Refined Typechecking with Stardust

Jana Dunfield
Carnegie Mellon University*
Pittsburgh, PA, USA

Abstract
We present Stardust, an implementation of a type system for a subset of ML with type refinements, intersection types, and union types, enabling programmers to legibly specify certain classes of program invariants that are verified at compile time. This is the first implementation of unrestricted intersection and union types in a mainstream functional programming setting, as well as the first implementation of a system with both datasort and index refinements. The system—with the assistance of external constraint solvers—supports integer, Boolean and dimensional index refinements; we apply both value refinements (to check red-black tree invariants) and invaluable refinements (to check dimensional consistency). While typechecking with intersection and union types is intrinsically complex, our experience so far suggests that it can be practical in many instances.

Categories and Subject Descriptors D.1.1 [Programming Techniques]: Applicative (Functional) Programming; D.2.4 [Software Engineering]: Software/Program Verification

1. Introduction
Compile-time typechecking in statically typed languages such as ML, Haskell, and Java catches many mistakes: “well typed programs cannot ‘go wrong’” [Milner 1978]. However, many programs have bugs (do not behave as intended) yet do not actually “go wrong” in the operational semantics. Adding two floating point values, where one represents a length and another a mass, is nonsensical yet permitted, as is building a red-black tree in which a red node has a red child. While one can often change data representation to allow verification of such invariants in conventional type systems—by wrapping the floating point value with a “dimension tag”, splitting the red-black tree datatype into two variants, adding a “phantom” type argument, and so on—programs become less efficient or, more importantly, less readable. Heavyweight approaches based on theorem proving may avoid those defects, but less efficient or, more importantly, less readable. Heavyweight approaches based on theorem proving may avoid those defects, but

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

PLPV '07 October 5, 2007, Freiburg, Germany
Copyright © 2007 ACM 978-1-59593-677-6/07/0010... $5.00

• datasort refinements (also called refinement types) [Davies and Pfenning 2000; Davies 2005] and index refinements (so-called limited dependent types) [Xi and Pfenning 1998; Xi 1998] for atomic properties of data structures;
• intersection types and union types that combine properties by conjunction and disjunction, respectively [Davies and Pfenning 2000; Dunfield and Pfenning 2004].

Datasort and index refinements express properties of algebraic datatypes: in red-black trees, datasort refinements can distinguish empty from non-empty trees, and red nodes from black nodes; integer index refinements encode the black height of trees, a natural number. We also apply index refinements to base types: integers are indexed by themselves (a singleton type); floats are indexed by the associated dimensional unit (e.g. meters squared).

Our setting is a subset of core Standard ML with datasort and index refinements, intersection types, union types, and universal and existential index quantification. The type system is closely based on previous work [Dunfield and Pfenning 2003; 2004], though we incorporate a further development, let-normal typechecking, described only briefly here, which makes the earlier work’s problematic union-elimination rule practical. This paper focuses on the type system from a user’s perspective only; on the structure of the typechecker; and on examples with datasort refinements, integer index refinements, and dimension index refinements.

Intersection types have rarely been exposed to users, with the significant exception of datasort refinement systems (Freeman and Pfenning 1991; Davies and Pfenning 2000; Dunfield and Pfenning 2003; 2004). True union types (that is, untagged union types) are rarer still; we draw heavily on our previous work as well as our unpublished work [Dunfield 2007, Ch. 5] on let-normal typechecking.

Dimension (units of measure) checking is not a new idea, but its encoding as an index domain is elegant and goes beyond the old line of index refinement researchers that your index refinement typechecker comes with any domain you want, as long as it’s integers. It also provides a nice example of what we call invaluable refinements, which are not based on values.

The typechecker delegates much of the work of constraint solving in the index domains; the system presently has interfaces to ICS and CVC Lite. As the power and range of such tools grows, the typechecker’s power can grow with relatively little effort.

Section 3 describes our subset of Standard ML, called StardustML. Section 5 explains our property type system. Sections 4 and 6 formulate the central index domains: integers and dimensions, presenting example programs in each. Section 7 outlines the design of the typechecking system and Section 8 discusses its performance. Finally, we discuss related work and conclude.

2. The StardustML language
Except at the type level, StardustML is a subset of core (module-free) Standard ML [Milner et al. 1997]. A StardustML program

* Current affiliation: McGill University, Montreal, Canada.
3. The Stardust properties type system

In addition to a subset of SML types, Stardust supports the full set of property types from [Dunfield and Pfennig 2004], as well as guarded and asserting types (inspired by [Xi 2004]).

3.1 Tridirectional typechecking

Stardust is based on tridirectional typechecking (Dunfield and Pfennig 2004), which is a form of bidirectional typechecking. The type of an expression is variously synthesized or checked. In this particular formulation of bidirectionality, introduction forms such as fn and tuples are classified as checking forms, while elimination forms such as $e_1(e_2)$ are classified as synthesizing forms.

Type annotations are needed precisely where a checking form is used in a synthesizing position. For example, in the function application $e_1(e_2)$, the function e_1 is in a synthesizing position, while e_2 is in a checking position. Hence, the expression $(fn \ x \Rightarrow \ y)$ needs an annotation around the fn subexpression. In contrast, $map(fn \ x \Rightarrow x\ +\ 1)$ needs no annotation because the fn is in a checking position. In practice, annotations seem to be rare except for function declarations, where they are mandatory.

3.2 Atomic refinements

The basic level of properties is provided by datasort and index expressions. The former, also known as refinement types, are similar to Refinement ML [Davies 2004]: an ML-style (that is, algebraic) datatype is refined (or inductively defined) by a set of datasorts organized into an inclusion hierarchy: for example, odd- and even-length lists, or inductively defined bitstrings (1) with no leading zeroes (std), or (2) with no leading zeroes and also not the empty bitstring (pos).

Our second variant of atomic refinement, the index refinement, is very similar to DML [Xi 1998]. It is a markedly limited form of dependent type, over a decidable constraint domain. As expressions have types, indices have index sorts. Following DML, the type t with index i is written t(i): so, indexing lists by their length, $[5, 6]$ has type list(2). In addition to ML datatypes, primitive types such as integers and reals can be refined. As in DML, we index integers by their values, so 3 has type int(3); the index refinement serves as a singleton type. On the other hand, we index the ML floating-point type real by a dimension. Thus, real(M^2) is the type of areas expressed in square meters.

Datasort and index refinements can be combined, as in the red-black tree examples below.

