
Elaborating Evaluation-Order Polymorphism

Jana Dunfield

University of British Columbia
Vancouver, Canada

jd169@queensu.ca

Abstract

We classify programming languages according to evaluation order:
each language fixes one evaluation order as the default, making it
transparent to program in that evaluation order, and troublesome to
program in the other.

This paper develops a type system that is impartial with respect
to evaluation order. Evaluation order is implicit in terms, and ex-
plicit in types, with by-value and by-name versions of type connec-
tives. A form of intersection type quantifies over evaluation orders,
describing code that is agnostic over (that is, polymorphic in) eval-
uation order. By allowing such generic code, programs can express
the by-value and by-name versions of a computation without code
duplication.

We also formulate a type system that only has by-value connec-
tives, plus a type that generalizes the difference between by-value
and by-name connectives: it is either a suspension (by name) or
a “no-op” (by value). We show a straightforward encoding of the
impartial type system into the more economical one. Then we de-
fine an elaboration from the economical language to a call-by-value
semantics, and prove that elaborating a well-typed source program,
where evaluation order is implicit, produces a well-typed target pro-
gram where evaluation order is explicit. We also prove a simulation
between evaluation of the target program and reductions (either by-
value or by-name) in the source program.

Finally, we prove that typing, elaboration, and evaluation are
faithful to the type annotations given in the source program: if the
programmer only writes by-value types, no by-name reductions can
occur at run time.

Categories and Subject Descriptors F.3.3 [Mathematical Logic and

Formal Languages]: Studies of Program Constructs—Type structure

Keywords evaluation order, intersection types, polymorphism

1. Introduction

It is customary to distinguish languages according to how they
pass function arguments. We tend to treat this as a basic taxo-
nomic distinction: for example, OCaml is a call-by-value language,
while Haskell is call-by-need. Yet this taxonomy has been dubious
from the start: Algol-60, in which arguments were call-by-name by
default, also supported call-by-value. For the λ-calculus, Plotkin
(1975) showed how to use administrative reductions to translate a

This version makes technical corrections to a paper that
appeared at ICFP 2015. It also corrects the author’s name
and updates her email address.

Copyright c© 2015 Jana Dunfield

cbv program into one that behaves equivalently under cbn evalua-
tion, and vice versa. Thus, one can write a call-by-name program
in a call-by-value language, and a call-by-value program in a call-
by-name language, but at the price of administrative burdens: creat-
ing and forcing thunks (to simulate call-by-name), or using special
strict forms of function application, binding, etc. (to simulate call-
by-value).

But programmers rarely want to encode an entire program into a
different evaluation order. Rather, the issue is how to use the other
evaluation order in part of a program. For example, game search
can be expressed elegantly using a lazy tree, but in an ordinary
call-by-value language one must explicitly create and force thunks.
Conversely, a big advantage of call-by-value semantics is the rela-
tive ease of reasoning about cost (time and space); to recover some
of this ease of reasoning, languages that are not call-by-value often
have strict versions of function application and strictness annota-
tions on types.

An impartial type system. For any given language, the language
designers’ favourite evaluation order is the linguistically unmarked
case. Programmers are not forced to use that order, but must do
extra work to use another, even in languages with mechanisms
specifically designed to mitigate these burdens, such as a lazy
keyword (Wadler et al. 1998).

The first step we’ll take in this paper is to stop playing favourites:
our source language allows each evaluation order to be used as eas-
ily as the other. Our impartial type system includes by-value and

by-name versions of function types (
V
→,

N
→), product types (∗V,

∗N), sum types (+V, +N) and recursive types (µV, µN). Using bidi-
rectional typing, which distinguishes checking and inference, we
can use information found in the types of functions to determine
whether an unmarked λ or application should be interpreted as
call-by-name or call-by-value.

What if we want to define the same operation over both eval-
uation orders, say compose, or append (that is, for strict and lazy
lists)? Must we write two identical versions, with nearly-identical
type annotations? No: We can use polymorphism based on intersec-
tion types. The abstruse reputation of intersection types is belied by
a straightforward formulation as implicit products (Dunfield 2014),
a notion also used by Chen et al. (2014) to express polymorphism
over a finite set of levels (though without using the word “inter-
section”). In these papers’ type systems, elaboration takes a poly-
morphic source program and produces a target program explicitly
specifying necessary, but tedious, constructs. For Dunfield (2014),
the extra constructs introduce and eliminate the products that were
implicit in the source language; for Chen et al. (2014), the extra
constructs support a dynamic dependency graph for efficient incre-
mental computation.

In this paper, we express the intersection type ∧ as a universal

quantifier over evaluation orders. For example, the type Da. int
a
→

int corresponds to (int
V
→ int) ∧ (int

N
→ int). Thus, we can

type code that is generic over evaluation orders. Datatype defini-

1 (256) 2020/8/15 (ICFP 2015)

e⇐⇒τ

V
→ ∗V +V µV

N
→ ∗N +N µN

∀ D

Impartial
type system

Source language (e)

e⇐⇒S

→ ∗ + µ
V◮ N◮

∀ D

Economical
type system

encode
types

er(e) : S

erase types

e ′ : S

cbv + cbn
evaluation
(≥ 0 steps)

M : A

→ ∗ + µ
U (thunk)

∀

W : A

Cbv type system

Target language (M)

elaborate

elaborate

standard cbv
evaluation
(≥ 0 steps)

Figure 1. Encoding and elaboration

tions, expressed as recursive/sum types, can also be polymorphic
in evaluation order; for example, operations on binary search trees
can be written just once. Much of the theory in this paper fol-
lows smoothly from existing work on intersection types, particu-
larly Dunfield (2014). However, since we only consider intersec-
tions equivalent to the quantified type Da. A, our intersected types
have parametric structure: they differ only in the evaluation or-
ders decorating the connectives. This limitation, a cousin of the
refinement restriction in datasort refinement systems (Freeman and
Pfenning 1991; Davies 2005), avoids the need for a merge con-
struct (Reynolds 1996; Dunfield 2014) and the issues that arise
from it.

A simple, fine-grained type system. The source language just
described meets our goal of impartiality, but the large number of
connectives yields a slightly unwieldy type system. Fortunately, we
can refine this system by abstracting out the differences between the
by-name and by-value versions of each connective. That is, each
by-name connective corresponds to a by-value connective with

suspensions (thunks) added: the by-name function type S1
N
→ S2

corresponds to (U S1) → S2 where → is by-value, whereas

S1
V
→ S2 is simply S1 → S2. Here, U S1 is a thunk type—

essentially 1 → S1. We realize this difference through a connective
ǫ◮S, read “ǫ suspend S”, where N◮S corresponds to U S and
V◮S is equivalent to S. This gives an economical type system with
call-by-value versions of the usual connectives (→, ∗, +, µ), plus
ǫ◮S. This type system is biased towards call-by-value (with call-
by-name being “marked”), but we can easily encode the impartial

connectives: S1
ǫ
→ S2 becomes (ǫ◮S1) → S2, the sum type

S1 +
ǫ S2 becomes ǫ◮(S1 + S2), etc.

Another advantage of this type system is that, in combination
with polymorphism, it is simple to define variants of data structures
that mix different evaluation orders. For example, a single list
definition can encompass lists with strict “next pointers” (so that
“walking” the list is guaranteed linear time) and lazy elements (so
that examining the element may not be constant time), as well as
lists with lazy “next pointers” and strict contents (so that “walking”
the list is not guaranteed linear—but once a cons cell has been
produced, its element can be accessed in constant time).

Having arrived at this economical type system for source pro-
grams, in which evaluation order is implicit in terms, we develop
an elaboration that produces a target program in which evaluation
order is explicit: thunks are explicitly created and forced, and mul-
tiple versions of functions—by-value and by-name—are generated
and selected explicitly.

Contributions. This paper makes the following contributions:

(§2) We define an impartial source language and type system that
are equally suited to call-by-value and call-by-name. Using a
type Da. τ that quantifies over evaluation orders a, program-
mers can define data structures and functions that are generic
over evaluation order. The type system is bidirectional, alter-
nating between checking an expression against a known type
(derived from a type annotation) and synthesizing a type from
an expression.

(§3) Shifting to a call-by-value perspective, we abstract out the
suspensions implicit in the by-name connectives, yielding
a smaller economical type system, also suitable for a (non-
impartial) source language. We show that programs well-typed
in the impartial type system remain well-typed in the econom-
ical type system. Evaluation order remains implicit in terms,
and is specified only in type annotations, using the suspension
point ǫ◮S.

(§5) We give elaboration typing rules from the economical type
system into target programs with fully explicit evaluation order.
We prove that, given a well-typed source program, the result of
the translation is well-typed in a call-by-value target language
(Section 4).

(§6) We prove that the target program behaves like the source pro-
gram: when the target takes a step from M to M ′, the source
program that elaborated to M takes some number of steps,
yielding an expression that elaborates to M ′. We also prove that
if a program is typed (in the economical type system) without
by-name suspensions, the source program can take only “by-
value steps” possible in a cbv semantics. This result exploits a
kind of subformula property of the bidirectional type system.
Finally, we prove that if a program is impartially typed with-
out using by-value connectives, it can be economically typed
without by-name suspensions.

Figure 1 shows the structure of our approach.

Extended version with appendices. Proofs omitted from the main
paper for space reasons can be found in Dunfield (2015).

2. Source Language and Impartial Type System

Program variables x
Source expressions e ::= () | x | u | λx. e | e1 @ e2 | fix u. e

| Λα. e | e[τ] | (e:τ)
| (e1, e2) | projk e
| injk e | case(e, x1.e1, x2.e2)

Figure 2. Impartial source language syntax

Evaluation order vars. a

Evaluation orders ǫ ::= V | N | a
Type variables α
Valuenesses ϕ ::= val | ⊤

Source types τ ::= 1 | α | ∀α. τ | Da. τ | τ1
ǫ
→ τ2

| τ1 ∗
ǫ τ2 | τ1 +

ǫ τ2 | µǫα. τ

Source typing contexts γ ::= · | γ, x ϕ⇒ τ | γ, u ⊤⇒ τ
| γ, a evalorder | γ, α type

Figure 3. Impartial types for the source language

In our source language (Figure 2), expressions e are the unit
value (), variables x, abstraction λx. e, application e1 @ e2, fixed
points fix u. e with fixed point variables u, pairs and projections,

2 (257) 2020/8/15 (ICFP 2015)

and sums injk e with conditionals case(e, x1.e1, x2.e2) (short-
hand for case e of inj1 x1 ⇒ e1 || inj2 x2 ⇒ e2). Both of our type
systems for this source language—the impartial type system in this
section, and the economical type system of Section 3—have fea-
tures not evident from the source syntax: polymorphism over eval-
uation orders, and recursive types.

2.1 Values

If we wanted a standard call-by-value language, we would give
a grammar for values, and use values to define the operational
semantics (and to impose a value restriction on polymorphism
introduction). But we want an impartial language, which means
that a function argument x is a value only if the function is being
typed under call-by-value. That is, when checking (λx. e) against

type (τ
V
→ τ), the variable x should be considered a value (it will

be replaced with a value at run time), but when checking against

(τ
N
→ τ), it should not be considered a value (it could be replaced

with a non-value at run time). Since “valueness” depends on typing,
our typing judgments will have to carry information about whether
an expression should be considered a value.

We will also use valueness to impose a value restriction on
polymorphism over evaluation orders, as well as polymorphism
over types; see Section 2.5. In contrast, our operational semantics
for the source language (Section 2.4), which permits two flavours
(by-value and by-name) of reductions, will use a standard syntactic
definition of values in the by-value reductions.

2.2 An Impartial Type System

In terms of evaluation order, the expressions in Figure 2 are a blank
slate. You can imagine them as having whichever evaluation order
you prefer. You can write down the typing rules for functions, pairs
and sums, and you will get the same rules regardless of which
evaluation order you chose. This is the conceptual foundation for
many functional languages: start with the simply-typed λ-calculus,

choose an evaluation order, and build up the language from there.1

Our goal here is to allow different evaluation orders to be mixed.
As a first approximation, we can try to put evaluation orders in the
type system simply by decorating all the connectives. For example,
in place of the standard →-introduction rule

γ, x : τ1 ⊢ e : τ2

γ ⊢ (λx. e) : (τ1 → τ2)

we can decorate → with an evaluation order ǫ (either V or N):

γ, x : τ1 ⊢ e : τ2

γ ⊢ (λx. e) : (τ1
ǫ
→ τ2)

Products ∗, sums +, and recursive types µ follow similarly.

We add a universal quantifier Da. τ over evaluation orders2. Its
rules follow the usual type-assignment rules for ∀: the introduction
rule is parametric over an arbitrary evaluation order a, and the

1 The choice need not be easy. The first call-by-name language, Algol 60,
also supported call-by-value. It seems that call-by-value was the language
committee’s preferred default, but Peter Naur, the editor of the Algol 60
report, independently reversed that decision—which he said was merely
one of a “few matters of detail” (Wexelblat 1981, p. 112). A committee
member, F.L. Bauer, said this showed that Naur “had absorbed the Holy
Ghost after the Paris meeting. . . there was nothing one could do. . . it was to
be swallowed for the sake of loyalty.” (Wexelblat 1981, p. 130).
2 The Cyrillic letter D, transliterated into English as D, bears some resem-
blance to an A (and thus to ∀); more interestingly, it is the first letter of
the Russian word da (da). Many non-Russian speakers know that this word
means “yes”, but another meaning is “and”, connecting it to intersection
types.

elimination rule replaces a with a particular evaluation order ǫ:

γ, a evalorder ⊢ e : τ

γ ⊢ e : Da. τ

γ ⊢ e : Da. τ γ ⊢ ǫ evalorder

γ ⊢ e : [ǫ/a]τ

These straightforward rules have a couple of issues:

• Whether a program diverges can depend on whether it is run
under call-by-value, or call-by-name. The simply-typed λ-
calculus has the same typing rules for call-by-value and call-
by-name, because those rules cannot distinguish programs that
return something from programs that diverge. Since we want
to elaborate to call-by-value or call-by-name depending on
which type appeared, evaluation depends on the particular typ-
ing derivation. Suppose that evaluation of e2 diverges, and that
f is bound to (λx. e1). Then whether f @ e2 diverges depends

on whether the type of f has
V
→ or

N
→. The above rules allow

a compiler to make either choice. Polymorphism in the form
of D aggravates the problem: it is tempting to infer for f the

principal type Da. · · ·
a
→ · · · ; the compiler can then choose

how to instantiate a at each of f’s call sites. Allowing such code
is one of this paper’s goals, but only when the programmer
knows that either evaluation order is sensible and has written
an appropriate type annotation or module signature.

We resolve this through bidirectional typing, which ensures that
quantifiers are introduced only via type annotation (a kind of
subformula property). Internal details of the typing derivation
still affect elaboration, and thus evaluation, but the internal
details will be consistent with programmers’ expressed intent.

• If we extend the language with effects, we may need a value
restriction in certain rules. For example, mutable references
will break type safety unless we add a value restriction to the
introduction rules for ∀ and D.

A traditional value restriction (Wright 1995) would simply re-
quire changing e to v in the introduction rules, where v is a
class of syntactic values. In our setting, whether a variable x is
a value depends on typing, so a value restriction is less straight-
forward. We resolve this by extending the typing judgment with
information about whether the expression is a value.

Bidirectional typing. We can refine the traditional typing judg-
ment into checking and synthesis judgments. In the checking judg-
ment e ⇐ τ, we already know that e should have type τ, and are
checking that e is consistent with this knowledge. In the synthesis
judgment e ⇒ τ, we extract τ from e itself (perhaps directly from a
type annotation), or from assumptions available in a typing context.

