, while leaving x unchang-

ing or stable, we assign y the type int mod (of modifiables containing integers) and read

the contents of the modifiable. The body of the read is a changeable expression ending

with a write. This function has a changeable arrow type →
C

:

squareplus_SC: int * int mod →
C

int

fun squareplus_SC (x, y) =
let x2 = x * x in

read y as y’ in
let r = x2 + y’ in

write(r)

The read operation delimits the code that can directly inspect the changeable value y,

and the changeable arrow type ensures an important consistency property: →
C

-functions

can only be called within the context of a changeable expression. If we change the value of

y, change propagation can update the result, re-executing only the read and its body, and

thus reusing the computation of the square x2.

Note that the result type of squareplus_SC is int, not int mod; squareplus_SC

does not itself create a modifiable, it just writes to the modifiable created by the caller of the

function in the context of a (dynamically) enclosing mod expression. In fact, programming

directly in the explicit self-adjusting computation setting requires extensive knowledge of

such non-obvious details of the type system. Our implicit approach also has a nontrivial

type system, but manages to expose fewer sharp corners to the user.

Now suppose we wish to make x changeable while leaving y stable. We can read x and

place x2 into a modifiable (because we can only read within the context of a changeable

expression), and immediately read back x2 and finish by writing the sum.1

squareplus_CS: int mod * int →
C

int

fun squareplus_CS (x, y) =
let x2 = mod (read x as x’ in write(x’ * x’)) in

read x2 as x2’ in
let r = x2’ + y in

write(r)

1 This is not the only way to express the computation. For instance, one could bind x’ * x’ to
x2’ and do the addition within the body of read x. The code shown here is the same as the
code produced by our translation, and has the property that the scope of each read is as small as
possible, which leads to more efficient updates during change propagation.

ZU064-05-FPR main 16 August 2020 14:54

6 Y. Chen et al.

As this example shows, rewriting even a trivial program can require modifications to

the code, and different choices about what is or is not changeable lead to different code.

Moreover, if we need squareplus_SC and squareplus_CS—for instance, if we want to

pass squareplus to various higher-order functions—we must write, and maintain, both

versions. If we conservatively treat all data as modifiable, we would only need to write

one version of each function, but this would introduce unacceptably high overhead. It is

also possible to take the other extreme and treat all data as stable, but this would yield a

non-self-adjusting program. Our approach treats data as modifiable only where necessary.

Meta operations. The run-time system of a self-adjusting language also supplies meta

operations: change for inspecting and changing the values stored in modifiables and prop-

agate for performing change propagation. The change function is similar to the write

construct: it assigns a new value to the modifiable to a new value. The propagate function

runs the change-propagation algorithm, which updates a computation based on the changes

made since the last execution or the last change propagation. The meta operations can only

be used at the top level—the run-time system guarantees correct behavior only if meta

operations are not used inside the core self-adjusting program. Interested readers can refer

to Acar et al. (2006a) for a more detailed discussion of the meta operations, and the change

propagation algorithms used in self-adjusting computation.

As an example, consider calling the squareplus_SC function in a Standard ML imple-

mentation of self-adjusting runtime:

let
val x = 1
val y = mod 2
val z = mod (squareplus_SC (x, y))
val () = change (y, 3)
val () = propagate ()

in () end

When calling the squareplus_SC function, z will be a modifiable containing 3. The

change function updates modifiable y to be 3. The propagate function triggers reevalua-

tion of the plus operation (while the square computation is reused), and stores the result 4

into modifiable z.

Implicit self-adjusting computation, described below, is an alternative approach for writ-

ing the self-adjusting computation itself; the interface to the meta operations remains the

same.

2.2 Implicit self-adjusting computation

To make self-adjusting computation implicit, we use type information to insert reads,

writes, and mods automatically. The user annotates the input type, as well as the corre-

sponding data declarations, of the program; we infer types for all expressions, and use this

information to guide a translation algorithm. The translation algorithm returns well-typed

self-adjusting target programs. The translation requires no expression-level annotations.

Given the function squareplus (above), we can automatically derive squareplus_SC

and squareplus_CS from just the type of the function (expressed in a slightly different

form, as we discuss next).

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 7

Level types. To uniformly describe source functions (more generally, expressions) that

differ only in their “changeability”, we need a more general type system than that of the

target language. This type system refines types with levels S (stable) and C (changeable).

The type intδ is an integer whose level is δ ; for example, to get squaresum_CS we can

annotate squaresum’s argument with the type intC× intS.

Level types are an important connection between information-flow types (Pottier and

Simonet, 2003) and those needed for our translation: high-security secret data (level H)

behaves like changeable data (level C), and low-security public data (level L) behaves like

stable data (level S). In information flow, data that depends on secret data must be secret;

in self-adjusting computation, data that depends on changeable data must be changeable.

Building on this connection, we develop a type system with several features and mecha-

nisms similar to information flow. Among these is level polymorphism; our type system

assigns level-polymorphic types to expressions that accommodate various “changeabili-

ties”. (As with ML’s polymorphism over types, our level polymorphism is prenex.) Another

similarity is evident in our constraint-based type inference system, where the constraints

are a strict subset of those in Pottier and Simonet (2003). As a corollary, our system admits

a constraint-based type inference algorithm (Odersky et al., 1999).

Translation. The main purpose of our type system is to support translation. Given a source

expression and its type, translation inserts the appropriate mod, read, and write primitives

and restructures the code to produce an expression that is well-typed in the target language.

The implicitly self-adjusting source language is polymorphic over levels. The type sys-

tem of the target language, which is explicitly self-adjusting, is also polymorphic but

explicitly so: polymorphic values are given as lists of values (within a select construct),

with each value in the list being the translation of the source value at specific levels.

Moreover, polymorphic values are explicitly instantiated by a syntactic construct in the

target language; in the source language, instantiation is implicit.

Our translation generates code that is well-typed, has the same input-output behavior

as the source program, and is, at worst, a constant factor slower than the source program.

Since the source and target languages differ, proving these properties is nontrivial; in fact,

the proofs critically guided our formulation of the type system and translation algorithm.

A more detailed example: mapPair. To illustrate how our translation works, consider a

function mapPair that takes two integer lists and increments the elements in both lists.

This function can be written by applying the standard higher-order map over lists. Fig-

ure 2 shows the purely functional code in an ML-like language for an implementation of

mapPair, with a datatype α list, an increment function inc, and a polymorphic map

function. Type signatures give the types of functions.

To obtain a self-adjusting mapPair, we first decide how we wish to allow the input to

change. Suppose that we want to allow insertion and deletion of elements in the first list, but

we expect the length of the second list to remain constant, with only its elements changing.

We can express this with the versions of the list type with different changeability:

• α listC for lists of α with changeable tails;

• α listS for lists of α with stable tails.

ZU064-05-FPR main 16 August 2020 14:54

8 Y. Chen et al.

datatype α list = nil | cons of α * α list

inc : int → int
fun inc (x) = x+1

map : (α → β) → α list → β list
fun map f l =

case l of
nil ⇒ nil

| cons(h,t) ⇒ cons(f h, map f t)

mapPair : (int list * int list) → (int list * int list)
fun mapPair (l1,l2) = (map inc l1, map inc l2)

Fig. 2. Function mapPair in ML.

datatype α listδ = nil | cons of α * (α listδ)

mapPair : ((intS listC) * (intC listS))

→
S

((intS listC) * (intC listS))

... (* inc, map, mapPair same as in Figure 2. *)

Fig. 3. Function mapPair in Level ML, with level types.

Then a list of integers allowing insertion and deletion has type intS listC, and one with

unchanging length has type intC listS. Now we can write the type annotation on mapPair

shown in Figure 3. Given only that annotation, type inference can find appropriate types

for inc and map and our translation algorithm generates self-adjusting code from these

annotations. Note that to obtain a self-adjusting program, we only had to provide types for

the function. We call this language with level types Level ML.

Target code for mapPair. Translating the code in Figure 3 produces the self-adjusting

target code in Figure 4. Note that inc and map have level-polymorphic types. In map inc l1

we increment stable integers, and in map inc l2 we increment changeable integers, so

the type inferred for inc must be generic: ∀δ . intδ →
δ

intδ . Our translation produces

two implementations of inc, one per instantiation (δ=S and δ=C): inc_S and inc_C

(in Figure 4). Since we want to use inc with the higher-order function map, we need

to generate a “selector” function that takes an instantiation and picks out the appropriate

implementation:

inc : ∀δ . intδ →
δ

intδ

val inc = select {δ=S ⇒ inc_S
| δ=C ⇒ inc_C}

In mapPair itself, we pass a level instantiation to the selector: inc[δ=S]. (This instantiation

is known statically, so it could be replaced with inc_S at compile time.) The types of

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 9

datatype α list_S = nil | cons of α * α list_S
datatype α list_C = nil | cons of α * (α list_C) mod

inc_S : int →
S

int (* ‘inc’ specialized for stable data *)

funS inc_S (x) = x+1

inc_C : int mod →
C

int (* ‘inc’ specialized for changeable data *)

funC inc_C (x) = read x as x’ in write (x’+1)

inc : ∀δ . intδ →
δ

intδ

val inc = select {δ=S ⇒ inc_S
| δ=C ⇒ inc_C}

map_SC : (α →
S

β) →
S

(α list_C) mod →
S

(β list_C) mod

funS map_SC f l = (* ‘map’ for stable heads, changeable tails *)
mod (read l as x in

case x of
nil ⇒ write nil

| cons(h,t) ⇒ write (cons(f h, map_SC f t)))

map_CS : (α →
C

β) →
S

(α list_S) →
S

((β mod) list_S)

funS map_CS f l = (* ‘map’ for changeable heads, stable tails *)
case l of

nil ⇒ nil
| cons(h,t) ⇒ let val h’ = mod (f h)

in cons(h’, map_CS f t)

map : ∀δH ,δT . (α →
δH

β) →
S

α listδT →
S

β listδT

val map = select {δH=S, δT=C ⇒ map_SC
| δH=C, δT=S ⇒ map_CS}

mapPair : ((int list_C) mod * (int mod) list_S)
→
S

((int list_C) mod * (int mod) list_S)

funS mapPair (l1, l2) = (map[δH=S,δT=C] inc[δ=S] l1,
map[δH=C,δT=S] inc[δ=C] l2)

Fig. 4. Translated mapPair with mod types and explicit level polymorphism.

inc_S and inc_C are produced by a type-level translation that, very roughly, replaces

changeable types with mod types (Section 6.1).

Observe how the single annotation on mapPair led to duplication of the two functions

it uses. While inc_S is the same as the original inc, the changeable version inc_C adds a

read and a write. Note also that the two generated versions of map are both different from

the original.

The interplay of type inference and translation. Given user annotations on the input,

type inference finds a satisfying type assignment, which then guides our translation al-

gorithm to produce self-adjusting code. In many cases, multiple type assignments could

ZU064-05-FPR main 16 August 2020 14:54

10 Y. Chen et al.

satisfy the annotations; for example, subsumption allows any stable type to be promoted to

a changeable type. Translation yields target code that satisfies the crucial type soundness,

operational equivalence, and complexity properties under any satisfying assignment. But

some type assignments are preferable, especially when one considers constant factors.

Choosing C levels whenever possible is always a viable strategy, but treating all data as

changeable results in more overhead. As in information flow, where we want to consider

data secret only when absolutely necessary, inference yields principal typings that are

minimally changeable, always preferring S over C.

A combinatorial explosion? A type scheme quantifying over n level variables has up to

2n instances. However, our experience suggests that n is usually small: level variables tend

to recur in types, as in the type of inc above. Even if n turns out to be large for some

practical applications, the number of used instantiations will surely be much less than 2n,

suggesting that generating instances lazily would suffice.

Levels δ ,ε : := S | C | α

Types τ : := intδ | (τ1×τ2)
δ | (τ1+τ2)

δ | (τ1 →
ε τ2)

δ

Constraints C,D : := true | false | ∃~α .C |C∧D |
α = β | α ≤ β | δ ✁ τ

Type schemes σ : := τ | ∀~α[D].τ

Fig. 5. Levels, constraints, types, and type schemes in Level ML.

3 A type system for implicit self-adjusting computation

Self-adjusting computation separates the computation and data into two parts: stable and

changeable. Changeable data refers to data that can change over time; all non-changeable

data is stable. Similarly, changeable expressions refers to expressions that operate (via

elimination forms) on changeable data; all non-changeable expressions are stable. Evalu-

ation of changeable expressions (that is, changeable computations) can change as the data

that they operate on changes: changes in data cause changes in control flow. These dis-

tinctions are critical to effective self-adjustment: previous work on explicit self-adjusting

computation (Ley-Wild et al., 2008; Acar et al., 2009) shows that it suffices to track

and remember changeable data and evaluations of changeable expressions because stable

data and evaluations of stable expressions remain invariant over time. This previous work

developed languages that enable the programmer to separate stable and changeable data,

and type systems that enforce correct usage of these constructs.

In this section, we describe the self-adjusting computation types that we infer for purely

functional programs. A key insight behind our approach is that in information-flow type

systems, secret (high-security) data is infectious: any data that depends on secret data

itself must be secret. This corresponds to self-adjusting computation: data that depends

on changeable data must itself be changeable. In addition, self-adjusting computation re-

quires expressions that inspect changeable data—elimination forms—to be changeable.

To encode this invariant, we extend function types with a mode, which is either stable or

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 11

changeable; only changeable functions can inspect changeable data. This additional struc-

ture preserves the spirit of information flow-based type systems, and, moreover, supports

constraint-based type inference in a similar style.

The starting point for our formulation is Pottier and Simonet (2003). Types in Level

ML (Figure 5) include two (security) levels, stable and changeable. We generally follow

their approach and notation. The two key differences are that (1) since Level ML is purely

functional, we need no “program counter” level “pc”; (2) we need a mode ε on function

types.

Levels. The levels S (stable) and C (changeable) have a total order:

S≤ S C≤ C S≤ C

To support polymorphism and enable type inference, we allow level variables α , β to

appear in types.

Types. Types consist of integers tagged with their level, products2 and sums with an

associated level, and arrow (function) types. Function types (τ1 →
ε τ2)

δ carry two level

annotations ε and δ . The mode ε is the level of the computation encapsulated by the func-

tion. This mode determines how a function can manipulate changeable values: a function

in stable mode cannot directly manipulate changeable values; it can only pass them around.

By contrast, a changeable-mode function can directly manipulate changeable values. The

outer level δ is the level of the function itself, as a value. We say that a type is ground if it

contains no level variables.

In practice, types in source programs can omit levels, which will be derived through type

inference. For example, if the user writes int, the system will add a level variable δ and

do type inference with intδ .

Subtyping. Figure 6 shows the subtyping relation τ <: τ ′, which is standard except for

the levels. It requires that the outer level of the subtype is smaller than the outer level of

the supertype and that the modes match in the case of functions: a stable-mode function

is never a subtype or supertype of a changeable-mode function. (It would be sound to

make stable-mode functions subtypes of changeable-mode functions, but changeable mode

functions are more expensive; silent coercion would make performance less predictable.)

For simplicity, our type system will support only a weaker form of subtyping where only

the outer levels can differ. In practice, the more powerful subtyping system could be used;

see the discussion of let-expressions in Section 4.1.

Levels and types. We rely on several relations between levels and types to ascertain

various invariants. A type τ is higher than δ , written δ ✁ τ , if the outer level of the type

is at least δ . Figure 7 defines this relation. We distinguish between outer-stable and outer-

changeable types (Figure 8). We write τ O.S. if the outer level of τ is S. Similarly, we write

2 In Pottier and Simonet (2003), product types are low-security (stable) because pairing adds no
extra information. In our setting, changeable products give more control over the granularity of
change propagation.

ZU064-05-FPR main 16 August 2020 14:54

12 Y. Chen et al.

δ ≤ δ ′

intδ <: intδ ′ (subInt)
τ1 <: τ ′1 τ2 <: τ ′2 δ ≤ δ ′

(τ1 × τ2)
δ <:

(
τ ′1 × τ ′2

)δ ′ (subProd)

τ1 <: τ ′1 τ2 <: τ ′2 δ ≤ δ ′

(τ1 + τ2)
δ <:

(
τ ′1 + τ ′2

)δ ′ (subSum)

ε = ε ′ δ ≤ δ ′ τ ′1 <: τ1 τ2 <: τ ′2

(τ1 →
ε τ2)

δ <: (τ ′1 →
ε ′ τ ′2)

δ ′ (subArrow)

Fig. 6. Subtyping.

δ ≤ δ ′

δ ✁ intδ ′ (✁-Int)

δ ≤ δ ′

δ ✁ (τ1 × τ2)
δ ′ (✁-Prod)

δ ≤ δ ′

δ ✁ (τ1 →
ε τ2)

δ ′ (✁-Arrow)
δ ≤ δ ′

δ ✁ (τ1 + τ2)
δ ′ (✁-Sum)

Fig. 7. Lower bound of a type.

intS O.S. (τ1 →
ε τ2)

S
O.S. (τ1 × τ2)

S
O.S. (τ1+τ2)

S
O.S.

intC O.C. (τ1 →ε τ2)
C
O.C. (τ1 × τ2)

C
O.C. (τ1+τ2)

C
O.C.

intδ1 ⊜ intδ2 (τ1 + τ2)
δ1 ⊜ (τ1 + τ2)

δ2

(τ1 × τ2)
δ1 ⊜ (τ1 × τ2)

δ2 (τ1 →
ε τ2)

δ1 ⊜ (τ1 →
ε τ2)

δ2

Fig. 8. Outer-stable and outer-changeable types, and equality up to outer levels.

τ O.C. if the outer level of τ is C. Finally, two types τ1 and τ2 are equal up to their outer

levels, written τ1 ⊜ τ2, if τ1 = τ2 or they differ only in their outer levels.

Constraints. To perform type inference, we extend levels with level variables α and β ,

and use a constraint solver to find solutions for the variables. Our constraints C, D include

level-variable comparisons ≤ and level-type comparisons δ ✁ τ , which type inference

composes into conjunctions of satisfiability predicates ∃~α.C.

The subtyping and lower bound relations defined in Figures 6 and 7 consider closed

types only. For type inference, we can extend these with a constraint to allow non-closed

types.

A (ground) assignment, written φ , substitutes concrete levels S and C for level variables.

An assignment φ satisfies a constraint C, written φ ⊢C, if and only if C holds true after the

substitution of variables to ground types as specified by φ . We say that C entails D, written

C D, if and only if every assignment φ that satisfies C also satisfies D. We write φ(α)

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 13

Values v : := n | x | (v1,v2) | inl v | inr v | fun f (x) = e

Expressions e : := v | ⊕(x1,x2) | fst x | snd x |
case x of {x1 ⇒ e1 , x2 ⇒ e2} |
apply(x1,x2) | let x=e1 in e2

Fig. 9. Abstract syntax of the source language Level ML.

for the solution (instantiation) of α in φ , and [φ]τ for the usual substitution operation on

types. For example, if φ(α) = S then [φ]
(
intα + intC

)α
=
(
intS+ intC

)S
.

Type schemes. A type scheme σ is a type with universally quantified level variables:

σ = ∀~α[D].τ . We say that the variables ~α are bound by σ . The type scheme is bounded by

the constraint D, which specifies the conditions that must hold on the variables. As usual,

we consider type schemes equivalent under capture-avoiding renaming of their bound

variables. Ground types can be written as type schemes, e.g. intC as ∀ /0[true]. intC.

4 Source language

4.1 Static semantics

Syntax. Figure 9 shows the syntax for our source language Level ML, a purely functional

language with integers (as base types), products, and sums. The expressions consist of

values (integers, pairs, tagged values, recursive functions), projections, case expressions,

function applications, and let bindings. For convenience, we consider only expressions in

A-normal form, which names intermediate results. A-normal form simplifies some techni-

cal issues, while maintaining expressiveness.

