
Thesis Proposal:

Unifying Principles of Type Refinements

Jana Dunfield

Carnegie Mellon University

December 2, 2003∗

Abstract

Traditional static type systems in the Hindley-Milner style are a useful means of guaran-
teeing type safety, in the form of type preservation and progress theorems, and of broadly
specifying properties of functions (such as taking integers to lists of integers). In order to al-
low programmers to express stronger properties through static typing, I propose to develop
and implement a rich type system that combines and extends work on datasort refinements,
index refinements, intersection, and union types, and to show that it can check many interest-
ing properties of functional programs that are difficult or impossible to check in conventional
static type systems. Due to the richness of the type system, full type inference is undecidable,
so a certain amount of annotation will be necessary. I intend to focus on properties of alge-
braic datatypes, such as list length or the set of keys mapped by a binary search tree. The type
system’s soundness is maintained in the presence of effects, but the properties are not about
state. However, many of the techniques developed may be applicable to stateful properties as
well.

1 Introduction

Conventional static type systems such as that of Standard ML [MTHM97] enable the expression
of certain program invariants, allowing compilers to check those invariants at compile time.
However, conventional type systems are too coarse-grained to check many desirable properties,
leading to the development of refined type systems such as the datasort refinements of Freeman,
Davies, and Pfenning [FP91, Fre94, DP00], and the index refinements of Xi and Pfenning [XP99,
Xi98]. Both systems refine the simple types of Hindley-Milner type systems.

My work unifies and extends the datasort and index refinement systems, which have distinct
mechanisms for combining properties: intersection types for the datasort refinements, universal
and existential quantification and subset sorts for the index refinements. I provide unified mech-
anisms: definite types (including intersections and universal quantification) for the conjunction
of properties, indefinite types (including existential quantification) for the disjunction of proper-
ties. As Xi found [Xi98], determining the scope of the elimination rules for indefinite types is
not straightforward; I handle this through careful formulations of both my type system and my
variant of let-normal or A-normal form.

Because pure type inference is, variously, undesirable or impossible in these refinement sys-
tems, the programmer must write type annotations at certain points in the program.

In this proposal, I start by discussing background to my work, particularly the key concepts
of datasort refinements, index refinements, and intersection and union types. Next, I outline
the broad contours of my approach and discuss several technical issues in more depth. After
examining some related work, I explain what work I have already done and what I plan to do.

∗Recompiled August 17, 2020 to correct the author’s name.

1



2 BACKGROUND 2

2 Background

As with conventional static type systems (Standard ML, Haskell, Java), I view types as describ-
ing program properties that can be checked at compile time (in contrast to dynamic typing where
checks are performed at runtime, a shortcoming only partially addressed by the soft typing sys-
tems discussed below). My type system “pushes the envelope” of expressible properties by
incorporating several features not found in conventional type systems:

• datasort refinements

• intersection types

• index refinements

• union types

2.1 Datasort refinements and intersection types

Datasort refinements serve to check properties that can be defined by regular tree grammars, a
generalization of regular grammars from strings to trees [CDG+97]. Regular tree grammars
are recognized by regular tree automata; automata recognizing ordinary regular languages on
strings can be seen as an instance of regular tree automata, where the trees in the regular tree
grammar all have the shape of a line. A very simple example is the property of a list (of integers)
being of even length or odd length:

• The empty list Nil is of even length;

• If t is of even length then Cons(h, t) is of odd length;

• If t is of odd length then Cons(h, t) is of even length;

• If t is of unknown length then Cons(h, t) is of unknown length.

Notice that we can express the property of Cons using only the property of its argument t.
Choosing to write even and odd to denote the properties of having even or odd length and list to
denote the property of having unknown length, we can write the types of the constructors Nil

and Cons as

Nil : even

Cons : int ∗ even → odd

Cons : int ∗ odd → even

Cons : int ∗ list → list

But this doesn’t make much sense: we have three different types for Cons. A natural type-
theoretic expression of this is intersection types: A ∧ B denotes the intersection of the types A

and B, that is, the conjunction of the properties expressed by A and B.

Nil : even

Cons : (int ∗ even → odd)

∧ (int ∗ odd → even)

∧ (int ∗ list → list)

A simple function of intersection type is tail:

tail = λx. case x of

Nil ⇒ raise Error

| Cons(h, t) ⇒ t
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It is easy to see that tail has type

tail : (even → odd) ∧ (odd → even) ∧ (list → list)

Implicit in this discussion is that every value of type even (resp. odd) is known to be a value
of type list. Formally, we assume the existence of a subsort relation � defining a partial order
on datasorts. In this case our subsort relation is the reflexive closure of {(even, list), (odd, list)},
represented by the diagram

even
✡
✡✡✣

odd
❏

❏❏❪

list

In practice, the typechecker determines the constructor types and subsort relation from a
sequence of sort declarations:

datasort even = Nil | Cons of int ∗ odd

and odd = Cons of int ∗ even

Intersection types and datasort refinements Intersection types [CDCV81] were first incorpo-
rated into a practical language by Reynolds [Rey96], who used them to encode features such
as operator overloading, and proved that typechecking intersection types is PSPACE-hard. The
notion of datasort refinement combined with intersection types was introduced by Freeman
and Pfenning [FP91], who showed that full type inference was decidable under the refinement
restriction (A ∧ B permitted only if A and B are refinements of the same type) by using tech-
niques from abstract interpretation. Interaction with effects in a call-by-value language was first
addressed conclusively by Davies and Pfenning [DP00], who introduced a value restriction on
intersection introduction, pointed out the unsoundness of distributivity, and proposed a practi-
cal bidirectional checking algorithm. Davies implemented datasort refinements [Dav97, Dav04]
as an extension to the ML Kit [ML ], a Standard ML compiler.

2.2 Index refinements and union types

Index refinements refine types by indices drawn from a decidable constraint domain. The the-
ory [Xi98] is parametric in the constraint domain, but (by far) the most extensively used domain
is the integers with linear inequalities, which permits one to express quite useful properties such
as the size of data structures. Continuing with our list example, the types of Nil and Cons in an
index refinement setting are

Nil : list(0)

Cons : Πa:N. int ∗ list(a) → list(a+ 1)

Here Πa:N. universally quantifies over an index a having index sort N (the natural numbers),
so the type of Cons should be read “for any natural number a, Cons takes an integer and a list of
length a and returns a list of length a + 1”. The index-refined type of the function tail (defined
previously) is

tail : Πa:{a:N | a > 0}. int ∗ list(a) → list(a− 1)

In this type we use the subset sort {a:N | a > 0} read “a is a natural number such that a is greater
than 0”. Since the domain of the type is int ∗ list(a) where a > 0, tail cannot be applied to an
empty list.