3.3 Combining properties

Stardust provides several means of combining properties expressed through atomic refinement. Intersection types & express conjunction: $v : \ A \ & \ B$ says that $v : \ A$ and $v : \ B$. Likewise, union types disjunction: $v : \ A \ \lor \ B$ says that $v : \ A$ or $v : \ B$ (or possibly both). The types $-all \ id \ [, \ id^*] : sort- \ text{and} \ & \ exists \ id \ [, \ id^*] : sort- \ text{and}$ quantify over indices. Several of these are combined in the following ‘increment’ function on bitstrings. Its type annotation says that inc is a function that, for all natural numbers len and value, takes bitstrings in standard form (no leading zeroes) of length len and value value and returns a positive (in standard form, and nonzero) bitstring of the same length and value value + 1, the input value, or else (\lor) a positive bitstring of length len + 1 and value value + 1. Moreover, it also has (\exists) a similar property when given a bitstring in a possibly-nonstandard form (bits).

\[
\begin{align*}
\text{fun inc n = case n of} \ E & \Rightarrow \text{One E} \\
| \text{Zero n} & \Rightarrow \text{One n} \\
| \text{One n} & \Rightarrow \text{Zero (inc n)}
\end{align*}
\]

In defining the type of the built-in function *, we use asserting and guarded types. The asserting type $[P] A$ is like A but allows that the index-level proposition P holds. The guarded type $(P) A$ is equivalent to A provided that P holds, and useless otherwise (as a “top” type would be). Thus, we can express that if both arguments to * are nonnegative, the result is as well:

\[
\begin{align*}
\text{primitive val * :} \\
& \begin{cases} \\
\text{(all a,b:int- int(a) * int(b) \rightarrow int(a * b))} \\
& \text{& (all a,b:int- (a >= 0 \text{ and b >= 0}) int(a) * int(b) \rightarrow \text{--exists c : int- c >= 0}) int(c)} \\
& \text{& (all d1,d2:dim- \text{ real(d1) * real(d2) \rightarrow real(d1+d2))}}
\end{cases}
\end{align*}
\]

When the type is index-refined but the index expression is omitted, as when list, int or real appears alone, the type is interpreted in one of two ways. For most types, such as list and int, an existential quantifier is added: int becomes $\exists int(a)$; list becomes $\exists int(a)$; and value $\exists\text{int(c)}$. However, this does not work well for real: quantities of type $\exists d : \text{dim- real(d)}$ are quite useless since they cannot be added, subtracted, or converted to a quantity of known dimension. Therefore, for real we define a default index, the special “no dimension” index NODIM. Data in existing code is thus interpreted as...
4. The integer index domain

The type system underlying Stardust is, like that of DML [X1998], parametric in the index domain. Stardust supports two major index domains: integers and dimensions. The integer domain, described in this section, was implemented in DML; applying index refinements to dimension types, discussed in Section 6, is novel.

We write int for the index sort of integers. The constants are \ldots, -1, 0, 1, \ldots. The functions are +, -, and *. The predicates are <, <=, =, <>, =>, >. Nonlinear expressions such as a * b are not allowed, making the resulting constraints decidable.

The integer sort refines the base type int. This is a mismatch, since int is a finite type of integers. However, SML integer arithmetic operations must raise an exception on overflow, so the results of such operations will have the values their integer indices claim they do; if \(x = 5 \) then \(x + 1 = 6 \) as claimed, while if \(x = \text{maxInt} \) then \(x + 1 \) raises an exception—no harm done.

4.1 Natural numbers

The natural numbers are defined by a subset sort:

\[
\text{inexsosrt nat } = \{a \text{ : int } | \text{ a } \geq 0\}
\]

Stardust replaces subset sorts by guarded and asserting types:

\[
- \text{all } a \text{ : int } - \text{ exists } [\ldots] \text{ * } \forall
\]

Thus, \(-\text{all } a \text{ : int } - A \rightarrow \text{list}(a) \& B \rightarrow \text{list}(a + 1)\) is equivalent to \(-\text{all } a \text{ : int } - ((A \rightarrow \text{list}(a)) \& (B \rightarrow \text{list}(a + 1)))\).

A program begins with datatype declarations, each of which can begin with a bracketed refinement declaration comprised of datacon declarations and an index sort specification, e.g. datatype dict with nat. Datatypes are specified by a “kernel” of the subset relation—a set of pairs—of which the system takes the reflexive-transitive closure. For an example of both of these, discussed in Section 4.2, see Figures 2 and 3.

4.2 Example: Red-black tree insertion

Red-black trees are a good example of dataset and index refinements in combination. In this example, we fix the key type to be int, and we have no associated record component, so that a dict represents a set of integers rather than a map from integers to some other type. Since our refinements will be concerned with the structure of the trees rather than the integers contained—we will not try to guarantee an order invariant, for example—having a set rather than a map does not detract from the example.

\[\text{dict} \quad \text{badLeft} \quad \text{badRoot} \quad \text{badRight} \quad \text{rbt} \quad \text{red} \quad \text{black}\]

Figure 2. Subsort relation used in Figure 3

Red-black trees must satisfy three invariants: (1) For every non-empty node containing a key \(k \), every key in its left child is less than \(k \) and every key in its right child is greater than \(k \); (2) The children of a red node are black (color invariant); (3) Every path from the root to a leaf has the same number of black nodes, called the black height of the tree. Any tree satisfying these invariants is balanced: the height of a tree containing \(n \) non-Empty nodes is at most \(2 \log_2(n + 1) \) [Cormen et al. 1994, p. 264]. Invariant 2 is concerned with color, and the colors of a dataset form a small finite set, so it is a suitable candidate for a dataset refinement. Invariant 3 involves node color, but also black height, which is a natural number and therefore suitable for index refinement.

We begin with a dataset \(\text{rbt} \) of “proper” red-black trees, which satisfy invariants 2 and 3, red and black are subsorts of rbt, representing proper red-black trees with a root node of the specified color.

But it is not quite enough to distinguish trees that satisfy all the invariants (rbt) from those that might not satisfy the color invariant (dict); if we know something is a dict we know nothing about where the color violation occurs. So we add datasets \(\text{badRoot}, \text{badLeft} \) and \(\text{badRight} \) for possible color violations at the root (the root is red and some child is red), at the left child (the left child...
is red and one of its children is red), and at the right child. The
"good" datasets rbt, red, black are subsorts of the "bad" datasets
badR, etc.: the "bad" datasets represent not that the color
invariant is violated, but that it may be violated. See Figure 3.

We save space, we exclude the restore_left function (which
is symmetric to restore_right) and the insert function; the full
element is available at http://type-refinements.info/
stardust/plpv/redblack-full.rml

4.2 Related work
Our combination of refinements for red-black tree insertion is new,
but the application of datasort and index refinements individually is
not. In fact, Figure 3 is based on code from Davies’ thesis (Davies
2005, pp. 277–279). Moreover, the black height refinement is not
new either (Xia 1998, pp. 161–165). Xia also guarantees the color
invariant, but by refining the tree datatype by the index product
int + int* int, representing the color, black height, and “red height”
respectively. 0 in the first component means red and 1 means black,
with an existential quantifier used if the color is not known. The so-
called “red height” is not analogous to the black height, but instead
counts the consecutive red nodes, and is 0 if there are none, i.e. if
the color invariant is satisfied. The resulting types are awkward and
substantially less legible than ours.

Other type-level programming techniques have been applied to
check red-black tree invariants, relying on phantom and existential
types (Kahrs 2001). In our opinion, such approaches are even more
awkward than Xi’s color-encoding, and require major changes to
the basic tree datatype and code.

4.3 Example: Red-black tree deletion
As just discussed, others have studied refinements for red-black
tree insertion. Deletion is another matter. Though more compli-
cated than insertion, deletion in an imperative style can be cooked
up easily from standard sources; purely functional deletion cannot
(unlike insertion, it is not treated by Okasaki (1998)). However,
there are implementations, such as the RedBlackMapFn struc-
ture in the Standard ML of New Jersey library. We easily trans-
lated RedBlackMapFn into StardustML. Finding appropriate re-
finements and invariants was more difficult, and not made easier by
several lacunae in the original code, including two bugs leading to a
violated color invariant in the tree returned by the delete function.
However, we eventually succeeded, resulting in an implementation
that satisfies invariants (1)–(3) (see the previous section).

The key data structure is the zipper, which represents a tree
with a hole, backwards, allowing easy traversal toward the tree’s
root. This corresponds to the series of rotations and color changes
that may be required after deleting a node. The function zip takes
a zipper and a tree and plugs the tree into the zipper’s hole. The
TOP constructor (Figure 4, bottom) represents a zipper consisting
of just a hole; the LEFT and RIGHT constructors represent the edge
from a left child to a Black or Red node, respectively. The RIGHT
and RIGHT constructors are symmetric. The examples in Figure 4
should clarify the constructors’ meaning.

We refine zippers by a datasort and two integer indices.

4.3.1 Datasort refinement of zipper
The datasort encodes two properties: the color of the hole’s par-
ent and the color of the root of the result of zip(z, t). If a zipper
has datasort blackZipper, the root (of the zipper, that is, the parent
of the hole) is black and can therefore tolerate black trees as well
as red; thus, all values LEFTB(...) and RIGHTB(...) have datas-
sort blackZipper. If a zipper z has datasort BRZipper (for “Black
Root zipper”), the resulting zipped tree zip(z, t) will have a black
root and thus have datasort black; all zippers having the form

0 + 4
If the node containing \(x \) is red, its right child cannot be Red (color invariant), nor can it be Black (its left child is empty—black height \(0 \)—so its right child must also have black height \(0 \), but any Black-rooted tree has black height at least 1). So the right child must also be empty.

Deleting a red node does not change any black heights, so the black height invariant is preserved; the only change needed is to substitute \(x \) for \(k \).

If the node containing \(x \) is black, its right child cannot be Black (by similar reasoning to the red case). However, its right child could be Red if \(y \), Empty, Empty), in which case we can just replace \(x \) with \(y \)—keeping the node containing \(x \) black—which preserves black height. The hard case is when both children of the node containing \(x \) are empty: merely deleting that node means that its parent will have a left subtree of black height \(0 \) and a right subtree of black height \(1 \), which is inconsistent. This is called a black deficit. We can try to fix it by calling \(\text{bbZip} \), which moves up the tree towards the root, performing rotations and color changes. While this process will always yield a valid subtree that satisfies the black height invariant (and of course the color invariant), it may not actually “fix the deficit”; the resulting subtree may still have a black height that is one less than before. If that occurs—signalled by \(\text{bbZip} \) returning \((\text{true}, t)\)—we call \(\text{bbZip} \) again, continuing the rotations and color changes upward past the node that used to contain \(k \) (and now contains \(x \)). Otherwise, all the invariants have been fixed, and we need only replace \(k \) with \(x \) and call \(\text{zip} \).

4.3.4 The \(\text{zip} \) function

The index refinement (at the start of Figure 5) is plain: a zipper that yields a tree of black height \(h_z \) when zipped with a tree of black height \(h \), when zipped with such a tree, yields a tree of black height \(h_z \) whose root regardless of the color of \(t \). After all, we refined the zipper datatype with the behavior of \(\text{zip} \) in mind.

The datasorts are less obvious. The first part of the intersection expresses the fact that if the parent of the zipper’s hole is black (\(\text{Black} \)) then replacing the hole with any valid tree (\(\text{rbt} \)) yields a valid tree. The second part says that if the parent of the hole is not known to be black, then only a black tree can be substituted, because the parent might be red and we cannot allow a color violation. The third part of the intersection says that, when a black \(\text{BBZip} \) zipper—a zipper with a black node as the parent of the hole and that, when zipped, yields a black-rooted tree—is zipped with any tree, a black-rooted tree results. The fourth says that when either a top \(\text{Zip} \) (such as \(\text{TOP} \)) or a bottom \(\text{Zip} \) (such as \(\text{BBZip} \)) is zipped with a black tree \(t \), a black tree results—if the zipper is \(\text{TOP} \), because the result consists of just \(t \), which is black; if the zipper is \(\text{BBZip} \), because the result has a black root regardless of the color of \(t \).

4.3.5 The \(\text{bbZip} \) function

\(\text{bbZip} \) is a recursive, zipper-based version of the pseudocode “RB-DELETE-FIXUP” ([Cormen et al. 1990, p. 274]). Each part of the intersection shares index refinements; we will look at the first, which has the simplest datasorts. Given a zipper that when zipped with a tree of black height \(h_z \), a tree of black height \(h_z \) (one less than \(h + 1 \), i.e., with a “black deficit”), \(\text{bbZip} \) returns either

- \((\text{true}, t)\) where \(t : \text{rbt}(h_z - 1) \) (that is, a \textit{valid} tree—with no internal black height mismatches—but with a black height one less than before), or
- \((\text{false}, t)\) where \(t : \text{rbt}(h_z) \), a valid tree with the same black height \(h_z \) as the original tree.

The second part of the intersection says that given a zipper that, when zipped with any tree, yields a tree with a black root, the resulting tree (whether of black height \(h_z - 1 \) or \(h_z \)) will have a black root. The third part of the intersection says that given a zipper that is either \(\text{TOP} \) or a \(\text{BBZip} \), and a black-rooted tree, the resulting tree must be black. This information is needed when we typecheck \(\text{delMin} \).

4.3.6 The \(\text{delMin} \) function

\(\text{delMin} \) returns the minimum key (an integer) in \(t \); it also returns \(t \) with the minimum removed. It calls \(\text{bbZip} \) to fix internal
fun zip arg = case arg of
 (TOP, t) ⇒ t
| (LEFTB(x, Red(y,c,d), z), a) ⇒ zip(z, Black(x, a, b))
| (RIGHTB(a, x, z as _), b) ⇒ zip(z, Black(x, a, b))
| (LEFTB(x, b, z), a) ⇒ zip(z, Red(x, a, b))
| (RIGHTB(Black(y,c,d),x,z), b) ⇒ zip(z, Red(x, a, b))

(* val (LEFTB(x, Black(w, Red(y,c,d),e), z), a) ⇒ zip(z, Red(x, a, b))

(* val bbZip : -all h, hz : nat- balancedTree (h+1, hz) * rbt(h) → rbt(hz)

(* val & RBrzipper(h+1,hz)*rbt(h) → (bool(true)*black(hz-1)) ∨ (bool(false)*black(hz-1))

(* val & topOrBR(h, hz) * black(hz) → (bool(true)*black(hz-1)) ∨ (bool(false)*black(hz))

(* val bbZip(z, Black(x, a, Red(y,c,d))) ⇒ (false, zip(z, Black(x, a, Red(y,c,d))))

(* val & topOrBR(h, hz) * black(hz) → (bool(true)*black(hz-1)) ∨ (bool(false)*black(hz))

(* val & blackBRzipper(h, hz) * rbt(h) → (bool(true)*rbt(hz-1))

(* val & black(hz) * rbt(hz) → (bool(true)*rbt(hz-1)) ∨ (bool(true)*black(hz-1))

(* val & topOrBR(h, hz) * black(hz) → (bool(true)*black(hz-1)) ∨ (bool(false)*black(hz))

(* val & BRzipper(h+1,hz)*rbt(h) → (bool(true)*rbt(hz-1)) ∨ (bool(true)*black(hz-1))

(* val & black(hz) * rbt(hz) → (bool(true)*rbt(hz-1)) ∨ (bool(true)*black(hz))

(* val & topOrBR(h, hz) * black(hz) → (bool(true)*black(hz-1)) ∨ (bool(false)*black(hz))

4.3.7 The functions joinRed and joinBlack

If one subtree (a or b) is empty, we simply zip up the tree (bbZip) with the other subtree; we can drop the first part of bbZip’s result—the flag indicating whether the black height has changed—because the zipper z goes all the way to the original root passed to delete, which has no siblings.

Otherwise, we call delMin, which returns a tree that may or may not have a deficit. If the returned flag is false, there is no deficit and we can zip up to the root. If the flag is true, there is a deficit, and we call bbZip—again, throwing away the resulting flag.

We hand-inlined joinRed’s call to delMin to make the color invariant work (if there is some refinement of delMin that does the job, it was not obvious to us). We removed several impossible “inlined” case arms, so this only slightly lengthened joinRed.

4.3.8 The delete function

delete and its helper del simply search for the key to delete, building a zipper, and call joinRed or joinBlack.

4.3.9 Library bugs

We found two clear bugs in the SML/NJ library; triggering either results in a tree with a red child of a red parent: that is, the color invariant is broken. These trees are still ordered, so searches succeed or fail as usual, and the failure of the color invariant does not seem to cause subsequent operations to produce disordered trees. Hence, the only calamity caused is that operations will take longer than they should. Since RedBlackMapFn makes the exported type opaque, client code cannot possibly detect the broken invariant. Thus, these bugs will not be found unless insertion and deletion are time-critical and someone is so stubborn as to actually investigate whether the operations are logarithmic. Moreover, runtime testing is not very helpful: traversing a tree to verify the invariant is linear time, so adding the tests to every operation makes those operations linear instead of logarithmic, defeating the purpose of a balanced tree. (We might dream up more clever tests that would add only constant overhead, but then we have to verify our cleverness.)

The first bug is in SML/NJ’s “4R” case in bbZip; upon inspection, something is obviously wrong because it is not symmetric to the “4L” case. We found this bug some time before we settled on the present refinement of zipper: we had only a dataset refinement on zipper, but even that, combined with reading each case closely, sufficed to lead us to this bug.

The second bug is in joinRed; if delMin returns with its first argument true, meaning that the result has a black deficit, the original code calls bbZip to fix the deficit; however, the tree passed to bbZip includes a red node with b’ as a child, but b’ may be red, leading to a color violation (which is not somehow fixed inside bbZip). We found this second bug much later than the first: we had settled on the index refinement of zipper and a nearly-final version of the dataset refinement. Once we became suspicious that b’ might not always be black, we looked for an input to delete that would trigger the bug; we found one, confirming that there was a bug and not simply a case of our refinements being too weak.

5. Booleans

If we consider index predicates such as > to be index functions, then a Boolean sort manifests itself immediately, as the range of such functions. The Boolean sort can also index the bool datatype. Such an indexing scheme is handy for specifying the result of certain functions. For example, we define the type of the ML function < to be -all a, b : int- int(a) + int(b) → bool(a < b).

As implemented, the Boolean sort has none of the usual Boolean operations such as conjunction (though that is already part of the constraint language).
6. Dimensions: an invaluable refinement

Dimensions are ubiquitous in physics and related disciplines. For example, the plausibility of engineering calculations can be checked by seeing whether the dimension of the result is the expected one. If one concludes that the work done by a physical process is $x \cdot (a_1 + a_2)$ where x is a distance and a_1, a_2 are masses, something is wrong. If, on the other hand, the conclusion has the form $x \cdot (n_1 + n_2)$ where n_1 and n_2 are forces, it is at least possible that the calculation is correct, work being a product of distance and force. Basic operations like addition are subject to sanity checking through dimensional analysis: one cannot add a distance to a force, and so forth. (Dimension refers to a quantity such as distance, mass or time; systems of units define base quantities for dimensions. For example, in civilized countries, the base unit of distance is the meter.)

The idea of trying to catch dimension errors in programs is old. Kennedy [1996] cites sources as early as 1978. Many dimension checking schemes were hamstrung by their lack of polymorphism: they could not universally quantify over dimension variables. For example, they could not express a suitably generic type for the square function \(\text{fn} x \Rightarrow x \times x \). Kennedy’s system, extending Standard ML, is an elegant formulation providing dimension polymorphism and user-definable dimensions. However, it is a substantial extension of the underlying type system, and is complicated by doing full inference rather than bidirectional checking. For us, dimensions are, formally, just another index domain; practically, the implementation work involved was modest (less than one person-week).

We refine the primitive type real of floating point numbers with a dimension. Certain quantities, including nonzero floating-point literals, are dimensionless and are indexed by NO DIM; however, the zero literal 0.0 has type \(-\, a : \text{dim} - \text{real}(a)\). Constants $M, S,$ and so forth have type \text{real}(M), \text{real}(S),$ etc. All these constants have the value 1.0, so $3.0 \times M$ has value 3.0.

In fact, the value produced by $3.0 \times M$ is equal to the values produced by 3.0, and to that produced by $3.0 \times S,$ and so on. Unlike the data structure refinements of Section 4, dimension refinements say virtually nothing about values! Zero is an exception to this: it appears that if $\vdash y : - \, a : \text{dim} - \text{real}(a)$ then $y = 0.0.$ However, for any $y : \text{real}(d)$ the set of possible values is exactly the same for every $d,$ as well as being the same set as the simple type real. After all, there should be no tag at runtime.

But what, then, do we actually learn when a program with dimension refinements passes the typechecker? With red-black tree refinements, one could prove that any value of type red must have the form $\text{Red}(...)$, but with dimensions there are few directly corresponding properties. Instead, being well typed means that subterms of dimension type are used in a consistent way. The user must make some initial claims about dimensions (otherwise everything will be dimensionless and nothing is gained), which cannot be checked, though we can check the consistency of their consequences. For example, the user must be free to multiply by constants such as $M,$ to assign dimensions to literals and to the results of functions like $\text{real} \cdot \text{fromString}.$ Given free access to those constants, for any known constant dimensions d_1 and $d_2,$ it is trivial to write the appropriate ‘coercion’, such as this one for converting M^2 to KG:

\[
(\text{val n}_2 _ \text{to} _ \text{kg} : \text{real}(M^2) \rightarrow \text{real}(\text{KG}) \text{)}^{\star})
\]

\text{fun n}_2 _ \text{to} _ \text{kg} x = (x / (M \times M)) \times \text{KG}

However, there is no ‘universal cast’ between arbitrary dimensions.

6.1 Definition of the index domain

The dimension sort dim has no predicates besides equality. NODIM stands for the multiplicative identity that indexes dimensionless
quantities. The constants are \(M, S, KG \), and any additional constants the user declares. The functions are multiplication \(*\), which takes two dimensions (e.g. \(M \times S \)), and \("\), which takes a dimension and an integer (e.g. \(M \cdot 3 \)). (One could also allow rational exponents; see [Kennedy (1996), p. 7] for a full discussion.)

6.2 Related work on dimension types in ML

We point out certain differences between Kennedy’s work on dimension types in ML and ours. [Kennedy (1996), p. 66] notes that the function power \(: \mathbb{N}^{\lor} \rightarrow \mathbb{R}^{\lor}, such that power \(n \times yields \(x^n\), cannot be typed in his system because it lacks dependently typed integers. With our integer index refinements, this is easy:

\[
\begin{align*}
(* [\text{val power} & : \mathbb{N} \rightarrow \mathbb{R} \rightarrow \mathbb{R}]) \\
\text{fun power} & \; n \; x = \\
\text{if } & \; n = 0 \; \text{then } 1.0 \\
\text{else } & \; \text{if } n < 0 \; \text{then } \frac{1.0}{\text{power} \; (n - 1) \; x} \\
\text{else } & \; x \times \text{power} \; (n - 1) \; x
\end{align*}
\]

Similarly, in Kennedy’s system, universal quantifiers over dimension variables must be prenex (on the outside), just like unification [KG and the function dimension types in ML and ours. Kennedy (1996, p. 66) notes that power \(n \times yields \(x^n\), cannot be typed in his system because it lacks dependently typed integers. With our integer index refinements, this is easy:

\[
\begin{align*}
(* [\text{val power} & : \mathbb{N}^{\lor} \rightarrow \mathbb{R}^{\lor}]) \\
\text{fun power} & \; n \; x = \\
\text{if } & \; n = 0 \; \text{then } 1.0 \\
\text{else } & \; \text{if } n < 0 \; \text{then } \frac{1.0}{\text{power} \; (n - 1) \; x} \\
\text{else } & \; x \times \text{power} \; (n - 1) \; x
\end{align*}
\]

6.3 Related work on invaluable refinements

Our term “invaluable refinement” is new, but similar notions have come up in other contexts. The qualified types of Foster (2002) encompass a variety of flow-sensitive, invaluable properties: Zero or more qualifiers, under a partial order (reminiscent of dataset refinements), may appear with a type. Foster’s qualified type annotations are of two forms: \(\text{annot}(\alpha, Q) \), which adds the qualifier \(Q \) to the type inferred for \(\alpha \) (a kind of cast), and \(\text{check}(\alpha, Q) \), which directs the system to check that \(Q \) is among the qualifiers of the type inferred for \(\alpha \). Thus, as with dimensions in our system, qualified types are based on annotations provided by the user and cannot be checked at runtime. In our system, we suspect that either a dataset refinement or an index refinement with a domain of finite sets of constants (the qualifiers) would suffice to model qualified types, with some kind of cast—some well-named identity function—acting as \(\text{annot}(\alpha, Q) \), and type annotation \(\{ \alpha : A \} \) with the appropriate refinement acting as \(\text{check}(\alpha, Q) \).

Phantom types can also be used as value refinements, but the typechecker’s ability to reason based on inversion is limited. For invaluable refinements there are few interesting inversion principles, but when phantom types are used to encode a value-based property this is a serious shortcoming, especially since exhaustiveness of pattern matching cannot be shown. Hence, researchers have designed “first-class” phantom types, under various names, e.g. Cheney and Hinze (2003); Flet and Pucrella (2006); Xi et al. (2003); Peyton Jones et al. (2006). This approach lacks one virtue of phantom types: that one can use a standard compiler.

Phantom types (whether first- or second-class) can be seen as tantamount to index refinements in which the index objects are types. These systems lack intersection types, so they cannot transparently express conjunctions of refinement properties. More fundamentally, when the index objects are types, index equality is type equivalence—which, as equational theories go, is rather impoverished. It is no coincidence that a standard example of phantom types is an interpreter for a tiny typed language, where (in its terminology) terms in the interpreted language are indexed by types. The encoding from the problem domain is trivial, because the source language’s types are a superset of the interpreted language’s types. When that is not the case, such encodings become nontrivial.
In order to (again, in our terminology) obtain richer index domains than their current type expressions, phantom type systems have been enriched with elements of traditional dependent typing (Sheard 2004). Unlike ours, these systems allow users to write their own proofs of properties in undecidable domains. From a user’s perspective, this approach seems more complex than ours.

Ephemeral refinements (Mandelbaum et al. 2003) may be a form of invaluable refinement as well: the refinements are about ‘the state of the world’, which is not a manipulable value in SML and similar type systems. If we consider ephemeral refinements involving mutable storage, a monadic formulation of ephemeral refinements would reify the state into a value and the ephemeral/invaluable refinement of the state into a value refinement. Think of Haskell’s state monad with a refinement about the array’s contents: the contents of the array are part of the world encapsulated by the monad. However, given an ephemeral refinement that encodes information that cannot be directly inspected, such as (some property of) the bytes written to standard output, there is nothing to reify; unless the program is modified to store that information, there is no value to refine. Thus, both value and invaluable refinements should be useful when effects are encapsulated monadically.

Finally, Refinement ML (Davies 2003) does not support invaluable refinements. In that system, the inhabitants of the datasorts are specified through regular tree grammars in which the symbols are the datatype’s constructors; the only way to define datasorts that are not perfectly synonymous is to specify that they are inhabited by different sets of values. (Mere laziness kept us from following the same strategy: we did not want to bother transforming regular tree grammar-based specifications into constructor types!)

7. The Design of Stardust

Stardust consists of a parser, a few preprocessing phases, a translator from the source language to let-normal form, and a typechecker that includes interfaces to external constraint solvers, to which we delegate much of the work of integer constraint solving.

The type system presents several implementation challenges. The first is that certain rules prevent that we can somehow guess how to instantiate index variables, for example, when eliminating a universal quantifier - all a: sort C. The usual approach, which we follow, is to postpone instantiation by generating constraints with existential variables. However, for efficient typechecking, constraint solving must be online. Otherwise, if we check \(f(x) \) where \(f : A \rightarrow B \), we may choose \(f : A \), continue typechecking to the end of the block, find that the constraint is false, backtrack and choose \(f : B \), etc. If \(A = \text{list}(\{\}) \rightarrow A' \) and \(x : \text{list}(\{1\}) \), we should know immediately that trying \(f : A \) is wrong, since \(0 = 1 \) is invalid. Thus, we give the additional constraint to the solver on the fly, and when it reports that \(0 = 1 \) is invalid we can proceed immediately to consider \(f : B \). For \(n \) such choices, if the program is ill typed and all choices (would) ultimately fail, this takes us from typechecking the block \(2^n \) times to only \(n \) times.

A fundamental challenge is making typechecking with intersection and union types fast enough. To check an expression against \(A \land B \), we check it against \(A \) and then \(B \), doubling typechecking time. To check an expression against \(A \lor B \), we check it against \(A \) and, if that fails, against \(B \), doubling typechecking time in the worst case. Dually, if we have a known expression (such as a variable) of type \(A \land B \), we first assume that it has type \(A \); if typechecking subsequently fails, we assume it has type \(B \). Finally, if we have a known expression of type \(A \lor B \), it could have either type and so we must typecheck first under the assumption that it has type \(A \), and then under type \(B \). Thus, in the worst case, typechecking is exponential in the number of intersections and unions appearing in the program.

Intersections and unions affect error reporting as well: ideally we might like reports of the form “checking against \(A \land B \) failed: could not check against \(B \) when \(x : C_1 \) (where \(x : C_1 \lor C_2 \))”, in addition to a program location. Still, bidirectionality gives us some advantage over typecheckers based on unification. As Pierce and Turner (1998) and Davies (2005) have observed, in a bidirectional system, the location reported is more likely to be the real cause of the error, which is not always the case when unification alone is used.

7.1 Interface to an ideal constraint solver

We would like a constraint solver that supports the following for all index domains of interest:

1. A notion of solver context (represented by \(\Omega \)) that encapsulates assumptions;
2. An assert operation taking a context \(\Omega \) and proposition \(P \), yielding one of three answers:
 (a) Valid if \(P \) is already valid under the current assumptions \(\Omega \);
 (b) Invalid if \(P \) is unsatisfiable, that is, leads to an inconsistent set of assumptions;
 (c) Contingent(\(\Omega' \)) if \(P \) is neither valid under the current assumptions \(\Omega \) nor inconsistent when added to \(\Omega \); yields a new context \(\Omega' = \Omega \cup P \); and
3. A valid operation taking a context \(\Omega \) and proposition \(P \), and returning one of two possible answers:
 (a) Valid if \(P \) is valid under the current assumptions;
 (b) Invalid otherwise.

Implicit in this specification is that the contexts \(\Omega \) are persistent: if assert(\(\Omega_1, P \)) yields contingent(\(\Omega_2 \)), the “earlier” context \(\Omega_1 \) should remain unchanged. This is a key property, given all the backtracking the typechecker does. Where a constraint solver does not have this property, it can be simulated, though at some cost; see Section 8.1. Likewise, where the constraint solver does not support an index domain, propositions in that domain must be reduced to propositions in a supported domain.

7.2 Constraint-based typechecking

The typechecker has a notion of state that is independent of the particular constraint solver used. It includes index assumptions such as the index sorting \(\alpha : \text{int} \) and the proposition \(\alpha > \theta \); an accumulated constraint that needs to be valid to make the program well typed; a substitution containing solutions for existentially quantified variables; and a representation of the external constraint solver’s state.

Our constraint solvers do not support existential variables at all (ICS) or support them incompletely (CVC Lite), which significantly affects the design. The typechecker itself manages existentials in the integer domain, and lies to the constraint solver by telling it that existential variables are universal. Therefore, when adding a constraint we cannot immediately check its validity, since the constraint may include existential variables that the solver thinks are universal: we cannot directly check \(\exists \alpha : \alpha = 0 \) (meaning \(\exists \alpha : \alpha = 0 \) only \(\alpha : \text{int} \Rightarrow \alpha = 0 \) (meaning \(\forall \alpha : \alpha = 0 \)) with a universally quantified. Clearly, the first relation should hold and the second should not. Fortunately, we can still “fail early” (recalling \(f : A \land B \) from the example earlier). Instead of checking the validity, we assert the new constraint, adding it to the assumptions.

If the resulting assumptions are inconsistent (as with \(\theta = 1 \), or—less trivially—\(\alpha = \alpha + 1 \)), no instantiation of existential variables can make the constraint valid, so we can correctly fail, and backtrack as needed.
Of course, we must check validity of the constraint at some point! Otherwise, given a constraint \(b = 0 \), we would conclude \(\text{bit} \models b = 0 \) since \(b = 0 \) is a consistent assumption. Therefore, in addition to asserting \(b = 0 \), we add it to a constraint built up in a manner similar to off-line constraint solving. Eventually, the typechecker tries to solve for existentials (applying a simplistic and probably incomplete rewriting algorithm) and asks the solver whether the built-up constraint is valid.

7.3 Interface to ICS

Stardust includes an interface to ICS (de Moura et al. 2004) as an external constraint solver. ICS has cooperating decision procedures for fragments of rational arithmetic and several theories; the typechecker presently uses only the arithmetic theory. While there is a notion of “current context” in the ICS interface (for example, ICS’s ASSERT operation takes only a proposition and implicitly uses the current context as the \(\Omega \)), previously constructed contexts can be saved and restored quickly, yielding an interface extremely close to the idealized one presented above. This is no coincidence: we designed our system with ICS in mind. We do not use ICS as a library; instead, it runs as a separate process and we communicate through Unix pipes.

7.4 Interface to CVC Lite

Stardust also includes an interface to CVC Lite (Barrett and Berezin 2004), the successor to CVC, the Cooperating Validity Checker (Stump et al. 2002), which in turn succeeded SVC, the Stanford Validity Checker (Barrett et al. 1996). CVC Lite has cooperating decision procedures for fragments of integer and rational arithmetic, Boolean propositions (including conjunction, disjunction, negation, and implication), and other theories; we presently use only the integer and Boolean theories. It has limited support for quantifiers, both universal and existential (free variables are, as in ICS, considered universal); a response of Invalid may be given even when an existential solution exists. We have not explored whether that limited support is enough for Stardust; if as powerful as our home-grown existentials, we might get a simpler design.

Unlike ICS, CVC Lite does not support persistent contexts. We discuss the impact of this in Section 8. CVC Lite has recently become CV C3. We hope to add support for CVC3, which should allow us to easily implement an index domain where the objects are inductive datatypes.

7.5 No refinement restriction

Davies’ Refinement ML (Davies 2005) has a refinement restriction on intersection types: an intersection \(A \& B \) is well formed only if \(A \) and \(B \) are refinements of the same simple type. For example, \(\text{even} \& \text{odd} \) is permitted if \(\text{even} \) and \(\text{odd} \) both refine \(\text{list} \); likewise, \(\text{even} \rightarrow \text{odd} \) and \(\text{odd} \rightarrow \text{even} \) is permitted, since each component of the intersection refines \(\text{list} \rightarrow \text{list} \). On the other hand, \(\text{int} \& \text{list} \rightarrow \text{list} \) and \(\text{int} \& \text{string} \) do not satisfy the refinement restriction; in the first, lists and functions are incompatible, while int and string are distinct base types. Because of the refinement restriction, typechecking in Refinement ML is conservative over Standard ML: every program that is well typed in Refinement ML is also well typed in Standard ML.

In contrast, Stardust does not enforce a refinement restriction on intersections and unions. Stardust also does not check code that it knows (through the type system) to be dead. Thus, it is not conservative in the sense that Refinement ML is.

7.6 Let-normal translation

Stardust translates programs into a let-normal form before typechecking them, enabling a more efficient typechecking algorithm than the one arising directly from the tridirectional system (Dunfield and Pfenning 2004). Our translation is unusual in that all synthesizing forms, including variables, are let-bound; this helps to guarantee that no programs that would be well typed if left untranslated (i.e., well typed in the tridirectional system) become ill-typed when translated. Because we have that guarantee, the let-normal translation is completely transparent to the user. The details of the transformation and the proof that no well-typed programs become ill-typed (and vice versa) after translation are beyond the scope of this paper; see Dunfield 2007, Ch. 5).

8. Speed of typechecking

In this section, we give the time needed to typecheck several example programs, and discuss some of the factors affecting performance.

<table>
<thead>
<tr>
<th>Input program</th>
<th>CVC Lite Wall-clock time (library)</th>
<th>CVC Lite Wall-clock time (standalone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>redblack-full</td>
<td>1.9</td>
<td>9.2</td>
</tr>
<tr>
<td>redblack-full-bug</td>
<td>1.6</td>
<td>8.1</td>
</tr>
<tr>
<td>redblack</td>
<td>(< 1)</td>
<td>(< 1)</td>
</tr>
<tr>
<td>rbdelete</td>
<td>(*)</td>
<td>37.7</td>
</tr>
<tr>
<td>bits</td>
<td>(*)</td>
<td>9.5</td>
</tr>
<tr>
<td>bits-un</td>
<td>33.5</td>
<td>298.5</td>
</tr>
</tbody>
</table>

Table 1. Time required for typechecking

The times indicated are under Standard ML of New Jersey version 110.59 on a 4-CPU Intel Xeon (3 GHz) and 2 GB RAM. The constraint solvers were ICS version 2.0 (November 2003) and CVC Lite version 20070121 (January 2007). An asterisk (*) indicates programs for which the constraint solver gives a wrong answer, or the system otherwise fails. ‘redblack-full’ is the program in Figure 5; ‘redblack-full-bug1’ is that program with a bug introduced; ‘redblack’ is the same program with index refinements removed, using only datatype refinements. ‘bits’ contains several functions on bitstrings. ‘bits-un’ is similar, but uses union types more extensively. The very long typechecking time is due in part to having to check certain expressions against each component of a 4-way union; those expressions themselves are of a 4-way union type.

All of the dimension examples in this paper typecheck in less than one second, which appears to be typical for code that does not use intersection and union types.

8.1 Impact of solver interfaces

Stardust communicates with ICS through Unix pipes. This is not very efficient: experiments suggest that the overhead of sending one command and receiving one response is 20–40% for ICS.

We can also communicate with CVC Lite through Unix pipes, but we have also implemented a direct interface to a shared library through CVC Lite’s C-level API and the SML/NJ NLFFI. As we expected, this speeds typechecking in most cases.

For CVC Lite, another source of inefficiency is CVC Lite’s inability to rapidly switch back to previously visited contexts. Unlike ICS, in which contexts are persistent and can be recalled instantaneously, CVC Lite can roll back only to ancestors of its current context. This requires us to “replay” assertions; typically, 20–50% of transactions with CVC Lite are replay assertions. This suggests that for our purposes, persistent context in a constraint solver is useful but not absolutely essential.

8.2 Conservation of speed

We believe that Stardust conserves typechecking speed, in the sense that checking a program—more usefully, a block—that does not...
use property types should take polynomial time (as with monomorphic SML programs). This is subject to the caveat that property types appear in the types of many primitive functions; any block that uses \ast actually uses intersection types. This (unproven) claim rests on our belief that the underlying type system has a subformula property (Prawitz 1965, p. 53): formulas (here, type expressions)—and, therefore, connectives like $\&$—appear in parts of a derivation only if they appear as subformulas of the goal (where types in annotations are goals).

8.3 Scaling up

Typechecking is modular, in the specific sense that each block of mutually recursive function declarations can be checked independently of each other block. For example, given a program with two mutually recursive functions $f1,f2$ followed by a function g, i.e.

$$\text{fun} f1 \ldots \text{and} f2 \ldots \text{fun} g,$$

if checking g fails, it cannot be blamed on a choice made while checking $f1$ and $f2$.

Thus, while property types can make checking a particular block very slow, adding a second block of the same complexity will only double typechecking time. This “block independence” should mean that once we have acceptable efficiency for typical programs of a few hundred lines, only linear speedup will be required to be acceptably efficient on larger programs. Moreover, we should be able to get that speedup through an easy form of distributed computation: If we send each block to a different processor for typechecking, the communication cost will be low, since the input is small and the output is tiny: typechecking either succeeds, or fails with some error information, for that block.

Davies’ work (Davies 2005) suggests that there would be no major barriers to adding ML modules to Stardust. This would allow users to give refined types in module signatures, providing important documentation; it also does not add to the volume of annotations, since signatures must be written out anyway.

9. Related work

The type system that underlies Stardust is based on prior work (Dunfield and Pfenning 2004; Dunfield 2005), which includes intersections, unions, index refinements, and datatext refinements.

Intersection types are fairly old (Coppo et al. 1983): type inference is undecidable (Amadio and Curien 1998). Reynolds (1998), who was the first to use intersection types in a practical programming language, proved that typechecking is PSPACE-hard. Intersection types (sometimes with union types too) have also been used to infer control flow properties, e.g. [Palsberg and Pavlovou 2001] and for compositional type inference, e.g. [Bakewell et al. 2005].

Freeman and Pfenning (1999) introduced datatext refinements combined with intersection types, showed that full type inference was decidable under the refinement restriction, and developed an inference algorithm based on techniques from abstract interpretation. Interaction with effects in a call-by-value language was first addressed conclusively by Davies and Pfenning (2000), who restricted intersection introduction to values, pointed out the unsoundness of distributivity, and proposed a practical bidirectional checking algorithm. Davies’ datatext refinement checker (Davies 2005) supports all of Standard ML. [Pierce 1991] gave examples of programming with intersections and unions in a pure λ-calculus, relying on syntactic markers which are not needed in our system. Xi (1998) formulated Dependent ML, a bidirectional type system with index refinements for a variant of ML and implemented it as an extension to Caml Light. He showed a number of applications (using the integer constraint domain), including array bounds check elimination. To cope with some issues arising from existential index quantification, Xi’s approach transformed programs into a let-normal form before typechecking them; however, typechecking is then incomplete, in the sense that some programs that typecheck in their original form do not typecheck after translation. We attack similar issues with existentials in our work in a broadly similar way, through translation to our own peculiar variant of let-normal form. However, our let-normal typechecking is complete (as well as sound) (Dunfield 2005, Ch. 5).

The ancestor of index refinement is the notion of dependent type developed by Martin-Löf and used in various theorem proving systems. The types $\Pi x : A. B$ and $\Sigma x : A. B$ roughly correspond to the universal and existential quantifiers over indices; however, instead of drawing x from a restricted index domain, dependent types draw x from terms of type A. This is powerful but (in any language in which some programs do not terminate) undecidable.

A number of systems have tried to tame dependent types. In Caynne (Augustsson 1998), typechecking “times out” after a given number of steps. In Epigram (McBride and McKinna 2004), all well-typed programs terminate, so type equivalence is decidable. The dependent indices are elements of inductive families of constructors; the example of natural numbers with zero and succ constructors is probably the canonical one. In the system of Chen and Xi (2008), as in Epigram, users can write explicit proofs of type equivalences: unlike Epigram, the language itself is not restricted—decidability comes by restricting the terms that can inhabit indices. A similar system is described by Licata and Harper (2005), who give a detailed comparison of these and related type systems. We see two major advantages of our approach over these systems. The first is that our system needs no guidance beyond type annotations. The second is the legibility and clarity of the types themselves. We believe that the types in our system are easier to understand than in these more traditional dependent type systems. It could be argued that both flavors of system add to the number of ‘levels’ a user must think about—ours adds index refinements (and datatexts, but let us not muddy the comparison), while theirs add dependent typing and kind-level programming. However, the level we add seems to be lower than the types in conventional type systems, rather than higher.

Our approach also differs significantly from extended static checking (Leino 2001), which, like our system, uses annotations to express properties and processes the invariants at compile time, without the user writing explicit proofs. However, a report from ESC must be interpreted quite differently from a report from Stardust. In the extended static checking framework, a favorable report simply means that no problem was found in the program; it does not guarantee that the properties actually hold. In Stardust, a report that the program typechecks means that the properties really do hold (subject to the usual caveats about bugs in Stardust itself, in the compiler, etc.). On the other hand, that limitation is a key reason that ESC can express many properties Stardust cannot.

10. Conclusion

We have presented the first implementation of a system combining intersections, unions, and type refinements, in which the expressible properties, while limited by decidability concerns, are legible and straightforward. We have formulated and implemented index domains of integers, Booleans, and dimensions. While typechecking speed is adequate for most of our examples, it is not fully satisfactory; more work is needed to allow extensive use of intersection and union types.

As the set of supported domains grows, an already present problem grows with it: the scalability of the refinements themselves. Different invariants will be important in different parts of a program. It is perfectly reasonable to index lists by length; it is also perfectly reasonable to index them by their contents, or by some property of a particular element. Our current approach requires that one either cram all manner of indices into a tuple, and index by that, or create new datatypes for each new property, each with its
own refinement. The first technique is brazenly anti-modular; the second leads to code duplication and tedium. Thus, designing truly modular refinements is an important goal for future work.

We intend to explore additional index domains including bit vectors, inductive families, functional arrays (vectors), fragments of set theory, and regular languages, all of which have practical decision procedures and are therefore compatible with our approach.

We are in the process of adding parametric polymorphism to the type system and implementation, and are investigating extensions to call-by-name and call-by-need semantics.

Acknowledgments. Frank Pfenning’s advice was invaluable; support from the US National Science Foundation under grant CCR-0204248 was valuable; the anonymous reviewers caught several mistakes. Portions of Stardust are based on “Restricted ML” (Tolmach and Oliva [1998]).

References

Abbrev.: *ICFP* = Int’l Conf. Functional Programming; *PLDI* = Programming Language Design and Implementation; *POPL* = Principles of Programming Languages.