Constraint-based type system. Consider the types defined by the grammar

τ : := int | τ1 × τ2 | τ1 + τ2 | τ1 → τ2

We augment this type system with features that allow us to directly translate Level ML

programs into self-adjusting programs in AFL. This constraint-based type system has the

level-decorated types, constraints, and type schemes in Figure 5 and described in Section 3.

After discussing the rules themselves, we will look at type inference (Section 4.2).

Typing takes place in the context of a constraint formula C and a typing environment Γ

that maps variables to type schemes: Γ : := · | Γ,x : σ . The typing judgment C;Γ ⊢ε e : τ

has a constraint C and typing environment Γ, and infers type τ for expression e in mode ε .

Beyond the usual typing concerns, there are three important aspects of the typing rules: the

determination of modes and levels, level polymorphism, and constraints. To help separate

concerns, we discuss constraints later in the section—at this time, the reader can ignore the

constraints in the rules and read C;Γ ⊢ε e : τ as Γ ⊢ε e : τ , read C δ ✁ τ2 as δ ✁ τ2, and

so on.

The mode of each typing judgment affects the types that can be used “directly” by the

expression being typed. Specifically, the mode discipline prevents the elimination forms

from being applied to changeable values in the stable mode. This is a key principle of the

type system.

ZU064-05-FPR main 16 August 2020 14:54

14 Y. Chen et al.

C;Γ ⊢ε e : τ Under constraint C and source typing

environment Γ, source expression e has type τ

C;Γ ⊢ε n : intS
(SInt)

Γ(x) = ∀~α[D].τ C ∃~β .[~β/~α]D

C∧ [~β/~α]D;Γ ⊢ε x : [~β/~α]τ
(SVar)

C;Γ ⊢ε v1 : τ1 C;Γ ⊢ε v2 : τ2

C;Γ ⊢ε (v1,v2) : (τ1 × τ2)
S

(SPair)
C;Γ ⊢ε v : τ1

C;Γ ⊢ε inl v : (τ1 + τ2)
S

(SSumLeft)

C;Γ,x : τ1, f : (τ1 →
ε τ2)

S ⊢ε e : τ2 C ε ✁ τ2

C;Γ ⊢ε ′ (fun f (x) = e) : (τ1 →
ε τ2)

S
(SFun)

C;Γ ⊢S x1 : intδ1

C;Γ ⊢S x2 : intδ2

C δ1 = δ2

C δ1 ≤ ε ⊕ : int× int → int

C;Γ ⊢ε ⊕(x1,x2) : intδ1
(SPrim)

C;Γ ⊢S x : (τ1 × τ2)
δ

C δ ≤ ε

C;Γ ⊢ε fst x : τ1

(SFst)

C;Γ ⊢ε ′ e1 : τ ′

C τ ′ <: τ ′′
C;Γ,x : τ ′′ ⊢ε e2 : τ

C τ ′ ⊜ τ ′′

C;Γ ⊢ε let x=e1 in e2 : τ
(SLetE)

C∧D;Γ ⊢S v1 : τ ′ C;Γ,x : ∀~α[D].τ ′′ ⊢ε e2 : τ
~α ∩FV (C,Γ) = /0 C τ ′ <: τ ′′ C τ ′ ⊜ τ ′′

C∧∃~α.D;Γ ⊢ε let x=v1 in e2 : τ
(SLetV)

C;Γ ⊢S x1 : (τ1 →
ε ′ τ2)

δ

C;Γ ⊢S x2 : τ1

C ε ′ = ε

C δ ✁ τ2

C;Γ ⊢ε apply(x1,x2) : τ2

(SApp)

C;Γ ⊢S x : (τ1 + τ2)
δ

C δ ≤ ε C δ ✁ τ

C;Γ,x1 : τ1 ⊢ε e1 : τ

C;Γ,x2 : τ2 ⊢ε e2 : τ

C;Γ ⊢ε case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ
(SCase)

Fig. 10. Typing rules for Level ML.

Typing rules for values. No computation happens in values, so they can be typed in

either mode. The typing rules for variables (SVar), integers (SInt), pairs (SPair), and sums

(SSumLeft) are otherwise standard (we omit the symmetric rule typing inr v). Rule (SVar)

instantiates a variable’s polymorphic type. For clarity, we also make explicit the renaming

of the quantified type variables ~α to some fresh ~β (which will be instantiated later by

constraint solving).

To type a function (SFun), we type the body in the mode ε specified by the function type

(τ1 →
ε τ2)

δ , and require the result type τ2 to be higher than the mode, ε ✁ τ2. That is, a

changeable-mode function must have a changeable return type. This captures the idea that

a changeable-mode function is a computation that depends on changeable data, and thus

its result must accommodate changes to that data. (We could instead do this check in rule

(SApp), where functions are applied, but then we would have functions that are well-typed

but can never be applied.)

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 15

Typing primitive operators. Rule (SPrim) allows primitive operators ⊕ to be applied to

two stable integers, returning a stable integer, or to two changeable integers, returning a

changeable integer. Allowing a mix of stable and changeable arguments in this rule would

be sound, but is already handled by outer-level subsumption (discussed below).

Typing let-expressions. As is common in Damas-Milner-style systems, when typing let

we can generalize variables in types (in our system, level variables) to yield a polymorphic

value only when the bound expression is a value. This value restriction is not essential be-

cause Level ML is pure, but its presence facilitates support for side effects in extensions of

the language (such as the extension of full Standard ML supported by our implementation).

• (SLetE): In the first let-rule (SLetE), the expression bound may be a non-value, so

we do not generalize and simply type the body in the same mode as the whole let,

assuming that the bound expression has the specified type in any mode ε ′.3

• Subsumption on outer levels: We allow subsumption only when the subtype and

supertype are equal up to their outer levels, e.g. from a bound expression e1 of

subtype intS to an assumption x : intC. This simplifies the translation, with no loss

of expressiveness: to handle “deep” subsumption, such as

(intS →
S

intS)S <: (intS →
S

intC)C

we can insert coercions (essentially, eta-expanded identity functions) into the source

program before typing it with these rules. This technique of eta-expanding terms

to eliminate the need for nontrivial subsumption goes back to (at least) Barendregt

et al. (1983), and could easily be automated.

• (SLetV): In the second let-rule (SLetV), when the expression bound is a value, we

type the let expression in mode ε by typing the body in the same mode ε , assuming

that the value bound is typed in the stable mode (the mode is ignored in the rules

typing values). As in (SLetE), we allow subsumption on the bound value only when

the types are equal up to their outer level. Because we are binding a value, we

generalize its type by quantifying over the type’s free level variables.

Typing elimination forms. Function application, ⊕ (discussed above), fst, and case are

the forms that eliminate values of changeable type.

Rule (SApp) types applications. Two additional constraints are needed, beyond the one

enforced in (SFun) (that changeable-mode functions have changeable result types: ε ✁τ2):

• The mode ε ′ of the function being called must match the current mode ε (the caller’s

mode): ε ′ = ε .

To see why, first consider the case where we are in stable mode and try to apply

a changeable-mode function (ε = S and ε ′ = C). Changeable data can be directly

inspected only in changeable mode; since changeable-mode functions can directly

inspect changeable data, the call would allow us to inspect changeable data from

stable mode, breaking the property that stable data depends only on stable data.

3 In the target language, bound expressions must be stable-mode, but the translation puts
changeable bound expressions inside a mod, yielding a stable-mode bound expression.

ZU064-05-FPR main 16 August 2020 14:54

16 Y. Chen et al.

Now consider the case where we are in changeable mode, and try to call a stable-

mode function (ε = C and ε ′ = S). This call would not directly violate the same

property; we forbid it to simplify translation to a target language that distinguishes

stable and changeable modes. Since the rules (SLetV) and (SLetE) can switch from

changeable mode to stable mode, we lose no expressive power.

• The outer level of the result of the function, τ2, must be higher than δ , the function’s

level: δ ✁ τ2.

The situation we disallow is when δ = C and τ2 is outer-stable, that is, when the

called function has a type like (τ1 →
ε intS)C. Here, the result type intS is stable

and therefore must not depend on changeable data. But the type (τ1 →
ε intS)C is

changeable: a change in program input could cause it to be entirely replaced by

another function, which could of course return a different result! (Assuming “deep”

subsumption, we lose no expressive power: we can coerce a function of type (τ1 →
ε

intS)C to type (τ1 →ε intC)C, which satisfies the constraint.)

Note that neither of these constraints could be enforced via (SFun). The first depends

on the current (caller’s) mode, so it must be checked at the call site. The second depends

on the outer level δ , which might have been originally declared as S, but can rise to C via

subsumption.

The rule (SCase) types a case expression, in either mode ε , by typing each branch in ε .

The mode ε must be higher than the level δ of the scrutinee to ensure that a changeable

sum type is not inspected at the stable mode. Furthermore, the level of the result τ must

also be higher than δ : if the scrutinee changes, we may take the other branch, requiring a

changeable result.

Rule (SFst) enforces a condition, similar to (SCase), that we can project out of a change-

able tuple of type (τ1 × τ2)
C

only in changeable mode. We omit the symmetric rule for snd.

Our premises on variables, such as the scrutinee of (SCase), are stable-mode (⊢S), but

this was an arbitrary decision; since (SVar) is the only rule that can derive such premises,

their mode is irrelevant.

4.2 Constraints and type inference

Many of the rules simply pass around the constraint C. An implementation of rules with

constraint-based premises, such as (SFun), implicitly adds those premises to the constraint,

so that C = . . .∧(ε✁τ2). Rule (SLetV) generalizes level variables instead of type variables,

with the “occurs check” ~α ∩FV (C,Γ) = /0.

Standard techniques in the tradition of Damas and Milner (1982) can infer types for

Level ML. In particular, our rules and constraints fall within the HM(X) framework (Oder-

sky et al., 1999), permitting inference of principal types via constraint solving. As always,

we cannot infer the types of polymorphically recursive functions.

Using a constraint solver that, given the choice between assigning S or C to some level

variable, prefers S, inference finds principal typings that are minimally changeable. Thus,

data and computations will only be made changeable—and incur tracking overhead—

where necessary to satisfy the programmer’s annotation. This corresponds to preferring

a lower security level in information flow (Pottier and Simonet, 2003).

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 17

Levels δ ,ε : := S | C

Types τ : := int | τ mod | τ1 × τ2 | τ1 + τ2 | τ1
→
ε τ2

Type schemes σ : := ∀~α[D].τ

Typing environments Γ : := · | Γ,x : σ | Γ,x : τ

Variables x : := x | x[~α = ~δ]

Values w : := n | x | ℓ | (w1,w2) | inl w | inr w |

funS f (x) = eS | funC f (x) = eC | select {(~αi = ~δi)⇒ ei}i

Expressions e : := eS | eC

Stable expressions eS : := w | ⊕(eS,eS) | fst eS | snd eS |

applyS(eS,eS) | let x=eS in eS |

case eS of {x1 ⇒ eS , x2 ⇒ eS} |
mod eC

Changeable expressions eC : := applyC(eS,eS) | let x=eS in eC |

case eS of {x1 ⇒ eC , x2 ⇒ eC} |

read eS as y in eC | write(eS)

Fig. 11. Types and expressions in the target language AFL.

Our formulation of the constraint-based rules follows a standard presentation style (Oder-

sky et al., 1999). That style, while relatively concise, obscures how constraints are manipu-

lated in practice: It is tempting to read the typing rules in Figure 10 as taking in a constraint

C as input. But in an actual constraint-based typechecker, C cannot be input, because C is

not known until the program has been traversed! In practice, C should be thought of as

both input and output: at the start of typechecking, C is empty (equivalently, is true); as the

typechecker traverses the program, C is extended with additional constraints. For example,

the premise C δ ≤ ε in (SFst) really corresponds to adding δ ≤ ε to the “current” C, not

to checking δ ≤ ε under a known constraint.

An alternative would be to use a judgment with both an input constraint and an output

constraint. For a typing of the entire program, the input constraint would be true (at the

beginning of typechecking) and the output constraint would correspond to the “final” C

in the current formulation. Such a formulation would be closer to an algorithm, but would

require explicitly threading the constraint through the rules. Moreover, our meta-theoretical

development would become more complicated; in the meta-theory, we care about the result

of type inference, not internal details of the algorithm.

4.3 Dynamic semantics

The call-by-value semantics of source programs is defined by a big-step judgment e ⇓ v,

read “e evaluates to value v”. Our rules in Figure 13 are standard; we write [v/x]e for

capture-avoiding substitution of v for the variable x in e. To simplify the presentation, we

omit the symmetric rules (SEvSumRight), (SEvSnd) and (SEvCaseRight).

5 Target language

The target language AFL (Figure 11) is a self-adjusting language with modifiables. In

addition to integers, products, and sums, the target type system makes a modal distinction

ZU064-05-FPR main 16 August 2020 14:54

18 Y. Chen et al.

between ordinary types (e.g. int) and modifiable types (e.g. int mod). It also distinguishes

stable-mode and changeable-mode functions.

Level polymorphism is supported through an explicit select construct and an explicit

polymorphic instantiation. In Section 6, we describe how polymorphic source expressions

become selects in AFL. The type schemes used in the target are identical to those in the

source language; σ = ∀~α[D].τ quantifies over source types τ (from Figure 5), not target

types τ . We cannot quantify over target types here, because no single type scheme over

target types can represent exactly the set of types corresponding to the instances of a source

type scheme. For example, the source type scheme ∀α[true]. intα corresponds to int if α

is instantiated with S, and to int mod if α is instantiated with C, but the set of types

{int,(int mod)} does not correspond to the instances of any type scheme.

The values w of the language are integers, variables, polymorphic variable instantiation

x[~α = ~δ], locations ℓ (which appear only at runtime), pairs, tagged values, stable and

changeable functions, and the select construct, which acts as a function and case expression

on levels: if x is bound to select {(α = S)⇒ e1 | (α = C)⇒ e2} then x[α = S] yields e1.

The symbol x stands for a bare variable x or an instantiation x[~α = ~δ].

We distinguish stable expressions eS from changeable expressions eC. Stable expres-

sions create purely functional values; applyS applies a stable-mode function. The mod

construct evaluates a changeable expression and writes the output value to a modifiable,

yielding a location, which is a stable expression. Changeable expressions are computa-

tions that end in a write of a pure value. Changeable-mode application applyC applies a

changeable-mode function.

The let construct is either stable or changeable according to its body. When the body is

a changeable expression, let enables a changeable computation to evaluate a stable expres-

sion and bind its result to a variable. The case expression is likewise stable or changeable,

according to its case arms. The read expression binds the contents of a modifiable x to a

variable y and evaluates the body of the read.

The typing rules in Figure 12 follow the structure of the expressions. Rule (TSelect)

checks that each monomorphized expression ei within a select has type ‖[~δ/~α]τ‖, where

[~δ/~α]τ is a source-level polymorphic type with the levels ~δ substituted for the variables ~α ,

and‖−‖ translates source types to target types (see Section 6.1). Rule (TPVar) is a standard

rule for variables of monomorphic type, but rule (TVar) gives the instantiation x[~α =
~δ], of a variable x of polymorphic type, the type ‖[~δ/~α]τ‖—matching the monomorphic

expression from the select to which x is bound.

5.1 Dynamic semantics

For the source language, our big-step evaluation rules (Figure 13) are standard. In the target

language AFL, our rules (Figure 14) model the evaluation of a first run of the program:

modifiables are created, written to (once), and read from (any number of times), but never

updated to reflect changes to the program input. Again, we omit symmetric rules such as

(SEvSumRight).

According to the grammar in Figure 11, x[~α =~δ] is a value. It might seem that evaluation

(Figure 14) could replace the variable x by a select, yielding select {. . .}[~α = ~δ], which

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 19

Λ;Γ ⊢ε w : σ Under store typing Λ and target typing environment Γ,

target value w has type scheme σ

for all ~δi such that ~α = ~δi D

Λ;Γ ⊢S ei :‖[~δi/~α]τ‖

Λ;Γ ⊢S select {~δi ⇒ ei}i : ∀~α[D].τ
(TSelect)

Λ;Γ ⊢ε eε : τ Under store typing Λ and target typing environment Γ,

target expression eε has target type τ

Λ(ℓ) = τ

Λ;Γ ⊢S ℓ : τ
(TLoc)

Λ;Γ ⊢S n : int
(TInt)

Γ(x) = τ

Λ;Γ ⊢S x : τ
(TPVar)

Γ(x) = ∀~α[D].τ

Λ;Γ ⊢S x[~α = ~δ] : ‖[~δ/~α]τ‖
(TVar)

Λ;Γ ⊢S eS1 : τ1 Λ;Γ ⊢S eS2 : τ2

Λ;Γ ⊢S (e
S
1 ,e

S
2) : τ1 × τ2

(TPair)

Λ;Γ,x : τ1, f : (τ1
→
ε τ2) ⊢ε e : τ2

Λ;Γ ⊢S funε f (x) = e : (τ1
→
ε τ2)

(TFun)

Λ;Γ ⊢S eS : τ1

Λ;Γ ⊢S inl eS : τ1 + τ2

(TSumLeft)
Λ;Γ ⊢S eS : τ1 × τ2

Λ;Γ ⊢S fst eS : τ1

(TFst)

Λ;Γ ⊢S eS1 : int

Λ;Γ ⊢S eS2 : int ⊢ ⊕ : int× int → int

Λ;Γ ⊢S ⊕(eS1 ,e
S
2) : int

(TPrim)

Λ;Γ ⊢S eS1 : σ Λ;Γ,x : σ ⊢ε e2 : τ ′

Λ;Γ ⊢ε let x=eS1 in e2 : τ ′
(TLet)

Λ;Γ ⊢S eS1 : (τ1
→
ε τ2) Λ;Γ ⊢S eS2 : τ1

Λ;Γ ⊢ε applyε (eS1 ,e
S
2) : τ2

(TApp)

Λ;Γ ⊢S eS : τ1 + τ2

Λ;Γ,x1 : τ1 ⊢ε e1 : τ

Λ;Γ,x2 : τ2 ⊢ε e2 : τ

Λ;Γ ⊢ε case eS of {x1 ⇒ e1 , x2 ⇒ e2} : τ
(TCase)

Λ;Γ ⊢C eC : τ

Λ;Γ ⊢S mod eC : τ mod
(TMod)

Λ;Γ ⊢S eS : τ

Λ;Γ ⊢C write(eS) : τ
(TWrite)

Λ;Γ ⊢S eS1 : τ1 mod Λ;Γ,x : τ1 ⊢C eC2 : τ2

Λ;Γ ⊢C read eS1 as x in eC2 : τ2

(TRead)

Fig. 12. Typing rules of the target language AFL.

ZU064-05-FPR main 16 August 2020 14:54

20 Y. Chen et al.

e ⇓ v Source expression e evaluates to v

v ⇓ v
(SEvValue)

e1 ⇓ v1 e2 ⇓ v2

(e1,e2) ⇓ (v1,v2)
(SEvPair)

e ⇓ v

inl e ⇓ inl v
(SEvSumLeft)

e1 ⇓ v1

e2 ⇓ v2 ⊕(v1,v2) = v′

⊕(e1,e2) ⇓ v′
(SEvPrimop)

e ⇓ (v1,v2)

fst e ⇓ v1

(SEvFst)

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let x=e1 in e2 ⇓ v2

(SEvLet)
e ⇓ inl v1 [v1/x1]e1 ⇓ v

case e of {x1 ⇒ e1 , x2 ⇒ e2} ⇓ v
(SEvCaseLeft)

e1 ⇓ fun f (x) = e e2 ⇓ v2 [(fun f (x) = e)/ f][v2/x]e ⇓ v

apply(e1,e2) ⇓ v
(SEvApply)

Fig. 13. Dynamic semantics of source Level ML programs.