The use of bidirectional typing (Pierce and Turner 2000; Dun-
field and Krishnaswami 2013) is often motivated by the need to
typecheck programs that use features Damas-Milner inference can-
not handle, such as indexed and refinement types (Xi 1998; Davies
and Pfenning 2000; Dunfield and Pfenning 2004) and higher-rank
polymorphism. But decidability is not our motivation for using
bidirectional typing. Rather, we want typing to remain predictable
even though evaluation order is implicit. By following the approach
of Dunfield and Pfenning (2004), in which “introduction forms
check, elimination forms synthesize”, we ensure that the evalu-
ation orders in typing match what programmers intended: a type
connective with a V or N evaluation order can be introduced only
by a checking judgment. Since the types in checking judgments
are derived from type annotations, they match the programmer’s
expressed intent.

Programmers must write annotations on expressions that are
redexes: in (λx. e) @ e2, the λ needs an annotation, because λx. e
is an introduction form in an elimination position: [] @ e2. In
contrast, f @ (λx. e2) needs no annotation, though the type of

3 (258) 2020/8/15 (ICFP 2015)

f must be derived (if indirectly) from an annotation. Recursive
functions fix u. λx. e “reduce” to their unfolding, so they also need
annotations.

Valueness. Whether an expression is a value may depend on
typing, so we put a valueness in the typing judgments: e val⇒ S (or
e val⇐ S) means that e at type S is definitely a value, while e ⊤⇒ S
(or e ⊤⇐ S) means that e at type S is not known to be a value. In
the style of abstract interpretation, we have a partial order ⊑ such
that val ⊑ ⊤. Then the join ϕ1 ⊔ ϕ2 is val when ϕ1 = ϕ2 = val,
and ⊤ otherwise. g Since valueness is just a projection of ǫ, we
could formulate the system without it, using ǫ to mark judgments
as denoting values (V) or possible nonvalues (N). But that seems
prone to confusion: is N⇐ saying the expression is “by name” in
some sense?

Types and typing contexts. In Figure 3 we show the grammar for
evaluation orders ǫ, which are either by-value (V), by-name (N),
or an evaluation order variable a. We have the unit type 1, type
variables α, ordinary parametric polymorphism ∀α. τ, evaluation

order polymorphism Da. τ, functions τ1
ǫ
→ τ2, products τ1 ∗

ǫ τ2,
sums τ1 +

ǫ τ2, and recursive types µǫα. τ.
A source typing context γ consists of variable declarations

x ϕ⇒ τ denoting that x has type τ with valueness ϕ, fixed-
point variable declarations u ⊤⇒ τ (fixed-point variables are never
values), evaluation-order variable declarations a evalorder, and type
variable declarations α type.

Impartial typing judgments. Figure 4 shows the bidirectional
rules for impartial typing. The judgment forms are γ ⊢I e ϕ⇐
τ, meaning that e checks against τ (with valueness ϕ), and
γ ⊢I e ϕ⇒ τ, meaning that e synthesizes type τ. The “I” on
the turnstile stands for “impartial”.

Connective-independent rules. Rules Ivar and Ifixvar simply use
assumptions stored in γ. Rule Ifix checks a fixed point fix u. e
against type τ by introducing the assumption u ⊤⇒ τ and check-
ing e against τ; its premise has valueness ϕ because even if e is a
value, fix u. e is not (⊤ in the conclusion).

Rule Isub says that if e synthesizes τ then e checks against τ.
For example, in the (ill-advised) fixed point expression fix u. u,
the premise of Ifix tries to check u against τ, but Ifixvar derives a
synthesis judgment, not a checking judgment; Isub bridges the gap.

Rule Ianno also mediates between synthesis and checking, in
the opposite direction: if we can check an expression e against an
annotated type τ, then (e:τ) synthesizes τ.

Introductions and eliminations. The rest of the rules are linked
to type connectives. For easy reference, the figure shows each
connective to the left of its introduction and elimination rules. We
follow the recipe of Dunfield and Pfenning (2004): introduction
rules check, and elimination rules synthesize. This recipe yields
the smallest sensible set of rules, omitting some rules that are not
absolutely necessary but can be useful in practice. For example, our
rules never synthesize a type for an unannotated pair, because the
pair is an introduction form.

Rule I+Elim follows the recipe, despite having a checking
judgment in its conclusion: the connective being eliminated, +ǫ,
is synthesized (in the first premise).

Functions. Rule I→Intro introduces the type τ1
ǫ
→ τ2. Its

premise adds an assumption x valueness(ǫ)⇒ τ1, where valueness(ǫ)
is val if ǫ = V, and ⊤ if ǫ is N or is an evaluation-order variable
a. This rule thereby encompasses both variables that will be sub-
stituted with values (valueness(ǫ) = val) and variables that might
be substituted with non-values (valueness(ǫ) = ⊤). Applying a

function of type τ1
ǫ
→ τ2 yields something of type τ2 regardless

of ǫ, so I→Elim ignores ǫ.

Consistent with the usual definition of syntactic values, I→Intro’s
conclusion has val, while I→Elim’s conclusion has ⊤.

In rule I→Elim, the first premise has the connective to elim-
inate, so the first premise synthesizes (τ1 +ǫ τ2). This provides
the type τ1, so the second premise is a checking judgment; it also
provides τ2, so the conclusion synthesizes.

Products. Rule I∗Intro types a value if and only if both e1 and
e2 are typed as values, so its conclusion has valueness ϕ1 ⊔ ϕ2.

Sums. Rule I+Introk is straightforward. In rule I+Elim, the as-
sumptions added to γ in the branches say that x1 and x2 are values
(val), because our by-name sum type is “by-name” on the outside.
This point should become more clear when we see the translation
of types into the economical system.

Recursive types. Rules IµIntro and IµElim have the same e in the
premise and conclusion, without explicit “roll” and “unroll” con-
structs. In a non-bidirectional type inference system, this would be
awkward since the expression doesn’t give direct clues about when
to apply these rules. In this bidirectional system, the type tells us to
apply IµIntro (since its conclusion is a checking judgment). Know-
ing when to apply IµElim is more subtle: we should try to apply it
whenever we need to synthesize some other type connective. For
instance, the first premise of I+Elim needs a +, so if we synthesize
a µ-type we should apply IµElim in the hope of exposing a +.

The lack of explicit [un]rolls suggests that these are not iso-
recursive but equi-recursive types (Pierce 2002, chapter 20). How-
ever, we don’t semantically equate a recursive type with its unfold-
ing, so perhaps they should be called implicitly iso-recursive.

Note that an implementation would need to check that the type
under the µ is guarded by a type connective that does have explicit
constructs, to rule out types like µǫα. α, which is its own unfolding
and could make the typechecker run in circles.

Explicit type polymorphism. In contrast to recursive types, we
explicitly introduce and eliminate type polymorphism via the ex-
pressions Λα. e and M[τ]. This guarantees that a ∀ can be instan-
tiated with a type containing a particular evaluation order if and
only if such a type appears in the source program.

Principality. Suppose γ ⊢I e1 ϕ⇒ Da. τ1 → τ2. Then, for any
ǫ, we can derive γ ⊢I e1 @ e2 ⊤⇒ [ǫ/a]τ2. But we can’t use
IDIntro to derive the type Da ′. [a ′/a]τ2, because e1 @ e2. The
only sense in which this expression has a principal type is if we
have an evaluation-order variable in γ that we can substitute for a.

2.3 Programming with Polymorphic Evaluation Order

Lists and streams. The impartial type system can express lists
and (potentially terminating) streams in a single declaration:

type List a α = µ
a
β.

(

1 +
a
(α ∗a β)

)

Choosing a = V yields µVβ.
(

1+V (α ∗V β)
)

, which is the type of

lists of elements α. Choosing a = N yields µNβ.
(

1 +N (α ∗N β)
)

,
which is the type of streams that may end—essentially, lazy lists.
Since evaluation order is implicit in source expressions, we can
write operations on List a α that work for lists and streams:

map : Da.∀α. (α
V
→ β)

V
→ (List a α)

V
→ (List a β)

= Λα. fix map. λf. λxs.
case(xs, x1.inj1 (),

x2.inj2 (f @ (proj1 x2), map @ f @ (proj2 x2)))

This sugar-free syntax bristles; in an implementation with conve-
niences like pattern-matching on tuples and named constructors,
we could write

4 (259) 2020/8/15 (ICFP 2015)

valueness(ǫ) = ϕ Evaluation order ǫ maps to valueness ϕ valueness(V) = val
valueness(N) = ⊤
valueness(a) = ⊤

γ ⊢I e ϕ⇐ τ

γ ⊢I e ϕ⇒ τ

Source expression e checks against impartial type τ

Source expression e synthesizes impartial type τ

(x ϕ⇒ τ) ∈ γ

γ ⊢I x ϕ⇒ τ
Ivar

(u ⊤⇒ τ) ∈ γ

γ ⊢I u ⊤⇒ τ
Ifixvar

γ, u ⊤⇒ τ ⊢I e ϕ⇐ τ

γ ⊢I (fix u. e) ⊤⇐ τ
Ifix

γ ⊢I e ϕ⇒ τ

γ ⊢I e ϕ⇐ τ
Isub

γ ⊢I e ϕ⇐ τ

γ ⊢I (e:τ) ϕ⇒ τ
Ianno

∀
γ, α type ⊢I e val⇐ τ

γ ⊢I Λα. e val⇐ ∀α. τ
I∀Intro

γ ⊢I e ϕ⇒ ∀α. τ γ ⊢ τ
′
type

γ ⊢I e[τ
′
] ϕ⇒ [τ

′
/α]τ

I∀Elim 1 γ ⊢I () val⇐ 1
I1Intro

D
γ, a evalorder ⊢I e val⇐ τ

γ ⊢I e val⇐ Da. τ
IDIntro

γ ⊢I e ϕ⇒ Da. τ γ ⊢ ǫ evalorder

γ ⊢I e ϕ⇒ [ǫ/a]τ
IDElim

ǫ
→

γ, (x valueness(ǫ)⇒ τ1) ⊢I e ϕ⇐ τ2

γ ⊢I (λx. e) val⇐ (τ1
ǫ
→ τ2)

I→Intro
γ ⊢I e1 ϕ1

⇒ (τ1
ǫ
→ τ2) γ ⊢I e2 ϕ2

⇐ τ1

γ ⊢I (e1 @ e2) ⊤⇒ τ2
I→Elim

∗ǫ
γ ⊢I e1 ϕ1

⇐ τ1 γ ⊢I e2 ϕ2
⇐ τ2

γ ⊢I (e1, e2) ϕ1⊔ϕ2
⇐ (τ1 ∗

ǫ
τ2)

I∗Intro
γ ⊢I e ϕ⇒ (τ1 ∗

ǫ
τ2)

γ ⊢I (projk e) ⊤⇒ τk
I∗Elimk

+ǫ γ ⊢I e ϕ⇐ τk

γ ⊢I (injk e) ϕ⇐ (τ1 +
ǫ
τ2)

I+Introk
γ ⊢I e ϕ0

⇒ (τ1 +
ǫ
τ2)

γ, (x1 val⇒ τ1) ⊢I e1 ϕ1
⇐ τ

γ, (x2 val⇒ τ2) ⊢I e2 ϕ2
⇐ τ

γ ⊢I case(e, x1.e1, x2.e2) ⊤⇐ τ
I+Elim

µǫ γ ⊢I e ϕ⇐
[

(µ
ǫ
α. τ)

/

α
]

τ

γ ⊢I e ϕ⇐ µ
ǫ
α. τ

IµIntro
γ ⊢I e ϕ⇒ µ

ǫ
α. τ

γ ⊢I e ⊤⇒
[

(µ
ǫ
α. τ)

/

α
]

τ
IµElim

Figure 4. Impartial bidirectional typing for the source language

map f xs : Da.∀α. (α
V
→ β)

V
→ (List a α)

V
→ (List a β)

= case xs of Nil ⇒ Nil

||Cons(hd, tl) ⇒ Cons(f hd, map f tl)

Note that, except for the type, this is standard code for map.
Even this small example raises interesting questions:

• Must all the connectives in List have a? No. Putting a on either
the µ or the + and writing V on the other connectives is enough
to get stream behaviour when a is instantiated with N: the only
reason to eliminate (unroll) the µ is to eliminate (case on)
the +; marking either connective will suspend the underlying
computation. Marking both µ and + induces a suspension of
a suspension, where forcing the outer suspension immediately
forces the inner one; one of the suspensions is superfluous.

Note that marking only ∗ with a, that is, µVβ.
(

1 +V (α ∗a β)
)

,
yields an “odd” data structure (Wadler et al. 1998), one that
is not entirely lazy: we know immediately—without forcing a
thunk—which injection we have (i.e. whether we have Nil or
Cons).

• What evaluation orders should we use in the type of map? We

used by-value (
V
→), but we could use the same evaluation order

as the list: Da.∀α. (α
a
→ β)

a
→ (List a α)

a
→ (List a β).

This essentially gives “ML-ish” behaviour when a = V, and
“Haskell-ish” behaviour when a = N. The type system, how-
ever, permits other variants—even the outlandishly generic

Da1, a2, a3, a4, a5.∀α.(α
a1
→ β)

a2
→ (List a3 α)

a4
→ (List a5 β)

We leave deeper investigation of these questions to future work:
our purpose, in this paper, is to develop the type systems that make
such questions matter.

Variations in being odd and even. The Standard ML type of
“streams in odd style” (Wadler et al. 1998, Fig. 1), given by

datatype α stream = Nil | Cons of α * α stream susp

where α stream susp is the type of a thunk that yields an α
stream, can be represented as the impartial type µVβ.

(

1 +V

(α ∗V (µNγ. β))
)

. Note the slightly awkward (µNγ. β), in which

γ doesn’t occur; we can’t simply write µNβ. on the outside, be-
cause that would suspend the entire sum. (In the economical type
system in Section 3, it’s easy to put the suspension in either po-
sition.) This type differs subtly from another “odd” stream type,

µVβ.
(

1 +V (α ∗a β)
)

, which corresponds to the SML type

datatype α stream = Nil | Cons of (α * α stream) susp

Here, the contents α are under the suspension; given a value of this
type, we immediately know whether we have Nil or Cons, but we
must force a thunk to see what the value is, which will also reveal
whether the tail is Nil or Cons.

We can also encode “streams in even style” (Wadler et al. 1998,
Fig. 2): The SML declarations

datatype α stream_ = Nil_ | Cons_ of α * α stream

withtype α stream = α stream_ susp

correspond to µNβ.
(

1 +V (α ∗V β))
)

, with the N on µ playing the
role of the withtype declaration.

Wadler et al. (1998) note that “streams in odd style” can be
encoded with ease in SML, while “streams in even style” can be
encoded with difficulty (see their Figure 2). In the impartial type
system, both encodings are straightforward, and we would only
need to write one (polymorphic) version of each of their functions
over streams.

5 (260) 2020/8/15 (ICFP 2015)

Source values v ::= () | λx. e | (v1, v2) | injk v

By-value eval. contexts CV ::= []
| CV @ e2 | v1 @ CV

| (CV, e2) | (v1, CV) | projk CV

| injk CV | case(CV, x1.e1, x2.e2)

By-name eval. contexts CN ::= []

| CN @ e2 | e1 @ CN

| (CN, e2) | (e1, CN) | projk CN

| injk CN | case(CN, x1.e1, x2.e2)

!
cf. Erratum

page 14

e e ′ Source expression e steps to e ′

e RV e
′

CV[e] CV[e
′
]

SrcStepCtxV
e RN e

′

CN[e] CN[e
′
]

SrcStepCtxN

e RV e ′

e RN e ′

e reduces to e ′ by value

e reduces to e ′ by name

(λx. e1) @ v2 RV [v2/x]e1 βVreduce

(λx. e1) @ e2 RN [e2/x]e1 βNreduce

(fix u. e) RV

[

(fix u. e)
/

u
]

e fixVreduce

(fix u. e) RN

[

(fix u. e)
/

u
]

e fixNreduce

projk (v1, v2) RV vk projVreduce

projk (e1, e2) RN ek projNreduce

case(injk v, x1.e1, x2.e2) RV [v/xk]ek caseVreduce

case(injk e, x1.e1, x2.e2) RN [e/xk]ek caseNreduce

Figure 5. Source reduction

er(e) = e ′ Source expression e erases to e ′

er(Λα. e) = er(e)

er(e[S]) = er(e)

er((e:S)) = er(e)

er(()) = ()
er(x) = x

er(e1 @ e2) = er(e1) @ er(e2)
etc.