To express the type of a function such as filter, where filter f l returns the elements of l for
which f returns true, we need existential quantification Σb:γ. B. Index refinements are not pow-
erful enough to encode the precise length returned.

filter : Πa:N. (int→bool) → list(a) → Σb:N. list(b)
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The binary union A ∨ B expresses the disjunction of the properties specified by A and B. A
type Σb:γ. B can be viewed as infinite (for infinite index domains) union types; for example,
Σb:N. list(b) corresponds informally to

list(0) ∨ list(1) ∨ list(2) ∨ · · ·

We call existential quantification and union types indefinite types. In contrast to existential
quantification, union types may be more of a convenience than a necessity: there seems to
always be an alternative way to write the type, for example, (A ∨ B) → C can be written
(A → C) ∧ (B → C) (but this is only a conjecture based on limited experience). The inclusion
of union types is justified by symmetry with intersections and by the similarity of the technical
realizations of union types and Σ types.

Dependent type systems The theoretical root of index refinements is the notion of dependent
type found in type systems such as Nuprl [CAB+86]. There, dependent products Πx:A.B and
dependent sums Σx:A.B roughly correspond to the universal and existential quantifiers over
indices; however, instead of drawing x from a restricted index domain, dependent products and
sums draw x from terms of type A. This is extremely powerful but also undecidable, making it
appropriate for theorem proving systems but not for static typechecking.

DML: index refinements Xi formulated a bidirectional type system [Xi98] with index refine-
ments for a variant of ML and implemented it as an extension to Caml Light [Cam]. He showed
a number of applications (based on the integer constraint domain he implemented), including
array bounds check elimination. The technical formulation of index refinements in DML differs
somewhat from mine; these differences are discussed briefly in Section 4.

Termination checking Given a recursive function, if we can formulate a well-founded metric
of its arguments such that the metric strictly decreases across recursive calls, those recursive
calls do not cause nontermination. Xi [Xi01, Xi02] showed that a relatively simple extension of
the machinery of index refinements suffices to statically check termination.

Union types Pierce [Pie91b] gave examples of programming with intersection and union types
in a pure λ-calculus using a typechecking mechanism that relied on syntactic markers. The
first systematic study of unions in a type assignment framework by Barbanera et al. [BDCd95]
identified a number of problems, including the failure of type preservation even for the pure
λ-calculus when the union elimination rule is too unrestricted.

3 Thesis statement

With the above background, I can state my thesis:

A rich type system with datasort and index refinement properties, where such
properties are combined through intersection and union types, is a practical means
of statically checking interesting properties of functional programs that are diffi-
cult or impossible to check in conventional static type systems.

4 Technical overview

Here I discuss key technical aspects of my approach and contrast it to previous work on the re-
finement systems in isolation. I necessarily omit a full presentation of the material; most of the
omitted details can be found in [Dun02, DP03, DP04]. The setting is a small functional language
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Types A,B,C ::= 1 | A → B | A ∗ B

| δ(i) —Refinement by datasort δ and index i

| A ∧ B | Πa:γ.A

| A ∨ B | Σa:γ.A

Terms e ::= x | u | λx. e | e1 e2 | fix u. e

| () | (e1, e2) | fst(e) | snd(e)

| c(e) | case e of ms

Matches ms ::= · | c(x) ⇒ e |ms

Values v ::= x | λx. e | () | (v1, v2)

Eval. contexts E ::= [ ] | E(e) | v(E)

| (E, e) | (v, E) | fst(E) | snd(E)

| c(E) | case E of ms

e ′ 7→R e ′′

E[e ′] 7→ E[e ′′]

(λx. e) v 7→R [v/x] e fst(v1, v2) 7→R v1
fix u. e 7→R [fix u. e /u] e snd(v1, v2) 7→R v2

case c(v) of . . . c(x) ⇒ e . . . 7→R [v/x] e

Figure 1: Syntax and semantics of the core language

with a call-by-value semantics (Figure 1). The semantics does not include mutable references,
but the type system has been designed with mutable references in mind. After discussing cer-
tain major design decisions, I explain bidirectionality and how intersection and union types
are handled, discuss a novel form of typing annotation, and cite key theorems proved in the
papers [Dun02, DP03, DP04].

4.1 Rationale

The basic goal of this work is to build a single type system capable of expressing both the invari-
ants expressible through datasort refinements and those expressible through index refinements.
In this section, I explain and justify several important aspects of the design of the system:

• the inclusion of two partly overlapping refinement mechanisms: datasorts and indices

• the use of typing annotations and a bidirectional type system, instead of full type inference

4.1.1 Overlapping refinement mechanisms

A natural question to ask is whether one variety of refinement is strictly more expressive than
the other. It is quite clear that there are properties expressible by index refinements, such as the
precise length of a list, that cannot be expressed by datasort refinements: The length of a list is
a natural number, a member of an infinite set; a finite lattice of datasorts can only distinguish
among a finite number of subsets of that infinite set.

However, the question of whether index refinements subsume datasort refinements is harder
to answer. Often, at least, one can easily encode the datasort as an index from a small domain,
a simple example being bool indexed by 0 or 1, which is as expressive as the false/true data-
sort refinement. So why not use index refinements exclusively, avoiding the complications of
intersection types?

• In many situations, datasort refinements seem more natural to write. But this is not so
compelling: perhaps the system could regard datasort refinements as syntactic sugar for
index refinements by small integers.
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• A straightforward encoding of datasort refinements into index refinements leads to gener-
ated constraints that are too complex (with rampant existential quantification) for current
implementations of index refinements (Xi’s deCaml).

• Davies’ implementation [Dav97, Dav04] has clearly demonstrated the practicality of a
datasort refinement system not based on index refinements.

It is difficult to rule out the possibility of successfully encoding datasorts as indices: we
would have to prove that no appropriate constraint domain exists. Thus, while I cannot show
it is impossible to use index refinements alone, I see no compelling reason not to build on the
successful datasort refinement work of Davies and Pfenning. Therefore, I commit myself to a
system with both datasort and index refinements as primitive mechanisms.

4.1.2 Type inference

Type inference is decidable for datasort refinements; in fact, the original work of Freeman and
Pfenning [FP91] on datasorts was based on inference (implemented through abstract interpre-
tation) and was reasonably efficient. However, type inference is undecidable for index refine-
ments, so if we want both varieties of refinement we must abandon full type inference and
accept that we will have to write type annotations. But to make a virtue out of the necessity of
type annotations, consider:

• Type annotations provide useful documentation—more so in a refined type system, as the
properties are more interesting!

• Type annotations circumscribe the meaning of components (such as functions and mod-
ules), so that these components cannot be used in ways that are well-defined but unintended.
For example, one never wants to apply tail to an empty list, but its behavior is well-defined
(it raises an exception and ‘raise’ expressions are always well typed) and a perfectly good
type can be inferred. This issue becomes especially important in large programs, and was
a key factor in Davies and Pfenning’s decision to not use inference techniques in their work
on datasort refinements.1

• Type inference is already undecidable for realistic languages; for example, at the module
level of Standard ML, types must be written out.

• The past work on the individual refinement systems suggests that the amount of annota-
tion needed is modest [XP99, Dav04], and certainly not as clumsy as conventional explic-
itly typed languages such as Java and C++.

4.2 Bidirectional typechecking

My type system is bidirectional: instead of a single form of typing judgment Γ ⊢ e : A, the system
has two judgment forms:

Synthesis: Γ ⊢ e ↑ A In context Γ , e synthesizes type A

Checking: Γ ⊢ e ↓ A In context Γ , e checks against type A

The first form, synthesis, is conceptually similar to the traditional Γ ⊢ e : A form: Given a
context Γ and term e, generate (synthesize) some type A. The second form, checking, differs in
that all information—Γ , e, and A—is assumed, and the task is to confirm that e checks against
A.

1Inference may be desirable in cases such as nested functions, which cannot really be considered as “components”.
However, my approach at present makes no attempt to distinguish such cases.
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Here is an example to give part of the flavor of bidirectional typechecking (and typechecking
with intersection types): the tail function:

tail = λx. case x of

Nil ⇒ raise Error

| Cons(h, t) ⇒ t

Our job is to check this function against (even → odd) ∧ (odd → even) ∧ (list → list). To check
a value against an intersection type, we check it against each conjunct, so we start by checking
against even → odd.

⊢ λx. case x of . . . ↓ even → odd

Like a conventional type system, we assume the λ-bound variable x is of type even (the domain
of the function space), and check the body against type odd (the codomain).

x:even ⊢ case x of . . . ↓ odd

To check a case expression we synthesize a type for the subject expression, namely x, then check
each possible arm under appropriate assumptions. We have x:even in our context, so we can
synthesize type even for x.

x:even ⊢ x ↑ even

x:even ⊢ Nil ⇒ raise Error ↓even odd

x:even ⊢ Cons(h, t) ⇒ t ↓even odd

x:even ⊢ case x of . . . ↓ odd

The subscripted judgment . . . ⊢ . . . ↓even odd means that the branch is checked with the assump-
tion that the expression cased upon has type even. Clearly raise Error checks against odd, so
consider the second branch. Here we must show t ↓ odd. Recall the type of Cons:

Cons : (int ∗ even → odd)

∧ (int ∗ odd → even)

∧ (int ∗ list → list)

We know we have an even list, so the appropriate conjunct is (int ∗ odd → even).2 So we assume
h has type int and t has type odd, and check the body of the case arm (which is just t) against
odd:

x:even, h:int, t:odd ⊢ t ↓ odd

In fact, we check t against odd in two steps: first we synthesize odd, then apply a subsumption
typing rule. Γ ⊢ odd ≤ odd is a subtyping judgment, discussed below.

t:odd ⊢ t ↑ odd Γ ⊢ odd ≤ odd

x:even, h:int, t:odd ⊢ t ↓ odd

Ultimately, the derivation looks like

x:even ⊢ x ↑ even

...
x:even ⊢ Nil ⇒ raise Error ↓even odd

t:odd ⊢ t ↑ odd Γ ⊢ odd ≤ odd

x:even, h:int, t:odd ⊢ t ↓ odd

x:even ⊢ Cons(h, t) ⇒ t ↓even odd

x:even ⊢ case x of . . . ↓ odd

⊢ λx. case x of . . . ↓ even → odd

2It might seem that we also need to look at (int ∗ list → list), since even� list. However, if int ∗ list → list had been
applied we could not know that the list is even. But we do know it is even, so (int ∗ list → list) is irrelevant.
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4.2.1 Other formulations of bidirectionality

I currently use a form of bidirectionality based on the principle that introduction rules check
and elimination rules synthesize.3 For example, the rules involving pairs A ∗ B are

Γ ⊢ e1 ↓ A1 Γ ⊢ e2 ↓ A2

Γ ⊢ (e1, e2) ↓ A1 ∗A2

(∗I)
Γ ⊢ e ↑ A ∗ B

Γ ⊢ fst(e) ↑ A
(∗E1)

Γ ⊢ e ↑ A ∗ B

Γ ⊢ snd(e) ↑ B
(∗E2)

This is the smallest reasonable set of rules. It would be quite pointless to replace (∗E1) and
(∗E2) with checking rules: if we check fst(e) against A we are not given B, so we must synthesize
e’s type A ∗B, and if we can synthesize A ∗B we have A and should avoid the possible need for
an annotation by synthesizing the type of fst(e). Moreover, if we tried replacing (∗I) with a rule
synthesizing A1 ∗A2, we would often have to write annotations on the components e1 and e2.

So, while there is no point in having checking forms of the elimination rules, it could be
useful to have a synthesis form of the introduction rule:

Γ ⊢ e1 ↑ A1 Γ ⊢ e2 ↑ A2

Γ ⊢ (e1, e2) ↑ A1 ∗A2

(∗I-↑)

Such a rule would allow the system to typecheck terms such as

case (x, y) of . . .

Here x and y are variables and therefore synthesize. If we have rule (∗I-↑), the pair (x, y) also
synthesizes. Without this rule, we would have to put a typing annotation on (x, y).

Xi’s index refinement system [Xi98] includes both (∗I) and (∗I-↑). In fact, his system includes
every bidirectional variation that would not be obviously useless (in the way that a checking
form of (∗E1) is useless), leading to a type system that is slightly more convenient to use but
slightly more complicated. I believe that adapting my system to Xi’s style of bidirectionality
would be straightforward, but to avoid premature optimization I plan to do so only if the lack
of rules such as (∗E1-↑) is burdensome in the course of my experiments.

Pierce and Turner’s local type inference [PT98] is another bidirectional system with synthesis
and checking judgments, somewhat similar to the present system (and to Xi’s). Their language
has subtyping and impredicative polymorphism, making full type inference undecidable. In
order to handle parametric polymorphism without using nonlocal methods such as unification,
they infer type arguments to polymorphic functions, which seems to substantially complicate
matters. Hosoya and Pierce [HP99] further discuss this style, particularly its effectiveness in
achieving a reasonable number of annotations.

4.3 Intersection types

A value v has type A ∧ B if it has type A and type B. Because this is an introduction form,
we proceed by checking v against A and B. Conversely, if e has type A ∧ B then it must have
both type A and type B, proceeding in the direction of synthesis. The introduction rule (∧I)
is restricted to values because its general form for arbitrary expressions e is unsound in the
presence of mutable references in call-by-value languages [DP00].

Γ ⊢ v ↓ A Γ ⊢ v ↓ B

Γ ⊢ v ↓ A ∧ B
(∧I)

Γ ⊢ e ↑ A ∧ B

Γ ⊢ e ↑ A
(∧E1)

Γ ⊢ e ↑ A ∧ B

Γ ⊢ e ↑ B
(∧E2)

The system’s subtyping rules are designed following the well-known principle that A ≤ B

only if any (closed) value of type A also has type B. Thus, whenever we must check if an
expression e has type B we are safe if we can synthesize a type A and A ≤ B:

3This principle is discussed further in [DP04].
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P ::= ⊥ | i
.
= j | . . .

Γ ::= · | Γ, x:A | Γ, a:γ | Γ, P

· = ·

Γ, x:A = Γ

Γ, a:γ = Γ , a:γ

Γ, P = Γ , P

Figure 2: Propositions P, contexts Γ , and the restriction function Γ

Γ ⊢ e ↑ A Γ ⊢ A ≤ B

Γ ⊢ e ↓ B
(sub)

The rules for intersection are:

Γ ⊢ A ≤ B1 Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∧ B2

(∧R)

Γ ⊢ A1 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
(∧L1)

Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
(∧L2)

4.4 Refined Datatypes

As in the informal examples above, we write δ(i) for the type of values having datasort δ and
index i. To accommodate index refinements, the context Γ allows index variables a, b and propo-
sitions P as well as program variables. Because the program variables are irrelevant to the index
domain, we can define a restriction function Γ that yields its argument Γ without program vari-
able typings (Figure 2). No variable may be declared twice in Γ , but ordering is now significant
because of dependencies.

Our formulation, like Xi’s, requires only a few properties of the constraint domain: There
must be a way to decide a consequence relation Γ |= P whose interpretation is that given the in-
dex variable typings and propositions in Γ , the proposition P must hold. Because we have both
universal and existential quantifiers over elements of the constraint domain, the constraints
must remain decidable in the presence of quantifiers, though we have not encountered quanti-
fier alternations in our examples. There must also be a relation i

.
= j denoting index equality,

and a judgment Γ ⊢ i : γ whose interpretation is that i has index sort γ in Γ . Note the stratifi-
cation: terms have types, indices have index sorts; terms and indices are distinct. The proof of
safety in [DP03] requires that |= be a consequence relation, that

.
= be an equivalence relation,

that · 6|= ⊥, and that |= and ⊢ have expected substitution and weakening properties [Dun02].
Each datatype has an associated atomic subtyping relation on datasorts, and an associated

sort whose indices refine the datatype. For the moment, think of an index sort N of natural
numbers, with arithmetic operations +, −, ∗. Then Γ |= P is decidable provided the equalities
in P are linear.

The subtyping rule for datatypes checks the datasorts δ1, δ2 and (separately) the indices i, j;
to maintain reflexivity and transitivity of subtyping, we require � to be reflexive and transi-
tive.4

δ1 � δ2 Γ ⊢ i
.
= j

Γ ⊢ δ1(i) ≤ δ2(j)
(δ)

We assume the constructors c are typed by a judgment Γ ⊢ c : A → δ(i) where A is any type
and δ(i) is some refined type. The type A → δ(i) need not be unique; indeed, a constructor
should often have more than one refined type. The rule for constructor application is

4The system cannot deduce the emptiness of refinements such as pos(0) where pos denotes a bitstring of strictly
positive 2’s-complement value and the index refinement 0 denotes a bitstring of length 0. Experience will show if this
inability makes a difference in practice.
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Γ ⊢ c : A → δ(i) Γ ⊢ e ↓ A

Γ ⊢ c(e) ↓ δ(i)
(δI)

To derive Γ ⊢ case e of ms ↓ B, we check that all the matches in ms check against B, un-
der a context appropriate to each arm; this is how propositions P arise. The context Γ may be
contradictory (Γ |= ⊥) if the case arm can be shown to be unreachable by virtue of the index
refinements of the constructor type and the case subject. In order to not typecheck unreachable
arms, we have

Γ |= ⊥

Γ ⊢ e ↓ A
(contra)

We also do not check case arms that are unreachable by virtue of the datasort refinements.
For a complete accounting of how we type case expressions and constructors, see [Dun02].

The typing rules for universal index quantification Π are

Γ, a:γ ⊢ v ↓ A

Γ ⊢ v ↓ Πa:γ.A
(ΠI)

Γ ⊢ e ↑ Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e ↑ [i/a]A
(ΠE)

The index variable a added to the context must be new, which can always be achieved via
renaming. As for intersections, the introduction rule is restricted to values in order to maintain
type preservation in the presence of effects.

One potentially subtle issue with the introduction rule is that v cannot reference a in an
internal type annotation, because that would violate α-conversion: one could not safely rename
a to b in Πa:γ.A, which is the natural scope of a. I discuss this further in the section on contextual
typing annotations.

The subtyping rules for Π are

Γ ⊢ [i/a]A ≤ B Γ ⊢ i : γ

Γ ⊢ Πa:γ.A ≤ B
(ΠL)

Γ, b:γ ⊢ A ≤ B

Γ ⊢ A ≤ Πb:γ. B
(ΠR)

The left rule allows one to instantiate a quantified index variable a to an index i of appro-
priate sort. The right rule states that if A ≤ B for an arbitrary b:γ then A is also a subtype of
Πb:γ. B. Of course, b cannot occur free in A.

As written, in (ΠL) and (ΠE) we must guess the index i; in practice, we would plug in a
new existentially quantified index variable and continue, using constraint solving to determine
i. Thus, even if we had no existential types Σ in the system, the solver for the constraint domain
would have to allow existentially quantified variables.

4.5 Union types

Union types A ∨ B and existential types Σa:γ.A quantifying existentially over an index a of sort
γ are substantially harder to typecheck than intersection types and universal index quantifica-
tion. In particular, the elimination rules are difficult to formulate in a sound and satisfactory
way. The thinking leading to the rules below is explained in [DP03]; in particular, several ap-
parently plausible variations are shown to be unsound.

On values, the binary indefinite type A ∨ B is simply a union in the ordinary sense: if
v : A ∨ B then either v : A or v : B. The introduction rules directly express the simple logical
interpretation, again using checking for the introduction form.

Γ ⊢ e ↓ A

Γ ⊢ e ↓ A ∨ B
(∨I1)

Γ ⊢ e ↓ B

Γ ⊢ e ↓ A ∨ B
(∨I2)

No restriction to values is needed for the introductions, but, dually to intersections, the elim-
ination must be restricted. A sound formulation of the elimination rule in a type assignment
form [DP03] without a syntactic marker requires an evaluation context E around the subterm e ′

of union type.
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Γ ⊢ e ′ : A ∨ B

Γ, x:A ⊢ E[x] : C

Γ, y:B ⊢ E[y] : C

Γ ⊢ E[e ′] : C

In this rule, we no longer move from terms to their immediate subterms, but when type-
checking e we may have to decompose it into an evaluation context E and subterm e ′. Using
the analysis and synthesis judgments we have

Γ ⊢ e ′ ↑ A ∨ B

Γ, x:A ⊢ E[x] ↓ C

Γ, y:B ⊢ E[y] ↓ C

Γ ⊢ E[e ′] ↓ C
(∨E)

Here, if we can synthesize a union type for e ′—which is in evaluation position in E[e ′]—and
check E[x] and E[y] against C, assuming that x and y have type A and type B respectively, we
can conclude that E[e ′] checks against C.

The subtyping rules are standard and dual to the intersection rules.

Γ ⊢ A1 ≤ B Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∨ A2 ≤ B
(∨L)

Γ ⊢ A ≤ B1

Γ ⊢ A ≤ B1 ∨ B2

(∨R1)
Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∨ B2

(∨R2)

For existential quantification, the introduction rule presents no difficulties, and proceeds
using the analysis judgment.

Γ ⊢ e ↓ [i/a]A Γ ⊢ i : γ

Γ ⊢ e ↓ Σa:γ.A
(ΣI)

For the elimination rule, we follow (∨E):

Γ ⊢ e ′ ↑ Σa:γ.A Γ, a:γ, x:A ⊢ E[x] ↓ C

Γ ⊢ E[e ′] ↓ C
(ΣE)

Again, there is a potentially subtle issue: the index variable a must be new and cannot be
mentioned in an annotation in E.

The subtyping for Σ is dual to that of Π.

Γ, a:γ ⊢ A ≤ B

Γ ⊢ Σa:γ.A ≤ B
(ΣL)

Γ ⊢ A ≤ [i/b]B Γ ⊢ i : γ

Γ ⊢ A ≤ Σb:γ. B
(ΣR)

We now have rules (∨E) and (ΣE) for binary and infinitary indefinite types. It turns out that
there is a sensible unary version of these rules:

Γ ⊢ e ′ ↑ A Γ, x:A ⊢ E[x] ↓ C

Γ ⊢ E[e ′] ↓ C
(direct)

One might expect this rule to be admissible. However, due to the restriction to evaluation
contexts, it is not. As a simple example, consider

append : Πa:N. list(a) → Πb:N. list(b) → list(a+ b)

filterpos : Πn:N. list(n) → Σm:N. list(m)

⊢ filterpos [. . . ] ↑ Σm:N. list(m)

Goal: 6⊢ append [42] (filterpos [. . . ]) ↓ Σk:N. list(k)

where [42] is shorthand for Cons(42,Nil) and [...] is some literal list. Here we cannot derive the
goal, because we cannot introduce the k on the type checked against. To do so, we would need
to introduce the index variable m representing the length of the list returned by filterpos [. . . ],
and use m+ 1 for k. But filterpos [. . . ] is not in evaluation position, because append [42] will need
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Γ ⊢ B1 ≤ A1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 → A2 ≤ B1 → B2

(→)
Γ ⊢ 1 ≤ 1

(1)
Γ ⊢ A1 ≤ B1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 ∗A2 ≤ B1 ∗ B2

(∗)

δ1 � δ2 Γ ⊢ i
.
= j

Γ ⊢ δ1(i) ≤ δ2(j)
(δ)

Γ ⊢ A ≤ B1 Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∧ B2

(∧R)
Γ ⊢ A1 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
(∧L1)

Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∧ A2 ≤ B
(∧L2)

Γ ⊢ A ≤ ⊤
(⊤R)

Γ ⊢ [i/a]A ≤ B Γ ⊢ i : γ

Γ ⊢ Πa:γ.A ≤ B
(ΠL)

Γ, b:γ ⊢ A ≤ B

Γ ⊢ A ≤ Πb:γ. B
(ΠR)

Γ ⊢ A1 ≤ B Γ ⊢ A2 ≤ B

Γ ⊢ A1 ∨ A2 ≤ B
(∨L)

Γ ⊢ A ≤ B1

Γ ⊢ A ≤ B1 ∨ B2

(∨R1)
Γ ⊢ A ≤ B2

Γ ⊢ A ≤ B1 ∨ B2

(∨R2)

Γ ⊢ ⊥ ≤ A
(⊥L)

Γ, a:γ ⊢ A ≤ B

Γ ⊢ Σa:γ.A ≤ B
(ΣL)

Γ ⊢ A ≤ [i/b]B Γ ⊢ i : γ

Γ ⊢ A ≤ Σb:γ. B
(ΣR)

Figure 3: Subtyping

to be evaluated first. However, append [42] synthesizes only type Πb:N. list(b) → list(1 + b), so
we are stuck. But using rule (direct) we can collapse append [42] into a fresh variable x. Since x

is a value, the subterm filterpos [. . . ] is now in evaluation position, allowing us to use (ΣE).
While (∨E), (ΣE), and (direct) are satisfactory on paper, a straight implementation would be

excessively nondeterministic: a given term e might have many possible evaluation contexts E

such that e = E[e ′], and the choice of which contexts to use and in what order is left open. I aim
to resolve this by formulating a new variant of let-normal form, which is akin to continuation-
passing style (CPS): Intermediate results are named, and the evaluation order is made explicit
by inserting let expressions. However, unlike CPS, let-normal form does not introduce contin-
uations. (Hence, let-normal form is sometimes called “two-thirds CPS”.) Restricting the above
rules to terms of the form let x = e ′ in E[x] forces the typechecker to proceed through the term
in evaluation order. Care must be taken to ensure that the system so restricted is complete,
in the sense of preserving the well-typing of programs.5 Note that Xi also used a translation
to let-normal form, but his particular formulation interacts with bidirectionality in unfortunate
ways—certain programs that are well typed as written are not well typed after translation.

4.6 Properties of Subtyping

The subtyping rules, shown in Figure 3, work in a natural way for intersections, unions, and
index quantification (as well as a greatest type ⊤ and a least type ⊥). At the level of the refine-
ments, the judgment passes to the subsorting and index satisfaction relations:

δ1 � δ2 Γ ⊢ i
.
= j

Γ ⊢ δ1(i) ≤ δ2(j)
(δ)

Decidability, reflexivity, and transitivity of subtyping are straightforward to prove [Dun02,
DP03].

4.7 Contextual typing annotations

Some terms require annotations in my system. For example, (λx. x)() neither synthesizes nor
checks against a type. This is because the function part of an application must synthesize a

5This work is almost complete: the transformation has been precisely formulated and the appropriate proofs are
nearly finished.
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type, but there is necessarily no rule for λx. e to synthesize a type. However, the standard form
of annotation (e : A) does not suffice in this setting.

First, when checking a function λx. e against an intersection such as (A1 → B1) ∧ (A2 →

B2), annotations inside the function body e may need to vary depending on which branch is
being checked. Pierce [Pie91a] and Reynolds [Rey96] addressed this problem by allowing a
function to be annotated with a list of alternative types; the typechecker chooses the right one.
Davies followed this approach in his datasort refinement checker, allowing a term to be anno-
tated with (e : A,B, . . . ). This notation is easy to use and effective but introduces additional
nondeterminism, since the typechecker must guess which type to use.

Second, the annotations may need to mention index variables, but in the absence of an ex-
plicit marker for Π-introduction, the scope of such variables is unclear. For example, when
checking λx. e against Πa:N. list(a) → list(a + 1), should a be meaningful when used in an
annotation inside e? The answer should be no: the proper scope of a is limited to the type
Πa:N. list(a) → list(a + 1), and we should be able to consistently rename a within this type
without making the term ill-typed. Xi addressed this problem through a term-level abstraction
over index variables, Λa.e, to mirror universal index quantification Πa:γ.A [Xi98]. But this vi-
olates the basic principle of property types that the term should remain unchanged, and fails
in our setting due to the presence of intersections. For example, we would expect the reverse
function on lists, rev, to satisfy

rev :
(

Πa:N. list(a) → list(a)
)

∧
(

(Σb:N. list(b)) → Σc:N. list(c)
)

but the first component of the intersection demands a term-level index abstraction, while the
second does not tolerate one.

We address these problems by a method that builds upon the notation of comma-separated
alternatives. The essential idea is to allow a context to appear in the annotation along with each
type:

e ::= . . . | (e : Γ1 ⊢ A1, . . . , Γn ⊢ An)

where each context Γk declares the types of some, but not necessarily all, free variables in e.
We can think of such an annotated term as follows: if Γk ⊢ e ↓ Ak then Γ ⊢ (e : Γ1 ⊢

A1, . . . , Γn ⊢ An) ↑ Ak if the current assumptions in Γ validate the assumptions in Γk. For ex-
ample, the second judgment below is not derivable, since x:odd does not validate x:even (because
odd 6≤ even).

x:even ⊢
(

(λy.Cons(42, x)) : x:even ⊢ 1 → odd,

x:odd ⊢ 1 → even
)

↑ 1 → odd

x:odd 6⊢
(

(λy.Cons(42, x)) : x:even ⊢ 1 → odd,

x:odd ⊢ 1 → even
)

↑ 1 → odd

In practice, this should significantly reduce the nondeterminism associated with type annota-
tions in the presence of intersection. Moreover, we can write a suitable annotation As in

⊢ λx.
(

(λz. x) : As
)

() ↓ Πa:N. list(a) → list(a)

through a locally declared index variable b:

λx.
(

(λz. x) : (b:N, x:list(b) ⊢ 1 → list(b))
)

Now, when we check if the current assumptions for x validate local assumption for x, we are
permitted to instantiate b to any index object i. In this example, we could substitute a for b. As
a result, we end up checking (λz. x) ↓ 1 → list(a), even though the annotation does not mention
a. Note that in an annotation e : (Γ0 ⊢ A0), As, all index variables declared in Γ0 are considered
bound and can be renamed consistently in Γ0 and A0. In contrast, the free term variables in Γ0
may actually occur in e and so cannot be renamed freely.
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true� bool, false� bool

even� nat, odd� nat

evenlist� list, oddlist� list,

emptylist� evenlist, emptylist� oddlist

eq : (even ∗ odd → false)

∧ (odd ∗ even → false)

∧ (nat ∗ nat → bool)

(∗ member : ⊢ (even ∗ oddlist → false)

∧ (odd ∗ evenlist → false)

∧ (nat ∗ list → bool) ∗)

fun member (x, xs) =

(∗ mem : x:even ⊢ (evenlist → bool) ∧ (oddlist → false),

x:odd ⊢ (evenlist → false) ∧ (oddlist → bool),

x:nat ⊢ natlist → bool ∗)

let fun mem xs =

case xs of Nil ⇒ false

| Cons(y, ys) ⇒ eq(x, y) orelse mem ys

in mem xs end

(∗ append : Πa:N. Πb:N. list(a) ∗ list(b) → list(a+ b) ∗)

fun append (xs, ys) =

(∗ app : (c:N, ys:list(c) ⊢ Πa:N. list(a) → list(a+ c)) ∗)

let fun app xs = case xs of Nil ⇒ ys

| Cons(x, xs) ⇒ Cons(x, app xs)

in app xs end

Figure 4: Example of contextual annotations

I give two small examples (from [DP04]) in Figure 4. [DP04] includes a more thorough dis-
cussion of contextual typing annotations, gives inference rules for contextual subtyping, and
proves a completeness result [DP04, Corollary 12] stating that annotations can be added to any
term that is well typed in the type assignment system to yield a well typed term in the tridirec-
tional system.

4.8 Properties of typing

If we take the type system just described, replace all ↑ and ↓ with :, and remove the rule for
annotations, we get the (undecidable) type assignment system of [DP03]. Not surprisingly, we
also get an erasure result. Let |e| denote the erasure of all typing annotations from e.

Theorem 1 (Soundness, Tridirectional). If Γ ⊢ e ↑ A or Γ ⊢ e ↓ A then Γ ⊢ |e| : A.

In [DP03] we proved Theorem 2.6

Theorem 2 (Type Preservation and Progress in the Type Assignment System). If ⊢ e : A then
either

6The theorem in the paper involves a substitution; taking the substitution to be empty yields the specialized formu-
lation given here.
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(1) e value, or

(2) there exists a term e ′ such that e 7→ e ′ and ⊢ e ′ : A.

4.9 The left tridirectional system

In the tridirectional system described, the contextual rules are highly nondeterministic. Not
only must we choose which contextual rule to apply, but each rule can be applied repeatedly
with the same context E; for (direct), which does not even break down the type of e ′, this re-
peated application is quite pointless. Hence, we define a left tridirectional system system with
only one contextual rule that disallows repeated application. Inspired by the sequent calculus
formulation of Barbanera et al. [BDCd95], it replaces the contextual rules with (1) a slightly al-
tered version of (direct) and (2) several left rules such as (∨L) below, where ∆ is a linear context
of variables x,y, . . . that must appear exactly once and in evaluation position in e.

Γ ;∆, x:A ⊢ e ↓ C Γ ;∆, x:B ⊢ e ↓ C

Γ ;∆, x:A ∨ B ⊢ e ↓ C
(∨L)

In combination, these rules subsume the previous set of contextual rules: The left tridirectional
system is sound and complete with respect to the tridirectional system discussed earlier. More-
over, a relatively simple argument suffices to show that the left tridirectional system is decid-
able. These results are proved in [DP04].

5 Constraint solving

Integer constraint solving, while NP-complete, is a well studied problem for which practical
algorithms such as Fourier-Motzkin [DE73] and the Omega test [Pug91] have been developed.
Xi successfully used a variant of Fourier-Motzkin in his implementation of DML.

In order to move beyond the domain of integers, it should be as easy as possible for the user
to develop and use constraint solvers for new domains. A basic requirement is a clean interface
allowing users to plug in one or more constraint solvers. Furthermore, the solvers must be able
to work together in situations such as the following, in which a, b, c are integers and ℓ1, ℓ2 are
lists, with one constraint solver for each domain (integers and lists):

a ≤ b, b ≤ c, ℓ1
.
= Cons(a− 1, ℓ2) |= head(append(ℓ1, ℓ2)) < c

The integer constraint solver alone cannot show the satisfaction relation holds, because it cannot
deduce head(append(ℓ1, ℓ2)) = head(ℓ1) = a − 1. Likewise, the list constraint solver cannot
deduce a − 1 < c. There are several methods for building such cooperating decision procedures;
the relatively straightforward method of Nelson and Oppen [NO79] should suffice for initial
experiments, and there is an extensive literature to draw upon for other techniques [Sho84,
RS01, SR02].

So far so good; but we can go further. The techniques needed in different index domains
often have much in common. For example, a term rewriting engine (where the terms are index
expressions) might be useful for both a domain of lists (where the operations are cons, head, tail,
and append) and a domain of format strings (in the style of C’s ‘printf’). Hence, a constraint
solver consisting of a term rewriting engine, which one would parameterize by particular sets
of rewrite rules, would be desirable.

There are already solvers that apply cooperating decision procedures, such as CVC [SBD02].
It might be expedient to use one of these systems instead of building my own.

6 Reaching beyond the envelope

The central theme of my work is to expand the capabilities of static type systems (the “enve-
lope”) by making more properties expressible. Yet there will always be classes of properties
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that cannot be expressed without losing decidability. Furthermore, components such as object-
code libraries are simply impervious to typechecking. While these difficulties are fundamental
to our approach, I suggest several ways of mitigating them.

The first is a fallback strategy of runtime refinement checking. For example, if we claim that
some library function f has type

f : Πa:N. int(a) → list(a)

we could wrap every call to f with a check that the length of the resulting list is equal to its
argument. One mechanism for implementing this would be a soft annotation. The idea is that
we erase the annotation if the annotated term can be checked against the type; if it cannot (for
example, if it is defined in an external library), we generate a wrapper function that includes a
call to an automatically generated checking function.7

As the above example illustrates, such checks could be linear in the size of the data structures
involved. Moreover, if the data is functional, we would need to build a new copy of the data
with the functions replaced by wrapped functions. This suggests a use for a third kind of anno-
tation, the sharp annotation, which is not even checked at runtime. This is quite dangerous (hence
the name): if the property claimed by the sharp annotation does not hold, the typechecker will
happily reason from that false assumption, sowing confusion.

A more compelling need for sharp annotations arises out of the index refinements. Some
constraint domains involve properties that are not even checkable at runtime. A simple example
is found in the seemingly innocuous theory of order, where the objects of discourse have an
operation � which must be reflexive, antisymmetric and transitive. If we use this theory with a
primitive type such as the integers and assume the built-in integer comparison operator has the
necessary properties, all is well. But if we need the theory of order for some user-defined type,
such as keys in a database with various components lexicographically ordered, the user writes
some comparison function cmp, so we should show that cmp is reflexive, antisymmetric and
transitive. However, the property of transitivity is neither expressible in the refinement system
nor checkable at runtime! In this case, the form of the sharp annotation is different:

cmp :# : TRANSITIVE

The constraint solver furnishes the information that TRANSITIVE denotes a property. There is
no check that cmp actually is transitive, but at least the programmer is forced to explicitly claim
the property holds.

Ideally, the system would be able to use evidence of various kinds to support sharp anno-
tations. A key goal of the Programatica project [Pro03] is to build a system that tracks various
kinds of evidence, from mere claims of the kind just discussed to proofs produced by full-blown
theorem provers. Integrating type refinements with a Programatica-like system would be inter-
esting and could be very powerful, but is beyond the scope of this work.

A final note: I discuss external libraries because they are obviously impervious to static
typechecking. But programs can grow so large that parts of the program may as well be an
external library! Suppose that in a large project, there is a module M with datatype τ which
M’s programmer refined as she saw fit; years later someone working on another part of the
program needs an unforeseen refinement of τ, but the benefit from static checking may not
justify the effort involved in modifying M, especially if the new refinement requires even minor
adjustments to the algorithms. In such a situation, soft or sharp annotations would be useful.

7 Related work

In this section, I briefly examine a few other approaches to the problem of verifying software
properties, and compare them to type refinements.

7Of course, the programmer could write the checking functions by hand, but the process should be automated.
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7.1 Assertions

Assertion mechanisms allow any boolean expression to be tested at runtime. Such assertions
serve as documentation and also encourage “early failure”, making bugs easier to pinpoint.
Of course, the lack of restrictions on the form of the asserted expression makes compile-time
assertion checking undecidable.

We can view a function type A → B as an implicit pair of assertions: a precondition of
the form “the argument is of type A” and a postcondition of the form “the result is of type
B”. With type refinements, pre- and postconditions of this form are more expressive than in a
conventional static type system. Thus, type refinements reduce but do not eliminate the utility
of generic assertion facilities such as those of Findler and Felleisen [FF02].

Note that under certain circumstances, a compiler can optimize away the assertion check: if
dataflow analysis shows that x = 1 when assert(x > 0) is reached, the assertion is equivalent
to assert(true) which is a no-op. However, most compilers provide little feedback as to which
checks are actually removed, so this is not much help.

7.2 ESC

ESC, the Extended Static Checker [DLNS98, Lei01] is intended to help find bugs in Modula-3
and Java programs. Annotations can be written expressing bounds on integers and synchro-
nization properties, among others. ESC then checks the program in light of the annotations, and
reports potential problems. These are only potential problems: for example, ESC may report a
potential null pointer dereference when in fact the pointer can never be null. Furthermore, ESC
is unsound: it may incorrectly report that there are no problems. In practice, though, the system
has been good at finding bugs.

Type refinements are not as expressive as the property language of ESC. However, even if
we restrict our attention to a subset of the ESC properties that can be expressed through type
refinements—for example, a pointer being non-null corresponds to a value of option type hav-
ing a particular datasort refinement—ESC can get away with having less information (anno-
tations), since it uses several tricks to (unsoundly) finesse undecidable problems such as gen-
erating loop invariants. The designers of ESC argue that much can be gained by giving up
the “shackles of soundness” [DLNS98, p. 33], but the power and ease of use of the individual
type refinement systems demonstrates that we have only begun to see how far we can go with-
out giving up soundness. It is also interesting to note that Leino [Lei01], in his discussion of
“future challenges”, suggests exploring “more-than-types systems”—by which he means ap-
proximately what I mean by “type refinements”, though he focuses on imperative languages
rather than functional languages. Finally, ESC has assume statements roughly corresponding
to my “sharp annotations”, and Leino suggests falling back on dynamic checks (my “soft anno-
tations”) or assume statements in cases where static checking is undecidable.

7.3 Testing

Refined type systems will never be powerful enough to make testing completely unnecessary,
but we could facilitate the automatic generation of test inputs by excluding inputs that are well
typed in a conventional type system, but ill typed in the refined type system. However, unless
the refinements exactly describe the property of being a valid input, additional programmer
guidance is needed to generate the inputs.

7.4 Soft typing

Traditionally, dynamically typed languages require many so-called runtime type checks. Soft typ-
ing systems [CF91, AWL94] aim to reduce the number of runtime type checks by analyzing the
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program, yielding constraints on data values, allowing some checks to be removed. For exam-
ple, in the program

(car ’(1 2 3))

the primitive car, which returns the head of its argument if the argument is a list, need not check
that its argument really is a list: it is clear from the analysis that the only value ever passed to it
(at this program point) is a list, namely ’(1 2 3).

If we view such type systems as unityped systems where there is one type, which happens to
be an algebraic datatype with alternatives corresponding to cons cells, integers, functions, etc.,
these “runtime type checks” are clearly runtime tag checks.

datatype dynamic = Cons of dynamic ∗ dynamic

| Int of int

| Func of dynamic → dynamic
...

Through datasort refinements, we can express the property that a value of some datatype is, in
particular, some specific constructor. For instance, we can declare a datasort intsort of integers
and a datasort intfunc of functions from integers to integers.

datasort intsort = Int of int

and intfunc = Func of intsort → intsort

Unfortunately, these datasort definitions do not strictly fit the framework of regular tree gram-
mars: the definition of intfunc includes an arrow, intsort → dynamic, and in particular a negative
occurrence of a datasort (intsort on the left of the arrow). Davies has extended standard algo-
rithms on regular tree grammars to handle datasorts in negative positions, but he has not proved
formal properties of the extension, and experience with the extension is limited [Dav03]. Thus,
we cannot yet conclude that datasort refinements subsume soft typing.

7.5 Cayenne: unrestricted dependent typing

Index refinements can be seen as a restricted form of dependent types. Cayenne [Aug98] is an
extension of Haskell with unrestricted dependent types. Consequently, typechecking in Cayenne
is undecidable; the Cayenne typechecker “times out” if typechecking takes more than a specified
number of steps. Cayenne does not define any kind of datatype refinement; its main concern
is with admitting more programs (such as a typechecked analogue of C’s printf) rather than
fewer. It is not obvious if the Cayenne approach could be extended with datatype refinements
in a sensible way.

7.6 Phantom types

The technique known as phantom types can express, through a clever use of parametric polymor-
phism and modularity, some of the properties expressible through type refinements. The idea
is to “tack on” an extra type variable, to be instantiated with an “index” in the form of a type.
Take a type atom and a function conj:

datatype atom = Int of int | Bool of bool

fun conj (Bool p, Bool q) = Bool(p andalso q)

| ( , ) = raise Error
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Declare a new type expr, “index” types intty, boolty, and wrappers around the constructors of
atom.

datatype α expr = Expr of atom

type intty

type boolty

fun mkInt i = Expr(Int(i)) : intty expr

fun mkBool p = Expr(Bool(p)) : boolty expr

Note that intty and boolty are kept opaque—their actual definition is irrelevant. The annotations
on the bodies of mkInt and mkBool constrain types that would otherwise be polymorphic, α expr.
Now modify conj thus:8

conj : boolty expr ∗ boolty expr → boolty expr

fun conj (Expr(Bool p), Expr(Bool q)) = mkBool(p andalso q)

| ( , ) = raise Error

Then ordinary Hindley-Milner typing suffices to reject expressions such as

conj(mkBool(true),mkInt(42))

There are several drawbacks to the phantom types approach. First, it is (at least to the unini-
tiated) quite unnatural; the above example is rather straightforward but more complicated uses
of phantom types, such as modeling array length [Blu01], are not. Second, it does not yield any
inversion properties: assuming v : boolty expr, we cannot show v is an instance of the construc-
tor Bool, and therefore cannot prove that the raise Error arm in conj is unreachable. The latter
drawback appears to be addressed by Cheney and Hinze [CH03], but to do so they must build
phantom types into the type system, eliminating a key advantage of phantom types: compati-
bility with conventional type systems.

Fluet and Pucella [FP02] use phantom types to model certain forms of subtyping, and cite
numerous other applications of phantom types. The example was adapted from Leijen and
Meijer [LM99].

8 Road map

I have already completed substantial work towards my thesis:

• Combined datasort and index refinements into a single type system with intersection
types and universal index quantification [Dun02].

• Formulated a clean (but undecidable) type assignment system with datasort and index
refinements, intersections, unions, universal and existential index quantification, and least
and greatest types [DP03].

• Formulated a decidable version of the type assignment system, via bidirectional typing
and typing annotations [DP04].

To complete the thesis, I plan to do the following:

1. Formulate a let-normal transformation and associated variant of the decidable bidirec-
tional system such that the let-normal system is sound and complete with respect to the
earlier system, yet substantially less nondeterministic.

8The annotation syntax is not valid ML.
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2. Elaborate the present type system, which assumes the typechecker can guess index ex-
pressions when instantiating index quantifiers, into a constraint-generating system.

3. To facilitate experimentation, adapt the type system to a small functional language (some-
where between the system of [DP04] and the core language of SML) and implement it.
Initially I will use “hardcoded” refinements, that is, the user explicitly gives the refined
types of data constructors.

4. Apply the system to a variety of problems. I particularly want to explore a wide range of
index domains. Some of these domains should fit the current framework well, for exam-
ple:

• Sets, ordered sets, multisets; there are some nice decidable fragments of these theo-
ries, such as the monadic theory of order [She75].

• Dimension types [Ken94].

Other domains would likely require modification to the type system:

• Terms in the Twelf language (Sarkar and Crary).

• Termination checking [Xi01].

• Effects (properties like those considered by Mandelbaum et al. [MWH03]).

5. Identify and address performance bottlenecks (such as, perhaps, left rule nondetermin-
ism).

6. Write the dissertation.
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