ρ ⊢ e ⇓ (ρ ′ ⊢ w) In the store ρ , target expression e evaluates to w with updated store ρ ′

ρ ⊢ w ⇓ (ρ ⊢ w) (TEvValue)

ρ ⊢ e1 ⇓ (ρ1 ⊢ w1) ρ1 ⊢ e2 ⇓ (ρ ′ ⊢ w2)

ρ ⊢ (e1,e2) ⇓ (ρ ′ ⊢ (w1,w2))
(TEvPair)

ρ ⊢ e ⇓ (ρ ′ ⊢ w)

ρ ⊢ inl e ⇓ (ρ ′ ⊢ inl w)
(TEvSumLeft)

ρ ⊢ e1 ⇓ (ρ1 ⊢ w1)
ρ1 ⊢ e2 ⇓ (ρ ′ ⊢ w2) ⊕(w1,w2) = w′

ρ ⊢ ⊕(e1,e2) ⇓ (ρ ′ ⊢ w′)
(TEvPrimop)

ρ ⊢ e ⇓ (ρ ′ ⊢ (w1,w2))

ρ ⊢ fst e ⇓ (ρ ′ ⊢ w1)
(TEvFst)

ρ ⊢ e1 ⇓ (ρ1 ⊢ w1) ρ1 ⊢ [w1/x]e2 ⇓ (ρ ′ ⊢ w2)

ρ ⊢ let x=e1 in e2 ⇓ (ρ ′ ⊢ w2)
(TEvLet)

ρ ⊢ e ⇓ (ρ1 ⊢ inl w1) ρ1 ⊢ [w1/x1]e1 ⇓ (ρ ′ ⊢ w)

ρ ⊢ case e of {x1 ⇒ e1 , x2 ⇒ e2} ⇓ (ρ ′ ⊢ w)
(TEvCaseLeft)

ρ ⊢ eε
1 ⇓ (ρ1 ⊢ funε f (x) = eε)

ρ1 ⊢ eε
2 ⇓ (ρ2 ⊢ w2)

ρ2 ⊢ [(funε f (x) = eε)/ f][w2/x]eε ⇓ (ρ ′ ⊢ w)

ρ ⊢ applyε (eε
1,e

ε
2) ⇓ (ρ ′ ⊢ w)

(TEvApply)

ρ ⊢ e ⇓ (ρ ′ ⊢ w)

ρ ⊢ write(e) ⇓ (ρ ′ ⊢ w)
(TEvWrite)

ρ ⊢ e1 ⇓ (ρ1 ⊢ ℓ) ρ1 ⊢ [ρ1(ℓ)/x′]eC ⇓ (ρ ′ ⊢ w)

ρ ⊢ read e1 as x′ in eC ⇓ (ρ ′ ⊢ w)
(TEvRead)

ρ ⊢ e ⇓ (ρ ′ ⊢ w)

ρ ⊢ (select {. . . ,~δ ⇒ e, . . .})[~α = ~δ] ⇓ (ρ ′ ⊢ w)
(TEvSelect)

ρ ⊢ eC ⇓ (ρ ′ ⊢ w) ℓ /∈ dom(ρ ′)

ρ ⊢ mod eC ⇓ ((ρ ′, ℓ 7→ w) ⊢ ℓ)
(TEvMod)

Fig. 14. Dynamic semantics for first runs of AFL programs.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 21

∣
∣τ
∣
∣S: Stabilization of types

∣
∣intC

∣
∣S = intS

∣
∣(τ1 × τ2)

C
∣
∣S = (τ1 × τ2)

S

∣
∣(τ1 + τ2)

C
∣
∣S = (τ1 + τ2)

S

∣
∣(τ1 →

ε τ2)
C
∣
∣S = (τ1 →

ε τ2)
S

‖τ‖: (Stable) translation of types

‖intS‖ = int

‖intC‖ = int mod

‖(τ1 →
S

τ2)
S‖ = ‖τ1‖→

S
‖τ2‖

‖(τ1 →
S

τ2)
C‖ =

(

‖τ1‖→
S
‖τ2‖

)

mod

‖(τ1 →
C

τ2)
S‖ = ‖τ1‖ →

C
‖τ2‖

�C

‖(τ1 →
C

τ2)
C‖ =

(

‖τ1‖ →
C

‖τ2‖
�C

)

mod

‖(τ1 × τ2)
S‖ = ‖τ1‖×‖τ2‖

‖(τ1 × τ2)
C‖ = (‖τ1‖×‖τ2‖) mod

‖(τ1 + τ2)
S‖ = ‖τ1‖+‖τ2‖

‖(τ1 + τ2)
C‖ = (‖τ1‖+‖τ2‖) mod

‖τ‖�C: Output-changeable translation of types

‖τ‖�C =

{

‖
∣
∣τ
∣
∣S‖ if τ O.C.

‖τ‖ if τ O.S.

‖Γ‖: Translation of contexts
‖·‖ = ·

‖Γ,x : ∀ /0[true].τ‖ = ‖Γ‖,x :‖τ‖

‖Γ,x : ∀~α[D].τ‖ = ‖Γ‖,x : ∀~α[D].τ

Translations under substitution φ
‖τ‖φ = ‖[φ]τ‖

‖τ‖�C
φ = ‖[φ]τ‖�C

‖Γ‖φ = ‖[φ]Γ‖

Fig. 15. Stabilization of types
∣
∣τ
∣
∣S; translations ‖τ‖ and ‖τ‖�C of types; translation of typing

environments ‖Γ‖; translations under substitution.

does not evaluate to itself. However, x[~α = ~δ] is not closed, and we only evaluate closed

target expressions.

6 Translation

We specify the translation from Level ML to the target language AFL by a set of a rules.

Because AFL is a modal language that distinguishes stable and changeable expressions,

with a corresponding type system (Section 5), the translation is also modal: the translation

in the stable mode →֒
S

produces a stable AFL expression eS, and the translation in the

changeable mode →֒
C

produces a changeable expression eC.

ZU064-05-FPR main 16 August 2020 14:54

22 Y. Chen et al.

It is not enough to generate AFL expressions of the right syntactic form; they must

also have the right type. To achieve this, the rules are type-directed: we translate a source

expression e at type τ . But we are transforming expressions from one language to another,

where each language has its own type system; translating some e : τ cannot produce

some e′ : τ , but some e′ : τ ′ where τ ′ is a target type that corresponds to τ . To express

this vital property, we need to translate types, as well as expressions. We developed the

translation of expressions and types together (along with the proof that the property holds);

the translation of types was instrumental in getting the translation of expressions right. To

understand how to translate expressions, it is helpful to first understand how we translate

types.

6.1 Translating types

Figure 15 defines the translation of types via two mutually recursive functions from Level

ML types to AFL types. The first function, ‖τ‖, tells us what type the target expression eS

should have when we translate e in the stable mode, e : τ →֒
S

eS. We also use it to translate

the types in the environment Γ. The second function, ‖τ‖�C, makes sense in two related

situations: translating the type τ of an expression e in the changeable mode (e : τ →֒
C

eC)

and translating the codomain of changeable functions.

In the stable mode, values of stable type can be used and created directly, so the “stable”

translation ‖intS‖ of a stable integer is just int. In contrast, a changeable integer cannot

be inspected or directly created in stable mode, but must be placed into a modifiable:

‖intC‖= int mod. The remaining parts of the definition follow this pattern: the target

type is wrapped with mod if and only if the outer level of the source type is C. When

we translate a changeable-mode function type (with C below the arrow), its codomain

is translated “output-changeable”: ‖(τ1 →
C

τ2)
S‖= ‖τ1‖ →

C
‖τ2‖

�C. The reason is that a

changeable-mode function can only be applied in the changeable mode; the function result

is not placed into a modifiable until we return to the stable mode, so putting a mod on the

codomain would not match the dynamic semantics of AFL.

The second function ‖τ‖�C defines the type of a changeable expression e that writes

to a modifiable containing τ , yielding a changeable target expression eC. The source type

has an outer C, so when the value is written, it will be placed into a modifiable and have

mod type. But inside the evaluation of eC, there is no outer mod on the type.4 Thus the

translation ‖τ‖�C ignores the outer level (using the function
∣
∣−

∣
∣S, which replaces an outer

level C with S), and never returns a type of the form (· · · mod). However, since the value

being returned may contain subexpressions that will be placed into modifiables, we use

‖−‖ for the inner types. For instance, ‖(τ1 + τ2)
δ ‖�C = ‖τ1‖+‖τ2‖.

These functions are defined on closed types—types with no free level variables. Before

applying one of these functions to a type found by the constraint typing rules, we always

need to apply the satisfying assignment φ to the type, so for convenience we write ‖τ‖φ

for ‖[φ]τ‖, and so on.

4 In this respect, mod behaves like a monadic or computational type constructor, like the ©

modality of lax logic (Pfenning and Davies, 2001); inside a computation-level (changeable)
expression, the result type is τ , but outside of the computation/monad, the result has type ©τ .

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 23

Because the translation only makes sense for closed types, type schemes ∀~α[D].τ cannot

be translated before instantiation. Consider the type ∀α[true]. intα , and the translations of

its instantiations:

‖intS‖ = int

‖intC‖ = int mod

No single type scheme over target types can represent exactly the type set {int, int mod}.

The translation ‖Γ‖, therefore, translates only monomorphic types τ; type schemes are left

alone until instantiation. Once instantiated, the type scheme is an ordinary closed source

type, and can be translated by rule (Var) in Figure 16.

6.2 Translating expressions

We define the translation of expressions as a set of type-directed rules. Given (1) a deriva-

tion of C;Γ ⊢ε e : τ in the constraint-based typing system and (2) a satisfying assignment

φ for C, it is always possible to produce a correctly typed stable target expression eS and a

correctly typed changeable target expression eC (see Theorem 6.1 below). The environment

Γ in the translation rules is a source typing environment, but must have no free level

variables. Given an environment Γ from the constraint typing, we apply the satisfying

assignment φ to eliminate its free level variables before using it for the translation: [φ]Γ.

With the environment closed, we need not refer to C.

Many rules in Figure 16 are purely syntax-directed and are similar to the constraint-

based rules. One exception is the (Var) rule, which needs the source type to know how

to instantiate the level variables in the type scheme. For example, given the polymorphic

x : ∀α[true].(intα →
α

intα)S, we need the type from C;Γ ⊢ε x : (intC →
C

intC)S so we can

instantiate α in the translated term x[α = C].

Our rules are nondeterministic, avoiding the need to “decorate” them with context-

sensitive details. Our algorithm in Section 6.3 resolves the nondeterminism through type

information.

Stable rules. The rules (Int), (Var), (Pair), (Fun), (SumLeft), (Fst) and (Prim) can only

translate in the stable mode. To translate to a changeable expression, use a rule that shifts

to changeable mode.

Shifting to changeable mode. Given a translation of e in the stable mode to some eS,

the rules (Write) and (ReadWrite) at the bottom of Figure 16 translate e in the changeable

mode, producing an eC. If the expression’s type τ is outer stable (say, intS), the (Write)

rule simply binds it to a variable and then writes that variable. If τ is outer changeable

(say, intC) it will be in a modifiable at runtime, so we read it into r′ and then write it. (The

let-bindings merely satisfy the requirements of A-normal form.)

Shifting to stable mode. To generate a stable expression eS based on a changeable ex-

pression eC, we have the (Lift) and (Mod) rules. These rules require the source type τ to

be outer changeable: in (Lift), the premise
∣
∣τ
∣
∣S = τ ′ requires that

∣
∣τ
∣
∣S is defined, and it is

defined only for outer changeable τ; in (Mod), the requirement is explicit: ⊢ τ O.C.

ZU064-05-FPR main 16 August 2020 14:54

24 Y. Chen et al.

Γ ⊢ e : τ →֒
ε

eε Under closed source typing environment Γ,

source expression e is translated at type τ in mode ε to target expression eε

Γ ⊢ n : intδ →֒
S

n
(Int)

Γ(x) = ∀~α[D].τ

Γ ⊢ x : [~δ/~α]τ →֒
S

x[~α = ~δ]
(Var)

Γ ⊢ v1 : τ1 →֒
S

v′1 Γ ⊢ v2 : τ2 →֒
S

v′2

Γ ⊢ (v1,v2) : (τ1 × τ2)
S →֒

S
(v′1,v

′
2)

(Pair)

Γ,x : τ1, f : (τ1 →
ε τ2)

S ⊢ e : τ2 →֒
ε eε

Γ ⊢ fun f (x) = e : (τ1 →
ε τ2)

S →֒
S

funε f (x) = eε
(Fun)

Γ ⊢ v : τ1 →֒
S

v′

Γ ⊢ inl v : (τ1 + τ2)
S →֒

S
inl v′

(SumLeft)
Γ ⊢ x : (τ1 × τ2)

S →֒
S

x

Γ ⊢ fst x : τ1 →֒
S

fst x
(Fst)

Γ ⊢ x1 : intS →֒
S

x1 Γ ⊢ x2 : intS →֒
S

x2

Γ ⊢ ⊕(x1,x2) : intδ →֒
S
⊕(x1,x2)

(Prim)

Γ ⊢ x1 : (τ1 →
ε τ2)

S →֒
S

x1 Γ ⊢ x2 : τ1 →֒
S

x2

Γ ⊢ apply(x1,x2) : τ2 →֒
ε applyε (x1,x2)

(App)

Γ ⊢ x : (τ1 + τ2)
S →֒

S
x

Γ,x1 : τ1 ⊢ e1 : τ →֒
ε e′1

Γ,x2 : τ2 ⊢ e2 : τ →֒
ε e′2

Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ

→֒
ε case x of {x1 ⇒ e′1 , x2 ⇒ e′2}

(Case)

Γ ⊢ e : τ ′ →֒
C

eC
∣
∣τ
∣
∣S = τ ′

Γ ⊢ e : τ →֒
S

mod eC
(Lift)

Γ ⊢ e : τ →֒
C

eC τ O.C.

Γ ⊢ e : τ →֒
S

mod eC
(Mod)

Γ ⊢ e1 : τ ′ →֒
S

eS Γ,x : τ ′ ⊢ e2 : τ →֒
ε e′2

Γ ⊢ let x=e1 in e2 : τ →֒
ε let x=eS in e′2

(LetE)

Γ,x : ∀~α[D].τ ′ ⊢ e : τ →֒
ε e′

For all ~δi s.t. ~α = ~δi D,

Γ ⊢ v : [~δi/~α]τ ′ →֒
S

e′i

Γ ⊢ let x=v in e : τ →֒
ε let x=select {(~α=~δi)⇒ e′i}i in e′

(LetV)

Γ ⊢ e ❀ (x ≫ x′ : τ ′ ⊢ e′)

Γ,x′ :
∣
∣τ ′

∣
∣S ⊢ e′ : τ →֒

C
eC

τ ′ O.C.

Γ ⊢ x : τ ′ →֒
S

x

Γ ⊢ e : τ →֒
C

read x as x′ in eC
(Read)

Γ ⊢ e : τ →֒
S

eS τ O.S.

Γ ⊢ e : τ →֒
C

let r=eS in write(r)
(Write)

Γ ⊢ e : τ →֒
S

eS τ O.C.

Γ ⊢ e : τ →֒
C

let r=eS in read r as r′ in write(r′)
(ReadWrite)

Fig. 16. Monomorphizing translation.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 25

Γ ⊢ e ❀ (x ≫ x′ : τ ⊢ e′) Under source typing Γ,

renaming the “head” x in e to x′ : τ yields expression e′

Γ ⊢ x1 : τ

Γ ⊢ ⊕(x1,x2)❀ (x1 ≫ x′1 : τ ⊢ ⊕(x′1,x2))
(LPrimop1)

Γ ⊢ x2 : τ

Γ ⊢ ⊕(x1,x2)❀ (x2 ≫ x′2 : τ ⊢ ⊕(x1,x
′
2))

(LPrimop2)

Γ ⊢ x : τ

Γ ⊢ fst x ❀ (x ≫ x′ : τ ⊢ fst x′)
(LFst)

Γ ⊢ x1 : τ

Γ ⊢ apply(x1,x2)❀ (x1 ≫ x′ : τ ⊢ apply(x′,x2))
(LApply)

Γ ⊢ x : τ

Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2}
❀ (x ≫ x′ : τ ⊢ case x′ of {x1 ⇒ e1 , x2 ⇒ e2})

(LCase)

Fig. 17. Renaming the variable to be read (elimination forms).

(Mod) is the simpler of the two: if e translates to eC at type τ , then e translates to the

stable expression mod eC at type τ . In (Lift), the expression is translated not at the given

type τ but at its stabilized
∣
∣τ
∣
∣S, capturing the “shallow subsumption” in the constraint

typing rules (SLetE) and (SLetV): a bound expression of type τS0 can be translated at type

τS0 to eS, and then “promoted” to type τC0 by placing it inside a mod.

Reading from changeable data. To use an expression of changeable type in a context

where a stable value is needed—such as passing some x : intC to a function expecting

intS—the (Read) rule generates a target expression that reads the value out of x : intC into

a variable x′ : intS. The variable-renaming judgment Γ ⊢ e ❀ (x ≫ x′ : τ ⊢ e′) takes the

expression e, finds a variable x about to be used, and yields an expression e′ with that oc-

currence replaced by x′. For example, Γ ⊢ case x of . . .❀ (x ≫ x′ : τ ⊢ case x′ of . . .). This

judgment is derivable only for apply, case, fst, and ⊕, because these are the elimination

forms for outer-changeable data. For ⊕(x1,x2), we need to read both variables, so we have

one rule for each. The rules are given in Figure 17.

Monomorphization. A polymorphic source expression has no directly corresponding tar-

get expression: the map function from Section 2 corresponds to the two functions map_SC

and map_CS. Given a polymorphic source value v : ∀~α[D].τ ′, the (LetV) rule translates v

once for each instantiation ~δi that satisfies the constraint D (each ~δi such that ~α = ~δi D).

That is, we translate the value at source type [~δi/~α]τ ′. This yields a sequence of source

expressions e1, . . . ,en for the n possible instances. For example, given ∀α[true].τ ′, we

translate the value at type [S/α]τ ′ yielding e1 and at type [C/α]τ ′ yielding e2. Finally, the

rule produces a select expression, which acts as a function that takes the desired instance
~δi and returns the appropriate ei.

Since (LetV) generates one function for each satisfying~δi, it can create up to 2n instances

for n variables. However, dead-code elimination can remove functions that are not used.

Moreover, the functions that are used would have been handwritten in an explicit setting,

so while the code size is exponential in the worst case, the saved effort is as well.