Figure 6. Erasing types from source expressions

Binary trees. As with lists, we can define evaluation-order-
polymorphic trees:

type Tree a α = µ
a
β.

(

1 +
V
(α ∗V β ∗V β)

)

Here, only µ is polymorphic in a, to suppress redundant thunks.

2.4 Operational Semantics for the Source Language

A source expression takes a step if a subterm in evaluation posi-
tion can be reduced. We want to model by-value computation and
by-name computation, so we define the source stepping relation
usings two notions of evaluation position and two notions of reduc-
tion. A by-value evaluation context CV is an expression with a hole
[], where CV[e] is the expression with e in place of the []. If e re-
duces by value to e ′, written e RV e ′, then CV[e] CV[e

′]. For
example, if e2 RV e ′

2 then v1 @ e2 v1 @ e ′

2, because v1 @ []
is a by-value evaluation context.

!
cf. Erratum

page 14

Dually, CN[e] CN[e
′] if e RN e ′. Every by-value context

is a by-name context, and every pair related by RV is also related
by RN, but the converses do not hold. For instance, e1 @ [] is a
CN but not a CV, and proj2 (e1, e2) RN e2, but proj2 (e1, e2)
reduces by value only when e1 and e2 are values.

Values, by-value evaluation contexts CV, by-name evaluation
contexts CN, and the relations , RV and RN are defined in

Figure 5. The definitions of v, CV and RV, taken together, are
standard for call-by-value; the definitions of CN and RN are stan-
dard for call-by-name. The peculiarity is that can behave either
by value (rule SrcStepCtxV) or by name (rule SrcStepCtxN).

We assume that the expressions being reduced have been erased
(Figure 6), so we omit a rule for reducing annotations. Alternatives
are discussed in Section 6.1.

2.5 Value Restriction

Our calculus excludes effects such as mutable references; however,
to allow it to serve as a basis for larger languages, we impose a
value restriction on certain introduction rules. Without this restric-
tion, the system would be unsound in the presence of mutable ref-
erences. Following Wright (1995), the rule I∀Intro requires that its
subject be a value, as in Standard ML (Milner et al. 1997). A sim-
ilar value restriction is needed for intersection types (Davies and
Pfenning 2000). The following example shows the need for the re-
striction on D:

let r : ref (Da. τ
a
→ τ) = ref f in

r := g; h(!r)

Assume we have f : Da. τ
a
→τ and g : τ

N
→ τ and h : (τ

V
→τ)

V
→ τ.

By a version of IDIntro that doesn’t require its subject to be a

value, we have r : Da. ref (τ
a
→ τ). By IDElim with N for a,

we have r : ref (τ
N
→ τ), making the assignment r := g well-

typed. However, by IDElim with V for a, we have r : ref (τ
V
→ τ).

It follows that the dereference !r has type τ
V
→ τ, so !r can be

passed to h. But !r = g is actually call-by-name. If h = λx. x(e2),
we should be able to assume that e2 will be evaluated exactly once,
but x = g is call-by-name, violating this assumption.

If we think of D as an intersection type, so that r has type

(τ
V
→ τ) ∧ (τ

N
→ τ), the example and argument closely fol-

low Davies and Pfenning (2000) and, in turn, Wright (1995). (For
union types, a similar problem arises, which can be solved by a
dual solution—restricting the union-elimination rule to evaluation
contexts (Dunfield and Pfenning 2003).)

2.6 Subtyping and η-Expansion

Systems with intersection types often include subtyping. The
strength of subtyping in intersection type systems varies, from
syntactic approaches that emphasize simplicity (e.g. Dunfield and
Pfenning (2003)) to semantic approaches that emphasize com-
pleteness (e.g. Frisch et al. (2002)). Generally, subtyping—at
minimum—allows intersections to be transparently eliminated
even at higher rank (that is, to the left of an arrow), so that the
following function application is well-typed:

f :
(

(τ1 ∧ τ
′

1) → τ2
)

→ τ3, g : (τ1 → τ2) ⊢ f g : τ3

Through a subsumption rule, g : (τ1 → τ2) checks against type
(τ1 ∧ τ ′

1) → τ2, because a function that accepts all values of type
τ1 should also accept all values that have type τ1 and type τ ′

1.
Using the analogy between intersection and D, in our impartial

type system, we might expect to derive

f :
(

(Da. τ1
a
→τ1)

V
→τ2

)

V
→ τ3, g : (τ1

N
→τ1)

V
→ τ2 ⊢ f g : τ3

Here, f asks for a function of type
(

Da. τ1
a
→τ1)

V
→ τ2

)

, which

works on all evaluation orders; but g’s type (τ1
N
→ τ1)

V
→ τ2 says

that g calls its argument only by name.
For simplicity, this paper excludes subtyping: our type system

does not permit this derivation. But it would be possible to define a
subtyping system, and incorporate subtyping into the subsumption
rule Isub—either by treating D similarly to ∀ (Dunfield and Krish-
naswami 2013), or by treating D as an intersection type (Dunfield

6 (261) 2020/8/15 (ICFP 2015)

and Pfenning 2003). A simple subtyping system could be derived
from the typing rules that are stationary—where the premises type
the same expression as the conclusion (Leivant 1986). For example,
IDElim corresponds to

Γ ⊢ ǫ evalorder

Γ ⊢ (Da. τ) ≤ [ǫ/a]τ
≤D-LEFT

Alternatively, η-expansion can substitute for subtyping: even with-
out subtyping and a subsumption rule, we can derive

f :
(

(Da. τ1
a
→τ1) → τ2

)

→ τ3,

g : (τ1
N
→ τ1) → τ2 ⊢ f (λx. g x) : τ3

This idea, developed by Barendregt et al. (1983), can be automated;
see, for example, Dunfield (2014).

3. Economical Type System

⌊τ⌋ = S Impartial type τ translates to economical type S

⌊1⌋ = 1

⌊τ1
ǫ
→ τ2⌋ =

(

ǫ◮⌊τ1⌋
)

→ ⌊τ2⌋
⌊τ1 +

ǫ τ2⌋ = ǫ◮ (⌊τ1⌋ + ⌊τ2⌋)
⌊τ1 ∗

ǫ τ2⌋ =
(

ǫ◮⌊τ1⌋
)

∗
(

ǫ◮⌊τ2⌋
)

⌊Da. τ⌋ = Da. ⌊τ⌋
⌊µǫα. τ⌋ = µα. ǫ◮⌊τ⌋
⌊∀α. τ⌋ = ∀α. ⌊τ⌋

⌊α⌋ = α

⌊γ⌋ = Γ Impartial context γ translates to economical context Γ

⌊·⌋ = ·
⌊γ, α type⌋ = ⌊γ⌋, α type

⌊γ, u ⊤⇒ τ⌋ = ⌊γ⌋, u : ⌊τ⌋

⌊γ, a evalorder⌋ = ⌊γ⌋, a evalorder

⌊γ, x val⇒ τ⌋ = ⌊γ⌋, x : V◮⌊τ⌋
⌊γ, x ⊤⇒ τ⌋ = ⌊γ⌋, x : N◮⌊τ⌋

⌊e⌋ = e ′ Expression e with τ-annotations
translates to expression e ′ with S-annotations

⌊(e:τ)⌋ = (⌊e⌋:⌊τ⌋)
⌊e[τ]⌋ = ⌊e⌋[⌊τ⌋]

⌊e1 @ e2⌋ = ⌊e1⌋ @ ⌊e2⌋
etc.

Figure 7. Type translation into the economical language

The impartial type system directly generalizes a call-by-value
system and a call-by-name system, but the profusion of connectives
is unwieldy, and impartiality doesn’t fit a standard operational se-
mantics. Instead of elaborating the impartial system into our target
language, we pause to develop an economical type system whose
standard connectives (→, ∗, +, µ) are by-value, but with a sus-
pension point ǫ◮S to provide by-name behaviour. This intermedi-
ate system yields a straightforward elaboration. It also constitutes
an alternative source language that, while biased towards call-by-
value, conveniently allows call-by-name and evaluation-order poly-
morphism.

In the grammar in Figure 8, the economical types S are obtained
from the impartial types τ by dropping all the ǫ decorations and
adding a connective ǫ◮S (read “ǫ suspend S”). When ǫ is V, this
connective is a no-op: elaborating e at type V◮S and at type S yield
the same term. But when ǫ is N, elaborating e at type N◮S is like
elaborating e at type 1 → S.

In economical typing contexts Γ , variables x denote values, so
we replace the assumption form x ϕ⇒ τ with x : S. Similarly, we
replace u ⊤⇒ τ with u : S.

Dropping ǫ decorations means that—apart from the valueness
annotations—most of the economical rules in Figure 8 look fairly
standard. The only new rules are for suspension points ǫ◮, halfway
down Figure 8. It would be nice to have only two rules (an introduc-
tion and an elimination), but we need to track whether e is a value,

which depends on the ǫ in ǫ◮S: if we introduce the type N◮S, then
e will be elaborated to a thunk, which is a value; if we are eliminat-
ing N◮S, the elaboration of e will have the form force · · · , which
(like function application) is not a value.

3.1 Translating to Economical Types

To relate economical types to impartial types, we define a type
translation ⌊τ⌋ = S that inserts suspension points (Figure 7). Given
an impartially-typed source program e of type τ, we can show that
⌊e⌋ has the economical type ⌊τ⌋ (Theorem 1).

Some parts of the translation are straightforward. Functions

τ1
ǫ
→ τ2 are translated to (ǫ◮⌊τ1⌋) → ⌊τ2⌋ because when ǫ = N,

we get the expected type (N◮⌊τ1⌋) → ⌊τ2⌋ of a call-by-name
function.

We are less constrained in how to translate other connectives:

• We could translate τ1+
ǫ τ2 to (ǫ◮⌊τ1⌋)+(ǫ◮⌊τ2⌋). But then

1 +N 1—presumably intended as a non-strict boolean type—
would be translated to (N◮1) + (N◮1), which exposes which
injection was used (whether the boolean is true or false) without
forcing the (spurious) thunk around the unit value. Thus, we

instead place the thunk around the entire sum, so that 1 +N 1
translates to N◮(1 + 1).

• We could translate τ1 ∗
ǫ τ2 to ǫ◮(⌊τ1⌋ ∗ ⌊τ2⌋)—which corre-

sponds to how we decided to translate sum types. Instead, we
translate it to (ǫ◮⌊τ1⌋) ∗ (ǫ◮⌊τ2⌋), so that, when ǫ = N, we
get a pair of thunks; accessing one component of the pair (by
forcing its thunk) won’t cause the other component to be forced.

• Finally, in translating µǫα. τ, we could put a suspension on
each occurrence of α in τ, rather than a single suspension on
the outside of τ. Since τ is often a sum type, writing +ǫ already
puts a thunk on τ; we don’t need a thunk around a thunk. But
by the same token, suspensions around the occurrences of α can
also lead to double thunks: translating the type of lazy natural

numbers µNα. (1+Nα) would give µα.
(

N◮(1+N◮α)
)

, which

expands to N◮
(

1 + N◮N◮(1 + . . .)
)

.

The rationales for our translation of products and recursive types
are less clear than the rationale for sum types; it’s possible that
different encodings would be preferred in practice.

The above translation does allow programmers to use the alter-
native encodings, though awkwardly. For example, a two-thunk

variant of τ1 ∗ǫ τ2 can be obtained by writing (µǫβ. τ1) ∗V

(µǫβ. τ2), where β doesn’t occur; the only purpose of µ here is to
insert a suspension. (This suggests a kind of ill-founded argument
for our chosen translation of µ: it enables us to insert suspensions,
albeit awkwardly.)

3.2 Programming with Economical Types

We can translate the list/stream example from Section 2.3 to the
economical system:

type List a α = µβ. a◮
(

1 + (α ∗ β)
)

The body of map is the same; only the type annotation is different.

map : Da.∀α. (α → β) → (List a α) → (List a β)
= Λα. fix map. λf. λxs.

case(xs, x1.inj1 (),
x2.inj2 (f @ (proj1 x2), map @ f @ (proj2 x2)))

The above type for map corresponds to the impartial type with
V
→.

At the end of Section 2.3, we gave a very generic type for map,
which we can translate to the economical system:

Da1, a2, a3, a4, a5.

∀α.
(

a2◮
(

(a1◮α) → β
)

)

→
(

a4◮(List a3 α)
)

→ (List a5 β)

7 (262) 2020/8/15 (ICFP 2015)

Economical types S ::= 1 | α | ∀α. S | Da. S | ǫ◮S
| S1 → S2 | S1 ∗ S2 | S1 + S2 | µα. S

Econ. typing contexts Γ ::= · | Γ, x : S | Γ, u : S | Γ, a evalorder | Γ, α type

Econ. source expressions e ::= . . . | Λα. e | e[S] | (e:S)

Γ ⊢E e ϕ⇐ S

Γ ⊢E e ϕ⇒ S

Source expression e checks against economical type S

Source expression e synthesizes economical type S

(x : S) ∈ Γ

Γ ⊢E x val⇒ S
Evar

(u : S) ∈ Γ

Γ ⊢E u ⊤⇒ S
Efixvar

Γ, u : S ⊢E e ϕ⇐ S

Γ ⊢E (fix u. e) ⊤⇐ S
Efix

Γ ⊢E e ϕ⇒ S

Γ ⊢E e ϕ⇐ S
Esub

Γ ⊢E e ϕ⇐ S

Γ ⊢E (e:S) ϕ⇒ S
Eanno

∀
Γ, α type ⊢E e val⇐ S

Γ ⊢E Λα. e val⇐ ∀α. S
E∀Intro

Γ ⊢E e ϕ⇒ ∀α. S Γ ⊢ S
′
type

Γ ⊢E e[S
′
] ϕ⇒ [S

′
/α]S

E∀Elim 1 Γ ⊢E () val⇐ 1
E1Intro

D
Γ, a evalorder ⊢E e val⇐ S

Γ ⊢E e val⇐ Da. S
EDIntro

Γ ⊢E e ϕ⇒ Da. S Γ ⊢ ǫ evalorder

Γ ⊢E e ϕ⇒ [ǫ/a]S
EDElim

ǫ◮
Γ ⊢E e ϕ⇐ S

Γ ⊢E e ϕ⇐ ǫ◮S
Γ ⊢E e val⇐ N◮S

E◮Intro Γ ⊢E e ϕ⇒ V◮S

Γ ⊢E e ϕ⇒ S
E◮ElimV

Γ ⊢E e ϕ⇒ ǫ◮S

Γ ⊢E e ⊤⇒ S
E◮Elimǫ

→
Γ, x : S1 ⊢E e ϕ⇐ S2

Γ ⊢E (λx. e) val⇐ (S1 → S2)
E→Intro

Γ ⊢E e1 ϕ1
⇒ (S1 → S2) Γ ⊢E e2 ϕ2

⇐ S1

Γ ⊢E (e1 @ e2) ⊤⇒ S2

E→Elim

∗
Γ ⊢E e1 ϕ1

⇐ S1 Γ ⊢E e2 ϕ2
⇐ S2

Γ ⊢E (e1, e2) ϕ1⊔ϕ2
⇐ (S1 ∗ S2)

E∗Intro
Γ ⊢E e ϕ⇒ (S1 ∗ S2)

Γ ⊢E (projk e) ⊤⇒ Sk

E∗Elimk

+
Γ ⊢E e ϕ⇐ Sk

Γ ⊢E (injk e) ϕ⇐ (S1 + S2)
E+Introk

Γ ⊢E e ϕ0
⇒ (S1 + S2)

Γ, x1 : S1 ⊢E e1 ϕ1
⇐ S

Γ, x2 : S2 ⊢E e2 ϕ2
⇐ S

Γ ⊢E case(e, x1.e1, x2.e2) ⊤⇐ S
E+Elim

µ
Γ ⊢E e ϕ⇐

[

(µα. S)
/

α
]

S

Γ ⊢E e ϕ⇐ µα. S
EµIntro

Γ ⊢E e ϕ⇒ µα. S

Γ ⊢E e ⊤⇒
[

(µα. S)
/

α
]

S
EµElim

Figure 8. Economical bidirectional typing

This type might not look economical, but makes redundant suspen-
sions more evident: List a3 α is µ· · ·. a3◮ · · · , so the suspension
controlled by a4 is never useful, showing that a4 is unnecessary.

3.3 Economizing

The main result of this section is that impartial typing deriva-
tions can be transformed into economical typing derivations. The
proof (Dunfield 2015, Appendix B.3) relies on a lemma that con-
verts typing assumptions with V◮S ′ to assumptions with S ′.

Theorem 1 (Economizing).

(1) If γ ⊢I e ϕ⇒ τ then ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇒ ⌊τ⌋.

(2) If γ ⊢I e ϕ⇐ τ then ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ ⌊τ⌋.

4. Target Language

Our target language (Figure 9) has by-value →, ∗, + and µ connec-
tives, ∀, and a U connective (for thunks).

The ∀ connective has explicit introduction and elimination
forms Λ__. M and M[__]. This “type-free” style is a compromise
between having no explicit forms for ∀ and having explicit forms
that contain types (Λα. M and A[M]). Having no explicit forms
would complicate some proofs; including the types would mean
that target terms contain types, giving a misleading impression that
operational behaviour is influenced by types.

The target language also has an explicit introduction form
roll M and elimination form unroll M for µ types.

As with ∀, we distinguish thunks to simplify some proofs:
Source expressions typed with the N◮ connective are elaborated
to thunkM, rather than to a λ with an unused bound variable.

Target terms M ::= () | x | λx.M | M1 M2

| u | fix u. M | Λ__. M | M[__]
| thunkM | forceM
| (M1,M2) | projk M
| injk M | case(M, x1.M1, x2.M2)
| roll M | unroll M

Values W ::= () | x | λx.M | Λ__. M
| thunkM | (W1,W2)
| injk W | roll W

Valuables Ṽ ::= () | x | λx.M | Λ__. Ṽ | Ṽ[__]

| thunkM | (Ṽ1, Ṽ2)

| projk Ṽ | injk Ṽ | roll Ṽ | unroll Ṽ

Eval. contexts C ::= [] | C @ M2 | W1 @ C | C[__] | force C
| (C,M2) | (W1, C) | projk C
| injk C | case(C, x1.M1, x2.M2)
| roll C | unroll C

Target types A,B ::= 1 | α | ∀α. A | A1 → A2 | U A1

| A1 ∗A2 | A1 +A2 | µα.A

Typing contexts G ::= · | G, x : A | G,α type

Figure 9. Syntax of the target language

Dually, eliminating N◮ results in a target term forceM, rather than
to M().

4.1 Typing Rules

Figure 10 shows the typing rules for our target language. These are
standard except for the T∀Intro rule and the rules for thunks:

8 (263) 2020/8/15 (ICFP 2015)

G ⊢T M : A
Target term M
has target type A G ⊢T () : 1

T1Intro

(x : A) ∈ G

G ⊢T x : A
Tvar

(u : A) ∈ G

G ⊢T u : A
Tfixvar

G,u : A ⊢T e : A

G ⊢T (fix u. e) : A
Tfix

∀
G,α type ⊢T Ṽ : A

G ⊢T Λ__. Ṽ : ∀α. A
T∀Intro

G ⊢T M : ∀α. A
G ⊢ A

′
type

G ⊢T M[__] : [A
′
/α]A

T∀Elim

→
G, x : A ⊢T M : B

G ⊢T (λx.M) : A→B
T→Intro

G ⊢T M1 : A → B
G ⊢T M2 : A

G ⊢T (M1 M2) : B
T→Elim

U
G ⊢T M : B

G ⊢T thunkM : U B
TUIntro

G ⊢T M1 : U B

G ⊢T forceM1 : B
TUElim

∗
G ⊢T M1 : A1

G ⊢T M2 : A2

G ⊢T (M1,M2) :A1∗A2

T∗Intro
G ⊢T M : A1∗A2

G ⊢T projk M : Ak

T∗Elimk

+
G ⊢T M : Ak

G ⊢T injkM : A1+A2

T+Introk
G ⊢T M : A1+A2

G, x1:A1 ⊢T M1 : A
G, x2:A2 ⊢T M2 : A

G ⊢T case(M, x1.M1, x2.M2) : A
T+Elim

µ
G ⊢T M : [µα.A/α]A

G ⊢T roll M : µα.A
TµIntro

G ⊢T M : µα.A

G ⊢T unroll M : [µα.A/α]A
TµElim

Figure 10. Target language type system

Valuability restriction. Though we omit mutable references from
the target language, we want the type system to accommodate
them. Using the standard syntactic value restriction (Wright 1995)
would spoil this language as a target for our elaboration: when
source typing uses elab∀Intro, it requires that the source expression
be a value (not syntactically, but according to the source typing
derivation). Yet if that source value is typed using elabDElim, it
will elaborate to a projection, which is not a syntactic value. So we
use a valuability restriction in T∀Intro. A target term is a valuable

Ṽ if it is a value (e.g. λx.M) or is a projection, injection, roll or
unroll of something that is valuable (Figure 9). Later, we’ll prove
that if a source expression is a value (according to the source typing
derivation), its elaboration is valuable (Lemma 6).

Thunks. We give thunkM the type U B for “thUnk B” (if M
has type B); forceM eliminates this connective.

4.2 Operational Semantics

The target operational semantics has two relations: M 7→R M ′,
read “M reduces to M ′”, and M 7→ M ′, read “M steps to
M ′”. The latter has only one rule, StepContext, which says that
C[M] 7→ C[M ′] if M 7→R M ′, where C is an evaluation context
(Figure 9). The rules for 7→R (Figure 11) reduce a λ applied to
a value; a force of a thunk; a fixed point; a type application; a
projection of a pair of values; a case over an injected value; and
an unroll of a rolled value. Apart from force (thunkM), which we
can view as strange syntax for (λx.M)(), this is all standard: these

definitions use values W, not valuables Ṽ .

4.3 Type Safety

Lemma 2 (Valuability). If Ṽ 7→ M ′ or Ṽ 7→R M ′ then M ′ is

valuable, that is, there exists Ṽ ′ = M ′.

Lemma 3 (Substitution). If G, x : A ′, G ′ ⊢T M : A and G ⊢T W :
A ′ then G,G ′ ⊢T [W/x]M : A.

M 7→ M ′ Target term M steps (by-value) to target term M ′

M 7→R M
′

C[M] 7→ C[M ′
]

StepContext

M 7→R M ′ Target redex M reduces (by-value) to M ′

(λx.M) @ W 7→R [W/x]M βReduce

force (thunkM) 7→R M forceReduce

(fix u. M) 7→R

[

(fix u. M)
/

u
]

M fixReduce

(Λ__. M)[__] 7→R M tyappReduce

projk ((W1,W2)) 7→R Wk projReduce

case(injk W, x1.M1, x2.M2) 7→R [W/xk]Mk caseReduce

unroll (roll W) 7→R W unrollReduce

Figure 11. Target language operational semantics

|S| = A Economical type S elaborates to target type A

|1| = 1
|S1 → S2| = |S1| → |S2|
|S1 + S2| = |S1| + |S2|

|α| = α
|∀α. S| = ∀α. |S|

|V◮S| = |S|
|N◮S| = U |S|

|Da. S| = |[V/a]S| ∗ |[N/a]S|
|µα. S| = µα. |S|

|Γ | = G
Economical typing context Γ
elaborates to target typing context G

|·| = ·
|Γ, α type| = |Γ |, α type

|Γ, a evalorder| undefined

|Γ, x : S| = |Γ |, x : |S|
|Γ, u : S| = |Γ |, u : |S|

Figure 12. Translation from economical types to target types

Theorem 4 (Type safety). If · ⊢T M : A then either M is a value,
or M 7→ M ′ and G ⊢T M ′ : A.

Proof. By induction on the derivation of G ⊢T M : A, using
Lemma 3 and standard inversion lemmas, which we omit.

5. Elaboration

Now we extend the economical typing judgment with an output
M, a target term: Γ ⊢ e ϕ: S →֒ M. The target term M should be
well-typed using the typing rules in Figure 10, but what type should
it have? We answer this question by defining another translation on
types. This function, defined by a function |S| = A, translates an
economical source type S to a target type A.

We will show that if e ϕ: S →֒ M then M : A, where A = |S|;
this is Theorem 10. Our translation follows a similar approach to
Dunfield (2014). However, that system had general intersection
types A1 ∧ A2, where A1 and A2 don’t necessarily have the
same structure. In contrast, we have Da. A which corresponds to
([V/a]A) ∧ ([N/a]A). We also differ in having recursive types;
since these are explicitly rolled (or folded) and unrolled in our
target language, our rules elabµIntro and elabµElim add these
constructs.

Not bidirectional. We want to relate the operational behaviour of
a source expression to the operational behaviour of its elaboration.
Since our source operational semantics is over type-erased source
expressions, it will be convenient for elaboration to work on erased
source expressions. Without type annotations, we can collapse the
bidirectional judgments into a single judgment (with “:” in place of
⇐/⇒); this obviates the need for elaboration versions of Esub and
Eanno, which merely switch between ⇐ and ⇒.

9 (264) 2020/8/15 (ICFP 2015)

Γ ⊢ e ϕ: S →֒ M Erased source expression e elaborates at type S to target term M

(x : S) ∈ Γ

Γ ⊢ x val: S →֒ x
elabvar

(u : S) ∈ Γ

Γ ⊢ u ⊤: S →֒ u
elabfixvar

Γ, u : S ⊢ e ϕ: S →֒ M

Γ ⊢ (fix u. e) ⊤: S →֒ (fix u. M)
elabfix

Γ ⊢ () val: 1 →֒ ()
elab1Intro

∀
Γ, α type ⊢ e val: S →֒ M

Γ ⊢ e val: ∀α. S →֒ Λ__. M
elab∀Intro

Γ ⊢ e ϕ: ∀α. S →֒ M Γ ⊢ S
′
type

Γ ⊢ e ϕ: [S
′
/α]S →֒ M[__]

elab∀Elim

D

Γ ⊢ e val: [V/a]S →֒ M1

Γ ⊢ e val: [N/a]S →֒ M2

Γ ⊢ e val: (Da. S) →֒ (M1,M2)
elabDIntro

Γ ⊢ e ϕ: (Da. S) →֒ M

Γ ⊢ e ϕ: [V/a]S →֒ (proj1 M)
Γ ⊢ e ϕ: [N/a]S →֒ (proj2 M)

elabDElim

ǫ◮
Γ ⊢ e ϕ: S →֒ M

Γ ⊢ e ϕ: V◮S →֒ M
Γ ⊢ e val: N◮S →֒ (thunkM)

elab◮Intro Γ ⊢ e ϕ: V◮S →֒ M

Γ ⊢ e ϕ: S →֒ M
elab◮ElimV

Γ ⊢ e ϕ: N◮S →֒ M

Γ ⊢ e ⊤: S →֒ (forceM)
elab◮ElimN

→
Γ, x : S1 ⊢ e ϕ: S2 →֒ M

Γ ⊢ (λx. e) val: (S1 → S2) →֒ λx.M
elab→Intro

Γ ⊢ e1 ϕ1
: (S1 → S2) →֒ M1 Γ ⊢ e2 ϕ2

: S1 →֒ M2

Γ ⊢ (e1 @ e2) ⊤: S2 →֒ (M1 M2)
elab→Elim

∗
Γ ⊢ e1 ϕ1

: S1 →֒ M1 Γ ⊢ e2 ϕ2
: S2 →֒ M2

Γ ⊢ (e1, e2) ϕ1⊔ϕ2
: (S1 ∗ S2) →֒ (M1,M2)

elab∗Intro
Γ ⊢ e ϕ: (S1 ∗ S2) →֒ M

Γ ⊢ (projk e) ⊤: Sk →֒ (projk M)
elab∗Elimk

+
Γ ⊢ e ϕ: Sk →֒ M

Γ ⊢ (injk e) ϕ: (S1 + S2) →֒ (injk M)
elab+Introk

Γ ⊢ e ϕ0
: (S1 + S2) →֒ M0

Γ, x1 : S1 ⊢ e1 ϕ1
: S →֒ M1

Γ, x2 : S2 ⊢ e2 ϕ2
: S →֒ M2

Γ ⊢ case(e, x1.e1, x2.e2) ⊤: S
→֒ case(M0, x1.M1, x2.M2)

elab+Elim

µ
Γ ⊢ e ϕ:

[

(µα. S)/α
]

S →֒ M

Γ ⊢ e ϕ: µα. S →֒ (roll M)
elabµIntro

Γ ⊢ e ϕ: µα. S →֒ M

Γ ⊢ e ⊤:
[

(µα. S)/α
]

S →֒ (unroll M)
elabµElim

Figure 13. Elaboration

Elaboration rules. We are elaborating the economical type sys-
tem, which has by-value connectives, into the target type system,
which also has by-value connectives. Most of the elaboration rules
just map source constructs into the corresponding target constructs;
for example, elabvar elaborates x to x, and elab→Intro elaborates
λx. e to λx.M where e elaborates to M.

Elaborating ∀. Rule elab∀Intro elaborates e (which is type-
erased and thus has no explicit source construct) to the target type
abstraction Λ__.M; rule elab∀Elim elaborates to a target type ap-
plication M[__].

Elaborating D. Rule elabDIntro elaborates an e at type Da. S to
a pair with the elaborations of e at type [V/a]S and at [N/a]S. Note
that unlike the corresponding rule EDIntro in the non-elaborating
economical type system, which introduces a variable a into Γ and
types e parametrically, elabDIntro substitutes concrete evaluation
orders V and N for a. Consequently, the Γ in the elaboration judg-
ment never contains a evalorder declarations.

Rule elabDElim elaborates to the appropriate projection.

Elaborating ◮. Rule elab◮Intro has two conclusions. The first
conclusion elaborates at type V◮S as if elaborating at type S. The
second conclusion elaborates at N◮S to a thunk. Correspondingly,
rule elab◮ElimV ignores the V suspension, and rule elab◮ElimN

forces the thunk introduced via elab◮Intro.

5.1 Elaboration Type Soundness

The main result of this section (Theorem 10) is that, given a non-
elaborating economical typing derivation Γ ⊢E e ϕ⇐ S, we can
derive Γ ⊢ er(e) ϕ ′ : S →֒ M such that the target term M is well-
typed. The erasure function er(e), defined in Figure 6, removes type
annotations, type abstractions, and type applications.

It will be useful to relate various notions of valueness. First, if e
elaborates to a syntactic target value W, then the elaboration rules
deem e to be a (source) value.

Lemma 5. If Γ ⊢ e ϕ: S →֒ W then ϕ = val.

Second, if e is a value according to the source typing rules, its
elaboration M is valuable (but not necessarily a syntactic target
value).

Lemma 6 (Elaboration valuability).

If Γ ⊢ e val: S →֒ M then M is valuable, that is, there exists Ṽ
such that M = Ṽ .

Several substitution lemmas are required. The first is for the
non-elaborating economical type system; we’ll use it in the EDIntro
case of the main proof to remove a evalorder declarations.

Lemma 7 (Substitution—Evaluation orders).

(1) If Γ, a evalorder, Γ ′ ⊢ S type and Γ ⊢ ǫ evalorder
then Γ, [ǫ/a]Γ ′ ⊢ [ǫ/a]S type.

(2) If D derives Γ, a evalorder, Γ ′ ⊢E e ϕ⇐ S and Γ ⊢ ǫ evalorder
then D ′ derives Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇐ [ǫ/a]S where D ′ is not
larger than D.

(3) If D derives Γ, a evalorder, Γ ′ ⊢E e ϕ⇒ S and Γ ⊢ ǫ evalorder,
then D ′ derives Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇒ [ǫ/a]S where D ′ is not
larger than D.

Next, we show that an expression e1 can be substituted for a
variable x, provided e1 elaborates to a target value W.

Lemma 8 (Expression substitution).

(1) If Γ ⊢ e1 ϕ1
: S1 →֒ W and Γ, x : S1, Γ

′ ⊢ e2 ϕ2
: S →֒ M

then Γ, Γ ′ ⊢ [e1/x]e2 ϕ2
: S →֒ [W/x]M.

(2) If Γ ⊢ fix u. e1 ⊤: S1 →֒ fix u. M1

and Γ, u : S1, Γ
′ ⊢ e2 ϕ2

: S →֒ M
then Γ, Γ ′ ⊢

[

(fix u. e1)
/

u
]

e2 ϕ2
: S →֒

[

(fix u. M1)
/

u
]

M.

10 (265) 2020/8/15 (ICFP 2015)

Lemma 9 (Type translation well-formedness).
If Γ ⊢ S type then |Γ | ⊢ |S| type.

We can now state the main result of this section:

Theorem 10 (Elaboration type soundness).
If Γ ⊢E e ϕ⇐ S or Γ ⊢E e ϕ⇒ S
where Γ ⊢ S type and Γ contains no a evalorder declarations
then there exists M such that Γ ⊢ er(e) ϕ ′ : S →֒ M
where ϕ ′ ⊑ ϕ and |Γ | ⊢T M : |S|.

The proof is in Dunfield (2015, Appendix B.5). In this theorem,
the resulting elaboration judgment has a valueness ϕ ′ that can be
more precise than the valueness ϕ in the non-elaborating judgment.
Suppose that, inside a derivation of a evalorder ⊢E e val⇐ S, we
have

a evalorder ⊢E e
′

val⇐ a◮S
′

a evalorder ⊢E e
′

⊤⇐ S
′

E◮Elimǫ

The valueness in the conclusion must be ⊤, because we might
substitute N for a, which is elaborated to a force, which is not a
value. Now suppose we substitute V for a. We need to construct an
elaboration derivation, and the only rule that works is elab◮ElimV:

· ⊢ e
′

val: V◮S
′
→֒ M

· ⊢ e
′

val: S
′
→֒ M

elab◮ElimV

This says e ′ is a value (val), where the original (parametric) eco-
nomical typing judgment had ⊤: Substituting a concrete object
(here, V) for a variable a increases information, refining ⊤ (“I can-
not prove this is a value”) into val. In the introduction rules, sub-
stituting N for a can replace ⊤ with val, because we know we’re
elaborating to a thunk, which is a value.

6. Consistency

Our main result in this section, Theorem 15, says that if e elaborates
to a target term M, and M steps (zero or more times) to a target
value W, then e steps (zero or more times) to some e ′ that elabo-
rates to W. The source language stepping relation (Figure 5) allows
both by-value and (more permissive) by-name reductions, raising
the concern that a call-by-value program might elaborate to a call-
by-name target program, that is, one taking steps that correspond
to by-name reductions in the source program. So we strengthen the
statement, showing that if M is completely free of by-name con-
structs, then all the steps taken in the source program are by-value.

That still leaves the possibility that we messed up our elabora-
tion rules, such that a call-by-value source program elaborates to
an M that contains by-name constructs. So we prove (Theorem 18)
that if the source program is completely free of by-name constructs,
its elaboration M is also free of by-name constructs. Similarly, we
prove (Theorem 17) that creating an economical typing derivation
from an impartial typing derivation preserves N-freeness.

Proofs can be found in Dunfield (2015, Appendix B.6).

6.1 Source-Side Consistency?

A source expression typed by name won’t get stuck if a by-value
reduction is chosen, but it may diverge instead of terminating.

Suppose we have typed (λx. x) against τ
N
→ τ. Taking only a by-

name reduction, we have

(λx. ())(fix u. u) [(fix u. u)/x]() = () using βNreduce

However, if we “contradict” the typing derivation by taking by-
value reductions, we diverge:

(λx. ())(fix u. u) (λx. ())
(

[(fix u. u)/u]u
)

using fixVreduce

= (λx. ())(fix u. u) . . .

We’re used to type safety being “up to” nontermination in the sense
that we either get a value or diverge, without getting stuck, but this
is worse: divergence depends on which reductions are chosen.

To get a source type safety result that is both direct (without ap-
pealing to elaboration and target reductions) and useful, we’d need
to give a semantics of “reduction with respect to a typing deriva-
tion”, or else reduction of a typing derivation. Such a semantics
would support reasoning about local transformations of source pro-
grams. It should also lead to a converse of the consistency result in
this section: if a source expression reduces with respect to a typing
derivation, and that typing derivation corresponds to an elaboration
derivation, then the target program obtained by elaboration can be
correspondingly reduced.

6.2 Defining N-Freeness

Definition 1 (N-freeness—impartial).

(1) An impartial type τ is N-free iff (i) for each ǫ appearing in S,
the evaluation order ǫ is V; and (ii) τ has no D quantifiers.

(2) A judgment γ ⊢I e ϕ⇐ τ or γ ⊢I e ϕ⇒ τ is N-free iff: (a) γ
has no a evalorder declarations; (b) in each declaration x ϕ⇒ τ
in γ, the valueness ϕ is val and the type τ is N-free; (c) all types
appearing in e are N-free; and (d) τ is N-free.

Definition 2 (N-freeness—economical).

(1) An economical type S is N-free iff (i) for each ǫ◮S0 appearing
in S, the evaluation order ǫ is V; and (ii) S has no D quantifiers.

(2) A judgment Γ ⊢E e ϕ⇐ S or Γ ⊢E e ϕ⇒ S is N-free iff: (a) Γ
has no a evalorder declarations; (b) all types S ′ in Γ are N-free;
(c) all types appearing in e are N-free; and (d) S is N-free.

Definition 3 (N-freeness—target). A target term M is N-free iff it
contains no thunk and force constructs.

6.3 Lemmas for Consistency

An inversion lemma allows types of the form V◮ . . .V◮S, a gener-
alization needed for the elab◮ElimV case; when we use the lemma
in the consistency proof, the type is not headed by V◮:

Lemma 11 (Inversion). Given · ⊢ e ϕ: V◮ . . .V◮
︸ ︷︷ ︸

0 or more

S →֒ M:

(0) If M = (λx.M0) and S = (S1 → S2)
then e = (λx. e0) and ·, x : S1 ⊢ e0 ϕ ′ : S2 →֒ M0.

(1) If M = (W1,W2) and S = (Da. S0)
then · ⊢ e ϕ: [V/a]S0 →֒ W1 and · ⊢ e ϕ: [N/a]S0 →֒ W2.

(2) If M = thunkM0 and S = N◮S0 then · ⊢ e ϕ ′ : S0 →֒ M0.

Parts (3)–(6), for ∀, +, µ and ∗, are stated in the appendix.
Previously, we showed that if a source expression elaborates to a

target value, source typing says the expression is a value (ϕ = val);
here, we show that if a source expression elaborates to a target
value that is N-free (ruling out thunkM produced by the second
conclusion of elab◮Intro), then e is a syntactic value.

Lemma 12 (Syntactic values).
If Γ ⊢ e val: S →֒ W and W is N-free then e is a syntactic value.

The next lemma just says that the 7→ relation doesn’t produce
thunks and forces out of thin air.

Lemma 13 (Stepping preserves N-freeness). If M is N-free and
M 7→ M ′ then M ′ is N-free.

The proof is by cases on the derivation of M 7→ M ′, using the
fact that if M0 and M1 are N-free, then [M0/x]M1 is N-free.

6.4 Consistency Results

Theorem 14 (Consistency).
If · ⊢ e ϕ: S →֒ M and M 7→ M ′ then there exists e ′ such that
e ∗ e ′ and · ⊢ e ′

ϕ ′ : S →֒ M ′ and ϕ ′ ⊑ ϕ.
Moreover: (1) If ϕ = val then e ′ = e. (2) If M is N-free then
e ∗ e ′ can be derived without using SrcStepCtxN.

11 (266) 2020/8/15 (ICFP 2015)

Result (1), under “moreover”, amounts to saying that values
don’t step. Result (2) stops us from lazily sneaking in uses of
SrcStepCtxN instead of showing that, given N-free M, we can
always find a by-value evaluation context for use in SrcStepCtxV.

Theorem 15 (Multi-step consistency).
If · ⊢ e ϕ: S →֒ M and M 7→∗ W then there exists e ′ such that
e ∗ e ′ and · ⊢ e ′

val: S →֒ W. Moreover, if M is N-free then
we can derive e ∗ e ′ without using SrcStepCtxN.

6.5 Preservation of N-Freeness

Lemma 16. If Γ ⊢E e ϕ⇒ S and S is not N-free then it is not the
case that both Γ and e are N-free.

Theorem 17 (Economizing preserves N-freeness).
If γ ⊢I e ϕ⇐ τ (resp. ⇒) where the judgment is N-free (Definition
1 (2)) then ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ ⌊τ⌋ (resp. ⇒) where this judgment is
N-free (Definition 2 (2)).

Theorem 18 (Elaboration preserves N-freeness).
If Γ ⊢E e ϕ⇐ S (or ⇒) where the judgment is N-free (Definition
2 (2)) then Γ ⊢ er(e) ϕ: S →֒ M such that M is N-free.

7. Related Work

History of evaluation order. In the λ-calculus, normal-order
(leftmost-outermost) reduction seems to have preceded anything
resembling call-by-value, but Bernays (1936) suggested requiring
that the term being substituted in a reduction be in normal form.
In programming languages, Algol-60 originated call-by-name and
also provided call-by-value (Naur et al. 1960, 4.7.3); while the de-
cision to make the former the default is debatable, direct support for
two evaluation orders made Algol-60 an improvement on many of
its successors. Plotkin (1975) related cbv and cbn to the λ-calculus,
and developed translations between them.

Call-by-need or lazy evaluation was developed in the 1970s
with the goal of doing as little computational work as possible,
under which we can include the unbounded work of not terminat-
ing (Wadsworth 1971; Henderson and Morris 1976; Friedman and
Wise 1976).

Laziness in call-by-value languages. Type-based support for se-
lective lazy evaluation has been developed for cbv languages, in-
cluding Standard ML (Wadler et al. 1998) and Java (Warth 2007).
These approaches allow programmers to conveniently switch to an-
other evaluation order, but don’t allow polymorphism over evalua-
tion orders. Like our economical type system, these approaches are
biased towards one evaluation order.

General coercions. General approaches to typed coercions were
explored by Breazu-Tannen et al. (1991) and Barthe (1996). Swamy
et al. (2009) developed a general typed coercion system for a
simply-typed calculus, giving thunks as an example. In addition
to annotations on all λ arguments, their system requires thunks (but
not forces) to be written explicitly.

Intersection types. While this paper avoids the notation of inter-
section types, the quantifier D is essentially an intersection type
of a very specific form. Theories of intersection types were orig-
inally developed by Coppo et al. (1981), among others; Hindley
(1992) gives a useful introduction and survey. Intersections en-
tered programming languages—as opposed to λ-calculus—when
Reynolds (1996) put them at the heart of the Forsythe language.
Subsequently—Reynolds’s paper describes ideas he developed in
the 1980s—Freeman and Pfenning (1991) started a line of research
on refinement intersections, where both parts of an intersection
must refine the same base type (essentially, the same ML type).

The D intersection in this paper mixes features of general in-
tersection and refinement intersection: the V and N instantiations

have close-to-identical structure, but cbv and cbn functions aren’t
refinements of some “order-agnostic” base type. Our approach is
descended mainly from the system of Dunfield (2014), which elab-
orates (general) intersection and union types into ordinary product
and sum types. We differ in not having a source-level ‘merge’ con-
struct e1,, e2, where the type system can select either e1 or e2, ig-
noring the other component. Since e1 and e2 are not prevented from
having the same type, the type system may elaborate either expres-
sion, resulting in unpredictable behaviour. In our type systems, we

can think of @ in the source language as a merge (@V ,, @N), but
the components have incompatible types. Moreover, the compo-
nents must behave the same apart from evaluation order (evoking a
standard property of systems of refinement intersection).

Alternative target languages. The impartial type system for our
source language suggests that we should consider targeting an im-
partial, but more explicit, target language. In an untyped setting,
Asperti (1990) developed a calculus with call-by-value and call-by-
name λ-abstractions; function application is disambiguated at run
time. In a typed setting, call-by-push-value (Levy 1999) systemati-
cally distinguishes values and computations; it has a thunk type U

(whence our notation) but also a dual, “lift” F, which constructs a
computation out of a value type. Early in the development of this
paper, we tried to elaborate directly from the impartial type system
to cbpv, without success. Levy’s elegant pair of translations from
cbv and from cbn don’t seem to fit together easily; our feeling is
that a combined translation would be either complicated, or prone
to generating many redundant forces and thunks.

Zeilberger (2009) defined a polarized type system with positive
and negative forms of each standard connective. In that system, ↓
and ↑ connectives alternate between polarities, akin to U and F in
call-by-push-value. Zeilberger’s system has a symmetric function
type, rather than the asymmetric function type found in cbpv. We
guess that a translation into this system would have similar issues
as with call-by-push-value.

8. Future Work

This paper develops type systems with multiple evaluation orders
and polymorphism over evaluation orders, opening up the design
space. More work is needed to realize these ideas in practice.

Implicit polymorphism. We made type polymorphism explicit, to
prevent the type system from guessing evaluation orders. A prac-
tical system should find polymorphic instances without guessing,
perhaps based on existential type variables (Dunfield and Krish-
naswami 2013). We could also try to use some form of (lexically
scoped?) default evaluation order. Such a default could also be
useful for deciding whether some language features, such as let-
expressions, should be by-value or by-name.

Exponential expansion. Our rules elaborate a function typed
with n D quantifiers into 2n instantiations. Only experience can
demonstrate whether this is a problem in practice, but we have
reasons to be optimistic.

First, we need the right point of comparison. The alternative
to elaborating map into, say, 8 instantiations is to write 8 copies
of map by hand. Viewed this way, elaboration maintains the size
of the target program, while allowing an exponentially shorter
source program! (This is the flipside of a sleight-of-hand from
complexity theory, where you can make an algorithm look faster
by inflating the input: Given an algorithm that takes 2n time, where
n is the number of bits in the input integer, we can get a purportedly
polynomial algorithm by encoding the input in unary.)

Second, a compiler could analyze the source program and gen-
erate only the instances actually used, similar to monomorphization
of ∀-polymorphism in MLton (mlton.org).

12 (267) 2020/8/15 (ICFP 2015)

http://mlton.org

Other evaluation orders. Our particular choice of evaluation or-
ders is not especially practical: the major competitor to call-by-
value is call-by-need, not call-by-name. We chose call-by-name for
simplicity (for example, in the source reduction rules), but many of
our techniques should be directly applicable to call-by-need: elab-
oration would produce thunks in much the same way, just for a
different dynamic semantics. Moreover, our approach could be ex-
tended to more than two evaluation orders, using an n-way inter-
section that elaborates to an n-tuple.

One could also take “order” very literally, and support left-to-
right and right-to-left call-by-value. For low-level reasons, OCaml
uses the former when compiling to native code, and the latter when
compiling to bytecode. Being able to specify order of evaluation via
type annotations could be useful when porting code from Standard
ML (which uses left-to-right call-by-value).

Program design. We also haven’t addressed questions about
when to use what evaluation order. Such questions seem to have
been lightly studied, perhaps because of social factors: a program-
mer may choose a strict language because they tend to solve prob-
lems that don’t need laziness—which is self-reinforcing, because
laziness is less convenient in a strict language. However, Chang
(2014) developed tools, based on both static analysis and dynamic
profiling, that suggest where laziness is likely to be helpful.

Existential quantification. By analogy to union types (Dunfield
2014), an existential quantifier would elaborate to a sum type. For

example, the sum tag on a function of type ∃a. τ
a
→ τ would

indicate, at run time, whether the function was by-value or by-
name. This might resemble a typed version of the calculus of
Asperti (1990).

Acknowledgments

The ICFP reviewers made suggestions and asked questions that
have (I believe) improved the paper. The Max Planck Institute for
Software Systems supported the early stages of this work. Dmitry
Chistikov suggested the symbol D.

References

A. Asperti. Integrating strict and lazy evaluation: the λsl-calculus.
In Programming Language Implementation and Logic Program-
ming, volume 456 of LNCS, pages 238–254. Springer, 1990.

H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter
lambda model and the completeness of type assignment. J.
Symbolic Logic, 48(4):931–940, 1983.

G. Barthe. Implicit coercions in type systems. In Proc. TYPES ’95,
volume 1158 of LNCS, pages 1–15, 1996.

P. Bernays. Review of “Some Properties of Conversion” by Alonzo
Church and J.B. Rosser. J. Symbolic Logic, 1:74–75, 1936.

V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov.
Inheritance as implicit coercion. Information and Computation,
93(1):172–221, 1991.

S. Chang. On the Relationship Between Laziness and Strictness.
PhD thesis, Northeastern University, 2014.

Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. Implicit
self-adjusting computation for purely functional programs. J.
Functional Programming, 24(1):56–112, 2014.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional
characters of solvable terms. Zeitschrift f. math. Logik und
Grundlagen d. Math., 27:45–58, 1981.

R. Davies. Practical Refinement-Type Checking. PhD thesis,
Carnegie Mellon University, 2005. CMU-CS-05-110.

R. Davies and F. Pfenning. Intersection types and computational
effects. In ICFP, pages 198–208, 2000.

J. Dunfield. Elaborating intersection and union types. J. Functional
Programming, 24(2–3):133–165, 2014.

J. Dunfield. Elaborating evaluation-order polymorphism, 2015. Ex-
tended version with appendices. arXiv:1504.07680 [cs.PL].

J. Dunfield and N. R. Krishnaswami. Complete and easy bidirec-
tional typechecking for higher-rank polymorphism. In ICFP,
2013. arXiv:1306.6032 [cs.PL].

J. Dunfield and F. Pfenning. Type assignment for intersections and
unions in call-by-value languages. In FoSSaCS, pages 250–266,
2003.

J. Dunfield and F. Pfenning. Tridirectional typechecking. In
Principles of Programming Languages, pages 281–292, 2004.

T. Freeman and F. Pfenning. Refinement types for ML. In PLDI,
pages 268–277, 1991.

D. P. Friedman and D. S. Wise. CONS should not evaluate its
arguments. In ICALP, pages 257–284. Edinburgh Univ. Press,
1976.

A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping. In
Logic in Computer Science, 2002.

P. Henderson and J. H. Morris, Jr. A lazy evaluator. In Principles
of Programming Languages, pages 95–103. ACM, 1976.

J. R. Hindley. Types with intersection: An introduction. Formal
Aspects of Computing, 4:470–486, 1992.

D. Leivant. Typing and computational properties of lambda expres-
sions. Theoretical Computer Science, 44(0):51–68, 1986.

P. B. Levy. Call-by-push-value: A subsuming paradigm. In Typed
Lambda Calculi and Applications, pages 228–243. Springer,
1999.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

P. Naur et al. Report on the algorithmic language ALGOL 60.
Comm. ACM, 3(5):299–314, 1960.

B. C. Pierce. Types and Programming Languages. MIT Press,
2002.

B. C. Pierce and D. N. Turner. Local type inference. ACM Trans.
Prog. Lang. Systems, 22:1–44, 2000.

G. Plotkin. Call-by-name, call-by-value, and the lambda calculus.
Theoretical Computer Science, 1:125–159, 1975.

J. C. Reynolds. Design of the programming language Forsythe.
Technical Report CMU-CS-96-146, Carnegie Mellon Univer-
sity, 1996.

N. Swamy, M. Hicks, and G. M. Bierman. A theory of typed
coercions and its applications. In ICFP, pages 329–340, 2009.

P. Wadler, W. Taha, and D. MacQueen. How to add laziness
to a strict language without even being odd. In Workshop
on Standard ML, 1998. http://homepages.inf.ed.ac.uk/
wadler/papers/lazyinstrict/lazyinstrict.ps.

C. Wadsworth. Semantics and Pragmatics of the lambda-Calculus.
PhD thesis, University of Oxford, 1971.

A. Warth. LazyJ: Seamless lazy evaluation in Java. In FOOL, 2007.
foolwood07.cs.uchicago.edu/program/warth.pdf.

R. L. Wexelblat, editor. History of Programming Languages I.
ACM, 1981.

A. K. Wright. Simple imperative polymorphism. Lisp and Sym-
bolic Computation, 8(4):343–355, 1995.

H. Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998.

N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-
Matching. PhD thesis, Carnegie Mellon University, 2009. CMU-
CS-09-122.

13 (268) 2020/8/15 (ICFP 2015)

http://arxiv.org/abs/1504.07680
http://arxiv.org/abs/1306.6032
http://homepages.inf.ed.ac.uk/wadler/papers/lazyinstrict/lazyinstrict.ps
http://homepages.inf.ed.ac.uk/wadler/papers/lazyinstrict/lazyinstrict.ps
http://foolwood07.cs.uchicago.edu/program/warth.pdf

Erratum: Call-by-name evaluation contexts

Corrected in arXiv version 3.

What is the mistake?

The definition of by-name evaluation contexts in Figure 5 is wrong; it manages to define a peculiarly eager evaluation context that can
evaluate a function’s argument before the function has been evaluated, and evaluate inside a pair. In addition to not being call-by-name, this
is awfully nondeterministic.

By-name eval. contexts CN ::= []

| CN @ e2 | e1 @ CN

| (CN, e2) | (e1, CN) | projk CN

| injk CN | case(CN, x1.e1, x2.e2)

The fix is to omit the three boxed alternatives in the grammar.

By-name eval. contexts CN ::= []
| CN @ e2
| projk CN

| injk CN | case(CN, x1.e1, x2.e2)

The discussion in Section 2.4, marked with a red box, notes that “e1 @ [] is a CN but not a CV”, which matches the (wrong) definition;
however, since the definition is wrong, the claim that “the definitions of CN and RN are standard for call-by-name” is utterly wrong.

What are its consequences?

Few (apart from embarrassment). The consistency result is only a simulation, not a bisimulation. None of the metatheory goes from a source
reduction to a target reduction; that is, no claims have the form “given some e e ′, where e is related to M, produce some M ′ such that
M 7→ M ′”.

In fact, one could add any kind of garbage to the definition of CN, and the metatheory wouldn’t change.

Erratum: Uppercase, lowercase

Corrected in arXiv version 3.
In the published version, the “judgment boxes” heading the rules had Γ instead of γ. Similarly, Theorem 17 had ⌊Γ⌋ instead of ⌊γ⌋.
As these are minor mistakes, they are not highlighted in the text.

14 (269) 2020/8/15 (ICFP 2015)

Supplemental material for “Elaborating Evaluation-Order Polymorphism”

This section of the extended version (Dunfield 2015) contains the (straightforward) rules for type well-formedness (Appendix A),

proofs about economical typing that belong to Section 3 (Appendix B.3), proofs about elaboration typing that belong to Section 5

(Appendix B.5), and consistency proofs that belong to Section 6 (Appendix B.6).

A. Type Well-formedness

γ ⊢ ǫ evalorder Evaluation order ǫ is well-formed

γ ⊢ V evalorder
γ ⊢ N evalorder

(a evalorder) ∈ γ

γ ⊢ a evalorder

γ ⊢ τ type Impartial type τ is well-formed

γ ⊢ 1 type

(α type) ∈ γ

γ ⊢ α type

γ, α type ⊢ τ type

γ ⊢ (∀α. τ) type

γ, a evalorder ⊢ τ type

γ ⊢ (Da. τ) type

γ ⊢ ǫ evalorder
γ ⊢ τ1 type
γ ⊢ τ2 type

γ ⊢ (τ1
ǫ
→ τ2) type

γ ⊢ (τ1 ∗
ǫ
τ2) type

γ ⊢ (τ1 +
ǫ
τ2) type

γ ⊢ ǫ evalorder γ, α type ⊢ τ type

γ ⊢ (µ
ǫ
α. τ) type

Figure 14. Type well-formedness in the impartial type system

Γ ⊢ ǫ evalorder Evaluation order ǫ is well-formed

Γ ⊢ V evalorder
Γ ⊢ N evalorder

(a evalorder) ∈ Γ

Γ ⊢ a evalorder

Γ ⊢ S type Economical type S is well-formed

Γ ⊢ 1 type

(α type) ∈ Γ

Γ ⊢ α type

Γ, α type ⊢ S type

Γ ⊢ (∀α. S) type

Γ, a evalorder ⊢ S type

Γ ⊢ (Da. S) type

Γ ⊢ ǫ evalorder Γ ⊢ S type

Γ ⊢ (ǫ◮S) type

Γ ⊢ S1 type
Γ ⊢ S2 type

Γ ⊢ (S1 → S2) type
Γ ⊢ (S1 ∗ S2) type
Γ ⊢ (S1 + S2) type

Γ, α type ⊢ S type

Γ ⊢ (µα. S) type

Figure 15. Type well-formedness in the economical type system

G ⊢ A type Target type A is well-formed

G ⊢ 1 type

(α type) ∈ G

G ⊢ α type

G,α type ⊢ A type

G ⊢ (∀α. A) type

G ⊢ A type

G ⊢ (U A) type

G ⊢ A1 type
G ⊢ A2 type

G ⊢ (A1 → A2) type
G ⊢ (A1 ∗A2) type
G ⊢ (A1 +A2) type

G,α type ⊢ A type

G ⊢ (µα.A) type

Figure 16. Type well-formedness in the target type system

B. Proofs

Notation

We present some proofs in a line-by-line style, with the justification for each claim in the rightmost column. We highlight with Z

what we needed to show; this is most useful when trying to prove statements with several conclusions, like “if. . . then Q1 and Q2 and

Q3”, where we might derive Q2 early (say, directly from the induction hypothesis) but need several more steps to show Q1 and Q3.

15 2020/8/15 (ICFP 2015)

B.3 Economical Type System

Lemma 19 (Suspension Points).

(1) If Γ, x val⇒ V◮S ′, Γ ′ ⊢E e ϕ⇐ S

then Γ, x val⇒ S ′, Γ ′ ⊢E e ϕ⇐ S.

(2) If Γ, x val⇒ V◮S ′, Γ ′ ⊢E e ϕ⇒ S

then Γ, x val⇒ S ′, Γ ′ ⊢E e ϕ⇒ S.

Proof. By mutual induction on the given derivation. The Evar case uses E◮Intro (first conclusion).

Lemma 20 (Economizing (Types)).

If γ ⊢ τ type then ⌊γ⌋ ⊢ ⌊τ⌋ type.

Proof. By induction on the derivation of γ ⊢ τ type (Fig. 14).

Lemma 21 (Economizing (Eval. Order)).

If γ ⊢ ǫ evalorder then ⌊γ⌋ ⊢ ǫ evalorder.

Proof. By a straightforward induction on γ.

Theorem 1 (Economizing).

(1) If γ ⊢I e ϕ⇒ τ then ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇒ ⌊τ⌋.

(2) If γ ⊢I e ϕ⇐ τ then ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ ⌊τ⌋.

Proof. By induction on the given derivation.

• Case γ, (x valueness(ǫ)⇒ τ1) ⊢I e0 ϕ⇐ τ2

γ ⊢I (λx. e0) val⇐ (τ1
ǫ
→ τ2)

I→Intro

γ, x valueness(ǫ)⇒ τ1 ⊢I e0 ϕ⇐ τ2 Subderivation

⌊γ, x valueness(ǫ)⇒ τ1⌋ ⊢E ⌊e0⌋ ϕ⇐ ⌊τ2⌋ By i.h.

⌊γ⌋, x : (ǫ◮⌊τ1⌋) ⊢E ⌊e0⌋ ϕ⇐ ⌊τ2⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E (λx. ⌊e0⌋) val⇐ (ǫ◮⌊τ1⌋) → ⌊τ2⌋ By E→Intro

Z ⌊γ⌋ ⊢E ⌊λx. e0⌋ val⇐ ⌊τ1
ǫ
→ τ2⌋ By def. of ⌊−⌋

• Case
γ ⊢I e1 ϕ1

⇒ (τ1
ǫ
→ τ) γ ⊢I e2 ϕ2

⇐ τ1

γ ⊢I (e1 @ e2) ⊤⇒ τ
I→Elim

γ ⊢I e1 ϕ1
⇒ (τ1

ǫ
→ τ) Subderivation

⌊γ⌋ ⊢E ⌊e1⌋ ϕ1
⇒ ⌊τ1

ǫ
→ τ⌋ By i.h.

⌊γ⌋ ⊢E ⌊e1⌋ ϕ1
⇒ (ǫ◮⌊τ1⌋) → ⌊τ⌋ By def. of ⌊−⌋

γ ⊢I e2 ϕ2
⇐ τ1 Subderivation

⌊γ⌋ ⊢E ⌊e2⌋ ϕ2
⇐ ⌊τ1⌋ By i.h.

⌊γ⌋ ⊢E ⌊e2⌋ ϕ ′

2
⇐ ǫ◮⌊τ1⌋ By E◮Intro

Z ⌊γ⌋ ⊢E ⌊e1 @ e2⌋ ⊤⇒ ⌊τ⌋ By E→Elim and def. of ⌊−⌋

• Case

γ ⊢I () val⇐ 1
I1Intro

⌊γ⌋ ⊢E () val⇐ 1 By E1Intro

Z ⌊γ⌋ ⊢E ⌊()⌋ val⇐ ⌊1⌋ By def. of ⌊−⌋

• Case γ,α type ⊢I e0 val⇐ τ0

γ ⊢I Λα. e0 val⇐ ∀α. τ0
I∀Intro

16 2020/8/15 (ICFP 2015)

γ,α type ⊢I e0 val⇐ τ0 Subderivation

⌊γ,α type⌋ ⊢E ⌊e0⌋ val⇐ ⌊τ0⌋ By i.h.

⌊γ⌋, α type ⊢E ⌊e0⌋ val⇐ ⌊τ0⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E Λα. ⌊e0⌋ val⇐ ∀α. ⌊τ0⌋ By E∀Intro

Z ⌊γ⌋ ⊢E ⌊Λα. e0⌋ val⇐ ⌊∀α. τ0⌋ By def. of ⌊−⌋

• Case
γ ⊢I e0 ϕ⇒ ∀α. τ0 γ ⊢ τ ′ type

γ ⊢I e0[τ
′
] ϕ⇒ [τ ′/α]τ0

I∀Elim

γ ⊢I e0 ϕ⇒ ∀α. τ0 Subderivation

⌊γ⌋ ⊢E ⌊e0⌋ ϕ⇒ ⌊∀α. τ0⌋ By i.h.

⌊γ⌋ ⊢E ⌊e0⌋ ϕ⇒ ∀α. ⌊τ0⌋ By def. of ⌊−⌋

γ ⊢ τ ′ type Subderivation

⌊γ⌋ ⊢ ⌊τ ′⌋ type By Lemma 20

⌊γ⌋ ⊢E ⌊e0⌋[⌊τ
′⌋] ϕ⇒ [⌊τ ′⌋/α]⌊τ0⌋ By E∀Elim

Z ⌊γ⌋ ⊢E ⌊e0[τ
′]⌋ ϕ⇒ ⌊[τ ′/α]τ0⌋ By properties of ⌊−⌋ and substitution

• Case γ, a evalorder ⊢I e val⇐ τ0

γ ⊢I e val⇐ Da. τ0
IDIntro

γ, a evalorder ⊢I e val⇐ τ0 Subderivation

⌊γ, a evalorder⌋ ⊢E ⌊e⌋ val⇐ ⌊τ0⌋ By i.h.

⌊γ⌋, a evalorder ⊢E ⌊e⌋ val⇐ ⌊τ0⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E ⌊e⌋ val⇐ Da. ⌊τ0⌋ By EDIntro

Z ⌊γ⌋ ⊢E ⌊e⌋ val⇐ ⌊Da. τ0⌋ By def. of ⌊−⌋

• Case γ ⊢I e ϕ⇒ Da. τ0 γ ⊢ ǫ evalorder

γ ⊢I e ϕ⇒ [ǫ/a]τ0
IDElim

γ ⊢I e ϕ⇒ Da. τ0 Subderivation

⌊γ⌋ ⊢E ⌊e⌋ ϕ⇒ ⌊Da. τ0⌋ By i.h.

γ ⊢ ǫ evalorder Subderivation

⌊γ⌋ ⊢ ǫ evalorder By Lemma 21

⌊γ⌋ ⊢E ⌊e⌋ ϕ⇒ [ǫ/a]⌊τ0⌋ By EDElim

Z ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇒ ⌊[ǫ/a]τ0⌋ By properties of ⌊−⌋ and substitution

• Case (x ϕ⇒ τ) ∈ γ

γ ⊢I x ϕ⇒ τ
Ivar

(x ϕ⇒ τ) ∈γ Premise

We distinguish cases of ϕ:

If ϕ = val, then:

(x : V◮⌊τ⌋) ∈ ⌊γ⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E x val⇒ V◮⌊τ⌋ By Evar

Z ⌊γ⌋ ⊢E x val⇒ ⌊τ⌋ By E◮ElimV

If ϕ = ⊤, then:

(x : N◮⌊τ⌋) ∈ ⌊γ⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E x val⇒ N◮⌊τ⌋ By Evar

Z ⌊γ⌋ ⊢E x ⊤⇒ ⌊τ⌋ By E◮Elimǫ

• Case (u ⊤⇒ τ) ∈ γ

γ ⊢I u ⊤⇒ τ
Ifixvar

(u : ⌊τ⌋) ∈ ⌊γ⌋ By def. of ⌊−⌋

Z ⌊γ⌋ ⊢E u ⊤⇒ ⌊τ⌋ By Efixvar

17 2020/8/15 (ICFP 2015)

• Case γ,u ⊤⇒ τ ⊢I e0 ϕ ′⇐ τ

γ ⊢I (fix u. e0) ⊤⇐ τ
Ifix

⌊γ,u ⊤⇒ τ⌋ ⊢E e0 ϕ⇐ ⌊τ⌋ By i.h.

⌊γ⌋, u : ⌊τ⌋ ⊢E e0 ϕ⇐ ⌊τ⌋ By def. of ⌊−⌋

Z ⌊γ⌋ ⊢E (fix u. e0) ⊤⇐ ⌊τ⌋ By Efix

• Case γ ⊢I e ϕ⇒ τ

γ ⊢I e ϕ⇐ τ
Isub

By i.h. and Esub.

• Case γ ⊢I e0 ϕ⇐ τ

γ ⊢I (e0:τ) ϕ⇒ τ
Ianno

By i.h. and Eanno.

• Case γ ⊢I e1 ϕ1
⇐ τ1 γ ⊢I e2 ϕ2

⇐ τ2

γ ⊢I (e1, e2) ϕ1⊔ϕ2
⇐ (τ1 ∗ǫ τ2)

I∗Intro

γ ⊢I e1 ϕ1
⇐ τ1 Subderivation

⌊γ⌋ ⊢E ⌊e1⌋ ϕ1
⇐ ⌊τ1⌋ By i.h.

⌊γ⌋ ⊢E ⌊e1⌋ ϕ1
⇐ ǫ◮⌊τ1⌋ By E◮Intro

⌊γ⌋ ⊢E ⌊e2⌋ ϕ2
⇐ ǫ◮⌊τ2⌋ Similar

⌊γ⌋ ⊢E (⌊e1⌋, ⌊e2⌋) ϕ1⊔ϕ2
⇐ (ǫ◮⌊τ1⌋) ∗ (ǫ◮⌊τ2⌋) By E∗Intro

Z ⌊γ⌋ ⊢E ⌊(e1, e2)⌋ ϕ1⊔ϕ2
⇐ ⌊τ1 ∗ǫ τ2⌋ By def. of ⌊−⌋

• Case γ ⊢I e0 ϕ⇒ (τ1 ∗ǫ τ2)

γ ⊢I (projk e0) ⊤⇒ τk
I∗Elimk

γ ⊢I e0 ϕ⇒ (τ1 ∗ǫ τ2) Subderivation

⌊γ⌋ ⊢E ⌊e0⌋ ϕ⇒ ⌊τ1 ∗ǫ τ2⌋ By i.h.

⌊γ⌋ ⊢E ⌊e0⌋ ϕ⇒ (ǫ◮⌊τ1⌋) ∗ (ǫ◮⌊τ2⌋) By def. of ⌊−⌋

⌊γ⌋ ⊢E (projk ⌊e0⌋) ⊤⇒ (ǫ◮⌊τk⌋) By E∗Elimk

Z ⌊γ⌋ ⊢E ⌊projk e0⌋ ⊤⇒ ⌊τk⌋ By E◮Elimǫ and def. of ⌊−⌋

• Case γ ⊢I e0 ϕ⇐ τk

γ ⊢I (injk e0) ϕ⇐ (τ1 +
ǫ τ2)

I+Introk

γ ⊢I e0 ϕ⇐ τk Subderivation

⌊γ⌋ ⊢E ⌊e0⌋ ϕ⇐ ⌊τk⌋ By i.h.

⌊γ⌋ ⊢E (injk ⌊e0⌋) ϕ⇐ ⌊τ1⌋+ ⌊τ2⌋ By E+Introk

⌊γ⌋ ⊢E (injk ⌊e0⌋) ϕ⇐ ǫ◮(⌊τ1⌋+ ⌊τ2⌋) By E◮Intro (first conclusion)

Z ⌊γ⌋ ⊢E ⌊injk e0⌋ ϕ⇐ ⌊τ1⌋+ ⌊τ2⌋ By def. of ⌊−⌋

• Case

γ ⊢I e0 ϕ0
⇒ (τ1 +

ǫ τ2)

γ, x1 val⇒ τ1 ⊢I e1 ϕ1
⇐ τ

γ, x2 val⇒ τ2 ⊢I e2 ϕ2
⇐ τ

γ ⊢I case(e0, x1.e1, x2.e2) ⊤⇐ τ
I+Elim

18 2020/8/15 (ICFP 2015)

γ ⊢I e0 ϕ0
⇒ (τ1 +

ǫ τ2) Subderivation

⌊γ⌋ ⊢E ⌊e0⌋ ϕ0
⇒ ⌊τ1 +

ǫ τ2⌋ By i.h.

⌊γ⌋ ⊢E ⌊e0⌋ ϕ0
⇒ ǫ◮(⌊τ1⌋+ ⌊τ2⌋) By def. of ⌊−⌋

⌊γ⌋ ⊢E ⌊e0⌋ ⊤⇒ (⌊τ1⌋+ ⌊τ2⌋) By E◮Elimǫ

γ, x1 val⇒ τ1 ⊢I e1 ϕ1
⇒ τ Subderivation

⌊γ⌋, x1 : V◮⌊τ1⌋ ⊢E ⌊e1⌋ ϕ1
⇒ ⌊τ⌋ By i.h. and def. of ⌊−⌋

⌊γ⌋, x1 : ⌊τ1⌋ ⊢E ⌊e1⌋ ϕ1
⇒ ⌊τ⌋ By Lemma 19

⌊γ⌋, x2 : ⌊τ2⌋ ⊢E ⌊e2⌋ ϕ2
⇒ ⌊τ⌋ Similarly

Z ⌊γ⌋ ⊢E ⌊case(e0, x1.e1, x2.e2)⌋ ⊤⇒ ⌊τ⌋ By E+Elim

• Case γ ⊢I e ϕ⇐
[

(µǫα. τ0)
/

α
]

τ0

γ ⊢I e ϕ⇐ µǫα. τ0
IµIntro

γ ⊢I e ϕ⇐
[

(µǫα. τ0)/α
]

τ0 Subderivation

⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ ⌊
[

(µǫα. τ0)/α
]

τ0⌋ By i.h.

⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐
[

⌊µǫα. τ0⌋/α
]

⌊τ0⌋ By a property of substitution/⌊−⌋

⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐
[

(µα. ǫ◮⌊τ0⌋) /α
]

⌊τ0⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ µα. ǫ◮⌊τ0⌋ By EµIntro

Z ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ ⌊µǫα. τ0⌋ By def. of ⌊−⌋

• Case γ ⊢I e ϕ0
⇒ µǫα. τ0

γ ⊢I e ⊤⇒
[

(µǫα. τ0)/α
]

τ0
IµElim

γ ⊢I e ϕ0
⇒ µǫα. τ0 Subderivation

⌊γ⌋ ⊢E ⌊e⌋ ϕ0
⇒ ⌊µǫα. τ0⌋ By i.h.

⌊γ⌋ ⊢E ⌊e⌋ ϕ0
⇒ µα. ǫ◮⌊τ0⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E ⌊e⌋ ⊤⇒
[

(µα. ǫ◮⌊τ0⌋) / α
]

ǫ◮⌊τ0⌋ By EµElim

⌊γ⌋ ⊢E ⌊e⌋ ⊤⇒
[

⌊µǫα. τ0⌋ / α
]

ǫ◮⌊τ0⌋ By def. of ⌊−⌋

⌊γ⌋ ⊢E ⌊e⌋ ⊤⇒ ǫ◮
[

⌊µǫα. τ0⌋ /α
]

⌊τ0⌋ By a property of substitution

⌊γ⌋ ⊢E ⌊e⌋ ⊤⇒ [⌊µǫα. τ0⌋ / α] ⌊τ0⌋ By E◮Elimǫ

Z ⌊γ⌋ ⊢E ⌊e⌋ ⊤⇒ ⌊
[

(µǫα. τ0)/α
]

τ0⌋ By a property of substitution/⌊−⌋

B.5 Elaboration

Lemma 5. If Γ ⊢ e ϕ: S →֒ W then ϕ = val.

Proof. By induction on the given derivation.

For any rule whose conclusion has val, we already have our result. This takes care of elab1Intro, elab∀Intro, elabDIntro, the

second conclusion of elab◮Intro, elabvar, and elab→Intro. Rules whose conclusions have target terms that can never be a value

are impossible, which takes care of elab∀Elim, elabDElim, elab◮ElimN, elabfixvar, elabfix, elab→Elim, elab∗Elimk, elab+Elim, and

elabµElim. We are left with:

• Case elab◮Intro (first conclusion): The result follows by i.h. and elab◮Intro.

• Case elab∗Intro: We have W = (W1, W2). By i.h. twice, ϕ1 = val and ϕ2 = val. Applying elab∗Intro gives the result (using

val ⊔ val = val).

• Cases elab◮ElimV, elab+Introk, elabµIntro: The result follows by i.h. and applying the same rule.

Lemma 6 (Elaboration valuability).

If Γ ⊢ e val: S →֒ M then M is valuable, that is, there exists Ṽ such that M = Ṽ .

Proof. By induction on the given derivation.

• Cases elabvar, elab1Intro, elab→Intro: Immediate.

• Cases elab◮Intro (N conclusion), elab◮ElimN, elabfix, elabfixvar, elab→Elim, elab∗Elimk, elab+Elim, elabµElim:

Impossible: these rules cannot elaborate values.

19 2020/8/15 (ICFP 2015)

• Case elabDIntro: By i.h., M1 and M2 are valuable; therefore (M1, M2) is valuable.

• Case elabDElim: By i.h., M0 is valuable; therefore proj1 M0 and proj2 M0 are valuable.

• Case elab∗Intro: Similar to the elabDIntro case.

• Cases elab∀Intro, elab∀Elim: By i.h., M0 is valuable; therefore Λ__. M0 and M[__]0 are valuable.

• Cases elab◮Intro (V conclusion), elab◮ElimV: By i.h.

• Case elab+Introk: By i.h., M0 is valuable; therefore injk M0 is valuable.

• Case elabµIntro: By i.h., M0 is valuable; therefore roll M0 is valuable.

Lemma 7 (Substitution—Evaluation orders).

(1) If Γ, a evalorder, Γ ′ ⊢ S type and Γ ⊢ ǫ evalorder

then Γ, [ǫ/a]Γ ′ ⊢ [ǫ/a]S type.

(2) If D derives Γ, a evalorder, Γ ′ ⊢E e ϕ⇐ S and Γ ⊢ ǫ evalorder

then D ′ derives Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇐ [ǫ/a]S where D ′ is not larger than D.

(3) If D derives Γ, a evalorder, Γ ′ ⊢E e ϕ⇒ S and Γ ⊢ ǫ evalorder,

then D ′ derives Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇒ [ǫ/a]S where D ′ is not larger than D.

Proof. Part (1): By induction on the first derivation. Part (1) does not depend on the other parts.

Parts (2) and (3): By induction on the given derivation, using part (1):

• Case E∀Intro: By i.h. and E∀Intro.

• Case
Γ, a evalorder, Γ ′ ⊢E e ϕ⇒ ∀α. S0 Γ, a evalorder, Γ ′ ⊢ S ′ type

Γ, a evalorder, Γ ′ ⊢E e ϕ⇒ [S ′/α]S0
E∀Elim

Γ, a evalorder, Γ ′ ⊢E e ϕ⇒ ∀α. S0 Subderivation

Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇒ [ǫ/a](∀α. S0) By i.h.

Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇒ ∀α. [ǫ/a]S0 By def. of subst.

Γ, a evalorder, Γ ′ ⊢ S ′ Subderivation

Γ, [ǫ/a]Γ ′ ⊢ [ǫ/a]S ′ By part (1)

Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇒
[

[ǫ/a]S ′/α
]

[ǫ/a]S0 By E∀Elim

Z Γ, [ǫ/a]Γ ′ ⊢E e ϕ⇒ [ǫ/a][S ′/α]S0 By def. of subst.

• Case
(x : S) ∈ (Γ, a evalorder, Γ ′)

Γ, a evalorder, Γ ′ ⊢E x val⇒ S
Evar

Follows from the definition of substitution on contexts.

• Case Efixvar: Similar to the Evar case.

The remaining cases are straightforward, using the i.h. and properties of substitution.

Lemma 22 (Type substitution).

(1) If Γ ⊢ S ′ type and Γ, α type ⊢ S type then Γ ⊢ [S ′/α]S type.

(2) If Γ ⊢ S ′ type and Γ, α type ⊢ e ϕ: S →֒ M then Γ ⊢ e ϕ: [S
′/α]S →֒ M.

Proof. In each part, by induction on the second derivation. In part (2), the elab∀Elim case uses part (1).

Lemma 8 (Expression substitution).

(1) If Γ ⊢ e1 ϕ1
: S1 →֒ W and Γ, x : S1, Γ

′ ⊢ e2 ϕ2
: S →֒ M

then Γ, Γ ′ ⊢ [e1/x]e2 ϕ2
: S →֒ [W/x]M.

(2) If Γ ⊢ fix u. e1 ⊤: S1 →֒ fix u.M1

and Γ, u : S1, Γ
′ ⊢ e2 ϕ2

: S →֒ M

then Γ, Γ ′ ⊢
[

(fix u. e1)
/

u
]

e2 ϕ2
: S →֒

[

(fix u.M1)
/

u
]

M.

Proof. Part (1): By induction on the given derivation. In the elabvar case, use Lemma 5 to get Γ ⊢ e1 val: S1 →֒ W. By weakening,

Γ, Γ ′ ⊢ e1 val: S1 →֒ W, which is Γ, Γ ′ ⊢ [e1/x]x val: S →֒ [W/x]M.

Part (2): By induction on the given derivation. Note that in the elabfixvar case, ϕ2 = ⊤.

20 2020/8/15 (ICFP 2015)

Theorem 10 (Elaboration type soundness).

If Γ ⊢E e ϕ⇐ S or Γ ⊢E e ϕ⇒ S

where Γ ⊢ S type and Γ contains no a evalorder declarations

then there exists M such that Γ ⊢ er(e) ϕ ′ : S →֒ M

where ϕ ′ ⊑ ϕ and |Γ | ⊢T M : |S|.

Proof. By induction on the size of the given derivation. If ϕ ′ = ϕ, we often don’t bother to state ϕ ⊑ ϕ explicitly.

• Case
(x : S) ∈ Γ

Γ ⊢E x val⇒ S
Evar

(x : S) ∈ Γ Premise

Z Γ ⊢ er(x) ϕ: S →֒ x By elabvar

(x : |S|) ∈ |Γ | By def. of |−|

Z |Γ | ⊢T x : |S| By Tvar

• Case Efixvar: Similar to the Evar case.

• Case Γ, u : S ⊢E e0 ϕ0
⇐ S

Γ ⊢E (fix u. e0) ⊤⇐ S
Efix

Γ, u : S ⊢E e0 ϕ0
⇐ S Subderivation

Γ, u : S ⊢ er(e0) ϕ ′

0
: S →֒ M0 By i.h.

|Γ, u : S| ⊢T M0 : |S| ′′

|Γ |, u : |S| ⊢T M0 : |S| By def. of |−|

Z Γ, u : S ⊢ er(e0) ⊤: S →֒ fix u.M0 By elabfix

Z |Γ | ⊢T (fix u.M0) : |S| By Tfix

• Case Γ ⊢E e ϕ⇒ S

Γ ⊢E e ϕ⇐ S
Esub

Γ ⊢E e ϕ⇒ S Subderivation

Z Γ ⊢ er(e) ϕ ′ : S →֒ M By i.h.

Z ϕ ′ ⊑ϕ ′′

Z |Γ | ⊢T M : |S| ′′

• Case Γ ⊢E e0 ϕ⇐ S

Γ ⊢E (e0:S) ϕ⇒ S
Eanno

Γ ⊢E e0 ϕ⇐ S Subderivation

Γ ⊢ er(e0) ϕ ′ : S →֒ M By i.h.

Z ϕ ′ ⊑ϕ ′′

Z |Γ | ⊢T M : |S| ′′

Z Γ ⊢ er((e0:S)) ϕ ′ : S →֒ M By def. of er(−)

• Case

Γ ⊢E () val⇐ 1
E1Intro

Z Γ ⊢ er(()) ϕ: 1 →֒ () By elab1Intro

|Γ | ⊢T () : 1 By T1Intro

Z |Γ | ⊢T () : |1| By def. of |−|

• Case Γ, a evalorder ⊢E e val⇐ S0

Γ ⊢E e val⇐ Da. S0
EDIntro

21 2020/8/15 (ICFP 2015)

Γ, a ⊢E e val⇐ S0 Subd.

Γ ⊢E e val⇐ [V/a]S0 By Lemma 7 (2)

Γ ⊢ er(e) val: [V/a]S0 →֒ MV By i.h.

|Γ | ⊢T MV : |[V/a]S0|
′′

Γ ⊢E e val⇐ [N/a]S0 By Lemma 7 (2)

Γ ⊢ er(e) val: [N/a]S0 →֒ MN By i.h.

|Γ | ⊢T MN : |[N/a]S0|
′′

Z Γ ⊢ er(e) val: Da. S0 →֒ (MV, MN) By elabDIntro

|Γ | ⊢T (MV, MN) : |S1| ∗ |S2| By T∗Intro

Z |Γ | ⊢T (MV, MN) : |Da. S0| By def. of |−|

• Case Γ ⊢E e ϕ⇒ Da. S0 Γ ⊢ ǫ evalorder

Γ ⊢E e ϕ⇒ [ǫ/a]S0
EDElim

Γ ⊢ er(e) ϕ ′ : Da. S0 →֒ M0 By i.h.

Z ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |[V/a]S0| ∗ |[N/a]S0|
′′

If ǫ = V then:

Z Γ ⊢ er(e) ϕ ′ : [V/a]S0 →֒ proj1 M0 By elabDElim

Z |Γ | ⊢T proj1 M0 : |[V/a]S0| By T∗Elim1

Otherwise, ǫ 6= V. It is given that Γ contains no a-declarations, and we also have Γ ⊢ ǫ evalorder. It follows that ǫ cannot be a

variable a. Therefore ǫ = N.

Z Γ ⊢ er(e) ϕ ′ : [N/a]S0 →֒ proj2 M0 By elabDElim

Z |Γ | ⊢T proj2 M0 : |[N/a]S0| By T∗Elim2

• Case Γ ⊢E e ϕ⇐ S0

Γ ⊢E e ϕ⇐ ǫ◮S0
E◮Intro (first conclusion)

Γ ⊢E e ϕ⇐ S0 Subderivation

Γ ⊢ er(e) ϕ ′ : S0 →֒ M0 By i.h.

ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |S0|
′′

By similar reasoning as in the EDElim case, either ǫ = V or ǫ = N.

If ǫ = V:

|S0| = |V◮S0| By def. of |−|

Let M = M0.

Z Γ ⊢ er(e) ϕ ′ : V◮S0 →֒ M By elab◮Intro (first conclusion)

Z ϕ ′ ⊑ϕ Above

Z |Γ | ⊢T M : |V◮S0| By above equality

If ǫ = N:

U |S0| = |N◮S0| By def. of |−|

Let M = thunkM0.

Z Γ ⊢ er(e) val: N◮S0 →֒ thunkM0 By elab◮Intro (second conclusion)

Z val ⊑ϕ By def. of ⊑

|Γ | ⊢T thunkM0 : U |S0| By T→Intro

Z |Γ | ⊢T M : |N◮S0| By above equalities

• Case Γ ⊢E e ϕ ′⇐ S0

Γ ⊢E e val⇐ N◮S0
E◮Intro (second conclusion)

22 2020/8/15 (ICFP 2015)

Γ ⊢E e ϕ ′⇐ S0 Subderivation

Γ ⊢ er(e) ϕ ′ : S0 →֒ M0 By i.h.

ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |S0|
′′

U |S0| = |N◮S0| By def. of |−|

Let M = thunkM0.

Z Γ ⊢ er(e) val: N◮S0 →֒ thunkM0 By elab◮Intro (second conclusion)

Z val ⊑ϕ By def. of ⊑

|Γ | ⊢T thunkM0 : U |S0| By T→Intro

Z |Γ | ⊢T M : |N◮S0| By above equalities

• Case Γ ⊢E e ϕ⇒ V◮S

Γ ⊢E e ϕ⇒ S
E◮ElimV

Γ ⊢E e ϕ⇒ V◮S Subderivation

Γ ⊢ er(e) ϕ ′ : V◮S →֒ M0 By i.h.

Z ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |V◮S| ′′

|V◮S| = |S| By def. of |−|

Let M = M0.

Z Γ ⊢ er(e) ϕ ′ : S →֒ M By elab◮ElimV

Z |Γ | ⊢T M : |S| By above equalities

• Case Γ ⊢E e ϕ ′⇒ ǫ◮S

Γ ⊢E e ⊤⇒ S
E◮Elimǫ

By similar reasoning as in the EDElim case, either ǫ = V or ǫ = N.

If ǫ = V, follow the E◮ElimV case above.

If ǫ = N:

Γ ⊢E e ϕ ′⇒ N◮S Subderivation

Γ ⊢ er(e) ϕ ′′ : N◮S →֒ M0 By i.h.

|Γ | ⊢T M0 : |N◮S| ′′

|N◮S| = U |S| By def. of |−|

Let M = (forceM0).

Z Γ ⊢ er(e) ⊤: S →֒ forceM0 By elab◮ElimN

Z ⊤ ⊑⊤ By def. of ⊑

|Γ | ⊢T M0 : U |S| Above (|N◮S| = U |S|)

Z |Γ | ⊢T forceM0 : |S| By TUElim

• Case Γ ⊢E e1 ϕ1
⇐ S1 Γ ⊢E e2 ϕ2

⇐ S2

Γ ⊢E (e1, e2) ϕ1⊔ϕ2
⇐ (S1 ∗ S2)

E∗Intro

Γ ⊢ er(e1) ϕ: S1 →֒ M1 By i.h.

ϕ ′

1 ⊑ϕ1
′′

|Γ | ⊢T M1 : |S1|
′′

Γ ⊢ er(e2) ϕ: S2 →֒ M2 By i.h.

ϕ ′

2 ⊑ϕ2
′′

|Γ | ⊢T M2 : |S2|
′′

Z Γ ⊢ (er(e1), er(e2)) ϕ ′

1
⊔ϕ ′

2
: (S1 ∗ S2) →֒ (M1, M2) By elab∗Intro

Z ϕ ′

1 ⊔ ϕ ′

2 ⊑ϕ1 ⊔ ϕ2 ϕ ′

1 ⊑ ϕ1 and ϕ ′

2 ⊑ ϕ2

|Γ | ⊢T (M1, M2) : |S1| ∗ |S2| By T∗Intro

Z |Γ | ⊢T (M1, M2) : |S1 ∗ S2| By def. of |−|

23 2020/8/15 (ICFP 2015)

• Case Γ ⊢E e0 ϕ0
⇒ (S1 ∗ S2)

Γ ⊢E (projk e0) ⊤⇒ Sk
E∗Elimk

Γ ⊢ er(e0) ϕ ′

0
: (S1 ∗ S2) →֒ M0 By i.h.

|Γ | ⊢T M0 : |S1 ∗ S2|
′′

|Γ | ⊢T M0 : |S1| ∗ |S2| By def. of |−|

Z Γ ⊢ (projk er(e0)) ⊤: Sk →֒ (projk M0) By elab∗Elimk

Z |Γ | ⊢T (projk M0) : |Sk| By T∗Elimk

• Case Γ, x : S1 ⊢E e0 ϕ0
⇐ S2

Γ ⊢E (λx. e0) val⇐ (S1 → S2)
E→Intro

Γ, x : S1 ⊢ er(e0) ϕ ′

0
: S2 →֒ M0 By i.h.

|Γ, x : S1| ⊢T M0 : |S2|
′′

|Γ, x : S1| = (|Γ |, x : |S1|) By def. of |−|

Γ, x : S1 ⊢ er(e0) ϕ ′

0
: S2 →֒ M0 Above

Z Γ ⊢ (λx. e0) val: (S1 → S2) →֒ (λx.M0) By elab→Intro

|Γ |, x : |S1| ⊢T M0 : |S2| Above

|Γ |, x : |S1| ⊢T (λx.M0) : |S1| → |S2| By T→Intro

Z |Γ |, x : |S1| ⊢T (λx.M0) : |S1 → S2| By def. of |−|

• Case Γ ⊢E e1 ϕ1
⇒ (S1 → S) Γ ⊢E e2 ϕ2

⇐ S1

Γ ⊢E (e1 @ e2) ⊤⇒ S
E→Elim

Γ ⊢ er(e1) ϕ ′

1
: (S ′ → S) →֒ M1 By i.h.

|Γ | ⊢T M1 : |S ′ → S| ′′

|Γ | ⊢T M1 : |S ′| → |S| By def. of |−|

Γ ⊢ er(e2) ϕ ′

2
: S ′ →֒ M2 By i.h.

|Γ | ⊢T M2 : |S ′| ′′

Z Γ ⊢ er(e1 @ e2) ⊤: (S
′ → S) →֒ (M1 M2) By elab→Elim

Z |Γ | ⊢T (M1 M2) : |S| By T→Elim

• Case Γ, α type ⊢E e0 val⇐ S0

Γ ⊢E Λα. e0 val⇐ ∀α. S0
E∀Intro

Γ, α type ⊢E e0 val⇐ S0 Subderivation

Γ, α type ⊢ er(e0) val: S0 →֒ M0 By i.h.

|Γ, α type| ⊢T M0 : |S0|
′′

|Γ |, α type ⊢T M0 : |S0| By def. of |−|

Γ ⊢ er(e0) val: ∀α. S0 →֒ Λ__. M0 By elab∀Intro

Z Γ ⊢ er(Λα. e0) val: ∀α. S0 →֒ Λ__. M0 By def. of er(−)

|Γ | ⊢T Λ__. M0 : ∀α. |S0| By T∀Intro

Z |Γ | ⊢T Λ__. M0 : |∀α. S0| By def. of subst.

• Case
Γ ⊢E e0 ϕ⇒ ∀α. S0 Γ ⊢ S ′ type

Γ ⊢E e0[S
′
] ϕ⇒ [S ′/α]S0

E∀Elim

24 2020/8/15 (ICFP 2015)

Γ ⊢E e0 ϕ⇒ ∀α. S0 Subderivation

Γ ⊢ er(e0) ϕ ′ : ∀α. S0 →֒ M0 By i.h.

Z ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |∀α. S0|
′′

Γ ⊢ S ′ type Subderivation

Γ ⊢ er(e0) ϕ ′ : [S ′/α]S0 →֒ M0[__] By elab∀Elim

Z Γ ⊢ er(e0[S
′]) ϕ ′ : [S ′/α]S0 →֒ M0[__] By def. of er(−)

|Γ | ⊢ |S ′| By Lemma 9

|Γ | ⊢T M0 : ∀α. |S0| By def. of |−|

|Γ | ⊢T M0[__] :
[

|S ′|/α
]

|S0| By T∀Elim
[

|S ′|/α
]

|S0| = |[S ′/α]S0| From def. of subst.

Z |Γ | ⊢T M0[__] : |[S ′/α]S0| By above equality

• Case Γ ⊢E e0 ϕ⇐ Sk

Γ ⊢E (injk e0) ϕ⇐ (S1 + S2)
E+Introk

Γ ⊢E e0 ϕ⇐ Sk Subderivation

Γ ⊢ er(e0) ϕ ′ : Sk →֒ M0 By i.h.

Z ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |Sk|
′′

Z Γ ⊢ injk er(e0) ