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Abstract

Bidirectional typechecking has become popular in advanced type
systems because it works in many situations where inference is un-
decidable. In this paper, I show how to cleanly handle parametric
polymorphism in a bidirectional setting. The key contribution is a
bidirectional type system for a subset of ML that supports first-class
(higher-rank and even impredicative) polymorphism, and is com-
plete for predicative polymorphism (including ML-style polymor-
phism and higher-rank polymorphism). The system’s power comes
from bidirectionality combined with a “greedy” method of finding
polymorphic instances inspired by Cardelli’s early work on System
F<:. This work demonstrates that bidirectionality is a good founda-
tion for traditionally vexing features like first-class polymorphism.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

General Terms languages

1. Introduction

To check programs in advanced type systems, it is often useful to
split the traditional typing judgment e : A into two forms, e ⇑ A
read “e synthesizes type A” and e ⇓ A read “e checks against
type A”. This technique has been used for dependent types (Co-
quand 1996; Norell 2007; Abel et al. 2008; Löh et al. 2008); sub-
typing (Pierce and Turner 2000; Odersky et al. 2001); intersec-
tion, union, indexed and refinement types (Xi 1998; Davies and
Pfenning 2000; Dunfield and Pfenning 2004); termination check-
ing (Abel 2004); higher-rank polymorphism (Peyton Jones et al.
2007); refinement types for LF (Lovas and Pfenning 2007); con-
textual modal types (Pientka 2008; Pientka and Dunfield 2008);
and compiler intermediate representations (Chlipala et al. 2005).

Bidirectional typechecking is necessary because annotation-
free type inference, which works well for the lambda calculus with
prenex polymorphism, becomes difficult (if not undecidable) when
we add first-class polymorphism, subtyping, intersection types, and
so forth. Bidirectional typechecking is nice because reports of type
errors are better localized, which is useful even when type inference
is feasible.

In earlier work, we gave a concise recipe for bidirectional type-
checking (Dunfield and Pfenning 2004), in which annotations are
needed exactly where redexes appear. But we left out a vital fea-
ture: parametric polymorphism. So what are the proper bidirec-
tional introduction and elimination rules for parametric polymor-
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phism? It turns out that the introduction rule is easy, but the elimi-
nation rule is hard. For example, if we have a polymorphic function
choose : ∀α. α → α → α, to find the right instantiation of α in the
application choose x y we must look at x’s type (and, for certain
mixes of type system features, y’s type as well). Clearly, we do not
know how to instantiate α from the term choose alone.

How can we find polymorphic instances in a bidirectional type
system that is simple to formulate and use—without a heavy type
annotation burden? I adapt an idea of Cardelli (1993), greed: the
first constraint on a type variable determines the instantiation. For
choose x y, this means α is determined by the type of x.

In this paper, I show how to use greed to find polymorphic in-
stances in System F (Girard 1986; Reynolds 1974), where polymor-
phism is first-class (higher-rank and impredicative). This yields a
remarkably simple algorithm that is complete for predicative poly-
morphism (including ML-style prenex polymorphism). That is, if a
typing derivation exists that instantiates type variables at monomor-
phic types, the user gives no more information than the annota-
tions already present (on redexes) if there were no polymorphism.
The algorithm handles some uses of impredicative polymorphism,
where type variables are instantiated with polymorphic types, with-
out extra help; for the rest, I provide a “hint” mechanism. Using
intersection and union types, the approach can even handle subtyp-
ing, as described elsewhere (Dunfield 2009).

This paper shows that first-class polymorphism, while of-
ten tricky with type inference, is manageable in bidirectional
typechecking. Rather than starting with Damas-Milner inference,
perhaps eventually trying to glue on some bidirectionality for the
season’s latest type features, we get simplicity and power by mak-
ing things bidirectional from the ground up.

I will begin by giving a point of reference: a bidirectional type
system that assumes polymorphic instances are found magically
(Section 2). Section 3 develops a decidable version of that system
and shows that it is complete, with respect to the Section 2 sys-
tem, for typing derivations that use only predicative polymorphism.
Section 4 adds datatypes, Section 5 briefly sketches subtyping, and
Section 6 explains the implementation.

2. System Bi

System Bi is a very simple bidirectional type system with first-class
polymorphism. It does not touch the problem of finding polymor-

phic instances; that is left to System Biα̂ (“bi ex”), described in
the next section. But it is a good reference point for proving things

about System Biα̂.
Figure 1 gives the syntax of terms, types, etc. For simplicity, I

omit some constructs such as fixed point recursion fix u.e, which is
easy to handle as in previous work (Dunfield and Pfenning 2004).

We’ll also gloss over datatypes ~A δ where δ is the name of an n-

argument inductive datatype and ~A is a sequence of n types. For
example, given a base type int and the one-argument datatype list,
we can write int list. Term-level data constructors have constructor
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Type variables α, β

Atomic types Aatomic ::= 1 | α | ∀α. A
Types A,B,C ::= Aatomic | A → B

Contexts Γ ::= · | Γ, x:A | Γ, α
Matches ms ::= · | c(x) ⇒ e ||ms

Annotations N ::= (Γ ⊢ A)
Terms e ::= x | () | λx. e | e1 e2

| c(e) | case e of ms | (e : N)

Values v ::= x | () | λx. e | c(v) | (v : N)

Evaluation contexts E ::= [ ] | E e | v E | c(E) | case E of ms

e ′ 7→R e ′′

E [e ′] 7→ E [e ′′]

(λx. e) v 7→R [v/x]e
case c(v) of . . . c(x) ⇒ e . . . 7→R [v/x]e

Figure 1: Grammar and operational semantics for System Bi

type B → ~α δ—no GADTs here. Datatypes are not particularly
interesting in System Bi; while we give the syntax of case arms
(matches ms) and constructors c(e), we omit the typing rules (but
see Section 4).

The SML-like operational semantics (defined under type era-
sure) is straightforward, making use of evaluation contexts; E [e ′]
is a term with e ′ in evaluation position.

Figure 2 has the rules for well-formedness of types and contexts.
In general, we assume every context we write is well-formed, but
tend to explicitly say when individual types are well-formed.

The bidirectional typing judgments are Γ ⊢ e ⇑ A, read “e
synthesizes A”, and Γ ⊢ e ⇓ B, read “e checks against B”.
(The arrows correspond to the flow of type information in an ab-
stract syntax tree representation of e.) Figure 3 gives the typing
rules. Introduction and elimination rules follow the pattern we in-
troduced (Dunfield and Pfenning 2004): the conclusion of an in-
troduction rule is checked against a given type, and the premise
of an elimination rule—where the type being eliminated appears—
synthesizes a type. This yields the smallest sensible set of rules, and
means that annotations are needed only on redexes (including dec-
larations of recursive functions), but not on function calls (except
calls of the form (λx. e)e ′, which are redexes).

The rule sub expresses a subsumption principle: if e synthesizes
a type A that is at least as polymorphic as B—the known type that
e is being checked against—then an A can be used where a B is
expected. For example, a function of type ∀α.α → α can be passed
to a function expecting int → int. We write this limited form of
subtyping as Γ ⊢ A ≦ B.

The rule anno is read as “if N = (Γ ′ ⊢ A ′) matches the typing
(Γ ⊢ A) and e checks against A, then (e : (Γ ′ ⊢ A ′)) checks
against A”. The relation . handles the renaming between Γ and Γ ′,
and between A and A ′. These contextual annotations are discussed
below.

1I introduces the unit constructor (), so it is a checking rule. A
philosophical point lurks: () is the introduction form for 1, so the
rule for it should check. But () is also like a constant or predefined
function, so it would be reasonable to make 1 a synthesis rule.

∀I introduces a universal quantifier—with a value restriction,
since I’m interested primarily in call-by-value languages with side
effects. ∀E is an “oracular” elimination rule; it assumes someone
has revealed to us the instance A ′. Of course this is not practical—
indeed, it begs the question this paper is supposed to answer—and

we will address this in System Biα̂.
Figure 3 gives the rules for the limited subtyping used in sub.

Again, we defer the rules for datatypes to Section 4. In the rule
∀L≦, we write [A ′/α]A to mean the substitution of A ′ for α in
the type A. Following Dunfield and Pfenning (2003), reflexivity
and transitivity are admissible and so need no explicit rules. For

Γ ⊢ A wf

FV(A) ⊆ dom(Γ)

Γ ⊢ A wf

Γ wf

· wf

Γ wf x /∈ dom(Γ) Γ ⊢ A wf

Γ, x:A wf

Figure 2: Well-formedness of types and contexts

Γ ⊢ e ⇓ A e checks against type A

Γ ⊢ e ⇑ A e synthesizes type A

Γ(x) = A

Γ ⊢ x ⇑ A
var

Γ ⊢ e ⇑ A Γ ⊢ A ≦ B

Γ ⊢ e ⇓ B
sub

N . (Γ ⊢ A) Γ ⊢ e ⇓ A

Γ ⊢ (e : N) ⇑ A
anno

Γ ⊢ () ⇓ 1
1I

Γ, x:A ⊢ e ⇓ B

Γ ⊢ λx. e ⇓ A→B
→I

Γ ⊢ e1 ⇑ A→B Γ ⊢ e2 ⇓ A

Γ ⊢ e1 e2 ⇑ B
→E

Γ, α ⊢ v ⇓ A

Γ ⊢ v ⇓ ∀α. A
∀I

Γ ⊢ e ⇑ ∀α. A Γ ⊢ A ′ wf

Γ ⊢ e ⇑ [A ′/α]A
∀E

Γ ⊢ A ≦ B A is at least as polymorphic as B

Γ ⊢ 1 ≦ 1
1≦

Γ ⊢ B1 ≦ A1 Γ ⊢ A2 ≦ B2

Γ ⊢ A1 → A2 ≦ B1 → B2

→≦

Γ ⊢ α ≦ α
αRefl≦

Γ ⊢ [A ′/α]A ≦ B Γ ⊢ A ′ wf

Γ ⊢ ∀α. A ≦ B
∀L≦

Γ, β ⊢ A ≦ B

Γ ⊢ A ≦ ∀β. B
∀R≦

Figure 3: Typing and subtyping in System Bi

(· ⊢ A) . (Γ ⊢ A)
.-empty

Γ(x)≡B0 (Γ0 ⊢ A0) . (Γ ⊢ A)

(x:B0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-pvar

Γ ⊢ α ′ wf ([α ′/α]Γ0 ⊢ [α ′/α]A0) . (Γ ⊢ A)

(α, Γ0 ⊢ A0) . (Γ ⊢ A)
.-tyvar

Figure 4: Contextual matching, used in annotations and hints

example, Γ ⊢ ∀α. A ≦ ∀β. [β/α]A—which is the same as Γ ⊢
∀α. A ≦ ∀α. A—is derivable by (1) deriving Γ, β ⊢ [β/α]A ≦
[β/α]A; (2) applying ∀L≦, giving Γ, β ⊢ ∀α. A ≦ [β/α]A; (3)
applying ∀R≦. (To prove transitivity, measure the derivations by
the lexicographic ordering of (1) the number of ∀L≦ applications
in the second derivation, with (2) the height of both derivations;
this makes the ∀R≦/∀L≦ case work.)