ZU064-05-FPR main 16 August 2020 14:54

26 Y. Chen et al.

function trans (e, ε) = case (e, ε) of

| (n, S) ⇒ Int

| (x, S) ⇒ Var

| ((v1,v2), S) ⇒ Pair(trans(v1, S), trans(v2, S))

| (fun f (x) = e′ : (τ1
→
ε ′

τ2)
S, S) ⇒ Fun(trans(e′, ε ′))

| (inl v, S) ⇒ SumLeft(trans(v, S))

| (fst (x : (τ1 × τ2)
δ, ε) ⇒ case (δ, ε) of

| (S,S) ⇒ Fst(trans(x, S))
| (S,C) ⇒ if τ1 O.S. then Write(trans(e, S))

else ReadWrite(trans(e, S)))

| (C,C)⇒ Read(LFst, trans(fst (x′ :(τ1×τ2)
S), C), trans(x, S))

| (⊕(x1 : intS,x2 : intS), S) ⇒ Prim(trans(x1, S), trans(x2, S))

| (⊕(x1 : intS,x2 : intS), C) ⇒ Write(trans(e, S))

| (⊕(x1 : intC,x2 : intC), S) ⇒ Mod(trans(e, C))

| (⊕(x1 : intC,x2 : intC), C) ⇒ Read(LPrimop1,
Read(LPrimop2,

Write(trans(⊕(x′1,x
′
2), S)),

trans(x2,S)),
trans(x1,S))

| (let x : τ ′′ =e1 : τ ′ in e2, ε) ⇒
LetE(if τ ′′ O.S. then trans(e1, S)

else (if τ ′ = τ ′′ then Mod(trans(e1, C))
else Lift(trans(e1, C))),

trans(e2, ε))

| (let x : ∀~α[D].τ ′′ =v1 : τ ′ in e2, ε) ⇒

let variants = all ~δi such that ~α = ~δi D in

let f = λ~δ . if [~δ/~α]τ ′′ O.S. then trans(v1, S)

else (if τ ′ = [~δ/~α]τ ′′ then Mod(trans(v1, C))
else Lift(trans(v1, C))) in

LetV(map f variants, trans(e2, ε))

| (apply(x1 : (τ1
→
ε ′

τ2)
δ ,x2), ε) ⇒ case (ε ′, δ, ε) of

| (S,S,S) ⇒ App(trans(x1, S), trans(x2, S))
| (C,S,C) ⇒ App(trans(x1, S), trans(x2, S))

| (S,S,C) ⇒ if τ2 O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S))

| (ε ′,C,C) ⇒ Read(LApply,

trans(apply(x′ :(τ1
→
ε ′

τ2)
S,x2), C),

trans(x1, S))

| (C,S,S) ⇒ Mod(trans(e, C))

| (ε ′,C,S) ⇒ Mod(trans(e, C))

| (case x : τ of {x1⇒e1 , x2⇒e2}, ε) ⇒
if τ O.S. then
Case(trans(x, S), trans(e1, ε), trans(e2, ε))

else Read(LCase,
trans(case x′ :

∣
∣τ
∣
∣S of {x1⇒e1 , x2⇒e2},C),

trans(x,S))

| (x : τ, C) ⇒ if τ O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S))

| (fun f (x) = e′, C) | (inl v, C) | (n,C) | ((v1,v2),C) ⇒

Write(trans(e,S))

Fig. 18. Translation algorithm.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 27

6.3 Algorithm

The system of translation rules in Figure 16 is not deterministic. In fact, if the wrong

choices are made it can produce painfully inefficient code. Suppose we have 2 : intC,

and want to translate it to a stable target expression. Choosing rule (Int) yields the target

expression 2. But we could use (Int), then (ReadWrite)—which generates an eC with a let,

a read and a write—then (Mod), which wraps that eC in a mod. Clearly, we should have

stopped with (Int).

To resolve this nondeterminism in the rules would complicate them further. Instead, we

give the algorithm in Figure 18, which examines the source expression e and, using type

information, applies the rules necessary to produce an expression of mode ε .

6.4 Translation type soundness

Given a constraint-based source typing derivation and assignment φ for some term e, it is

possible to translate e to (1) a stable eS and (2) a changeable eC, with appropriate target

types:

Theorem 6.1 (Translation Type Soundness)

If C;Γ ⊢ε e : τ and φ is a satisfying assignment for C then

(1) there exists eS such that [φ]Γ ⊢ e : [φ]τ →֒
S

eS and ·;‖Γ‖φ ⊢S eS : ‖τ‖φ and,

if e is a value, then eS is a value;

(2) there exists eC such that [φ]Γ ⊢ e : [φ]τ →֒
C

eC and ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ .

The proof (Appendix A) is by induction on the height of the given derivation of C;Γ ⊢ε

e : τ . If the concluding rule was (SLetE), we use a substitution property (Lemma A.2) for

each ~δi to get a monomorphic constraint typing derivation; that derivation is not larger than

the input derivation, so we can apply the induction hypothesis to get a translated e′i. The

proof constructs the same translation derivations as the algorithm in Figure 18 (in fact, we

extracted the algorithm from the proof).

When applying the theorem “from the outside”, it suffices to get an expression of the

same mode as the the typing derivation: given C;Γ ⊢S e : τ , use part (1) to get eS; given

C;Γ ⊢C e : τ , use part (2) to get eC. However, inside the proof, we need both parts (1) and

(2). For example, in the (SLetE) case of the proof, we apply the induction hypothesis to the

typing derivation for the let-bound subexpression; in one subcase, the subexpression e1 is

typed in stable mode, but we need a changeable-mode translation of e1.

6.5 Translation soundness

Having shown that the translated programs have appropriate types, we now prove that

running a translated program gives the same result as running the source program.

Theorem 6.5 states that if evaluating the translated program e′ (in an initially-empty

store) yields a (target-language) value w under a new store ρ ′, then the source program e

ZU064-05-FPR main 16 August 2020 14:54

28 Y. Chen et al.

evaluates to v where v corresponds to [ρ ′]w (the result of substituting values in the store ρ ′

for locations appearing in w).5

We define this correspondence via a back-translation [[e′]] which, given some e′ which

resulted from translating e, essentially yields e. The modifier “essentially” is necessary

because, to facilitate the proof of translation soundness, the result of back-translation is

not literally e—it may add some let expressions. The result of back-translation is, however,

equivalent to e: if [[e′]] ⇓ v then e ⇓ v.

Concretely, the back-translation removes all the constructs related to the store: write(x)

becomes x; read expressions are replaced with lets; mod expressions are replaced with

their bodies. The back-translation also removes level superscripts: applyε becomes apply,

etc. Finally, the back-translation drops instantiations of polymorphic variables, replacing

x[~α =~δ] with x, and replaces select expressions with the back-translation of a branch. (The

translation guarantees that all branches of a select will have semantically equivalent back-

translations, a property we call select-uniformity.) We give the full definition in Figure 19.

[[x]] = x

[[e[~α = ~δ]]] = [[e]]
[[applyε (e1,e2)]] = apply([[e1]], [[e2]])
[[funε f (x) = e]] = fun f (x) = [[e]]

[[select {(~αi=~δi)⇒ ei}i]] = [[e1]]
[[mod e]] = [[e]]

[[write(e)]] = [[e]]
[[read e1 as y in e2]] = let y= [[e1]] in [[e2]]

[[n]] = n

[[(e1,e2)]] = ([[e1]], [[e2]])
[[fst e]] = fst [[e]]
[[snd e]] = snd [[e]]
[[inl e]] = inl [[e]]
[[inr e]] = inr [[e]]

[[case e of {x1 ⇒ e1 , x2 ⇒ e2}]] = case [[e]] of {x1 ⇒ [[e1]] , x2 ⇒ [[e2]]}
[[⊕(e1,e2)]] = ⊕([[e1]], [[e2]])

[[let x=e1 in e2]] = let x= [[e1]] in [[e2]]

Fig. 19. Back-translation, used for correspondence between target and source dynamic semantics

The details of soundness depend on a simple notion of source equivalence (source terms

are equivalent if they either evaluate to the same value, or diverge), and on an ordinary

substitution [ρ]e on target terms.

5 Our original conference paper attempted to prove this result by defining a relation between
source and target terms, and showing that (1) the translation rules produce related terms, and
(2) the relation is preserved under evaluation. Unfortunately, as pointed out by one of the journal
reviewers, this relation was not well-founded! Fortunately, as we show in this version, we can
prove essentially the same result via a clearly well-defined function: the back-translation in
Figure 19.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 29

Definition 6.2. Source expressions e1,e2 are equivalent, e1 ∼ e2, iff both evaluate to the

same value, or both diverge: if there exists v1 such that e1 ⇓ v1 then e2 ⇓ v1, and if there

exists v2 such that e2 ⇓ v2 then e1 ⇓ v2.

Definition 6.3. Given a store ρ , which maps locations ℓ to target terms ρ(ℓ), and a target

term e, the store substitution operation [ρ]e, for all ℓ ∈ dom(ρ), replaces each occurrence

of ℓ in e with [ρ](ρ(ℓ)).

For example, [ℓ1 7→ 1, ℓ2 7→ (ℓ1,2)](ℓ1, ℓ2) = (1,(1,2)).

Theorem 6.4 (Evaluation Soundness)

If ρ ⊢ e ⇓ (ρ ′ ⊢ w) where FLV(e) ⊆ dom(ρ) and [ρ]e is select-uniform then [[[ρ]e]] ⇓

[[[ρ ′]w]].

Theorem 6.5 (Translation Soundness)

If · ⊢ e : τ →֒
ε e′ and · ⊢ e′ ⇓ (ρ ′ ⊢ w) then e ⇓ [[[ρ ′]w]].

Acar et al. (2006b) proved that given a well-typed AFL program, change propagation

updates the output consistently with an initial run. Using Theorems 6.1 and 6.5, this implies

that change propagation is consistent with an initial run of the source program.

6.6 Cost of translated code

Our last main result extends Theorem 6.5, showing that the size W (D) of the derivation of

the target-language evaluation· ⊢ e′ ⇓ (ρ ⊢ w) is asymptotically the same as the size W (D ′)

of the derivation of the source-language evaluation6, [[e′]] ⇓ [[[ρ]w]]. To prove Theorem 6.14,

the extended version of Theorem 6.5, we need a few definitions and intermediate results.

The proof hinges on classifying keywords added by the translation, such as write, as

“dirty”: a dirty keyword leads to applications of the dirty rule (TEvWrite) in the evaluation

derivation; such applications have no equivalent in the source-language evaluation.

We then define the “head cost” HC of terms and derivations, which counts the number

of dirty rules applied near the root of the term, or the root of the derivation, without

passing through clean parts of the term or derivation. Just counting all the dirty keywords

in a term would not rule out a β -reduction duplicating a particularly dirty part of the

term. By defining head cost and proving that the translation generates terms with bounded

head cost—including for all subterms—we ensure that no part of the term is too dirty;

consequently, substituting a subterm during evaluation yields terms that are not too dirty.

The omitted proofs can be found in Appendix C.

To extend the evaluation soundness result above (Theorem 6.4) with a guarantee that the

evaluation derivation D is not too large—within a constant factor of the source evaluation

derivation D ′—we need several definitions:

6 As we mentioned in Section 6.5, the back-translation [[e′]] is not exactly the same as the source
program e: it may be let-expanded. We are, therefore, relying on the property that let-expansion
preserves asymptotic complexity (since the resulting evaluation will be larger by, at worst, a
constant factor). Since we assume source programs are in A-normal form, however, we already
need that property.

ZU064-05-FPR main 16 August 2020 14:54

30 Y. Chen et al.

Definition 6.6. The weight W (D) of a derivation D is the number of rule applications

(that is, the number of horizontal lines) in D .

Next, we define the “head cost” of a derivation. This measures the overhead introduced

by translation, in the part of the derivation that is near its conclusion (the root of the

derivation tree). To measure the overhead, we count the number of “dirty” rules applied

near the root.

Definition 6.7. Rules (TEvValue), (TEvPair), (TEvSumLeft), (TEvPrimop), (TEvCase),

(TEvFst), and (TEvApply) are clean. Rule (TEvLet) is clean, since each let in the tar-

get expression becomes a let in the back-translation. The rules (TEvWrite), (TEvMod),

(TEvRead) and (TEvSelect) are dirty.

Definition 6.8. The head cost HC(D) of a derivation D is the number of dirty rule appli-

cations reachable from the root of D without passing through any clean rule applications.

Definition 6.9. The head cost HC(e) of a term e is defined in Figure 20.

Definition 6.10. A term e is shallowly k-bounded if HC(e)≤ k.

A term e is deeply k-bounded if every subterm of e (including e itself) is shallowly

k-bounded.

Similarly, a derivation D is shallowly k-bounded if HC(D) ≤ k, and deeply k-bounded

if all its subderivations are shallowly k-bounded.

HC(x) = 0

HC(x[~α = ~δ]) = 1

HC((select {~αi = ~δi ⇒ ei}i)[~α = ~δ]) = 1+maxi(HC(ei))

HC(select {~αi = ~δi ⇒ ei}i) = 0

HC(n) = 0

HC((e1,e2)) = 0

HC(inl e) = 0

HC(funε f (x) = eε) = 0

HC(⊕(e1,e2)) = 0

HC(fst e) = 0

HC(applyε (e1,e2)) = 0

HC(case e of {x1 ⇒ e1 , x2 ⇒ e2}) = 0

HC(let x=eS1 in e2) = 0

HC(mod eC) = 1+HC(eC)
HC(write(e)) = 1+HC(e)

HC(read e1 as y in eC2) =

1+HC(e1)+HC(eC2) if (for y not free in e3, e4):

eC2 has the form applyε (y,e3)
or case y of {x1 ⇒ e3 , x2 ⇒ e4}
or let r=⊕(e3,y) in write(r)
or read e′2 as y2 in

let r=⊕(y,y2) in write(r)
undefined otherwise

Fig. 20. Definition of the “head cost” HC(e) of a target expression e.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 31

Theorem 6.11

If trans(e,ε)= e′ then e′ is deeply 1-bounded.

Theorem 6.12 (Cost Result)

Given D :: ρ ⊢ e′ ⇓ (ρ ′ ⊢ w) where for every subderivation D∗ :: ρ∗
1 ⊢ e∗ ⇓ (ρ∗

2 ⊢ w∗) of

D (including D), HC(D∗) ≤ k, then the number of dirty rule applications in D is at most
k

k+1
W (D).

The extended soundness result, Theorem 6.14 below, will follow from Theorem 6.13,

which generalizes Theorem 6.4, and Theorem 6.12. The parts that differ from the uncosted

result (Theorem 6.4) are shaded.

Theorem 6.13 (Costed Evaluation Soundness)

If D :: ρ ⊢ e ⇓ (ρ ′ ⊢ w) where FLV(e)⊆ dom(ρ) and [ρ]e is select-uniform

and [ρ]e is deeply k-bounded

then D ′ :: [[[ρ]e]] ⇓ [[[ρ ′]w]]

and [ρ ′]w is deeply k-bounded

and for every subderivation D∗ :: ρ∗
1 ⊢ e∗ ⇓ (ρ∗

2 ⊢ w∗) of D (including D),

HC(D∗)≤ HC(e∗)≤ k ,

and the number of clean rule applications in D equals W (D ′).

Theorem 6.14

If trans(e,ε)= e′ and D ′ :: · ⊢ e′ ⇓ (ρ ′ ⊢w), then D :: [[e′]]⇓ v where W (D ′)=Θ(W (D)).

7 Related work

Incremental computation. Self-adjusting computation builds on incremental computa-

tion (Ramalingam and Reps, 1993). Here we briefly review some techniques. Dependence-

graph techniques (Demers et al., 1981) enable a change-propagation algorithm to up-

date the computation. Self-adjusting computation performs a generalized form of this

dependence tracking for changeable data. Memoization, an idea that dates back to the late

1950s (Bellman, 1957), was first used for incremental computation by Pugh and Teitel-

baum (1989) and then by many others (e.g., Abadi et al. (1996)). Self-adjusting computa-

tion uses a form of memoization that allows reuse of computations that themselves can be

incrementally updated, also within an imperative computation model.

Programming-language features allow writing self-adjusting programs but these require

syntactically separating stable and changeable data, as well as code that operates on such

data (Acar et al., 2006b, 2009; Ley-Wild et al., 2008; Hammer et al., 2009). The DITTO

system of Shankar and Bodik (2007) showed the benefits of eliminating user annotations

in self-adjusting computation and similar incremental computation techniques. By cus-

tomizing the computation graph data structures for invariant checking, they implemented

a fully automatic incremental checker that can speed up invariant checks by an order of

magnitude. DITTO, however, is domain-specific, only works for certain programs (e.g.,

functions cannot return arbitrary values) and is unsound in general.

Another approach to incremental computation is partial evaluation (Sundaresh and Hu-

dak, 1991; Field and Teitelbaum, 1990). Similar to implicit self-adjusting computation, the

ZU064-05-FPR main 16 August 2020 14:54

32 Y. Chen et al.

input is statically partitioned into a fixed portion known at compile time, and a dynamic

portion. The partial evaluator will specialize the program with the fixed input, so this part

of the input can never change in the runtime. In contrast, in self-adjusting computation, the

stable input, although it cannot be changed via change propagation, can still take different

values for different initial runs. Although partial evaluation speeds up responses when the

dynamic input is modified, the lack of runtime dependency tracking means that the update

time may not be as efficient as self-adjusting computation.

Finally, attribute grammars can be viewed as a simple declarative functional language,

where programs specify sets of attributes that relate data items whose interdependencies

are defined by a tree structure (e.g., the context-sensitive attributes, such as typing in-

formation, that decorate an abstract syntax tree). These attributes can be evaluated in-

crementally. When the attributed tree is changed, the system can sometimes update the

affected attributes in optimal time (Reps, 1982a,b; Reps and Teitelbaum, 1989; Efremidis

et al., 1993). The definition of optimality is input-sensitive: it is based on counting of the

minimum number of attributes that must be updated after a tree edit occurs; in general

this is not known until such an incremental reevaluation is completed. In this sense, the

change propagation algorithm used in these systems is similar to that of self-adjusting

computation, but in a less general setting.

Information flow and constraint-based type inference. A number of information flow

type systems have been developed to check security properties, including the SLam calcu-

lus (Heintze and Riecke, 1998), JFlow (Myers, 1999) and a monadic system (Crary et al.,

2005). Our type system uses many ideas from Pottier and Simonet (2003), including a

form of constraint-based type inference (Odersky et al., 1999), and is also broadly similar

to other systems that use subtyping constraints (Simonet, 2003; Foster et al., 2006).

Cost semantics. To prove that our translation yields efficient self-adjusting target pro-

grams, we use a simple cost semantics. The idea of instrumenting evaluations with cost

information goes back to the early ’90s (Sands, 1990). Cost semantics is particularly impor-

tant in lazy (Sands, 1990; Sansom and Peyton Jones, 1995) and parallel languages (Spoon-

hower et al., 2008) where it is especially difficult to relate execution time to the source

code, as well as in self-adjusting computation (Ley-Wild et al., 2009).

Functional reactive programming. Elliott and Hudak (1997) introduced functional re-

active programming (FRP), which provides powerful primitives for operating on continu-

ously changing values, called behaviors, and values that change at certain points in time,

called discrete events. The original development, which is known as classical FRP, turned

out to be difficult to realize in practice: it allows computations that are not causal (that is,

they depend on future values), and its implementations were prone to time and space leaks.

Even though functional reactive programming seems naturally amenable to incremental

computation, via incremental update when time-varying values change, most work on

FRP does not apply incremental computation techniques. Instead, the focus is usually

on maintaining causality and taming the time and space consumption of a “one-shot”

approach, through event-driven FRP (Wan et al., 2002), arrowized FRP (Liu and Hudak,

2007; Liu et al., 2009), and extended type systems (Jeffrey, 2012; Krishnaswami, 2013).

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 33

However, some work has taken steps towards incremental computation. The compiler

developed by Cooper and Krishnamurthi (2006) transparently lifts computations into the

reactive domain, which is similar to marking every value as changeable in our implicit

self-adjusting computation. Since this can lead to redundant signals in the runtime system,

Burchett et al. (2007) develop an optimization technique, lowering, which rewrites expres-

sions that depend on non-time-varying values into pure computations. This optimization

coarsens the dependency graph and eliminates many redundant “stable” signals. Both their

system and our system aim to efficiently translate functional programs into a monadic

language. The lowering technique starts with programs in which all data is changeable, and

gradually lowers stable subcomputations. In contrast, we start with a pure source program

and lift changeable data into modifiables.

Sculthorpe and Nilsson (2010) developed a denotational semantics of FRP, and used it

to reason about various optimizations performed by some FRP systems (Nilsson, 2005); in

particular, they examine when it is sound to avoid recomputing a value.

8 Conclusion

This paper presents techniques for translating purely functional programs to programs that

can automatically self-adjust in response to dynamic changes to their data. Our contribu-

tions include a constraint-based type system for inferring self-adjusting-computation types

from purely functional programs, a type-directed translation algorithm that rewrites purely

functional programs into self-adjusting programs, and proofs of critical properties of the

translation: type soundness and observational equivalence, as well as the intrinsic property

of time complexity. Perhaps unsurprisingly, the theorems and their proofs were critical to

the determination of the type systems and the translation algorithm: many of our initial

attempts at the problem resulted in target programs that were not type sound, that did not

ensure observational equivalence, or were asymptotically slower than the source.

These results take an important step towards the development of languages and compil-

ers that can generate code that can respond automatically to dynamically changing data cor-

rectly and asymptotically optimally, without substantial programming effort. Remaining

open problems include generalization to imperative programs with references, techniques

and proofs to determine or improve the asymptotic complexity of dynamic responses, and

a complete and careful implementation and its evaluation.

Acknowledgments

We thank the anonymous JFP reviewers for their extensive and careful comments, as well

as the anonymous ICFP reviewers and Arthur Charguéraud for their useful comments on

earlier versions of this paper.

A Proof of translation type soundness

First, we need a few simple lemmas.

ZU064-05-FPR main 16 August 2020 14:54

34 Y. Chen et al.

Lemma A.1 (Translation of Outer Levels)

[φ]τ O.C. if and only if ‖τ‖φ = ‖τ‖�C
φ mod;

[φ]τ O.S. if and only if ‖τ‖φ = ‖τ‖�C
φ .

Proof

Case analysis on [φ]τ , using the definitions of − O.S., − O.C., ‖−‖φ and ‖−‖�C
φ .

Lemma A.2 (Substitution)

Suppose φ is a satisfying assignment for C, and φ(~α) = ~δ , where ~α ⊆ FV (C).

1. If D derives C;Γ ⊢ε e : τ , then there exists D ′ deriving C; [~δ/~α]Γ ⊢ε e : [~δ/~α]τ ,

where D ′ has the same height as D .

2. If C δ ′
✁ τ , then C [~δ/~α]δ ′

✁ [~δ/~α]τ .

3. If C τ ′ <: τ ′′, then C [~δ/~α]τ ′ <: [~δ/~α]τ ′′.

4. If C τ ′ ⊜ τ ′′, then C [~δ/~α]τ ′ ⊜ [~δ/~α]τ ′′.

Proof

By induction on the given derivation.

Lemma A.3

Given τ ′ <: τ ′′ and τ ′ ⊜ τ ′′:

(1) If τ ′′ O.S. then τ ′ = τ ′′.

(2) If τ ′′ O.C. then either τ ′ = τ ′′ or τ ′ =
∣
∣τ ′′

∣
∣S.

Proof

By induction on the derivation of τ ′ <: τ ′′.

• Case (subInt): τ ′ = intδ ′
and τ ′′ = intδ ′′

, where δ ′ ≤ δ ′′.

(1) If τ ′′ O.S. then δ ′′ = S. So τ ′ = τ ′′.

(2) If τ ′′ O.C. then δ ′′ = C. If δ ′ = S then
∣
∣τ ′′

∣
∣S = intS = intδ ′

= τ ′; if δ ′ = C then

τ ′′ = intC = intδ ′
= τ ′.

• Case (subProd):

(1) By definition of ⊜, τ ′ = τ ′′.

(2) τ ′′ O.C. is impossible.

• Case (subSum):

(1) If τ ′′ O.S. then τ ′′ = (τ ′′1 + τ ′′2)
S
. By inversion on (subSum), τ ′ = (τ ′1 + τ ′2)

S
. By

definition of ⊜, τ ′1 = τ ′′1 and τ ′2 = τ ′′2 . Therefore τ ′ = τ ′′.

(2) If τ ′′ O.C. then τ ′′ = (τ ′′1 + τ ′′2)
C

. By inversion on (subSum), τ ′ = (τ ′1 + τ ′2)
δ ′

. By

definition of ⊜, τ ′1 = τ ′′1 and τ ′2 = τ ′′2 . If δ ′ = S then
∣
∣τ ′′

∣
∣S = (τ ′′1 + τ ′′2)

S
, which is

equal to τ ′. If δ ′ = C then τ ′′ = (τ ′′1 + τ ′′2)
C = (τ ′1 + τ ′2)

C = (τ ′1 + τ ′2)
δ ′

= τ ′.

• Case (subArrow): Similar to the (subSum) case.

Theorem 6.1 (Translation Type Soundness)

If C;Γ ⊢ε e : τ and φ is a satisfying assignment for C then

(1) there exists eS such that [φ]Γ ⊢ e : [φ]τ →֒
S

eS and ·;‖Γ‖φ ⊢S eS : ‖τ‖φ ,

and if e is a value, then eS is a value;

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 35

(2) there exists eC such that [φ]Γ ⊢ e : [φ]τ →֒
C

eC and ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ .

Proof

By induction on the height of the derivation of C;Γ ⊢ε e : τ .

We present the proof in a line-by-line style, with the justification for each step on the

right. Since we need to show that four different judgments are derivable (translation in the

S mode, typing in the S mode, translation in the C mode, and typing in the C mode), and

often arrive at some of them early, we indicate them with “Z”.

“Part (1)” and “Part (2)” refer to the two parts of the conclusion: (1) “there exists eS . . . ”

and (2) “there exists eC . . . ”. In some cases, it is convenient to prove these simultaneously,

so we sometimes annotate the “Z” symbol to clarify which part is being proved:

(1)Z ·;‖Γ‖φ ⊢S (funC f (x) = e′) : ‖τ‖φ By (TFun)

This information can also be read off from the turnstile: ⊢S means part (1), and ⊢C means

part (2).

• Case C;Γ ⊢ε n : intS
︸︷︷︸

τ

(SInt)

Part (1): Let eS be n.

[φ]Γ ⊢ n : intS →֒
S

n By (Int)

Z [φ]Γ ⊢ e : [φ](intS) →֒
S

eS and eS is a value By n = e and def. of substitution

·;‖Γ‖φ ⊢S n : int By (TInt)

·;‖Γ‖φ ⊢S eS : ‖intS‖φ By int = ‖intS‖= ‖[φ]intS‖= ‖intS‖φ and n = eS

Z ·;‖Γ‖φ ⊢S eS : ‖τ‖φ By τ = intS

Part (2): Let eC be let r=n in write(r).

[φ]Γ ⊢ n : intS →֒
S

n Above

[φ]Γ ⊢ n : intS →֒
C

let r=n in write(r) By (Write)

Z [φ]Γ ⊢ e : [φ](intS) →֒
C

eC n = e; def. of subst.; eC = . . .

·;‖Γ‖φ ⊢S n : int By (TInt)

·;‖Γ‖φ ,r : int ⊢S r : int By (TVar)

·;‖Γ‖φ ,r : int ⊢C write(r) : int By (TWrite)

·;‖Γ‖φ ⊢C let r=n in write(r) : int By (TLet)

·;‖Γ‖φ ⊢C eC : int By def. of eC

·;‖Γ‖φ ⊢C eC : ‖intS‖�C
φ By int = ‖intS‖�C

φ

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ By τ = intS

• Case
Γ(x) = ∀~α[D].τ0 C ∃~β .[~β/~α]D

C∧D;Γ ⊢ε x : [~β/~α]τ0

(SVar)

Part (1): Let eS be x[~α = ~δ].

ZU064-05-FPR main 16 August 2020 14:54

36 Y. Chen et al.

Γ(x) = ∀~α[D].τ0 Premise

([φ]Γ)(x) = [φ](∀~α[D].τ0) = ∀~α[[φ]D]. [φ]τ0 By def. of substitution

[φ]Γ ⊢ x : [~δ/~α]([φ]τ0) →֒
S

x[~α = ~δ] By (Var)

[φ]Γ ⊢ x : [φ][~δ/~α]τ0 →֒
S

x[~α = ~δ] ~δ closed and ~α ∩dom(φ) = /0

[φ]Γ ⊢ x : [φ][~δ/~β]([~β/~α]τ0) →֒
S

x[~α = ~δ] Intermediate subst.

[φ]Γ ⊢ x : [φ]([~β/~α]τ0
︸ ︷︷ ︸

τ

) →֒
S

x[~α = ~δ] φ(~β) = ~δ

Z [φ]Γ ⊢ e : [φ]τ →֒
S

eS and eS is a value By e = x; τ = [~β/~α]τ0; eS = x[~α =~δ]

(‖Γ‖φ)(x) = ∀~α[[φ]D]. [φ]τ0 By def. of ‖−‖φ and def. of subst.

·;‖Γ‖φ ⊢S x[~α = ~δ] : ‖[~δ/~α]([φ]τ0)‖ By (TVar)

·;‖Γ‖φ ⊢S eS : ‖[φ][~δ/~α]τ0‖ ~α ∩dom(φ) = /0

·;‖Γ‖φ ⊢S eS : ‖[~β/~α]τ0‖φ Intermed. subst., φ(~β) = ~δ , def. of ‖−‖φ

Z ·;‖Γ‖φ ⊢S eS : ‖τ‖φ τ = [~β/~α]τ0

Part (2), subcase (a) where [φ]τ O.S.: Let eC be let r=x[~α = ~δ] in write(r).

[φ]Γ ⊢ x : [φ]τ →֒
S

x[~α = ~δ] Above

[φ]Γ ⊢ x : [φ]τ →֒
C

let r=x[~α = ~δ] in write(r) By (Write)

Z [φ]Γ ⊢ e : [φ]τ →֒
C

eC By e = x and def. of eC

·;‖Γ‖φ ⊢S x[~α = ~δ] : ‖τ‖φ Above

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TVar)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

·;‖Γ‖φ ⊢C let r=x[~α = ~δ] in write(r) : ‖τ‖φ By (TLet)

⊢ [φ]τ O.S. Subcase (a) assumption

‖τ‖φ = ‖τ‖�C
φ By Lemma A.1

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ By above equality

Part (2), subcase (b) where [φ]τ O.C.: Let eC = let r=eS in read r as r′ in write(r′).

[φ]Γ ⊢ x : [φ]τ →֒
S

eS Above

[φ]τ O.C. Subcase (b) assumption

Z [φ]Γ ⊢ x : [φ]τ →֒
C

eC By (ReadWrite)

·;‖Γ‖φ ⊢S eS : ‖τ‖φ Above

[φ]τ O.C. Subcase (b) assumption

·;‖Γ‖φ ,r : ‖τ‖�C
φ mod,r′ : ‖τ‖�C

φ ⊢S r′ : ‖τ‖�C
φ By (TPVar)

·;‖Γ‖φ ,r : ‖τ‖�C
φ mod,r′ : ‖τ‖�C

φ ⊢C write(r′) : ‖τ‖�C
φ By (TWrite)

·;‖Γ‖φ ,r : ‖τ‖�C
φ mod ⊢S r : ‖τ‖�C

φ By (TVar)

·;‖Γ‖φ ,r : ‖τ‖�C
φ mod ⊢C read r as r′ in write(r′) By (TRead)

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 37

‖τ‖φ = ‖τ‖�C
φ mod By Lemma A.1

·;‖Γ‖φ ⊢S eS : ‖τ‖�C
φ mod By above eqn.

Z ·;‖Γ‖φ ,x
′ : ‖τ‖�C

φ ⊢C eC : ‖τ‖�C
φ By (TLet)

• Case

C;Γ ⊢ε v1 : τ1 C;Γ ⊢ε v2 : τ2

C;Γ ⊢ε (v1,v2)
︸ ︷︷ ︸

e

: (τ1 × τ2)
S

︸ ︷︷ ︸
τ

(SPair)

— Part (1), stable mode translation:

C;Γ ⊢ε v1 : τ1 Subderivation

[φ]Γ ⊢ v1 : [φ]τ1 →֒
S

v1 By i.h.

·;‖Γ‖φ ⊢S v1 : ‖τ1‖φ
′′

C;Γ ⊢ε v2 : τ2 Subderivation

[φ]Γ ⊢ v2 : [φ]τ2 →֒
S

v2 By i.h.

·;‖Γ‖φ ⊢S v2 : ‖τ2‖φ
′′

Let eS = (v1,v2).

[φ]Γ ⊢ (v1,v2) : ([φ]τ1 × [φ]τ2)
S →֒

S
(v1,v2) By (Pair)

Z [φ]Γ ⊢ e : [φ]((τ1 × τ2)
S

︸ ︷︷ ︸
τ

) →֒
S

eS and eS is a value By def. of subst.

and eS = (v1,v2)

·;‖Γ‖φ ⊢S (v1,v2) : ‖τ1‖φ ×‖τ2‖φ By (TPair)

Z ·;‖Γ‖φ ⊢S eS : ‖(τ1 × τ2)
S

︸ ︷︷ ︸
τ

‖φ By def. of ‖−‖φ

— Part (2), changeable mode translation: Let eC be let r=eS in write(r).

[φ]Γ ⊢ e : [φ]τ →֒
S

eS Above

(τ1 × τ2)
S

︸ ︷︷ ︸
τ

O.S. By definition of O.S.

Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r=eS in write(r) By (Write)

·;‖Γ‖φ ⊢S eS : ‖τ‖φ Above

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

‖τ‖φ = ‖τ‖�C
φ By Lemma A.1

·;‖Γ‖φ ,r : ‖τ‖φ ⊢C write(r) : ‖τ‖�C
φ By above equality

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ By (TLet)

• Case

C;Γ,x : τ1, f : (τ1 →ε τ2)
S ⊢ε e′ : τ2

C;Γ ⊢ε ′ fun f (x) = e′
︸ ︷︷ ︸

e

: (τ1 →ε τ2)
S

︸ ︷︷ ︸
τ

(SFun)

(a) Suppose [φ]ε = S.

ZU064-05-FPR main 16 August 2020 14:54

38 Y. Chen et al.

C;Γ,x : τ1, f : (τ1 →ε τ2)
S ⊢ε e′ : τ2 Subderivation

[φ](Γ,x : τ1, f : (τ1 →ε τ2)
S) ⊢ e′ : [φ]τ2 →֒

S
e′ By i.h. and [φ]ε = S

·;‖Γ,x : τ1, f : (τ1 →ε τ2)
S‖φ ⊢S e′ : ‖τ2‖φ

′′

[φ]Γ ⊢ e : [φ]τ →֒
S

funS f (x) = e′ By (Fun) and ([φ]τ1 →
S
[φ]τ2)

S = [φ]τ

Let eS be funS f (x) = e′.

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

eS and eS is a value

·;‖Γ‖φ ,x : ‖τ1‖φ , f : ‖τ1‖φ →
S
‖τ2‖φ ⊢S e′ : ‖τ2‖φ By def. of ‖−‖φ

·;‖Γ‖φ ⊢S (funS f (x) = e′) : ‖τ1‖φ →
S
‖τ2‖φ By (TFun)

(1)Z ·;‖Γ‖φ ⊢S (funS f (x) = e′)
︸ ︷︷ ︸

eS

: ‖(τ1 →ε τ2)
S

︸ ︷︷ ︸
τ

‖φ By def. of ‖−‖φ

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r=eS in write(r) By (Write)

Let eC be let r=eS in write(r).

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

(2)Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ By (TLet) and Lemma A.1

(b) Suppose [φ]ε = C.

[φ](Γ,x : τ1, f : (τ1 →ε τ2)
S) ⊢ e′ : [φ]τ2 →֒

C
e′ By i.h. and [φ]ε = C

·;‖Γ,x : τ1, f : (τ1 →ε τ2)
S‖φ ⊢C e′ : ‖τ2‖

�C
φ

′′

[φ]Γ ⊢ e : [φ]τ →֒
S

funC f (x) = e′ By (Fun) and ([φ]τ1 →
C

[φ]τ2)
S = [φ]τ

Let eS be funC f (x) = e′.

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

eS and eS is a value

·;‖Γ‖φ ,x : ‖τ1‖φ , f : ‖τ1‖φ →
C

‖τ2‖
�C
φ ⊢C e′ : ‖τ2‖

�C
φ By def. of ‖−‖φ

(1)Z ·;‖Γ‖φ ⊢S (funC f (x) = e′) : ‖τ‖φ By (TFun)

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r=eS in write(r) Analogous to (a)

(2)Z ·;‖Γ‖φ ⊢C let r=eS in write(r) : ‖τ‖�C
φ

′′

• Case

C;Γ ⊢ε v : τ1

C;Γ ⊢ε inl v
︸︷︷︸

e

: (τ1 + τ2)
S

︸ ︷︷ ︸
τ

(SSumLeft)

Part (1):

C;Γ ⊢ε v : τ1 Subderivation

[φ]Γ ⊢ v : [φ]τ1 →֒
S

v By i.h.

·;‖Γ‖φ ⊢S v : ‖τ1‖φ
′′

Z [φ]Γ ⊢ e : [φ]τ →֒
S

inl v By (SumLeft)

Let eS = inl v.

·;‖Γ‖φ ⊢S inl v : ‖τ1‖φ +‖τ2‖φ By (TSumLeft)

Z ·;‖Γ‖φ ⊢S inl v
︸︷︷︸

eS

: ‖(τ1 + τ2)
S

︸ ︷︷ ︸
τ

‖φ By (TSumLeft)

Part (2): Similar to (SPair), using (τ1 + τ2)
S
O.S.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 39

• Case

C;Γ ⊢ε x : (τ1 × τ2)
δ

C δ ≤ ε

C;Γ ⊢ε fst x
︸︷︷︸

e

: τ1

(SFst)

— Suppose [φ]δ = S.

Part (1):

C;Γ ⊢ε x : (τ1 × τ2)
δ

Subderivation

[φ]Γ ⊢ x : ([φ]τ1 × [φ]τ2)
S →֒

S
x By i.h.

·;‖Γ‖φ ⊢S x : ‖τ1‖φ ×‖τ2‖φ
′′

Z [φ]Γ ⊢ e : [φ]τ1 →֒
S

fst x By (Fst)

Let eS = fst x.

Z ·;‖Γ‖φ ⊢S fst x : ‖τ1‖φ By (TFst)

Part (2): Similar to (SVar):

– If τ1 O.S., let eC be let r= fst x in write(r) and apply rule (Write).

– If τ1 O.C., let eC be let r= fst x in read r as r′ in write(r′) and apply rule

(ReadWrite).

— Suppose [φ]δ = C. We have the premise C δ ≤ ε , so [φ]ε = C; we only need

to show part (2).

Part (2):

– If τ1 O.S., let eC be read x as x′ in let r= fst x′ in write(r) and apply rule

(Read) with (LFst).

. . . ,r : ‖τ1‖ ⊢S r : ‖τ1‖ By (TPVar)

. . . ,r : ‖τ1‖ ⊢C write(r) : ‖τ1‖ By (TWrite)

. . . ,r : ‖τ1‖ ⊢C write(r) : ‖τ1‖
�C τ1 O.S.

‖Γ‖,x′ : ‖τ1‖×‖τ2‖ ⊢S fst x′ : ‖τ1‖ By (TPVar) then (TFst)

‖Γ‖,x′ : ‖τ1‖×‖τ2‖ ⊢C let r= fst x′ in write(r) : ‖τ1‖
�C By (TLet)

‖Γ‖ ⊢S x : ‖(τ1 × τ2)
C‖ By i.h.

‖Γ‖ ⊢S x : (‖τ1‖×‖τ2‖) mod By def. of ‖−‖

‖Γ‖ ⊢C read x as x′ in let r= fst x′ in write(r) : ‖τ1‖
�C By (TRead)

– If τ1 O.C., then ‖τ1‖= τ ′1 mod for some τ ′1.

Let eC be read x as x′ in let r= fst x′ in read r as r′ in write(r′) and apply

rule (Read) with (LFst).

. . . ,r′ : τ ′1 ⊢C write(r′) : τ ′1 By (TPVar), (TWrite)

. . . ,r′ : τ ′1 ⊢C write(r′) : ‖τ1‖
�C τ1 O.C.

. . . ,r : τ ′1 mod ⊢C r : τ ′1 mod By (TPVar)

. . . ,r : τ ′1 mod ⊢C read r as r′ in write(r) : ‖τ1‖
�C By (TRead)

The remaining steps are similar to the τ1 O.S. subcase immediately above.

ZU064-05-FPR main 16 August 2020 14:54

40 Y. Chen et al.

• Case
C;Γ ⊢ε ′ e1 : τ ′ C;Γ,x : τ ′′ ⊢ε e2 : τ

C τ ′ <: τ ′′

C τ ′ ⊜ τ ′′

C;Γ ⊢ε let x=e1 in e2
︸ ︷︷ ︸

e

: τ
(SLetE)

(a) Subcase for [φ]τ ′′ O.C.

C;Γ ⊢ε ′ e1 : τ ′ Subderivation

[φ]Γ ⊢ e1 : [φ]τ ′ →֒
C

eC By i.h.

·;‖Γ‖φ ⊢C eC : ‖τ ′‖�C
φ

′′

C τ ′ <: τ ′′ Premise

[φ]τ ′ <: [φ]τ ′′ By Lemma A.2

C τ ′ ⊜ τ ′′ Premise

[φ]τ ′ ⊜ [φ]τ ′′ By Lemma A.2

[φ]τ ′′ O.C. Subcase (a) assumption

[φ]τ ′ = [φ]τ ′′ or [φ]τ ′ =
∣
∣[φ]τ ′′

∣
∣S By Lemma A.3 (2)

If [φ]τ ′ = [φ]τ ′′ then:

[φ]Γ ⊢ e1 : [φ]τ ′ →֒
S

mod eC By (Mod)

[φ]Γ ⊢ e1 : [φ]τ ′′ →֒
S

mod eC By [φ]τ ′ = [φ]τ ′′

Otherwise, [φ]τ ′ =
∣
∣[φ]τ ′′

∣
∣S.

[φ]Γ ⊢ e1 : [φ]τ ′′ →֒
S

mod eC By (Lift)

Now we have the same judgment no matter which equation Lemma A.3 gave us.

·;‖Γ‖φ ⊢C eC : ‖τ ′‖�C
φ Above

·;‖Γ‖φ ⊢S mod eC : ‖τ ′‖�C
φ mod By (TMod)

·;‖Γ‖φ ⊢S mod eC : ‖
∣
∣τ ′′

∣
∣S‖�C

φ mod

or ·;‖Γ‖φ ⊢S mod eC : ‖τ ′′‖�C
φ mod By τ ′ = τ ′′ or

∣
∣τ ′′

∣
∣S = τ ′

·;‖Γ‖φ ⊢S mod eC : ‖τ ′′‖�C
φ mod By def. of

∣
∣−

∣
∣S or copying

[φ]τ ′′ O.C. Subcase (a) assumption

‖τ ′′‖�C
φ = ‖τ ′′‖φ mod By Lemma A.1

·;‖Γ‖φ ⊢S mod eC
︸ ︷︷ ︸

eS

: ‖τ ′′‖φ By above equation

(b) Subcase for [φ]τ ′′ O.S.

C;Γ ⊢ε ′ e1 : τ ′ Subderivation

[φ]Γ ⊢ e1 : [φ]τ ′ →֒
S

eS By i.h.

·;‖Γ‖φ ⊢S eS : ‖τ ′‖φ
′′

[φ]τ ′′ O.S. Subcase (b) assumption

[φ]τ ′′ = [φ]τ ′ By Lemma A.3 (1)

·;‖Γ‖φ ⊢S eS : ‖τ ′′‖φ By above equation

For both subcases, we have:

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 41

C;Γ,x : τ ′′ ⊢ε e2 : τ Subderivation

[φ]Γ,x : [φ]τ ′′ ⊢ e2 : [φ]τ →֒
S

eS2 By i.h. and def. of subst.

·;‖Γ‖φ ,x : ‖τ ′′‖φ ⊢S eS2 : ‖τ‖φ By i.h. and def. of ‖−‖φ

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

let x=eS in eS2 By (LetE)

(1)Z ·;‖Γ‖φ ⊢S let x=eS in eS2 : ‖τ‖φ By (TLet)

C;Γ,x : τ ′′ ⊢ε e2 : τ Subderivation

[φ]Γ,x : [φ]τ ′′ ⊢ e2 : [φ]τ →֒
C

eC2 By i.h. and def. of subst.

·;‖Γ‖φ ,x : ‖τ ′′‖φ ⊢C eC2 : ‖τ‖�C
φ By i.h. and def. of ‖−‖φ

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

let x=eS in eC2 By (LetE)

(2)Z ·;‖Γ‖φ ⊢C let x=eS in eC2 : ‖τ‖�C
φ By (TLet)

• Case
~α ∩FV (C,Γ) = /0

C;Γ,x : ∀~α[D].τ ′′ ⊢ε e2 : τ

C∧D;Γ ⊢S v1 : τ ′
C τ ′ <: τ ′′

C τ ′ ⊜ τ ′′

C∧∃~α.D;Γ ⊢ε let x=v1 in e2
︸ ︷︷ ︸

e

: τ
(SLetV)

For all ~δi such that ~α = ~δi D:

— (a) Suppose [φ][~δi/~α]τ ′′ O.S., that is, this ith monomorphic instance is outer-

stable, and will not need a mod in the target.

C∧D;Γ ⊢S v1 : τ ′ Subderivation

~α ∩FV (C,Γ) = /0 Premise

C∧D; [~δi/~α]Γ ⊢S v1 : [~δi/~α]τ ′ By Lemma A.2

[φ]([~δi/~α]Γ) ⊢ v1 : [φ]([~δi/~α]τ ′) →֒
S

vi By i.h., using the lemma’s

guarantee about derivation height

~α not free in Γ Above disjointness

[φ]Γ ⊢ v1 : [φ]([~δi/~α]τ ′) →֒
S

vi By above line

·;‖Γ‖φ ⊢S vi : ‖[~δi/~α]τ ′‖φ By i.h. and def. of substitution

Let ei be vi.

C τ ′ <: τ ′′ Premise

C τ ′ ⊜ τ ′′ Premise

[φ]τ ′ ⊜ [φ]τ ′′ By Lemma A.2

[φ]τ ′′ O.S. Subcase (a) assumption

[φ]τ ′ = [φ]τ ′′ By Lemma A.3 (1)

[φ]Γ ⊢ v1 : [φ]([~δi/~α]τ ′) →֒
S

vi Above

~α ∪dom(φ) = /0 By ~α ∩FV (C,Γ) = /0

and appropriateness of φ w.r.t. C

[φ]Γ ⊢ v1 : [~δi/~α]([φ]τ ′) →֒
S

vi Property of substitution

[φ]Γ ⊢ v1 : [~δi/~α]([φ]τ ′′) →֒
S

ei By [φ]τ ′ = [φ]τ ′′ and ei = vi

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ ′‖φ Above and ei = vi

·;‖Γ‖φ ⊢S ei : ‖[φ][~δi/~α]τ ′‖ Definition of ‖−‖φ

ZU064-05-FPR main 16 August 2020 14:54

42 Y. Chen et al.

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]([φ]τ ′)‖ By ~α ∪dom(φ) = /0

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]([φ]τ ′′)‖ By [φ]τ ′ = [φ]τ ′′

·;‖Γ‖φ ⊢S ei : ‖[φ]([~δi/~α]τ ′′)‖ By ~α ∪dom(φ) = /0

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ ′′‖φ Definition of ‖−‖φ

·;‖Γ‖φ ,{yk : ‖[~δi/~α]τ ′′‖φ}k ⊢S yi : ‖[~δi/~α]τ ′′‖φ By (TPVar)

End of subcase (a)

— (b) Suppose [φ][~δi/~α]τ ′′ O.C., that is, this ith monomorphic instance is outer-

changeable, and therefore needs a mod in the target.

C∧D;Γ ⊢S v1 : τ ′ Subderivation

~α ∩FV (C,Γ) = /0 Premise

C∧D; [~δi/~α]Γ ⊢S v1 : [~δi/~α]τ ′ By Lemma A.2

[φ]([~δi/~α]Γ) ⊢ v1 : [φ]([~δi/~α]τ ′) →֒
C

eCi By i.h., using the lemma’s

guarantee about derivation height

·;‖Γ‖φ ⊢C eCi : ‖[~δi/~α]τ ′‖�C
φ By i.h. and def. of ‖−‖�C

φ

[φ][~δi/~α]τ ′ <: [φ][~δi/~α]τ ′′ By Lemma A.2

[φ][~δi/~α]τ ′ =
∣
∣[φ][~δi/~α]τ ′′

∣
∣S or . . .= [φ][~δi/~α]τ ′′ By Lemma A.3 (2)

If [φ][~δi/~α]τ ′ =
∣
∣[φ][~δi/~α]τ ′′

∣
∣S then:

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ ′ →֒
C

eCi By
∣
∣[φ][~δi/~α]τ ′′

∣
∣S = [φ][~δi/~α]τ ′

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ ′′ →֒
S

mod eCi By (Lift)

Otherwise, [φ][~δi/~α]τ ′ = [φ][~δi/~α]τ ′′.

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ ′′ →֒
C

eCi By [φ][~δi/~α]τ ′′ = [φ][~δi/~α]τ ′

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ ′′ →֒
S

mod eCi By (Mod)

Now, through either (Lift) or (Mod), we have obtained the same judgment.

Let ei be mod eCi .

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ ′‖�C
φ mod By (TMod)

·;‖Γ‖φ ⊢S ei : ‖
∣
∣[~δi/~α]τ ′′

∣
∣S‖�C

φ mod By
∣
∣[φ][~δi/~α]τ ′′

∣
∣S = [φ][~δi/~α]τ ′

·;‖Γ‖φ ⊢S ei : (‖[~δi/~α]τ ′′‖�C
φ) mod By definition of ‖−‖�C

φ (φ -shuffling)

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ ′′‖φ By Lemma A.1

End of subcase (b)

This ends the “for all ~δi” above. We now have translation judgments for each in-

stance, and target typings for each ei and associated variable yi.

C;Γ,x : ∀~α[D].τ ′′ ⊢ε e2 : τ Subderivation

[φ]Γ,x : ∀~α[D].τ ′′ ⊢ e2 : [φ]τ →֒
S

eS2 By i.h. and def. of substitution

[φ]Γ,x : ∀~α[D].τ ′′ ⊢ e2 : [φ]τ →֒
C

eC2
′′

·;‖Γ‖φ ,x : ∀~α[D]. [φ]τ ′′ ⊢S eS2 : ‖τ‖φ By i.h. and def. of ‖−‖φ

·;‖Γ‖φ ,x : ∀~α[D]. [φ]τ ′′ ⊢C eC2 : ‖τ‖�C
φ

′′

Let eS0 be let x=select {~δi ⇒ ei}i
in eS2 , and let eC0 be let x=select {~δi ⇒ ei}i

in eC2 .

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 43

Z [φ]Γ ⊢ e : [φ]τ →֒
S

eS0 By (LetV)

Z [φ]Γ ⊢ e : [φ]τ →֒
C

eC0 By (LetV)

·;‖Γ‖φ ⊢S en : ‖[~δi/~α]τ ′′‖φ By extending Γ

·;‖Γ‖φ ⊢S select {~δi ⇒ ei}i
: ∀~α[D]. [φ]τ ′′ By (TSelect)

·;‖Γ‖φ ,x : ∀~α[D].‖τ ′′‖φ ⊢S eS2 : ‖τ‖φ Above

Z ·;‖Γ‖φ ⊢S eS0 : ‖τ‖φ By (TLet)

Z ·;‖Γ‖φ ⊢C eC0 : ‖τ‖�C
φ Analogous to above

• Case
C;Γ ⊢S x1 :

τ f
︷ ︸︸ ︷

(τ1 →
ε ′

τ)δ C;Γ ⊢S x2 : τ1

C ε ′ = ε

C δ ✁ τ

C;Γ ⊢ε apply(x1,x2)
︸ ︷︷ ︸

e

: τ
(SApp)

We distinguish four subcases “S-S”, “C-S”, “C-C”, “S-C” according to [φ]ε ′ and

[φ]δ respectively.

— Subcase “S-S” for [φ]ε ′ = S, [φ]δ = S.

Part (1):

C;Γ ⊢S x2 : τ1 Subderivation

[φ]Γ ⊢ x2 : [φ]τ1 →֒
S

x2 By i.h.

·;‖Γ‖φ ⊢S x2 : ‖τ1‖φ
′′

C;Γ ⊢S x1 : (τ1 →
ε ′

τ)δ Subderivation

[φ]Γ ⊢ x1 : [φ]τ f →֒
S

x1 By i.h.

·;‖Γ‖φ ⊢S x1 : ‖(τ1 →
ε ′

τ)δ ‖φ
′′

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
[φ]ε ′

[φ]τ)[φ]δ ‖ By defs. of ‖−‖φ and substitution

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
S
[φ]τ)S‖ Subcase S-S assumption

·;‖Γ‖φ ⊢S x1 : ‖τ1‖φ →
S
‖τ‖φ By def. of ‖−‖

Let eS = applyS(x1,x2).

Z [φ]Γ ⊢ e : [φ]τ →֒
S

applyS(x1,x2) By (App)

Z ·;‖Γ‖φ ⊢S applyS(x1,x2) : ‖τ‖φ By (TApp)

Part (2):

(a) Suppose [φ]τ O.S.

Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r=eS in write(r) By (Write)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

·;‖Γ‖φ ⊢C let r=eS in write(r) : ‖τ‖φ By (TLet)

[φ]τ O.S. Subcase (a) assumption

Z ·;‖Γ‖φ ⊢C let r=eS in write(r) : ‖τ‖�C
φ By Lemma A.1

ZU064-05-FPR main 16 August 2020 14:54

44 Y. Chen et al.

(b) Suppose [φ]τ O.C.

Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r=eS in read r as r′ in

write(r′) By (ReadWrite)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

[φ]τ O.C. Subcase (b) assumption

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S r : ‖τ‖�C
φ mod By Lemma A.1

·;‖Γ‖φ ,r : ‖τ‖φ ,r
′ : ‖τ‖�C

φ ⊢S r′ : ‖τ‖�C
φ By (TPVar)

·;‖Γ‖φ ,r : ‖τ‖φ ,r
′ : ‖τ‖�C

φ ⊢C write(r′) : ‖τ‖�C
φ By (TWrite)

·;‖Γ‖φ ,r : ‖τ‖φ ⊢S read r as r′ in write(r′) : ‖τ‖�C
φ By (TRead)

Z ·;‖Γ‖φ ⊢C let r=eS in read r as r′ in

write(r′) : ‖τ‖�C
φ By (TLet)

— Subcase “C-S” where [φ]ε ′ = C and [φ]δ = S.

Part (2):

[φ]Γ ⊢ x1 : [φ]τ f →֒
S

x1 From subcase S-S above

[φ]Γ ⊢ x2 : [φ]τ1 →֒
S

x2 From subcase S-S above

Let eC = applyC(x1,x2).

Z [φ]Γ ⊢ e : [φ]τ →֒
C

applyC(x1,x2) By (App)

·;‖Γ‖φ ⊢S x1 : ‖(τ1 →
ε ′

τ)δ ‖�C
φ By i.h.

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
[φ]ε ′

[φ]τ)[φ]δ ‖�C By def. of ‖−‖�C
φ

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
C

[φ]τ)S‖�C By subcase C-S assumption

·;‖Γ‖φ ⊢S x1 : ‖[φ]τ1‖ →
C

‖[φ]τ‖�C By def. of ‖−‖�C

·;‖Γ‖φ ⊢S x1 : ‖τ1‖φ →
C

‖τ‖�C
φ By def. of ‖−‖φ and ‖−‖�C

φ

·;‖Γ‖φ ⊢S x2 : ‖τ1‖φ From subcase S-S above

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ By (TApp)

Part (1):

[φ]τ O.C. By [φ]ε ′ = C and barring (τ ′1 →
C

τ ′2)
δ where τ ′2 O.S.

[φ]Γ ⊢ e : [φ]τ →֒
C

eC Above

Z [φ]Γ ⊢ e : [φ]τ →֒
S

mod eC By (Mod)

·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ Above

·;‖Γ‖φ ⊢S mod eC : ‖τ‖�C
φ mod By (TMod)

[φ]τ O.C. Above

Z ·;‖Γ‖φ ⊢S mod eC : ‖τ‖φ By Lemma A.1

— Subcase “C-C” where [φ]ε ′ = C and [φ]δ = C:

Part (2):

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 45

(Γ,x′ : (τ1 →
ε ′

τ)S)(x′) = ∀~α[true].(τ1 →
ε ′

τ)S By def. of Γ

C ∃~α.true By def. of

C;Γ,x′ : (τ1 →
ε ′

τ)S ⊢S x′ : (τ1 →
ε ′

τ)S By (SVar)

[φ]Γ,x′ : ([φ]τ1 →
C

[φ]τ)S ⊢ x′ : ([φ]τ1 →
C

[φ]τ)S →֒
S

x′ By (Var)

[φ]Γ,x′ : ([φ]τ1 →
C

[φ]τ)S ⊢ x2 : [φ]τ1 →֒
S

x2 By extending Γ

[φ]Γ,x′ : ([φ]τ1 →
C

[φ]τ)S ⊢ apply(x′,x2) : [φ]τ →֒
C

applyC(x′,x2) By (App)

[φ]Γ,x′ :
∣
∣([φ]τ1 →

C
[φ]τ)C

∣
∣S ⊢ e : [φ]τ →֒

C
applyC(x′,x2) By defs. of subst.,

∣
∣−

∣
∣S

[φ]Γ ⊢ e ❀ (x1 ≫ x′ : ([φ]τ1 →
C

[φ]τ)C ⊢ apply(x′,x2)) By (LApply)

([φ]τ1 →
C

[φ]τ)C O.C. By def. of O.C.

C;Γ ⊢S x1 : τ f Subderivation

[φ]Γ ⊢ x1 : ([φ]τ1 →
C

[φ]τ)C →֒
S

x1 By i.h.

·;‖Γ‖φ ⊢S x1 : (‖τ1‖φ →
C

‖τ‖�C
φ) mod ′′

Z [φ]Γ ⊢ e : [φ]τ →֒
C

read x1 as x′ in applyC(x′,x2) By (Read)

Let eC be read x1 as x′ in applyC(x′,x2).

·;‖Γ‖φ ,x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ ⊢S x′ : ‖τ1‖φ →
C

‖τ‖�C
φ By (TPVar)

·;‖Γ‖φ ,x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ ⊢S x2 : ‖τ1‖φ By extending Γ

·;‖Γ‖φ ,x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ ⊢C applyC(x′,x2) : ‖τ‖�C
φ By (TApp)

·;‖Γ‖φ ⊢S x1 : (‖τ1‖φ →
C

‖τ‖�C
φ) mod Above

Z ·;‖Γ‖φ ⊢C read x1 as x′ in applyC(x′,x2) : ‖τ‖�C
φ By (TRead) (**)

Part (1):

C δ ✁ τ Premise

[φ]τ O.C. By [φ]δ = C

[φ]Γ ⊢ e : [φ]τ →֒
C

eC Above

Z [φ]Γ ⊢ e : [φ]τ →֒
S

mod eC By (Mod)

·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ Above (**)

Z ·;‖Γ‖φ ⊢S mod eC : ‖τ‖φ By reasoning in subcase C-S for Part (1);

note that [φ]τ O.C.

— Subcase “S-C” where [φ]ε ′ = S and [φ]δ = C:

Part (2):

[φ]Γ,x′ : ([φ]τ1 →
S
[φ]τ)S ⊢ apply(x′,x2) : [φ]τ →֒

C
eC0 Above with x′ for x1

[φ]Γ,x′ :
∣
∣[φ]τ f

∣
∣S ⊢ [x′/x1]e : [φ]τ →֒

C
eC0 By defs. of

∣
∣−

∣
∣S, subst.

[φ]Γ ⊢ x1 : ([φ]τ1 →
S
[φ]τ)C →֒

S
x1 By i.h.

Z [φ]Γ ⊢ e : [φ]τ →֒
C

read x1 as x′ in eC0 By (Read)

Let eC = read x1 as x′ in eC0 .

ZU064-05-FPR main 16 August 2020 14:54

46 Y. Chen et al.

·;‖Γ‖φ ⊢C eC0 : ‖τ‖�C
φ Above with x′ for x1

·;‖Γ‖φ ,x
′ :‖τ1‖φ →

S
‖τ‖�C

φ ⊢C eC0 : ‖τ‖�C
φ By extending Γ

·;‖Γ‖φ ⊢S x1 : (‖τ1‖φ →
S
‖τ‖�C

φ) mod By i.h.

Z ·;‖Γ‖φ ⊢C read x1 as x′ in eC0 : ‖τ‖�C
φ By (TRead)

Part (1): Similar to Part (1) of subcase C-C.

• Case

C;Γ ⊢S x1 : intδ1

C;Γ ⊢S x2 : intδ2

C δ1 = δ2 ⊢ ⊕ : int× int → int

C;Γ ⊢ε ⊕(x1,x2) : intδ1
(SPrim)

If [φ]δ1 = [φ]δ2 = S then:

Part (1):

C;Γ ⊢S x1 : intδ1 Subderivation

[φ]Γ ⊢ x1 : intδ1 →֒
S

x1 By i.h.

·;‖Γ‖φ ⊢S x1 : ‖intδ1‖φ
′′

·;‖Γ‖φ ⊢S x1 : int By [φ]δ1 = S and def. of ‖−‖

[φ]Γ ⊢ x2 : intδ2 →֒
S

x2 Similar to above

·;‖Γ‖φ ⊢S x2 : int Similar to above

[φ]Γ ⊢ e : intS →֒
S
⊕(x1,x2) By (Prim)

Z [φ]Γ ⊢ e : [φ](intδ1) →֒
S
⊕(x1,x2) By [φ]δ1 = S

Let eS =⊕(x1,x2).

⊢ ⊕ : int → int Premise

·;‖Γ‖φ ⊢S ⊕(x1,x2) : int By (TPrim)

Z ·;‖Γ‖φ ⊢S ⊕(x1,x2) : ‖intδ1‖φ By [φ]δ1 = S and def. of ‖−‖

Part (2): Similar to (SPair), where the outer level is stable (τ = intδ1 = intS).

If [φ]δ1 = [φ]δ2 = C then:

Part (2):

[φ]Γ,y1:intS,y2:intS ⊢ ⊕(y1,y2) : intC →֒
S
⊕(y1,y2) By (Var), (Var), (Prim)

[φ]Γ, . . . ⊢ ⊕(y1,y2) : intC →֒
C

let r=⊕(y1,y2) in write(r) By (Write)

[φ]Γ,y1:intS ⊢ ⊕(y1,y2) : intC →֒
C

read x2 as y2 in By (LPrimop2)

let r=⊕(y1,y2) in write(r) then (Read)

Z [φ]Γ ⊢ ⊕(y1,y2) : intC →֒
C

read x1 as y1 in read x2 as y2 in

let r=⊕(y1,y2) in write(r)

By (LPrimop1)

then (Read)

·;‖Γ‖φ ,y1:int,y2:int,r:int ⊢C write(r) : int By (TVar) then (TWrite)

·;‖Γ‖φ ,y1:int,y2:int ⊢S ⊕(y1,y2) : int By (TVar) and (TVar), then (TPrim)

·;‖Γ‖φ ,y1:int,y2:int ⊢C (let r=⊕(y1,y2) in write(r)) : int By (TLet)

·;‖Γ‖φ ,y1:int ⊢C (read x2 as y2 in let r= . . . in write(r)) : int By (TRead)

·;‖Γ‖φ ⊢C

read x1 as y1 in read x2 as y2 in

let r=⊕(y1,y2) in write(r)
: int By (TRead)

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 47

Z ·;‖Γ‖φ ⊢C
′′ : ‖intδ1‖�C

φ By def. of ‖−‖�C and [φ]δ1 = C

Part (1): As the immediately preceding Part (2), but then using rule (Mod).

• Case
C;Γ ⊢S x : (τ1 + τ2)

δ
C;Γ,x1 : τ1 ⊢ε e1 : τ

C;Γ,x2 : τ2 ⊢ε e2 : τ

C δ ≤ ε

C δ ✁ τ

C;Γ ⊢ε case x of {x1 ⇒ e1 , x2 ⇒ e2}
︸ ︷︷ ︸

e

: τ
(SCase)

(a) Suppose [φ]δ = S.

C;Γ ⊢S x : (τ1 + τ2)
δ

Subderivation

[φ]Γ ⊢ x : ([φ]τ1 +[φ]τ2)
S →֒

S
x By i.h.

·;‖Γ‖φ ⊢S x : ‖τ1‖φ +‖τ2‖φ
′′

C;Γ,x1 : τ1 ⊢ε e1 : τ Subderivation

[φ]Γ,x1 : [φ]τ1 ⊢ e1 : [φ]τ →֒
S

eS1 By i.h.

·;‖Γ‖φ ,x1 : ‖τ1‖φ ⊢S eS1 : ‖τ‖φ
′′

[φ]Γ,x1 : [φ]τ1 ⊢ e1 : [φ]τ →֒
C

eC1
′′

·;‖Γ‖φ ,x1 : ‖τ1‖φ ⊢C eC1 : ‖τ‖�C
φ

′′

C;Γ,x2 : τ2 ⊢ε e2 : τ Subderivation

[φ]Γ,x2 : [φ]τ2 ⊢ e2 : [φ]τ →֒
S

eS2 By i.h.

·;‖Γ‖φ ,x2 : ‖τ2‖φ ⊢S eS2 : ‖τ‖φ
′′

[φ]Γ,x2 : [φ]τ2 ⊢ e2 : [φ]τ →֒
C

eC2
′′

·;‖Γ‖φ ,x2 : ‖τ2‖φ ⊢C eC2 : ‖τ‖�C
φ

′′

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

case x of {x1 ⇒ eS1 , x2 ⇒ eS2} By (Case)

(1)Z ·;‖Γ‖φ ⊢S case x of {x1 ⇒ eS1 , x2 ⇒ eS2} : ‖τ‖φ By (TCase)

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

case x of {x1 ⇒ eC1 , x2 ⇒ eC2 } By (Case)

(2)Z ·;‖Γ‖φ ⊢C case x of {x1 ⇒ eC1 , x2 ⇒ eC2 } : ‖τ‖�C
φ By (TCase)

(b) Suppose [φ]δ = C.

[φ]Γ,x′ : ([φ]τ1 +[φ]τ2)
S ⊢ [x′/x]e : [φ]τ →֒

C
eC0 Above but with x′ for the first x

·;‖Γ‖φ ,x
′ : ‖τ1‖φ +‖τ2‖φ ⊢C eC0 : ‖τ‖�C

φ
′′

[φ]Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2}

❀ (x ≫ x′ : ([φ]τ1 +[φ]τ2)
C

case x′ of {x1 ⇒ e1 , x2 ⇒ e2}) By (LCase)

([φ]τ1 +[φ]τ2)
C
O.C. By def. of O.C.

[φ]Γ ⊢ x : ([φ]τ1 +[φ]τ2)
C →֒

S
x By i.h.

·;‖Γ‖φ ⊢S x : ‖(τ1 + τ2)
C‖φ

′′

·;‖Γ‖φ ⊢S x :
(
‖τ1‖φ +‖τ2‖φ

)
mod By def. of ‖−‖φ

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

read x as x′ in eC0 By (Read)

Let eC = read x as x′ in eC0 .

(2)Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C
φ By (TRead)

ZU064-05-FPR main 16 August 2020 14:54

48 Y. Chen et al.

C δ ✁ τ Premise

[φ]τ O.C. By [φ]δ = C and def. of O.C.

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

mod eC By (Mod)

·;‖Γ‖φ ⊢S mod eC : ‖τ‖�C
φ mod By (TMod)

‖τ‖�C
φ mod = ‖τ‖φ By Lemma A.1

(1)Z ·;‖Γ‖φ ⊢S mod eC : ‖τ‖φ By above equation

B Proof of translation soundness

In this proof, we use the store substitution operation [ρ]e, which replaces locations ℓ with

mods of locations’ contents (Definition 6.3).

Lemma B.1 (Stores Are Monotonic)

If ρ1 ⊢ e ⇓ (ρ2 ⊢ v) then there exists ρ ′ such that ρ2 = ρ1,ρ
′.

Proof

By induction on the given derivation. All cases are straightforward.

Lemma B.2 (Commuting)

If e1 and e are target expressions, then [[[e1/x]e]] = [[[e1]]/x] [[e]].

Proof

By induction on e, using the definitions of back-translation and substitution.

Lemma B.3

For all closed target values w, the back-translation [[w]] is a (source) value.

Proof

By induction on w.

Lemma B.4

The following equivalences hold:

(i) (let x=e0 in x)∼ e′0, if e0 ∼ e′0
(ii) (let x′ =x1 in apply(x′,x2)) ∼ apply(x1,x2)

(iii) (let x′ =x1 in ⊕(x′,x2)) ∼ ⊕(x1,x2)

(iv) (let x′ =x2 in ⊕(x1,x
′)) ∼ ⊕(x1,x2)

(v) (let x′ =x in fst x′) ∼ fst x

(vi) (let x′ =x in case x′ of {x1 ⇒ e1 , x2 ⇒ e2}) ∼ case x of {x1 ⇒ e1 , x2 ⇒ e2}

Proof

Straightforward, using inversion on the given source evaluation derivation, and applying

the appropriate evaluation rules.

Lemma B.5

If Γ ⊢ e : τ →֒
ε e′ then [[e′]]∼ e.

Proof

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 49

By induction on the given derivation.

For (Apply), and other rules for constructs at which substitution happens during evalua-

tion, we use Lemma B.2.

The other interesting cases are those in which e cannot be exactly [[e′]]: (Read), (Write),

and (ReadWrite).

For (Write), [[e′]] = [[let r=eS in write(r)]] = let r= [[eS]] in [[write(r)]] = let r= [[eS]] in r,

but we only have [[eS]]∼ e′ (by i.h.), so we use Lemma B.4 (i).

Rule (ReadWrite) creates two lets, so we use the lemma twice.

For (Read), we use Lemma B.4. If the rule from Figure 17 used to derive the first premise

was (LApply), we use part (ii) of the lemma; if (LPrimop1), part (iii); if (LPrimop2), part

(iv); if (LFst), part (v); if (LCase), part (vi).

Roughly, we want to show that, if a target expression e′ evaluates to some target value

w, that the back-translation [[e′]], a source expression, evaluates to the back-translation of

w (after replacing locations ℓ in w with their corresponding values). This does not hold

in general: the back-translation of select uses only the first arm, under the assumption

that all the arms are “essentially” the same. That is, the back-translation assumes the arms

differ only in their use of modifiables, and in how they instantiate polymorphic variables.

Fortunately, this condition does hold for all target expressions produced by our translation.

We call this condition select-uniformity.

Definition B.6 (Select Uniformity). A target expression e′ is select-uniform if and only if,

for all subexpressions of e′ of the form select {(~α=~δ1) ⇒ e1, . . . ,(~α=~δn) ⇒ en}, all the

arms have equivalent back-translations:

[[e1]] ∼ [[e2]] ∼ . . . ∼ [[en]]

Lemma B.7

If Γ ⊢ e : τ →֒
ε e′ then e′ is select-uniform.

Proof

By induction on the given derivation. All cases are completely straightforward, except the

case for (LetV), where we use Lemma B.5.

Theorem 6.4 (Evaluation Soundness)

If ρ ⊢ e ⇓ (ρ ′ ⊢ w) where FLV(e)⊆ dom(ρ) and [ρ]e is select-uniform

then [[[ρ]e]] ⇓ [[[ρ ′]w]].

Proof

By induction on the given derivation. Wherever we apply the induction hypothesis, it is

easy to show the condition of select-uniformity; in what follows, we omit this reasoning.

• Case
ρ ⊢ w ⇓ (ρ ⊢ w)

(TEvValue)

Stores only contain values, so [ρ]w is a value. By Lemma B.3, [[[ρ]w]] is some source

value v. By (SEvValue), [[[ρ]w]] ⇓ [[[ρ]w]], which was to be shown.

ZU064-05-FPR main 16 August 2020 14:54

50 Y. Chen et al.

• Case

ρ ⊢ e1 ⇓ (ρ1 ⊢ funε f (x) = e0)

ρ1 ⊢ e2 ⇓ (ρ2 ⊢ w2)

ρ2 ⊢ [(funε f (x) = e0)/ f][w2/x]e0 ⇓ (ρ ′ ⊢ w)

ρ ⊢ applyε(e1,e2) ⇓ (ρ ′ ⊢ w)
(TEvApply)

ρ ⊢ e1 ⇓ (ρ1 ⊢ funε f (x) = e0) Subd.

[[[ρ]e1]] ⇓ [[[ρ1](funε f (x) = e0)]] By i.h.

[[[ρ]e1]] ⇓ [[funε f (x) = [ρ1]e0]] By definition of [−]

[[[ρ]e1]] ⇓ fun f (x) = [[[ρ1]e0]] By definition of [[−]]

[[[ρ]e1]] ⇓ fun f (x) = [[[ρ ′]e0]] Monotonicity

ρ1 ⊢ e2 ⇓ (ρ2 ⊢ w2) Subd.

[[[ρ1]e2]] ⇓ [[[ρ2]w2]] By i.h.

[[[ρ]e2]] ⇓ [[[ρ ′]w2]] FLV(e2)⊆ dom(ρ) and monotonicity

ρ2 ⊢ [(funε f (x) = e0)/ f][w2/x]e0 ⇓ (ρ ′ ⊢ w) Subd.

[[[ρ2][(funε f (x) = e0)/ f][w2/x]e0]] ⇓ [[[ρ ′]w]] By i.h.

[[[ρ ′][(funε f (x) = e0)/ f][w2/x]e0]] ⇓ [[[ρ ′]w]] Monotonicity

[(fun f (x) = [[[ρ ′]e0]])/ f] [[[[ρ ′]w2]]/x] [[[ρ ′]e0]] ⇓ [[[ρ ′]w]] Properties of subst., [−], [[−]]

Z apply([[[ρ]e1]], [[[ρ]e2]]) ⇓ [[[ρ ′]w]] By (SEvApply)

• Cases (TEvPair), (TEvSumLeft), (TEvPrimop), (TEvFst), (TEvCaseLeft): By

similar reasoning as in the (TEvApply) case, but simpler.

• Case TEvLet: By similar reasoning to the (TEvApply) case, but slightly simpler.

• Case

ρ ⊢ eC ⇓ (ρ ′
0 ⊢ w)

ρ ⊢ mod eC ⇓ ((ρ ′
0, ℓ 7→ w)

︸ ︷︷ ︸

ρ ′

⊢ ℓ)
(TEvMod)

ρ ⊢ eC ⇓ (ρ ′
0 ⊢ w) Subd.

[[[ρ]eC]] ⇓ [[[ρ ′
0]w]] By i.h.

[[[ρ]eC]] ⇓ [[[ρ ′
0, ℓ 7→ w]ℓ]] By def. of [−]

[[[ρ]eC]] ⇓ [[[ρ ′]ℓ]] ρ ′ = ρ ′
0, ℓ 7→ w

[[mod ([ρ]eC)]] ⇓ [[[ρ ′]ℓ]] By def. of [[−]]

Z [[[ρ](mod eC)]] ⇓ [[[ρ ′]ℓ]] By def. of [−]

• Case
ρ ⊢ e1 ⇓ (ρ1 ⊢ ℓ) ρ1 ⊢ [ρ1(ℓ)/x′]eC ⇓ (ρ ′ ⊢ w)

ρ ⊢ read e1 as x′ in eC ⇓ (ρ ′ ⊢ w)
(TEvRead)

ρ ⊢ e1 ⇓ (ρ1 ⊢ ℓ) Subd.

[[[ρ]e1]] ⇓ [[[ρ1]ℓ]] By i.h.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 51

ρ1 ⊢ [ρ1(ℓ)/x′]eC ⇓ (ρ ′ ⊢ w) Subd.

[[[ρ1][ρ1(ℓ)/x′]eC]] ⇓ [[[ρ ′]w]] By i.h.

[[[[ρ1]ℓ/x′] [ρ1]eC]] ⇓ [[[ρ ′]w]] By def. of subst.

[[[[ρ1]ℓ/x′] [ρ]eC]] ⇓ [[[ρ ′]w]] By FLV(eC)⊆ dom(ρ) and Lemma B.1

[[[[ρ1]ℓ]]/x′] [[[ρ]eC]] ⇓ [[[ρ ′]w]] By Lemma B.2

let x′ = [[[ρ]e1]] in [[[ρ]eC]] ⇓ [[[ρ ′]w]] By (SEvLet)

[[read [ρ]e1 as x′ in [ρ]eC]] ⇓ [[[ρ ′]w]] By def. of [[−]]

Z [[[ρ](read e1 as x′ in eC)]] ⇓ [[[ρ ′]w]] By def. of subst.

• Case
ρ ⊢ e0 ⇓ (ρ ′ ⊢ w)

ρ ⊢ write(e0) ⇓ (ρ ′ ⊢ w)
(TEvWrite)

ρ ⊢ e0 ⇓ (ρ ′ ⊢ w) Subd.

[[[ρ]e0]] ⇓ [[[ρ ′]w]] By i.h.

[[write([ρ]e0)]] ⇓ [[[ρ ′]w]] By def. of [[−]]

Z [[[ρ]write(e0)]] ⇓ [[[ρ ′]w]] By def. of subst.

• Case
ρ ⊢ ei ⇓ (ρ ′ ⊢ w)

ρ ⊢ (select {. . . ,(~α=~δ)⇒ ei, . . .})[~α = ~δ] ⇓ (ρ ′ ⊢ w)
(TEvSelect)

ρ ⊢ ei ⇓ (ρ ′ ⊢ w) Subd.

[[[ρ]ei]] ⇓ [[[ρ ′]w]] By i.h.

[[[ρ]e1]]∼ [[[ρ]ei]] By select-uniformity

[[[ρ]e1]] ⇓ [[[ρ ′]w]] By def. of ∼

Z [[[ρ]e]] ⇓ [[[ρ ′]w]] By def. of [[−]]

Theorem 6.5 (Translation Soundness)

If · ⊢ e : τ →֒
ε e′ and · ⊢ e′ ⇓ (ρ ′ ⊢ w) then e ⇓ [[[ρ ′]w]].

Proof

By Lemma B.7, e′ is select-uniform. The empty store · is trivially select-uniform. By

Theorem 6.4, [[[·]e′]] ⇓ [[[ρ ′]w]]. Since the empty store acts as an identity substitution,

[[e′]] ⇓ [[[ρ ′]w]]

By Lemma B.5, [[e′]]∼ e; by Definition 6.2, e ⇓ [[[ρ ′]w]].

C Proof of costed soundness

Theorem 6.11

If trans(e,ε)= e′ then e′ is deeply 1-bounded.

Proof

By lexicographic induction on e and ε , with S considered smaller than C.

• If e ∈ {n,x,(v1,v2), fun . . . , inl v} then:

ZU064-05-FPR main 16 August 2020 14:54

52 Y. Chen et al.

— If ε = S then trans uses one of its first 5 cases, and the result follows by

induction. (HC(e′) = 0 except for (Var) where HC(e′) = 1 is possible.)

— If ε =C then, for n/(v1,v2)/fun/inl v, trans uses its last case and applies (Write).

A let has head cost 0 (the let appears in the back-translation), so HC(e′) = 0. But

the head cost of the write subterm is 1, so the term is deeply 1-bounded. For x,

trans uses either (Write) or (ReadWrite); in both cases, e′ is deeply 1-bounded.

• If e has the form let x=e1 in e2, then HC(e′) = 0; by induction, e′1 and e′2 are deeply

1-bounded, so e′ is deeply 1-bounded.

• if e has the form ⊕(x1,x2), then: For the stable case, e′ is a ⊕ so HC(e′) = 0.

For the changeable case, trans applies (Var), (Var), (Prim), (Write), (Read) with

(LPrimop2), and (Read) with (LPrimop1), producing

e′ = read x1 as y1 in read x2 as y2 in let r=⊕(y1,y2) in write(r)

so (assuming HC(x1),HC(x2) ≤ 1) we have HC(e′) = 0 and all inner head costs

bounded by 1.

• If e is an apply, then:

— Case (S, S, S): Here e′ is an applyS, so HC(e′) = 0.

— Case (C, S, C): Here e′ is an applyC, so HC(e′) = 0.

— Case (S, S, C): Either (Write) or (ReadWrite), after switching to S mode, mean-

ing one of the (−, −, S) cases—which each generate a subterm whose HC

is 0. For (Write), the write subterm of e′ has head cost 1, and likewise for

(ReadWrite).

The rules (LApply) and (LCase) guarantee that the read has the correct form for

HC(e′) to be defined.

— Case (ε ′, C, C): Applies (Read) after devolving to (ε ′, S, C) which returns a term

with HC(e′)≤ 1 (zero if ε ′ =C, and 1 if ε ′ = S). Applying (Read) yields a term

whose HC is 0, and which is deeply 1-bounded.

Note that HC(e′) is defined for the same reason as in the (S, S, C) subcase.

— Case (C, S, S): Devolves to the (C, S, C) case, yielding a subterm with HC of 0;

the algorithm then uses (Mod), yielding HC(e′) = 1+0 = 1.

— Case (ε ′, C, S): Devolves to the (ε ′, C, C) case, where HC = 0, then applies

(Mod), yielding HC(e′)≤ 1.

(Note: We do not use the induction hypothesis as we “devolve”; we are merely

reasoning by cases.)

• If e = fst x where x : (τ1 × τ2)
δ

, then:

— Case (S, S): We use (Fst), yielding HC(e′) = 0.

— Case (S, C): If τ1 O.S. then HC(e′) = 0 (Write). If τ1 O.C. then we use (Read-

Write), which has HC of 0.

— Case (C, C): We use (Read) with (LFst) and go to the (S, C) case with a new

variable x′. The HC for the (S, C) case is 0. Using (Read) in this case also has

head cost 0.

• If e is a case on a variable x : τ , then:

— If τ is outer stable, the proof is straightforward.

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 53

— If τ is outer changeable, the algorithm applies rule (Read), recursing with x :
∣
∣τ
∣
∣S,

which will apply rule (Case). A case has HC of 0, so (Read) produces e′ where

HC(e′) = 0 and e′ is deeply 1-bounded.

In the following proofs, we assume that in any target evaluation ρ ⊢ e′ ⇓ (ρ ′ ⊢ w), the

target expression e′ is closed (that is, it has no free program variables x, though of course

it may contain store locations ℓ ∈ dom(ρ)).

Theorem 6.12 (Cost Result)

Given D :: ρ ⊢ e′ ⇓ (ρ ′ ⊢ w)

where for every subderivation D∗ :: ρ∗
1 ⊢ e∗ ⇓ (ρ∗

2 ⊢ w∗) of D (including D), HC(D∗)≤ k,

then the number of dirty rule applications in D is at most k
k+1

W (D).

Proof

By the definition of HC(D), if D is deeply k-bounded, there is no contiguous region of D

consisting only of dirty rule applications that is larger than k; since the only rule with no

premises is TEvValue, which is clean, at least one of every k+1 rule applications is clean.

W (D) simply counts the total number of rule applications, so D contains at least
W (D)
k+1

clean rule applications, so no more than k
k+1

W (D) of D’s rule applications are dirty.

Theorem 6.13 (Costed Stable Evaluation)

If D :: ρ ⊢ e ⇓ (ρ ′ ⊢ w) where FV(e)⊆ dom(ρ) and [ρ]e is select-uniform

and [ρ]e is deeply k-bounded

then D ′ :: [[[ρ]e]] ⇓ [[[ρ ′]w]]

and [ρ ′]w is deeply k-bounded

and for every subderivation D∗ :: ρ∗
1 ⊢ e∗ ⇓ (ρ∗

2 ⊢ w∗) of D (including D),

HC(D∗)≤ HC(e∗)≤ k ,

and the number of clean rule applications in D equals W (D ′).

Proof

The differences from Theorem 6.4 require additional reasoning:

• The 7 cases for the “clean” rules (TEvValue), (TEvPair), (TEvSumLeft), (TEvPri-

mop), (TEvFst), (TEvCaseLeft), and (TEvApply) are straightforward: the induction

hypothesis shows that the HC condition holds for proper subderivations of D , and

HC(D) = 0 by definition of HC(−), which is certainly not greater than HC(e∗).

Finally, each one of these cases generates a single application of an SEv* rule,

which together with the i.h. satisfies the last condition (that the number of clean

rule applications in D equals W (D ′).

For (TEvCaseLeft) and (TEvApply), observe that we are substituting closed values;

for all closed values w∗ we have HC(w∗) = 0, and by i.h. the w∗ we substitute

are deeply k-bounded, so the result of substitution is deeply k-bounded. (The target

expression x[~α = ~δ] is not closed, so we need not consider it here.)

Note that this reasoning holds for (TEvValue) even when w is a select: (TEvValue)

is a clean rule so HC(D) = 0.

• (TEvWrite): We have D :: ρ ⊢write(e′0)⇓ (ρ ′ ⊢w) with subderivation D0 :: ρ ⊢ e′0 ⇓

. . . . By i.h., HC(D0) ≤ HC(write(e′0)). Therefore HC(D0) + 1 ≤ HC(e′0). By the

definitions of HC we have HC(D) = HC(D0)+1 and HC(write(e′0)) = 1+HC(e′0),

ZU064-05-FPR main 16 August 2020 14:54

54 Y. Chen et al.

so our inequality becomes HC(D)≤HC(write(e′0)), which was to be shown. Lastly,

the · · · = W (D ′) condition from the i.h. is exactly what we need, because the D ′ is

the same and (TEvWrite) is not clean.

• (TEvMod): Similar to the (TEvWrite) case.

• (TEvLet): According to our definition, HC(D) = 0, and we proceed as with the

first 7 cases. Every (TEvLet) in D corresponds to a (SEvLet) in D ′, even if the let

was created by translation: the theorem concerns the reverse translation [[[ρ]e]], not

the original source program (which probably has fewer lets). (We already assume

implicitly that let-expansion preserves asymptotic complexity, because we assume

that source programs are in A-normal form, and our goal is to prove an asymptotic

equivalence in Theorem 6.14.)

• (TEvRead): For HC(read . . .) to be defined, the variable bound is used exactly once

and contributes to the HC of the term accordingly, justifying the equation

HC([ρ1(ℓ)/x′]eC) = HC(eC)+HC(ρ1(ℓ))

• (TEvSelect):

HC(D1) ≤HC(e1) i.h.

(L) 1+HC(D1) ≤ 1+HC(e1) +1 each side

(R) 1+HC(e1) ≤HC((select {. . .})[. . .]) By def. of HC(e1); property of max.

1+HC(D1) ≤HC(e′) By (L), (R), transitivity, e′ = (select {. . .})[. . .]

Z HC(D) ≤HC(e′) By def. of HC(D)

The HC(e∗)≤ k part of the conclusion is easily shown: in each case, it must be shown for

each premise and for the conclusion; the induction hypothesis shows it for the premises,

and since we know that [ρ]e′ is deeply k-bounded, HC(e′) ≤ k (applying [ρ] cannot de-

crease head cost).

Showing that the value w is deeply k-bounded is quite easy. For (TEvValue) it follows

from the assumption that e′ = w is bounded. For any rule whose conclusion has the same w

as one of its premises—(TEvLet), (TEvCaseLeft), (TEvApply), (TEvWrite), (TEvRead),

(TEvSelect)—it is immediate by the i.h. In (TEvPair), w1 and w2 are bounded by i.h., so

(w1,w2) is too. The value returned by (TEvSumLeft) and (TEvFst) is a subterm of a value

in a premise, which is by i.h. deeply k-bounded, so the subterm is too. (TEvMod) returns ℓ

where ℓ 7→ w, and w is deeply k-bounded.

Theorem 6.14

If trans(e,ε)= e′ and D ′ :: · ⊢ e′ ⇓ (ρ ′ ⊢w), then D :: [[e′]]⇓ v where W (D ′)=Θ(W (D)).

Proof

By Theorem 6.11, e′ is deeply 1-bounded.

The algorithm trans merely applies the translation rules, so · ⊢ e : τ →֒
ε e′. By The-

orem 6.13, D :: [[e′]] ⇓ v, and the given derivation D ′ and all its subderivations have HC

bounded by k.

By Theorem 6.12, the number of dirty rule applications in D ′ is at most k
k+1

W (D ′).

Each rule application is either clean or dirty, so W (D ′) ≤ (k + 1) ·W (D), where k = 1.

By inspecting the evaluation rules, it is clear that W (D ′) ≥ W (D). Therefore, W (D ′) =

Θ(W (D)).

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 55

References

Martín Abadi, Butler W. Lampson, & Jean-Jacques Lévy. Analysis and caching of dependencies. In

International Conference on Functional Programming, pages 83–91, New York, NY, USA, 1996.

ACM Press.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, & Kanat Tangwongsan. A library

for self-adjusting computation. Electronic Notes in Theoretical Computer Science, 148(2), 2006a.

Umut A. Acar, Guy E. Blelloch, & Robert Harper. Adaptive functional programming. ACM Trans.

Prog. Lang. Syst., 28(6):990–1034, 2006b.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, & Kanat Tangwongsan. An

experimental analysis of self-adjusting computation. ACM Trans. Prog. Lang. Syst., 32(1):3:1–

53, 2009.

Umut A. Acar, Guy E. Blelloch, Ruy Ley-Wild, Kanat Tangwongsan, & Duru Türkoğlu. Traceable

data types for self-adjusting computation. In Programming Language Design and Implementation,

pages 483–496, New York, NY, USA, 2010a. ACM Press.

Umut A. Acar, Andrew Cotter, Benoît Hudson, & Duru Türkoğlu. Dynamic well-spaced point sets.

In Symposium on Computational Geometry, pages 756–773, New York, NY, USA, 2010b. ACM

Press.

Henk Barendregt, Mario Coppo, & Mariangiola Dezani-Ciancaglini. A filter lambda model and the

completeness of type assignment. J. Symbolic Logic, 48(4):931–940, 1983.

Richard Bellman. Dynamic Programming. Princeton Univ. Press, Princeton, New Jersey, 1957.

Kimberley Burchett, Gregory H. Cooper, & Shriram Krishnamurthi. Lowering: A static optimization

technique for transparent functional reactivity. In Partial Evaluation and Semantics-Based

Program Manipulation, pages 71–80, New York, NY, USA, 2007. ACM Press.

Magnus Carlsson. Monads for incremental computing. In International Conference on Functional

Programming, pages 26–35, New York, NY, USA, 2002. ACM Press.

Yan Chen, Jana Dunfield, Matthew A. Hammer, & Umut A. Acar. Implicit self-adjusting computation

for purely functional programs. In International Conference on Functional Programming, pages

129–141, New York, NY, USA, 2011. ACM Press.

Yan Chen, Jana Dunfield, & Umut A. Acar. Type-directed automatic incrementalization. In

Programming Language Design and Implementation, pages 299–310, New York, NY, USA, 2012.

ACM Press.

Y.-J. Chiang & R. Tamassia. Dynamic algorithms in computational geometry. Proc. IEEE, 80(9):

1412–1434, 1992.

Gregory H. Cooper & Shriram Krishnamurthi. Embedding dynamic dataflow in a call-by-value

language. In European Symposium on Programming, pages 294–308, Berlin, 2006. Springer-

Verlag.

Karl Crary, Aleksey Kliger, & Frank Pfenning. A monadic analysis of information flow security with

mutable state. J. Functional Programming, 15(2):249–291, 2005.

Luis Damas & Robin Milner. Principal type-schemes for functional programs. In Principles of

Programming Languages, pages 207–212, New York, NY, USA, 1982. ACM Press.

Alan Demers, Thomas Reps, & Tim Teitelbaum. Incremental evaluation of attribute grammars with

application to syntax-directed editors. In Principles of Programming Languages, pages 105–116,

New York, NY, USA, 1981. ACM Press.

Camil Demetrescu, Irene Finocchi, & Giuseppe F. Italiano. Handbook on Data Structures and

Applications, chapter 36: Dynamic Graphs. CRC Press, Boca Raton, FL, USA, 2005.

Sofoklis G. Efremidis, John H. Reppy, & Khalid A. Mughal. Attribute grammars in ML. Technical

Report 93-1401, Cornell University, 1993.

Conal Elliott & Paul Hudak. Functional reactive animation. In International Conference on

Functional Programming, pages 263–273, New York, NY, USA, 1997. ACM Press.

ZU064-05-FPR main 16 August 2020 14:54

56 Y. Chen et al.

J. Field & T. Teitelbaum. Incremental reduction in the lambda calculus. In ACM Conf. LISP and

Functional Programming, pages 307–322, New York, NY, USA, 1990. ACM Press.

Jeffrey S. Foster, Robert Johnson, John Kodumal, & Alex Aiken. Flow-insensitive type qualifiers.

ACM Trans. Prog. Lang. Syst., 28:1035–1087, 2006.

L. Guibas. Modeling motion. In J. Goodman & J. O’Rourke, editors, Handbook of Discrete and

Computational Geometry, pages 1117–1134. CRC Press, Boca Raton, FL, USA, 2nd edition,

2004.

Matthew A. Hammer, Umut A. Acar, & Yan Chen. CEAL: a C-based language for self-adjusting

computation. In Programming Language Design and Implementation, pages 25–37, New York,

NY, USA, 2009. ACM Press.

Nevin Heintze & Jon G. Riecke. The SLam calculus: programming with secrecy and integrity. In

Principles of Programming Languages, pages 365–377, New York, NY, USA, 1998. ACM Press.

Alan Jeffrey. LTL types FRP: linear-time temporal logic propositions as types, proofs as functional

reactive programs. In Workshop on Programming Languages meets Program Verification, pages

49–60, New York, NY, USA, 2012. ACM Press.

Neelakantan R. Krishnaswami. Higher-order reactive programming without spacetime leaks. In

International Conference on Functional Programming, pages 221–232, New York, NY, USA,

2013. ACM Press.

Ruy Ley-Wild, Matthew Fluet, & Umut A. Acar. Compiling self-adjusting programs with

continuations. In International Conference on Functional Programming, pages 321–334, New

York, NY, USA, 2008. ACM Press.

Ruy Ley-Wild, Umut A. Acar, & Matthew Fluet. A cost semantics for self-adjusting computation. In

Principles of Programming Languages, pages 186–199, New York, NY, USA, 2009. ACM Press.

Hai Liu & Paul Hudak. Plugging a space leak with an arrow. Electronic Notes in Theoretical

Computer Science, 193:29–45, 2007.

Hai Liu, Eric Cheng, & Paul Hudak. Causal commutative arrows and their optimization. In

International Conference on Functional Programming, ICFP ’09, pages 35–46, New York, NY,

USA, 2009. ACM Press.

MLton. MLton web site. http://www.mlton.org.

Andrew C. Myers. JFlow: practical mostly-static information flow control. In Principles of

Programming Languages, pages 228–241, New York, NY, USA, 1999. ACM Press.

Henrik Nilsson. Dynamic optimization for functional reactive programming using generalized

algebraic data types. In International Conference on Functional Programming, pages 54–65, New

York, NY, USA, 2005. ACM Press.

Martin Odersky, Martin Sulzmann, & Martin Wehr. Type inference with constrained types. Theory

and Practice of Object Systems, 5(1):35–55, 1999.

Frank Pfenning & Rowan Davies. A judgmental reconstruction of modal logic. Mathematical

Structures in Computer Science, 11:511–540, 2001.

François Pottier & Vincent Simonet. Information flow inference for ML. ACM Trans. Prog. Lang.

Syst., 25(1):117–158, 2003.

William Pugh & Tim Teitelbaum. Incremental computation via function caching. In Principles of

Programming Languages, pages 315–328, New York, NY, USA, 1989. ACM Press.

G. Ramalingam & T. Reps. A categorized bibliography on incremental computation. In Principles

of Programming Languages, pages 502–510, New York, NY, USA, 1993. ACM Press.

Thomas Reps. Generating Language-Based Environments. PhD thesis, Department of Computer

Science, Cornell University, 1982a.

Thomas Reps. Optimal-time incremental semantic analysis for syntax-directed editors. In Principles

of Programming Languages, pages 169–176, New York, NY, USA, 1982b. ACM Press.

http://www.mlton.org

ZU064-05-FPR main 16 August 2020 14:54

Implicit self-adjusting computation for purely functional programs 57

Thomas Reps & Tim Teitelbaum. The synthesizer generator: a system for constructing language-

based editors. Springer-Verlag, Berlin, 1989.

Andrei Sabelfeld & Andrew C. Myers. Language-based information-flow security. IEEE J. Selected

Areas in Communications, 21(1):5–19, 2003.

David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University of London,

Imperial College, 1990.

Patrick M. Sansom & Simon L. Peyton Jones. Time and space profiling for non-strict, higher-order

functional languages. In Principles of Programming Languages, pages 355–366, New York, NY,

USA, 1995. ACM Press.

Neil Sculthorpe & Henrik Nilsson. Keeping calm in the face of change. Higher-Order and Symbolic

Computation, 23(2):227–271, 2010.

Ajeet Shankar & Rastislav Bodik. DITTO: Automatic incrementalization of data structure invariant

checks (in Java). In Programming Language Design and Implementation, pages 310–319, New

York, NY, USA, 2007. ACM Press.

Vincent Simonet. Type inference with structural subtyping: A faithful formalization of an efficient

constraint solver. In Asian Symposium on Programming Languages and Systems, pages 283–302,

Berlin, 2003. Springer-Verlag.

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, & Phillip B. Gibbons. Space profiling for

parallel functional programs. In International Conference on Functional Programming, New York,

NY, USA, 2008. ACM Press.

R. S. Sundaresh & Paul Hudak. Incremental compilation via partial evaluation. In Principles of

Programming Languages, pages 1–13, New York, NY, USA, 1991. ACM Press.

Zhanyong Wan, Walid Taha, & Paul Hudak. Event-driven FRP. In Practical Aspects of Declarative

Languages, pages 155–172, Berlin, 2002. Springer-Verlag.

ZU064-05-FPR main 16 August 2020 14:54

	Introduction
	Overview
	Explicit self-adjusting computation
	Implicit self-adjusting computation

	A type system for implicit self-adjusting computation
	Source language
	Static semantics
	Constraints and type inference
	Dynamic semantics

	Target language
	Dynamic semantics

	Translation
	Translating types
	Translating expressions
	Algorithm
	Translation type soundness
	Translation soundness
	Cost of translated code

	Related work
	Conclusion
	Proof of translation type soundness
	Proof of translation soundness
	Proof of costed soundness
	References