2.1 Contextual annotations

Annotations are contextual (Dunfield and Pfenning 2004): when
checking (e : (Γ ′ ⊢ A ′)) under the context Γ , the context Γ ′

establishes the relationship between type variables declared in Γ
and type variables used in A ′, the annotated type of e. For example,
the following fragment uses the type of x to establish that the α in
the inner annotation (on λy.Cons(y,Nil)) is the same as the α used
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in the outer annotation. The type variable α is bound by Γ ′, and its
scope is x:α ⊢ . . . , but the program variable x in x:α is in the
scope of λx.

(
λx. λn. . . .

((λy.Cons(y,Nil)) : (α, x:α ⊢ α → α list)) . . .
)

: ∀α. α → int → α list

This avoids having a term-level binder for type variables. Allowing
something like

(λx. λn. . . . (e : α) . . . ) : ∀α. α → int → α list

does not sit well: the underlined α is not within the most natural
scope of α, which is simply α → int → α list. Letting α be in
scope within the body of the annotated term breaks down if we add
intersection types (which aren’t in this paper, but we want a general
mechanism).

Figure 4 gives the rules for deriving (Γ ′ ⊢ A ′) . (Γ ⊢ A),
where (Γ ′ ⊢ A ′) is the user’s typing from an annotation, Γ is the
“ambient” context under which the annotated term (e : N) is being
typed, and A is A ′, renamed as needed to match Γ . The only output
is A. Rule .-empty allows closed types with an empty context,
e.g. (e : (· ⊢ (∀β. β→β) → 1)); in practice, the “· ⊢ ” can be
omitted. Rule .-pvar is used when the typing mentions a program
variable, as x:α in the example; the premise Γ(x)≡B0 denotes

equality, modulo renaming of type variables1. Rule .-tyvar allows
α-varying (no pun intended) of type variables. Note that as the
rules traverse the left-hand context from left to right, the left-hand
context in the judgment can become ill-formed, but the output
(right-hand) context is always well-formed.

Contextual annotations’ major virtue is robustness: they work
with or without intersection types, index refinements, and other
features. The formalism can be simplified in practice—since we
don’t regard type variables in the ambient context as being in
scope in Γ0, and the notation (and implementation) syntactically
distinguish type variables from other things, the type declarations
α could be omitted. Or, as long as we don’t have intersection types,
we could declare that α is within the scope of its annotation, cutting
out the nondeterministic choice of α ′ in .-tyvar.

Contextual annotations also set the stage for System Biα̂, where
we’ll add hint declarations hint (ΓA ⊢A) in e. These are sugges-
tions from the user to the typechecker: under a context Γ , when
examining e, the typechecker can try A when instantiating a quan-
tifier ∀β. B—with the context ΓA establishing the map from type
variables in A to type variables in Γ .

2.2 The metatheory of System Bi

Type safety can be proved in a three-step process:

1. Define a type assignment version of System Bi.

2. Show that every derivation in System Bi has a corresponding
derivation in the type assignment system.

3. Prove a type safety theorem for the type assignment system,
with respect to the operational semantics in Figure 1.

Step 1 is very easy: drop the rule anno and replace “⇑” and
“⇓” symbols in the typing judgments with “:”. For example,
Γ ⊢ e1 e2 ⇑ B in rule →E becomes Γ ⊢ e1 e2 : B.

For Step 2, we must show that given a derivation of Γ ⊢ e ⇓ A
(or of Γ ⊢ e ⇑ A) in System Bi, we can construct a derivation
of Γ ⊢ e ′ : A, where e ′ is e with annotations erased. This is an
easy proof by induction on the derivation, and I proved it in my

1 This is more restricted than the rule in Dunfield and Pfenning (2004),
which allowed Γ(x) to be a subtype of B0; this restriction will simplify

System Biα̂.

FV(A) ⊆ dom(Γ)

Γ ⊢ A wf

α̂ /∈ dom(Γ1) Γ1, α̂ ⊢ Γ2 wf

Γ1 ⊢ α̂, Γ2 wf

Γ ⊢ · wf

α̂ /∈ dom(Γ1) Γ1 ⊢ A wf Γ1, α̂=A ⊢ Γ2 wf

Γ1 ⊢ α̂=A, Γ2 wf

Figure 5: Well-formedness of existential contexts and types

dissertation Dunfield (2007b, Ch. 2) for a similar (though richer)
system. The only novelty here is parametric polymorphism, which
presents no difficulties: the cases for ∀I and ∀E almost exactly
follow the cases for ΠI and ΠE (the rules for universal index
quantification, a type system feature omitted from this paper for
simplicity).

Step 3 is not trivial, but it is an easy extension of the proof in
my dissertation (Dunfield 2007b, Ch. 2). As in Step 2, the reasoning
for ∀I and ∀E follows the reasoning for ΠI and ΠE. In particular,
there is no need to extend derivation rank and value definiteness
(Dunfield 2007b, pp. 36–38), concepts needed for union types—
which are not even present in System Bi.

3. System Biα̂: Explicit Existential Variables

Now let’s transform the declarative System Bi into an algorithmic

System Biα̂ (“bi ex”) by adding existential variables for unsolved
polymorphic instances. After extending the syntax, we explain the
typing and subtyping rules, discuss the hint construct, and then
prove (with respect to System Bi) soundness and a limited form
of completeness.

Types A ::= . . . | α̂

Contexts Γ,Ω ::= . . . | Γ, α̂ | Γ, α̂=A | Γ,◭α̂ | Γ, hint(Γ ′ ⊢ A ′)

Terms e ::= . . . | hint (Γ ′ ⊢ A ′) in e

We write α̂, β̂, and so on for existential type variables, created in
situations corresponding to the ∀E and ∀L≦ rules of System Bi. We
create α̂ by adding α̂ to the context Γ . When the system finds a solu-
tion (e.g. when trying to derive α̂ ≦ 1) the declaration α̂ is replaced
by α̂=1, indicating that the solution of α̂ is 1. Contexts are ordered:
the position of the declaration α̂ determines which variables can ap-
pear in a solution: in the context Γ1, α̂=A, Γ2 the solution type A
must be well-formed under Γ1, without using anything declared in
Γ2. This prevents circularity, and allows rules like ∀I that add non-
existential declarations to remove them without making dangling
references. Similarly, α̂, x:α̂ is well-formed because α̂ is declared
before x:α̂.

Since the rules need to add and replace things in Γ , we modify
judgment forms like Γ ⊢ e ⇓ C:

Γ ⊢ e ⇓ C becomes Γ ⊢ e ⇓ C ⊣ Γ ′

Γ ⊢ e ⇑ C becomes Γ ⊢ e ⇑ C ⊣ Γ ′

Γ ⊢ A ≦ B becomes Γ ⊢ A ≦ B ⊣ Γ ′

The output context Γ ′ is like Γ but may have more information,

containing new α̂ and α̂=A elements, and various β̂ elements

replaced by β̂=B elements. (I chose ⊢ and ⊣ to suggest the fact
that Γ and Γ ′ are equivalent in a declarative sense: if all the α̂,
α̂=A, ◭α̂, hint(. . . ) declarations are dropped from Γ and Γ ′, those
contexts are equal.)

For the marker ◭α̂, we can thank the proof of predicative com-
pleteness: one typing rule (∀Lα̂≦) needs this marker to remove
junk—α̂-variables that have gone out of scope—from the output
context. Junk is harmless but would complicate the proof. Markers
are ignored otherwise (and need not be implemented).
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A context Γ is well-formed, · ⊢ Γ wf, if each variable occurs
once in its domain (defined below) and each type in Γ is well-
formed under the declarations to its left.

Definition 1 (Domain of Γ ). The domain dom(Γ) of a context Γ is:
dom(·) = ∅
dom(Γ, x:A) = dom(Γ) ∪ {x}
dom(Γ, α) = dom(Γ) ∪ {α}
dom(Γ, α̂) = dom(Γ) ∪ {α̂}
dom(Γ, α̂=A) = dom(Γ) ∪ {α̂}
dom(Γ, hint(Γ ′ ⊢ A ′)) = dom(Γ)
dom(Γ,◭α̂) = dom(Γ)

To prove properties of System Biα̂, it’s useful to view existential
contexts as iterated substitutions, so that

[α̂=A, β̂=α̂](α̂ → β̂) = A → A

The context is applied from the right, so first α̂ replaces β̂, giving
α̂ → α̂, and then A replaces α̂, resulting in A → A.

We only apply contexts that complete the context in which the

type lives, so all existential variables disappear: given α̂ → β̂, well-

formed in the context (β̂=α̂, α̂), applying [β̂=α̂, α̂=1] α̂ → β̂
yields 1 → 1. To apply a context Ω to another context Γ , the
contexts must be the same except for Γ having more unsolved
variables (and ignoring hints and markers), and Ω having solutions
for variables not even mentioned in Γ :

[·] · = ·
[Ω, x:A] (Γ, x:A) = [Ω]Γ, x:[Ω]A
[Ω,α] (Γ, α) = [Ω]Γ, α
[Ω, α̂=A] (Γ, α̂ ) = [Ω] ([A/α̂]Γ)

* [Ω, α̂=AΩ] (Γ, α̂=AΓ ) = [Ω] ([AΓ/α̂]Γ) if [Ω]AΩ = [Ω]AΓ

[Ω, α̂=A] Γ = [Ω]Γ if α̂ /∈ dom(Γ)
[Ω] (Γ, hint(Γ ′ ⊢ A ′)) = [Ω]Γ
[Ω, hint(Γ ′ ⊢ A ′)] Γ = [Ω]Γ

[Ω] (Γ,◭α̂) = [Ω]Γ

The line marked * allows an Ω to complete a context with so-
lutions written in a different but equivalent way: for example,

[α̂=1, β̂=1](α̂=1, β̂=α̂) because [α̂=1]1 = 1 = [α̂=1]α̂.

Definition 2 (Solved contexts). A context Γ ′ is solved if it contains
no unsolved existentials α̂.

Definition 3. We write Γ ⊆ Ω if (1) for all α̂ in Γ there is a
solution α̂=A in Ω, and for all α̂=AΓ in Γ there is α̂=AΩ such
that [Ω]AΩ = [Ω]AΓ , and (2) declarations present in Γ appear in
the same order in Ω.

Definition 4 (Completion of contexts). A context Ω completes a
context Γ iff Γ ⊆ Ω and Ω is solved.

How these existential contexts behave is best shown with an
example. Suppose that Γ has f:int→bool. At the top of Figure 6 is
a derivation in System Bi, which “guesses” α = int.

At the bottom of the figure is a derivation in System Biα̂. It
has three interesting parts; the names of the involved rules are
shaded, along with changes in the existential context. Towards the
left we apply ∀Eα̂, adding an unsolved existential α̂ to the output
context. Along the upper right is a use of α̂=L≦, which expresses
the essence of the greedy method: if we need to satisfy α̂ ≦ B, take
B as the solution. In this example, B is int. The premise of α̂=L≦
checks that the solution is well-formed in the context to the left of
α̂ in Γ, α̂.

Existential contexts flow “in-order”, starting in the conclusion
on the left of the ⊢ , up to the first premise (left of the ⊢ ), into
the first premise’s derivation, then back into the first premise itself
(right of the ⊣ ), over to the second premise (left of the ⊢ ), etc.,
and finally back to the conclusion on the right of the ⊣ .

Finally, while omitted from the figure, within the subderivation
of Γ, α̂=int ⊢ xs ⇓ α̂ list ⊣ Γ, α̂=int we apply a rule to replace α̂
with int; this is not done implicitly.

3.1 Hints

We could have an explicit instantiation construct e[A ′
], such that

if e ⇑ ∀α. A, then e[A ′
] ⇑ [A ′/α]A. In effect, this gives

an explicit version of ∀E. But we also have the subtyping rule
∀L≦, which can be used on a deeply nested quantifier—and then
where would we put the [A ′

]? We might write a type annotation
(e : [A ′/α]A), but this is verbose when A is long.

So, instead of a construct that only works with ∀E, we add one
that lets the user suggest an instance for ∀E or ∀L≦. The syntax is

hint (Γ
′ ⊢ A

′
) in e

When encountered, the typing (Γ ′ ⊢ A ′) is put in Γ :

Γ, hint(Γ ′ ⊢ A ′) ⊢ e ⇓ C

Γ ⊢ hint (Γ ′ ⊢ A ′) in e ⇓ C
hint

The type is then available to the rules ∀E-hint and ∀L-hint≦. As
with contextual annotations, the context Γ ′ guides the interpretation
of A ′. For example, hint (α, x:α ⊢ ∀β. α → β) in e constrains
α to be the type variable that is the type of x. On the other hand,
hint (α ⊢ ∀β. α → β) in e is unconstrained; α could be replaced
by any available type variable. This is managed through the con-
textual subtyping rules in Figure 4. One new contextual subtyping
rule is needed, to ignore hint declarations:

(Γ0 ⊢ A0) . (Γ ⊢ A)

(hint(Γ ′ ⊢ A ′), Γ0 ⊢ A0) . (Γ ⊢ A)
.-hint

To ensure decidability, rules hint and ∀L-hint≦ remove hints as
they use them. With no restriction, writing hint (· ⊢ ∀β. β) in f x
where f has type ∀α. α is fatal: using the hint, we replace α with
∀β. β, resulting in ∀β. β, on which we can use the hint again, and
again. . . 2

3.2 Typing and subtyping rules

Many of the typing and subtyping rules of System Biα̂ (Figure 7)
are the same as System Bi, overlaid with existential contexts. We’ll
look at typing first.

From the top, var, sub, anno, →I, →E and ∀I clearly corre-
spond to the rules in Figure 3. Note that →I and ∀I add declarations
x:A and α, respectively, and in their conclusions drop some exis-
tential declarations ΓZ. Those declarations are out of scope, and
since they appear on the right, nothing else refers to them. ∀Eα̂
adds a fresh α̂ to the existential context and synthesizes [α̂/α]A.
The rules ExSubst⇓ and ExSubst⇑ apply the solution to α̂ in the
checking and synthesizing direction, respectively. ExSubst⇓ does
not apply [A/α̂] to Γ , because if we have, say, y:α̂ in Γ , we can ap-
ply ExSubst⇑ after applying var. The rule →Iα̂ is syntax-directed:
if checking a λ against α̂, then α̂ = α̂1 → α̂2 for some new “artic-
ulation” variables α̂1, α̂2. Rule →Eα̂ is dual.

In the subtyping rules, we change ∀L≦ as we changed ∀E, to
add an α̂:

Γ,◭α̂, α̂ ⊢ [α̂/α]A ≦ B ⊣ Γ ′,◭α̂, ΓZ

Γ ⊢ ∀α. A ≦ B ⊣ Γ ′
∀Lα̂≦

As in →I and ∀I, the declarations following the added α̂ declara-
tion are dropped. Because →α̂L≦ and →α̂R≦ (below) can insert

2 My implementation imposes a looser restriction: an ∀ that came from a
hint cannot be instantiated with another ∀ from a hint, but can be used more
than once.
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Γ ⊢ filter ⇑ ∀α.

(α→bool)
→ α list
→ α list Γ ⊢ int wf

Γ ⊢ filter ⇑

(int→bool)
→ int list
→ int list

∀E

Γ ⊢ f ⇑ int → bool

Γ ⊢ int ≦ int Γ ⊢ bool ≦ bool

Γ ⊢ int→bool
≦ int→bool

→≦

Γ ⊢ f ⇓ int→bool
sub

Γ ⊢ filter f ⇑ int list → int list
→E

Γ ⊢ xs ⇓ int list

Γ ⊢ filter f xs ⇑ int list
→E

Γ ⊢ filter ⇑ ∀α.

(α→bool)
→ α list
→ α list ⊣ Γ

Γ ⊢ filter ⇑

(α̂→bool)
→ α̂ list
→ α̂ list ⊣ Γ, α̂

∀Eα̂

Γ, α̂ ⊢ f ⇑ int→bool ⊣ Γ, α̂

Γ ⊢ int wf

Γ, α̂ ⊢ α̂ ≦ int ⊣ Γ, α̂=int
α̂=L≦

Γ, α̂=int ⊢ bool ≦ bool ⊣ Γ, α̂=int

Γ, α̂ ⊢
int→bool
≦ α̂→bool ⊣ Γ, α̂=int

→≦

Γ, α̂ ⊢ f ⇓ α̂ → bool ⊣ Γ, α̂=int
sub

Γ ⊢ filter f ⇑ α̂ list → α̂ list ⊣ Γ, α̂=int
→E

Γ, α̂=int ⊢ xs ⇓ α̂ list ⊣ Γ, α̂=int

Γ ⊢ filter f xs ⇑ α̂ list ⊣ Γ, α̂=int
→E

Figure 6: Typing derivations for filter f xs in System Bi, above, and System Biα̂, below

existential “articulation” variables just before α̂, however, an ex-
plicit marker is needed to drop those declarations. The marker ◭α̂

separates the context it follows from α̂’s articulation variables, α̂,
and anything else (ΓZ) created after it. This bookkeeping prevents
existential variables that won’t subsequently be used from building
up in the context, making the completeness proof easier to manage.
(Implementing junk is harmless, and mine doesn’t try to remove it.)

The subtyping rules ExSubst{L,R}≦ correspond to the typing
rule ExSubst⇑. When there is an arrow on one side and an existen-
tial variable on the other, →α̂L≦/ →α̂R≦ split the existential (sim-
ilar to →Iα̂). Eventually an “atomic” type is reached, and α̂=L≦/
α̂=R≦ can be applied. These rules greedily instantiate the existen-
tial to the atomic type on the other side of ≦. “Atomic” is a mis-
nomer here: it could be a polytype ∀α. A; the point is to keep it
from being an arrow, which would complicate the proof of predica-
tive completeness. The premises of α̂=L≦ and α̂=R≦ check that
the solution is well-formed under the declarations that precede the
variable.

3.3 Contextual subtyping rules

Because .-pvar uses equality, modulo renaming, instead of the full
≦ relation, the contextual subtyping rules from System Bi do not
change (apart from the .-hint rule).

3.4 Preliminaries

For the metatheory, we will use a function Γ that drops existential
variable information and hints from Γ , yielding an “ordinary” Γ
consisting only of variable declarations x:A and type variables α.

· = · Γ, α̂ = Γ Γ,◭α̂ = Γ

Γ, x:A = Γ , x:A Γ, α̂=A = Γ Γ, hint(Γ ′ ⊢ A ′) = Γ

Γ, α = Γ , α

The proof of Lemma 5 is by induction on the given derivation;
Lemmas 6 and 7, by induction on Γ2.

Lemma 5. If Γ1 ⊢ J ⊣ Γ2 then Γ1 = Γ2.

Lemma 6. If Γ1, ΓZ = Γ2 where ΓZ has the form x:A or α then
Γ2 = Γ21, ΓZ, Γ22 where Γ22 = ·.

Lemma 7. (Γ2 ⊢ A) . (Γ1, Γ2 ⊢ A).

Corollary 8 (Reflexivity). (Γ ⊢ A) . (Γ ⊢ A).

Lemma 9. If Ω completes Γ then dom([Ω]Γ) ⊆ dom(Γ).

Proof. By induction on Ω. Since Ω completes Γ , the contexts are
the same modulo hints and existential variables that are declared
in both but only solved in Ω, or declared in Ω only. In the case
when Ω = Ω ′, α̂=A and Γ = Γ ′, α̂: from the definition, [Ω]Γ =
[Ω ′]([A/α̂]Γ ′). By IH, dom([Ω ′]([A/α̂]Γ ′) ⊆ dom([A/α̂]Γ ′),
and substituting for α̂ in Γ ′ does not change its domain at all.

Lemma 10. Given a context Ω that completes Γ , if Γ ⊢ A wf
then [Ω]Γ ⊢ [Ω]A wf.

Proof. By inversion on Γ ⊢ A wf, FV(A) ⊆ dom(Γ). Since Ω
completes Γ and is (implicitly) well-formed, all free variables of
[Ω]A are α-variables, and dom(Γ) and dom([Ω]Γ) have the same
α-variables. So FV([Ω]A) ⊆ dom([Ω]Γ).

Lemma 11 (Well-Formedness). If D :: Γ ⊢ . . . ⊣ Γ ′ then for
any solved α̂ ∈ dom(Γ), it is the case that Γ = Γ1, α̂=A, Γ2 and
Γ1 ⊢ A wf, and likewise for any solved α̂ ∈ dom(Γ ′).

Lemma 12 (Monotonicity). If Γ ⊢ . . . ⊣ Γ ′ then for any
α̂ ∈ dom(Γ ′), one of the following holds:

(1) α̂ is unsolved in both Γ and Γ ′; or

(2) there exists A ′ such that α̂ is unsolved in Γ and
Γ ′ = Γ ′

1 , α̂=A ′, Γ ′
2 ; or

(3) there exists A ′ such that Γ = Γ1, α̂=A ′, Γ2 and
Γ ′ = Γ ′

1 , α̂=A ′, Γ ′
2 .

Also, markers are preserved:
if Γ = Γ1,◭α̂, Γ2 then Γ ′ = Γ ′

1 ,◭α̂, Γ
′
2 .

3.5 Decidability

System Biα̂ is decidable. To concisely define an ordering on judg-
ments such that the premises of each rule are smaller than its con-
clusion, we need several definitions:

(i) A1 ≺ A2 iff A1 is a proper subexpression of A2, or if, by
replacing one or more α̂s with αs in A1, we get a proper
subexpression of A2.

(ii) {C1, C2} ≺ {D1, D2} iff Ck 6≻ Dℓ for all k, ℓ ∈ {1, 2}, and
there exist k, ℓ such that Ck ≺ Dℓ.
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Γ ⊢ e ⇓ A ⊣ Γ ′ Γ ⊢ e ⇑ A ⊣ Γ ′

Γ(x) = A

Γ ⊢ x ⇑ A ⊣ Γ
var

Γ1 ⊢ e ⇑ A ⊣ Γ2 Γ2 ⊢ A ≦ B ⊣ Γ3

Γ1 ⊢ e ⇓ B ⊣ Γ3
sub

N . (Γ ⊢ A) Γ ⊢ e ⇓ A ⊣ Γ ′

Γ ⊢ (e : N) ⇑ A ⊣ Γ ′
anno

Γ ⊢ () ⇓ 1 ⊣ Γ
1I

Γ, x:A ⊢ e ⇓ B ⊣ Γ ′, x:A, ΓZ

Γ ⊢ λx. e ⇓ A → B ⊣ Γ ′
→I

Γ1 ⊢ e1 ⇑ A → B ⊣ Γ2 Γ2 ⊢ e2 ⇓ A ⊣ Γ3

Γ1 ⊢ e1 e2 ⇑ B ⊣ Γ3
→E

Γ, α ⊢ v ⇓ A ⊣ Γ ′, α, ΓZ

Γ ⊢ v ⇓ ∀α. A ⊣ Γ ′
∀I

Γ ⊢ e ⇑ ∀α. A ⊣ Γ ′

Γ ⊢ e ⇑ [α̂/α]A ⊣ Γ ′, α̂
∀Eα̂

Γ, hint(Γ ′ ⊢ A ′) ⊢ e ⇓ C ⊣ Γ ′

Γ ⊢ hint (Γ ′ ⊢ A ′) in e ⇓ C ⊣ Γ ′
hint

Γ1 ⊢ e ⇑ ∀α. A ⊣ Γ2

Γ2 = ΓL, hint(Γ0 ⊢ A0), ΓR
(Γ0 ⊢ A0) . (ΓL, ΓR ⊢ A ′)

Γ1 ⊢ e ⇑ [A ′/α]A ⊣ ΓL, ΓR
∀E-hint

Γ ⊢ e ⇓ Γ(α̂) ⊣ Γ ′

Γ ⊢ e ⇓ α̂ ⊣ Γ ′
ExSubst⇓

Γ ⊢ e ⇑ α̂ ⊣ Γ ′

Γ ⊢ e ⇑ Γ ′(α̂) ⊣ Γ ′
ExSubst⇑

Γ1, α̂1, α̂2, α̂=α̂1→α̂2, Γ2 ⊢ λx. e ⇓ α̂ ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ λx. e ⇓ α̂ ⊣ Γ ′
→Iα̂

Γ ⊢ e1 ⇑ α̂ ⊣ Γ ′
1 , α̂, Γ

′
2 Γ ′

1 , α̂1, α̂2, α̂=α̂1→α̂2, Γ
′
2 ⊢ e2 ⇓ α̂1 ⊣ Γ ′

Γ ⊢ e1 e2 ⇑ α̂2 ⊣ Γ ′
→Eα̂

Γ ⊢ A ≦ B ⊣ Γ ′

Γ ⊢ 1 ≦ 1 ⊣ Γ
1≦

Γ1 ⊢ B1 ≦ A1 ⊣ Γ2 Γ2 ⊢ A2 ≦ B2 ⊣ Γ3

Γ1 ⊢ A1 → A2 ≦ B1 → B2 ⊣ Γ3
→≦

Γ ⊢ α ≦ α ⊣ Γ
αRefl≦

Γ,◭α̂, α̂ ⊢ [α̂/α]A ≦ B ⊣ Γ ′,◭α̂, ΓZ

Γ ⊢ ∀α. A ≦ B ⊣ Γ ′
∀Lα̂≦

Γ, β ⊢ A ≦ B ⊣ Γ ′, β, ΓZ

Γ ⊢ A ≦ ∀β. B ⊣ Γ ′
∀R≦

Γ1 = ΓL, hint(Γ0 ⊢ A0), ΓR
(Γ0 ⊢ A0) . (ΓL, ΓR ⊢ A ′) ΓL, ΓR ⊢ [A ′/α]A ≦ B ⊣ Γ2

Γ1 ⊢ ∀α. A ≦ B ⊣ Γ2
∀L-hint≦

Γ ⊢ α̂ ≦ α̂ ⊣ Γ
α̂Refl≦

Γ ⊢ Γ(α̂) ≦ B ⊣ Γ ′

Γ ⊢ α̂ ≦ B ⊣ Γ ′
ExSubstL≦

Γ ⊢ A ≦ Γ(β̂) ⊣ Γ ′

Γ ⊢ A ≦ β̂ ⊣ Γ ′
ExSubstR≦

Γ1, α̂1, α̂2, α̂=α̂1→α̂2, Γ2 ⊢ α̂ ≦ B1 → B2 ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ α̂ ≦ B1 → B2 ⊣ Γ ′
→α̂L≦

Γ1, β̂1, β̂2, β̂=β̂1→β̂2, Γ2 ⊢ A1 → A2 ≦ β̂ ⊣ Γ ′

Γ1, β̂, Γ2 ⊢ A1 → A2 ≦ β̂ ⊣ Γ ′
→α̂R≦

Γ1 ⊢ Batomic wf

Γ1, α̂, Γ2 ⊢ α̂ ≦ Batomic ⊣ Γ1, α̂=Batomic, Γ2
α̂=L≦

Γ1 ⊢ Aatomic wf

Γ1, β̂, Γ2 ⊢ Aatomic ≦ β̂ ⊣ Γ1, β̂=Aatomic, Γ2
α̂=R≦

Figure 7: Typing and subtyping rules of System Biα̂

(iii) The weight of an existential variable α̂ in Γ is the number
of existential variables in ΓL where Γ = ΓL, α̂[. . . ], · · · , plus

itself. For example, the weight of β̂ in α̂, β̂=1 is 2. Solved
and unsolved variables are counted alike. Weights are natural
numbers, ordered by <.

(iv) A type’s angst with respect to Γ is the weight of the type’s
heaviest existential variable, again ordered by <.

The last two criteria are motivated by ExSubst⇓, ExSubst⇑, and
ExSubst{L,R}≦. For example, the type in ExSubst⇓’s premise is
Γ(α̂) while its conclusion has α̂. In the sense of part (i), Γ(α̂) could
be much larger than α̂. Counting the number of free existentials in
the type doesn’t work, because α̂’s solution could be α̂1 → α̂2,
which has two existential variables. But α̂1 → α̂2 does have less
angst than α̂, because α̂1 and α̂2 must be declared before α̂ in
Γ—otherwise they could not appear in α̂’s solution.

In each rule, a term gets smaller, a type gets smaller (in the
ordinary sense, e.g. A smaller than A → B, or in the sense of

becoming less angstful), the set of available hints gets smaller, or
we introduce a solution for an existential variable. When comparing
two synthesis judgments we flip the ordering of types because the
types are output rather than input. The appendix has the definitions
of the orderings on subtyping and typing judgments, and proofs of
decidability.

3.6 Soundness of System Biα̂

Each System Biα̂ derivation corresponds to a Bi one. In combina-
tion with type safety for a type assignment version of System Bi,

this means that a well-typed-in-System Biα̂ program won’t go
wrong:

Theorem 13 (Soundness of System Biα̂). If Γ ⊢ J ⊣ Γ ′ and
Ω completes Γ ′ then [Ω]Γ ′ ⊢ [Ω]J ′, where J ′ is J with
any hint . . . in e subterms replaced by e and hints in annotations
removed.
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Note that Ω is an input to the theorem. Consider the System Biα̂

derivation of · ⊢ (λx. x : (∀α. (α→α) → α → α)λy. y ⊣ α̂. To
create the corresponding System Bi derivation, we must create an
Ω that instantiates α̂. Fortunately, we can instantiate it to anything,
including 1.

3.7 Completeness of System Biα̂

We will show that, with respect to System Bi, System Biα̂ is in-
complete for impredicative polymorphism, complete when hints
are added to the term, and complete for predicative polymorphism.

3.7.1 Impredicative incompleteness

A small example shows that System Biα̂ is incomplete for im-
predicative polymorphism. We abbreviate ∀β. β → β as ID. Let
Γ = f:∀α. α → α → 1, x:(int→int) → 1, y:ID → 1. The
derivation in System Bi, shown at the top of Figure 8, has no hint-

free analogue in System Biα̂. Below it, the failed derivation in

System Biα̂ makes the problem clear: the first constraint on α̂ is
that it be a supertype of x’s type, (int → int) → 1, so that type is
used, greedily, as the solution of α̂. (For clarity, we substitute for
α̂ in the rest of the derivation.) But the second constraint (shaded)
requires that int → int be a subtype of ID, which is false. All the
choices of rules are fully determined, so no derivation exists.

Note that System Biα̂ can synthesize a type if we swap x and y.
Rewriting code to match the vagaries of an algorithm is unpleasant,

even when possible; the only way to guarantee that System Biα̂

finds some impredicative instance is to declare a hint.

3.7.2 Hinted completeness

A weak completeness result says that for every System Bi deriva-

tion typing e, there exists a System Biα̂ derivation typing e+, where
e+ is e enclosed in hint declarations. The proof is in the appendix.

Theorem 14. If Γ ⊢ J in System Bi and ΓH consists of hints,
then ΓH, Γ

′
H, Γ ⊢ J ⊣ ΓH, Γ in System Biα̂ where Γ ′

H consists of
hints.

Corollary 15 (Hinted Completeness). If · ⊢ e ⇓ A in System Bi
then · ⊢ e+ ⇓ A ⊣ · in System Biα̂, where e+ = hint (Γ1 ⊢
A1) in . . . hint (Γn ⊢ An) in e.

3.7.3 Predicative completeness

In this section, we show that System Biα̂ is predicatively complete:
given a derivation in System Bi in which all polymorphic instances
A ′ used in ∀E and ∀L≦ are monotypes (contain no ∀), we can de-

rive the same judgment in System Biα̂. Consequently, System Biα̂

is complete for prenex or ML-style polymorphism, in which in-
stances are monotypes and ∀s appear only on the outside of types.

We show completeness by building a System Biα̂ derivation
from any System Bi one. Where we have a derivation in System Bi
of Γ ⊢ J ′, we create a derivation of Γ ′

1 ⊢ J ⊣ Γ ′
2 , where J

is like J ′ but may have more existential variables. Specifically,
J ′ = [Ω]J for some Ω representing solutions embedded in the
System Bi derivation.

Moreover, Γ ′
1 must correspond to Ω, and Γ ′

2 to Ω,Ω ′ for some
(often empty) Ω ′. The example derivations from Figure 6 give
some intuition for this correspondence.

When every arrow appearing in Ω has the form α̂1 → α̂2, we

say that Ω is articulated. System Biα̂ keeps contexts articulated
by restricting α̂=L≦ and α̂=R≦, which instantiate existential vari-
ables, to non-arrows.

Let’s define the articulation of α̂=A ′ as follows:

Artic(α̂=1) = α̂=1

Artic(α̂=β) = α̂=β

Artic(α̂=B1→B2) = α̂=β̂1→β̂2,Artic(β̂1=B1),Artic(β̂2=B2)

Since the given System Biα̂ derivation is predicative, there is no
need to define the articulation of ∀α. A. The proof of the next
theorem is in the appendix. Some of the proof cases use a lemma
saying that if A is at least as polymorphic as B (in System Bi), but
A and B are actually monotypes, then A = B.

Lemma 16. If Γ ⊢ A ≦ B where A and B contain no ∀, then
A = B.

Proof. By induction on the given System Bi derivation.

Theorem 17 (Predicative Completeness). For any Ω and Γ ′
1 and

predicative derivation D of Γ ⊢ [Ω]J in System Bi, provided that

(1) Ω is predicative (for any α̂, the type Ω(α̂) is monomorphic)
and articulated, and

(2) Ω completes Γ ′
1 , and [Ω]Γ ′

1 = Γ , then

[Ω]Γ ′
1 ⊢ [Ω]A ′ ≤ [Ω]B ′

where Γ ′
1 ⊢ A ′ wf and Γ ′

1 ⊢ B ′ wf
=⇒ Γ ′

1 ⊢ A ′ ≦ B ′ ⊣ Γ ′
2

[Ω]Γ ′
1 ⊢ e ⇓ [Ω]A ′

where Γ ′
1 ⊢ A ′ wf

=⇒ Γ ′
1 ⊢ e ⇓ A ′ ⊣ Γ ′

2

[Ω]Γ ′
1 ⊢ e ⇑ C =⇒ Γ ′

1 ⊢ e ⇑ C ′ ⊣ Γ ′
2

for some C ′ such that
C = [Ω,Ω ′]C ′

for some Ω ′ such that (Ω,Ω ′) completes Γ ′
2 and [Ω,Ω ′]Γ ′

2 = Γ .

Proof. See the appendix.

4. Datatypes

Supporting datatypes in System Bi is straightforward: we need
only add two typing rules and one subtyping rule. The existential-

context versions of those rules, in System Biα̂, follow the pattern
of →. We articulate as with →; the analogy is clear if we think of
→ as just a two-argument datatype “(α, β) →”. So we have δα̂L≦
and δα̂R≦ following →α̂L≦ and →α̂R≦, and a rule δIα̂ following
→Iα̂. But I have no δEα̂, which would solve α̂ appropriately when
checking case e of ms where e ⇑ α̂; such a rule could work
in some cases, such as case e of c(x) ⇒ . . ., because δ can be
inferred from the pattern c(x), but not in general. See Figure 9.

I assume covariant type arguments, but handling contravariant
and nonvariant type arguments is easy: the rule δα just needs
to flip subtyping judgments (for contravariance), or add flipped
judgments (for nonvariance). Actually determining the variance of
type arguments is outside this paper’s scope.

5. Subtyping with Intersection and Union Types

By adding intersection and union types, we can extend System Bi

and, more importantly, System Biα̂ to subtyping, replacing the
weak “at least as polymorphic as” relation ≦ with a richer ≤.

A value has intersection type A ∧ B if it has both type A and
type B. Intersection types can express combinations of properties
of functions and data constructors (Reynolds 1996; Davies 2005;
Dunfield and Pfenning 2004). Union types (Pierce 1991; Dunfield
and Pfenning 2004; Dunfield 2007b) are dual to intersection types;
a value has type A ∨ B if it has type A or type B (or possibly
both). Given an atomic subtyping relation on datatypes δ1 � δ2,
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f ⇑ ∀α. α → α → 1

f ⇑ [(ID→1)/α](α→α→1)
∀E

x ⇑ . . .

ID ≦ int→int 1 ≦ 1

(int→int) → 1 ≦ ID→1
→≦

x ⇓ ID→1
sub

f x ⇑ (ID→1) → 1
→E

y ⇑ ID→1 ID→1 ≦ ID→1

y ⇓ ID→1
sub

f x y ⇑ 1
→E

f ⇑ ∀α. α→α→1

f ⇑ α̂→α̂→1
∀Eα̂

x ⇑ . . . (int→int) → 1 ≦ α̂

x ⇓ α̂
sub

f x ⇑ ((int→int)→1) → 1
→E + ExSubst⇑

y ⇑ ID→1

int→int 6≦ ID 1 ≦ 1

ID→1 6≦ ((int→int)→1
→≦

y 6⇓ ((int→int)→1)
sub

f x y 6⇑
→E

Figure 8: Derivation in System Bi using impredicative polymorphism (top), and a failed derivation in System Biα̂ (bottom)

Type variable sequences ~α, ~β ::= · | α | (α1, . . . , αn) Types A,B,C ::= A → B | α | ∀α. A | ~B δ

Add to the System Bi rules in Figure 3:

Γ ⊢ c : A → ~B δ Γ ⊢ e ⇓ A

Γ ⊢ c(e) ⇓ ~B δ
δI

Γ ⊢ e ⇑ ~B δ Γ ⊢ ms ⇓~B δ
C

Γ ⊢ case e of ms ⇓ C
δE

Γ ⊢ A1 ≤ B1 · · · Γ ⊢ An ≤ Bn δ1 � δ2

Γ ⊢ (A1, . . . , An) δ1 ≤ (B1, . . . , Bn) δ2
δα

Add to the System Biα̂ rules in Figure 7:

Γ1 ⊢ c : A → ~B δ ⊣ Γ2 Γ2 ⊢ e ⇓ A ⊣ Γ3

Γ1 ⊢ c(e) ⇓ ~B δ ⊣ Γ3
δI

Γ1 ⊢ e ⇑ ~B δ ⊣ Γ2 Γ2 ⊢ ms ⇓~B δ
C ⊣ Γ3

Γ1 ⊢ case e of ms ⇓ C ⊣ Γ3
δE

c constructs δ
Γ1, α̂1, . . . , α̂2,
α̂=(α̂1, . . . , α̂n) δ, Γ2 ⊢ c(e) ⇓ α̂ ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ c(e) ⇓ α̂ ⊣ Γ ′
δIα̂

Γ1 ⊢ A1 ≤ B1 ⊣ Γ2 · · · Γn ⊢ An ≤ Bn ⊣ Γn+1

Γ1 ⊢ (A1, . . . , An) δ ≤ (B1, . . . , Bn) δ ⊣ Γn+1

δα

Γ1, α̂1, . . . , α̂n,
α̂=(α̂1, . . . , α̂n) δ, Γ2 ⊢ α̂ ≦ (B1, . . . , Bn) δ ⊣ Γ ′

Γ1, α̂, Γ2 ⊢ α̂ ≦ (B1, . . . , Bn) δ ⊣ Γ ′
δα̂L≦

Γ1, β̂1, . . . , β̂n,

β̂=(β̂1, . . . , β̂n) δ, Γ2 ⊢ (A1, . . . , An) δ ≦ β̂ ⊣ Γ ′

Γ1, β̂, Γ2 ⊢ (A1, . . . , An) δ ≦ β̂ ⊣ Γ ′
δα̂R≦

Figure 9: Extending System Bi and System Biα̂ with datatypes

simply adding to System Biα̂ typing and subtyping rules for inter-
sections and unions (as we might in a setting without parametric
polymorphism) delivers a reasonable system.

A further enhancement uses intersection and union types to
refine the greedy approach itself. The idea is that, when the system
tries to derive α̂ ≤ nat (with α̂ as yet unknown), don’t instantiate
α̂ to nat permanently as above; instead, instantiate it provisionally.
So, if we then see α̂ ≤ int, we add int, yielding α̂=nat∧ int: the
type nat ∧ int, being the intersection of nat and int, is included in
both, so nat ∧ int ≤ nat and nat ∧ int ≤ int. Dually, if we need

to derive nat ≤ β̂ and then int ≤ β̂, we end up with β̂=nat∨ int,
because nat ∨ int is a supertype of both nat and int.

For a fuller account of these systems, see Dunfield (2009)
(which I expect to revise). I mention them here to suggest that
my approach is robust. It does not break when a supposedly tricky
feature, subtyping, is added, and there is an actual synergy between
the greedy method and intersection/union types.

6. Implementation

I implemented a version of System Biα̂ (with the datatype rules
in Figure 9) as an extension of Stardust (Dunfield 2007a), a type-
checker for a subset of Standard ML with intersection types, union
types, datasort refinements, and index refinements. The imple-

mented system is much richer than System Biα̂, but the examples
here don’t use the extra features; unlike the extension mentioned in
Section 5, the implementation does not automatically create inter-
sections and unions.

The example in Figure 10 begins with a simple application of
higher-rank predicative polymorphism, used in short-cut deforesta-
tion (Gill et al. 1993). Types are quantified explicitly in the function
type annotations (*[ . . . ]*). foldr uses only prenex polymor-
phism and can of course be written in SML, but build uses rank-2
polymorphism. The rest is adapted from Leijen (2009), showing
impredicative polymorphism.

6.1 Complexity of typechecking

If hints are used, typechecking a function can be exponential in
the number of hints: at each opportunity to apply ∀Eα̂ or ∀E-hint,
there is a choice between applying ∀Eα̂, applying ∀E-hint with
the first available hint, with the second, etc. However, we can
show the complexity is exponential even if ∀Eα̂ is never used: As
formulated, ∀E-hint drops a hint after use. First there are n hints
and n choices; at the next opportunity to apply ∀E-hint there are
n − 1 hints and n − 1 choices; and so on. If the last sequence of
hints chosen is the only one to yield a valid derivation, we have
done work proportional to n · (n − 1) · . . . · 2, or roughly nn.
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datatype ’a list = Nil | Cons of ’a * ’a list ;

(*[ val foldr : -all ’a,’b- (’a*’b → ’b)
→ ’b → ’a list → ’b ]*)

fun foldr f u xs = case xs of
Nil ⇒ u | Cons(x, xs) ⇒ f (x, foldr f u xs)

(*[ val build : -all ’a- (-all ’b- (’a*’b→’b)→’b→’b)
→ ’a list ]*)

fun build f = f Cons Nil

(*[ val map : -all ’a,’b- (’a→’b)→’a list→’b list ]*)
fun map f xs = build (fn c ⇒ fn n ⇒ foldr

(fn (x,ys) ⇒ c (f x, ys)) n xs)

(*[ val id : -all ’a- ’a → ’a ]*) fun id x = x
(*[ val inc : int → int ]*) fun inc x = x + 1

(*[ val poly : (-all ’a- ’a→’a) → int * bool ]*)
fun poly f = (f 1, f true)

(*[ val single : -all ’a- ’a → ’a list ]*)
fun single x = Cons(x, Nil)

(*[ val append : -all ’a- ’a list→’a list→’a list ]*)
fun append xs ys = ...

val _ = poly id
val _ = poly (fn x ⇒ x)
val ids = single id (* (-all ’a- ’a→’a) list *)
val _ = map poly ids (* (int * bool) list *)
val _ = append (single inc) ids (* (int → int) list *)

Figure 10: Example of first-class polymorphism

I have not analyzed the complexity of typechecking, but con-
sider the function fun nonlinear2 a b a ′ b ′ = () with type an-
notation ∀α, β. α → β → α → β → 1. Given the context
id : ∀δ. δ→δ, uf : 1 → 1, synthesizing a type for the application
nonlinear2 uf uf id id involves several nondeterministic choices of
when to instantiate each of the id types. Still, this can be checked
with only a few calls to the function that attempts to derive a sub-
typing judgment, and this continues to hold as we add arguments
according to the same pattern. But if we introduce a type error, even
an obvious one like an extra argument nonlinear2 uf uf id id id, then
by the time we reach the 14-argument function nonlinear7 it takes
87,000 subtyping (≦) calls and 49 seconds to reject the program.
This is a contrived example, and I have not yet found a real example
that makes typechecking unacceptably slow.

Note that intersection types make these systems PSPACE-hard
(Reynolds 1996), even if parametric polymorphism is never used,
and typechecking can be very slow when intersections and unions
are used extensively (Dunfield 2007a).

7. Related Work

For impredicative System F without annotations, type inference is
undecidable (Wells 1999); it becomes decidable if quantifiers are
restricted to rank 2 or less (Kfoury and Wells 1994).

Peyton Jones et al. (2007) developed a bidirectional system that
supports arbitrary-rank, but predicative, polymorphism (quantifiers
can appear anywhere in types, but polymorphic instances must be
monotypes). Their system does not support subtyping, except for
“at least as polymorphic as” subtyping (which we write as ≦).

My bidirectional systems are strictly weaker than Damas-
Milner: they require annotations on redexes (though that require-
ment could be weakened by adding synthesis rules for some syn-
tactic forms), and don’t manufacture quantifiers by generalizing
type variables. MLF (Le Botlan and Rémy 2003), a type infer-
ence system in the Damas-Milner tradition, supports impredicative
polymorphism, with annotations needed only for impredicative in-

stantiations (similar to my predicative completeness). MLF is more
powerful than my systems, but appears substantially more compli-
cated, even in its revised form (Rémy and Yakobowski 2008).

HML (Leijen 2009) extends Damas-Milner and has similar
goals to MLF. HML infers flexible types, polymorphic types that
are bounded below, as ∀(β ≥ ∀α. α→α). β → β. HML requires
annotations only on polymorphic arguments, and is a good deal
simpler than MLF. It is robust under many simple transformations,
such as revapp e2 e1 in place of e1 e2 (where revapp has type

∀α, β. α → (α→β) → β). In contrast, System Biα̂ is sensitive to
the ordering of terms when impredicative polymorphism is used;
in the failed derivation in Figure 8, swapping the arguments x and
y results in success.

In systems with subtyping, several approaches to inferring poly-
morphic instances have been presented.

In local type inference (Pierce and Turner 2000), instances are
found by computing upper and lower bounds on types, using infor-
mation propagated locally within the program.

Colored local type inference (Odersky et al. 2001) is akin to
Pierce and Turner’s approach, but also allows different parts of type
expressions to be propagated in different directions. My approach
gets a similar effect by manipulating type expressions with α̂-
variables, which allows us to fix part of the type expression (the
part that is not α̂) while α̂ remains flexible.

Davies’ Refinement ML (Davies 2005), an extension of Stan-
dard ML with intersection types and subtyping, has a refinement
restriction: the intersection A ∧ B can be formed only if A and B
are refinements (subtypes) of the same simple type. It is thus possi-
ble in his setting to do ordinary Damas-Milner SML type inference
to find simple-type instances of polymorphic variables. In his sys-
tem, there are only finitely many subtypes of a given simple type,
so the one that will make typechecking succeed can be found (in
theory, and often in practice), by exhaustive search.

8. Conclusion

I have presented a new approach to inferring polymorphic instances
in a bidirectional setting. This paper applies this approach to first-
class polymorphism, without subtyping. At first, my goal was sim-
ply to add parametric polymorphism to the type systems described
in my dissertation—the application to first-class polymorphism

was a pleasant surprise. System Biα̂ is a “light” version of a rich

System Bi≤α̂ with subtyping, intersection, and union types. As de-
scribing both systems would be (or, shall we say, was) on the long
side for a conference, I intend to write a journal article; in the mean-
time, see Dunfield (2009).

The type systems in this paper might seem odd at first. System Biα̂,
which is not inherently exotic—it lacks intersections and unions—
looks quite different from previous approaches to first-class poly-
morphism. Even those that use bidirectionality, such as Peyton
Jones et al. (2007), are rooted in the Damas-Milner inference tra-
dition. My work here is rooted elsewhere (Dunfield and Pfenning
2004). I attribute the virtues of my work to the essential simplicity
of bidirectional typechecking.

The systems in this paper, like those in its immediate ancestors
(my dissertation and the works of Xi, Davies, Pfenning), are meant
for typechecking, not elaboration/compilation: they do not insert
explicit polymorphic abstractions and applications. Reformulating

System Biα̂ in an elaboration style looks straightforward, though.
In addition to investigating elaboration and compilation, I plan

to extend this work to GADTs. With bidirectionality and existential
type variables, I expect this to be relatively easy.

To designers of languages and type systems, consider bidirec-
tional typechecking; as your type system becomes more powerful,
you will likely outgrow Damas-Milner inference, and making it
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bidirectional from the beginning should lead to a cleaner and more
logical system than what you get after retrofitting bidirectionality.
If you don’t need subtyping, polymorphism is nearly free with your
purchase of bidirectionality; if you do need subtyping, polymor-
phism is nearly free with your purchase of intersections and unions
(stay tuned).
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Appendix: Decidability, Soundness, Completeness

Lemma 11 (Well-Formedness) Proof. By induction on D. In the
6 rules that introduce existential solutions, the well-formedness of
the solution is either explicit (α̂=L≦, α̂=R≦) or is evident from the
context (→Iα̂, →Eα̂, →α̂L≦, →α̂R≦).

Theorem 14 Proof. By induction on the given derivation. We show
the ∀E case. Let ΓHH = (ΓH, hint(Γ ⊢A ′)). By IH, ΓHH, Γ

′
H, Γ ⊢

e ⇑ ∀α. A ⊣ ΓHH, Γ . By Corollary 8, (Γ ⊢A ′) . (ΓH, Γ ⊢ A ′).
Finally, by ∀E-hint, ΓHH, Γ

′
H, Γ ⊢ e ⇑ [A ′/α]A ⊣ ΓH, Γ , which

is ΓH, hint(Γ ⊢A ′), Γ ′
H, Γ ⊢ e ⇑ [A ′/α]A ⊣ ΓH, Γ , which was to

be shown.

Corollary 15 Proof. By Theorem 14, ΓH ⊢ e ⇓ A ⊣ · where ΓH
consists of n hints. The result follows by applying the hint rule n
times.

Definition 18 (Ordering of subtyping judgments).
Given J1 = Γ1 ⊢ A1 ≦ B1 ⊣ . . .

and J2 = Γ2 ⊢ A2 ≦ B2 ⊣ . . . ,
the order ≺ is defined lexicographically by

(1) the numbers of hints in Γ1 and in Γ2, under <;

(2) if B1 = B2 and Γ1 = Γ2, the angst of A1 versus A2; or, if
A1 = A2 and Γ1 = Γ2, the angst of B1 versus B2;

(3) {A1, B1} ≺ {A2, B2};

(4) A1 = A2 and B1 = B2 where all existential variables in
A1(= A2) are solved in Γ1 but not in Γ2; or, the same, swapping
B1 and B2 for A1 and A2.
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Definition 19 (Ordering of typing judgments).
Given J1 = Γ1 ⊢ e1 ⇑/⇓ C1 ⊣ Γ ′

1

and J2 = Γ2 ⊢ e2 ⇑/⇓ C2 ⊣ Γ ′
2 ,

we define J1 � J2 by the lexicographic ordering of:

(1) e1 and e2 (subterm ordering);

(2) the directions, considering ⇑ smaller than ⇓;

(3a) If both are checking judgments:

(i) C1 � C2;

(ii) Γ1 = Γ2 and C1 has less angst then C2; or

(iii) all α̂-variables in C1(= C2) are solved in Γ1 but not in Γ2.

(3b) If both are synthesis judgments:

(i) the number of hints in Γ ′
1 versus Γ ′

2 ; if equal,

(ii) C2 � C1;

(iii) C2 has less angst with respect to Γ ′
2 than C1 w.r.t. Γ ′

1 .

Theorem (Decidability of Subtyping and Contextual Matching).
Given Γ , A, and B, the existence of Γ ′ such that Γ ⊢ A ≦ B ⊣ Γ ′

in System Biα̂ is decidable. Moreover, given Γ0, A0 and Γ , the
existence of A such that (Γ ⊢ A0) . (Γ ⊢ A) is decidable.

Proof. By showing that the premises of each rule are smaller, under
the defined partial order, than the conclusion.

For contextual matching, the rule .-empty has no premises,
and the other rules make Γ0 shorter.

Theorem (Decidability of Typing). 1. Given Γ , e, and C, it is
decidable whether there exists Γ ′ such that Γ ⊢ e ⇓ C ⊣ Γ ′.
2. Given Γ and e it is decidable whether there exist Γ ′ and C such
that Γ ⊢ e ⇑ C ⊣ Γ ′.

Proof. We show that the premises of each rule are smaller, under
the defined partial order, than the conclusion. Note that in each rule,
we have enough information to apply the induction hypothesis for
each premise. For example, in →E, we have e = e1e2, giving us
an e1 for →E’s synthesizing premise; applying the IH there gives a
type for the second, checking, premise.

For anno, →I, →E, hint, →Eα̂, use part (1). For sub, use
part (2) and the previous theorem. For ∀E-hint, use part (3b)(i).
Contextual matching is decidable by the previous theorem.

For ∀I, use part (3a)(i); for ∀Eα̂, part (3b)(ii).
For ExSubst⇓ and ExSubst⇑, use parts (3a)(ii) and (3b)(iii)

respectively. For →Iα̂, use part (3a)(iii).

Theorem 13 (Soundness of System Biα̂).

Proof. Since Ω completes Γ ′, we have Ω ⊇ Γ ′: any variable α̂
that is solved in Γ ′ is also solved and [Ω]α̂ = [Ω][Γ ′]α̂. Moreover,
from Lemma 12, Γ ′ ⊇ Γ . Since ⊇ is a transitive relation, any α̂
solved in Γ is solved and has the same solution in Ω.

When applying the IH, we must ensure that the Ω and Γ ′ are
in sync. For example, in ∀I the output context in the subderivation
is Γ ′, α, ΓZ while the output context for the derivation is Γ ′. The
given Ω completes Γ ′, not Γ ′, α, ΓZ, so it must be extended: Add

solutions in ΓZ to Ω; for unsolved variables β̂, choose any well-
formed type B—1 is a good choice since it has no free type vari-

ables and is thus well-formed in every context—and add β̂=B to

Ω. This works because ∀I strips out all the declarations in ΓZ, so β̂
is about to leave this world unsolved, and therefore unconstrained.

In the ∀Eα̂ case, the IH gives [Ω]Γ ⊢ e ⇑ ∀α. [Ω]A. Since Ω
is solved, α̂=A ′ ∈ Ω, and by Lemma 11, Γ ⊢ A ′ wf. By Lemma
10, [Ω]Γ ⊢ [Ω]A ′ wf. By ∀E, [Ω]Γ ⊢ e ⇑ [[Ω]A ′/α]([Ω]A).
By a property of substitutions, [[Ω]A ′/α]([Ω]A) = [Ω][A ′/α]A,
giving the result.

In the ExSubst⇓ case, the IH yields [Ω]Γ ⊢ e ⇓ [Ω] Γ(α̂);
the variable α̂ cannot be free in Γ(α̂), and we earlier noted that

[Ω]α̂ = [Ω][Γ ]α̂), so in fact [Ω] Γ(α̂) = [Ω]Ω(α̂) = [Ω]α̂, giving
the result. ExSubst⇑ and ExSubst{L,R}≤ are similar.

In the →Iα̂ case, the IH gives [Ω]Γ, x:[Ω]α̂1 ⊢ e0 ⇓ [Ω]α̂2.
By →I, [Ω]Γ ⊢ λx. e0 ⇓ ([Ω]α̂1) → ([Ω]α̂2). The declaration
α̂=α̂1 → α̂2 is in Γ , so by Lemma 12 it is also in Ω. Thus, we have
. . . ⇓ [Ω]α̂, which was to be shown.

In the α̂=L≤ case, we have (α̂=B) ∈ Γ ′. By Lemma 12,
(α̂=B) ∈ Ω, so [Ω]α̂ = [Ω]B. The result follows by reflexivity
of ≦. The α̂=R≤ case is symmetric.

The →α̂L≤, →α̂R≤ cases use similar reasoning as the →Iα̂
case. The remaining cases are straightforward.

Theorem 17 (Predicative Completeness).

Proof. By induction on D. Note that the type C ′ in the consequent
is well-formed under Γ ′

2—and not necessarily under Γ ′
1 , as Γ ′

2 may
have existential type variables that Γ ′

1 does not.

• Case →≦: D ::

Γ ⊢ B1 ≦ A1 Γ ⊢ A2 ≦ B2

Γ ⊢ A1 → A2 ≦ B1 → B2

We know that [Ω]A ′ = A1 → A2. Either {→A ′ case} A ′ =
A ′

1 → A ′
2 (so [Ω]A ′ = [Ω]A ′

1 → [Ω]A ′
2 = A1 → A2)

or {α̂A ′ case} A ′ = α̂ (so [Ω]A ′ = [Ω]α̂). Similarly, we

distinguish {→B ′ case} and {β̂B ′ case} depending on whether

B ′ is B ′
1 → B ′

2 or β̂. (Note that possibly β̂ = α̂.)

{→A ′ and →B ′ case}:
By IH, Γ ′

1 ⊢ B ′
1 ≦ A ′

1 ⊣ Γ ′
2 , and again: Γ ′

2 ⊢ A ′
2 ≦ B ′

2 ⊣
Γ ′
3 . By →≦, Γ ′

1 ⊢ A ′
1 → A ′

2 ≦ B ′
1 → B ′

2 ⊣ Γ ′
3 .

{α̂A ′ and →B ′ case}:
Γ ′
1 ⊢ A ′

1 → A ′
2 ≦ B ′

1 → B ′
2 ⊣ Γ ′

3 As preceding case

If Γ ′
1 includes a solution for α̂, then:

Z Γ ′
1 ⊢ α̂ ≦ B ′

1 → B ′
2 ⊣ Γ ′

3 By ExSubstL≦
Otherwise, Γ ′

1 does not include a solution for α̂. Ω(α̂) =
[Ω]A ′ = A1 → A2 must have the form α̂1 → α̂2, be-
cause Ω is predicative and articulated. We assumed that Γ ′

1

does not include a solution for α̂, so Γ ′
1 = ΓL, α̂, ΓR. Let

Γ+ = ΓL, α̂1, α̂2, α̂=α̂1→α̂2, ΓR.

Γ+ ⊢ B ′
1 ≦ α̂1 ⊣ ΓM By IH on Γ ⊢ B1 ≦ A1,

taking ΓL, α̂1, α̂2, α̂=α̂1→α̂2 as Γ ′
1

ΓM ⊢ α̂2 ≦ B ′
2 ⊣ Γ ′

2 By IH

Γ+ ⊢ α̂1 → α̂2 ≦ B ′
1 → B ′

2 ⊣ Γ ′
2 By →≦

Γ+ ⊢ α̂ ≦ B ′
1 → B ′

2 ⊣ Γ ′
2 By ExSubstL≦

Z Γ ′
1 ⊢ α̂ ≦ B ′

1 → B ′
2 ⊣ Γ ′

2 By →α̂L≦

{→A ′ and β̂B ′ case}: Symmetric to the previous.

{α̂A ′ and β̂B ′ case}: If either α̂ or β̂ is solved in Γ ′
1 , then

the solution in Γ ′
1 has an → at its head (since the solution

in Ω does). Using suitably articulated contexts, use the IH,
then use ExSubst and →α̂L≦ or →α̂R≦ as needed.

If neither is solved and α̂ = β̂, then the result follows by

α̂Refl≦. Otherwise, neither is solved and α̂ 6= β̂. So add a

solution for whichever of α̂ and β̂ is declared last in Γ ′
1 . Sup-

pose without loss of generality that Γ ′
1 = ΓL, α̂, ΓC, β̂, ΓR.

Γ ′
1 ⊢ α̂ ≦ β̂ ⊣ ΓL, α̂, ΓC, β̂=α̂, ΓR By α̂=R≦

To show that applying Ω to the output context yields Ω,

note that because Ω is predicative, [Ω]α̂ and [Ω]β̂ are

monomorphic. We have Γ ⊢ [Ω]α̂ ≦ [Ω]β̂, so by Lemma

16, [Ω]α̂ = [Ω]β̂. Thus, α̂ and β̂ have the same so-

lution in Ω: the solution β̂=α̂ is consistent with Ω, so

[Ω](ΓL, α̂, ΓC, β̂=α̂, ΓR) = Ω.

• Case αRefl≦: We have α = [Ω]A ′ = [Ω]B ′. The types A ′

and B ′ can each be α or various existential variables.
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If A ′ = B ′ = α, the result follows by αRefl≦, giving Γ ′
1 ⊢

α ≦ α ⊣ Γ ′
1 .

If A ′ = α and B ′ is some solved β̂, the result follows by
αRefl≦, yielding Γ ′

1 ⊢ α ≦ α ⊢ Γ ′
1 then ExSubstR≦ for

Γ ′
1 ⊢ α ≦ β̂ ⊣ Γ ′

1 .

If β̂ is unsolved: β̂ is well-formed in Γ ′
1 , so Γ ′

1 = ΓL, β̂, ΓR.

Applying α̂=R≦ gives ΓL, β̂, ΓR ⊢ α ≦ β̂ ⊣ ΓL, β̂=α, ΓR.

Let Γ ′
2 = ΓL, β̂=α, ΓR. Substituting gives Γ ′

1 ⊢ α ≦ β̂ ⊣ Γ ′
2 ,

which was to be shown.
The subcases where B ′ = α and A ′ is some solved β̂ are
symmetric to the last two.

If A ′ = γ̂ and B ′ = β̂, first apply αRefl≦, then:

If both are solved in Γ ′
1 , apply ExSubstL≦ then ExSubstR≦.

If only γ̂ is solved, apply ExSubstL≦ then α̂=R≦.

If only β̂ is solved, apply ExSubstR≦ then α̂=L≦.

If neither is solved: Both γ̂ and β̂ are well-formed under Γ ′
1 .

Either γ̂ comes first or β̂ comes first. Suppose β̂ comes first.

Then α̂=L≦ gives Γ ′
1 ⊢ γ̂ ≦ β̂ ⊣ . . . , α̂=β̂, . . ..

• Case 1≦: Similar to the previous case.

• Case ∀L≦: D ::

Γ ⊢ [C/α]A0 ≦ B Γ ⊢ C wf

Γ ⊢ ∀α. A0 ≦ B

We know that [Ω]A ′ = ∀α. A0. Either {∀A ′ case} A ′ =
∀α. A ′

0, so [Ω]A ′ = ∀α. [Ω]A ′
0, or {γ̂A case} A ′ = γ̂ so

[Ω]γ̂ = ∀α. . . . , which is impossible by the assumption that Ω
is predicative.

{∀A ′ case}: Choose a fresh α̂. Let Ω ′ = Artic(α̂=C).
A0 = [Ω]A ′

0 Above
[C/α]A0 = [C/α][Ω]A ′

0 Applying [C/α]
= [Ω]([C/α]A ′

0) Permutation
= [Ω]([C/α̂][α̂/α]A ′

0) α̂ fresh
= [Ω,Artic(α̂=C)][α̂/α]A ′

0 Defs. of artic., subst.
= [Ω,Ω ′][α̂/α]A ′

0 Def. of Ω ′ above

So [C/α]A0 = [Ω,Ω ′]([α̂/α]A ′
0).

Γ ′
1 ,◭α̂, α̂ ⊢ [α̂/α]A ′

0 ≦ B ′ ⊣ ΓR By IH w/ (Ω,Ω ′)

ΓR = Γ ′
2 ,◭α̂, ΓZ By Lemma 12

Z Γ ′
1 ⊢ ∀α. A ′ ≦ B ′ ⊣ Γ ′

2 By ∀Lα̂≦

• Case ∀R≦: D ::

Γ, β ⊢ A ≦ B0

Γ ⊢ A ≦ ∀β. B0

We know that [Ω]B ′ = ∀β.B0. Either {∀B ′ case} B ′ = ∀β.B ′
0

(so [Ω]B ′ = ∀β. [Ω]B ′
0) or {γ̂B case} B ′ = γ̂.

{∀B ′ case}:
Γ ′
1 , β ⊢ A ′ ≦ B ′ ⊣ Γ ′′

2 By IH

Γ ′′
2 = Γ ′

2 , β, ΓZ By Γ ′′
2

= Γ (by Lemma 12)

Z Γ ′
1 ⊢ A ′ ≦ ∀β. B ′

1 ⊣ Γ ′
2 By ∀R≦

{γ̂B ′ case}: Applying Ω to B ′ = γ̂ gives [Ω]B ′ = [Ω]γ̂,
which is equal to Ω(γ̂). But since [Ω]B ′ = ∀β.B0, we have
Ω(γ̂) = ∀β. B0, which contradicts our assumption that Ω
is predicative: this case is impossible.

• Case var: Γ = [Ω]Γ ′
1 . Therefore Γ(x) = [Ω](Γ ′

1(x)). So
Γ ′
1(x) = A ′ where [Ω]A ′ = A. The result, Γ ′

1 ⊢ x ⇑ A ′ ⊣
Γ ′
1 , follows by var.

• Case sub: D ::

Γ ⊢ e ⇑ B Γ ⊢ B ≦ A

Γ ⊢ e ⇓ A

By IH, Γ ′
1 ⊢ e ⇑ B ′ ⊣ ΓM where [Ω]B ′ = B. We have

[Ω]A ′ = A. By IH, ΓM ⊢ B ′ ≦ A ′ ⊣ Γ ′
2 . Then use sub.

• Case anno: D ::

N . (Γ ⊢ A) Γ ⊢ e ⇓ A

Γ ⊢ (e : N) ⇑ A

The result follows by the IH and anno. (The . premise of anno

in System Biα̂ does not involve existential contexts.)

• Case →I: D ::

Γ, x:A1 ⊢ e ⇓ A2

Γ ⊢ λx. e ⇓ A1 → A2

If A ′ = A ′
1 → A ′

2 (with [Ω]A ′
1 = A1 and [Ω]A ′

2 = A2):
The IH gives Γ ′

1 , x:A
′
1 ⊢ e ⇓ A ′

2 ⊣ ΓM. By Lemma 5,

ΓM = Γ ′
1

; then, by Lemma 6, ΓM = Γ ′
2 , x:A

′
1, ΓR. Applying

→I gives Γ ′
1 ⊢ λx. e ⇓ A ′

1 → A ′
2 ⊣ Γ ′

2 , which was to be
shown.

Otherwise, A ′ = α̂ and Ω(α̂) = α̂1 → α̂2, where A1 =
[Ω]α̂1 and A2 = [Ω]α̂2.

{solved case}: α̂ solved in Γ ′
1 ; since Γ ′

1 is articulated,
α̂=α̂1 → α̂2 ∈ Γ ′

1 .
Γ ′
1 , x:α̂1 ⊢ e ⇓ α̂2 ⊣ Γ ′

2 , x:α̂1, ΓR By IH

Γ ′
1 ⊢ λx. e ⇓ α̂1 → α̂2 ⊣ Γ ′

2 By →I

Z Γ ′
1 ⊢ λx. e ⇓ α̂ ⊣ Γ ′

2 By ExSubst⇓

{not-solved case}: α̂ not solved in Γ ′
1 : decompose Γ ′

1 into
Γ11, α̂, Γ12. Let Γα = α̂1, α̂2, α̂=α̂1→α̂2.

Γ11, Γα, Γ12, x:α̂1 ⊢ e ⇓ α̂2 ⊣ ΓL, Γα, Γ12, x:α̂1, ΓR By IH

Γ11, Γα, Γ12 ⊢ λx. e ⇓ α̂1 → α̂2 ⊣ ΓL, Γα, Γ12 By →I

Γ11, Γα, Γ12 ⊢ λx. e ⇓ α̂ ⊣ ΓL, Γα, Γ12 By ExSubst⇓

Z Γ11, α̂, Γ12 ⊢ λx. e ⇓ α̂ ⊣ ΓL, Γα By →Iα̂

• Case →E: D ::

Γ ⊢ e1 ⇑ B → A Γ ⊢ e2 ⇓ B

Γ ⊢ e1 e2 ⇑ A

By IH, Γ ′
1 ⊢ e1 ⇑ C ′ ⊣ ΓM where [Ω]C ′ = B → A.

If C ′ = B ′ → A ′ then [Ω]B ′ = B and [Ω]A ′ = A. By IH,
ΓM ⊢ e2 ⇓ B ′ ⊣ Γ ′

2 . The result is by →E.

Otherwise, C ′ = α̂ and Ω(α̂) = α̂1 → α̂2. Since [Ω]C ′ =
B → A, we have [Ω]α̂1 = B and [Ω]α̂2 = A. The IH told
us that C ′ is well-formed under ΓM, so α̂ must be defined
within ΓM, that is, ΓM = ΓL, α̂, ΓR. So the IH really gave us
Γ ′
1 ⊢ e1 ⇑ α̂ ⊣ ΓL, α̂, ΓR. Applying the IH to Γ ⊢ e2 ⇓ B,

with ΓL, α̂1, α̂2, α̂=α̂1→α̂2, ΓR yields

ΓL, α̂1, α̂2, α̂=α̂1→α̂2, ΓR ⊢ e2 ⇓ α̂1 ⊣ Γ
′
2

Applying →Eα̂ gives Γ ′
1 ⊢ e1e2 ⇑ α̂2 ⊣ Γ ′

2 .

• Case 1I: Since A = 1, either A ′ = 1 and we just apply 1I, or
A ′ = α̂ where [Ω]α̂ = 1, and 1I, ExSubst⇓ give the result.

• Case ∀I: D ::

Γ, α ⊢ e ⇓ A0

Γ ⊢ e ⇓ ∀α. A0

A ′ is either ∀α. A ′
0 or β̂. But if A ′ = β̂ then [Ω]β̂ = ∀α. A0,

violating the assumption that Ω is predicative. Therefore A ′ =
∀α. A ′

0, and [Ω]A ′
0 = A0.

Γ ′
1 , α ⊢ e ⇓ A ′

0 ⊣ Γ ′
2 , α, ΓZ By IH

Z Γ ′
1 ⊢ e ⇓ ∀α. A ′

0 ⊣ Γ ′
2 By ∀I

• Case ∀E: D ::

Γ ⊢ e ⇑ ∀α. A0 Γ ⊢ B wf

Γ ⊢ e ⇑ [B/α]A0

Let Ω ′ = Artic(α̂=B). By IH with (Ω,Ω ′), we have
Γ ′
1 ⊢ e ⇑ A ′ ⊣ Γ ′

2 where [Ω,Ω ′]A ′ = ∀α. A0. Since Ω is
predicative, A ′ must have the form ∀α. A ′

0 where
[Ω]A ′

0 = A0. By ∀Eα̂, Γ ′
1 ⊢ e ⇑ [α̂/α]A ′

0 ⊣ Γ ′
2 , α̂. The

context Ω,Ω ′ includes the articulation of α̂=B, so
[Ω,Ω ′]α̂ = B. Then [Ω,Ω ′][α̂/α]A ′

0 = [B/α]A0.

26


	Introduction
	System Bi
	Contextual annotations
	The metatheory of System Bi

	System Bi"0362: Explicit Existential Variables
	Hints
	Typing and subtyping rules
	Contextual subtyping rules
	Preliminaries
	Decidability
	Soundness of System Bi"0362
	Completeness of System Bi"0362
	Impredicative incompleteness
	Hinted completeness
	Predicative completeness


	Datatypes
	Subtyping with Intersection and Union Types
	Implementation
	Complexity of typechecking

	Related Work
	Conclusion

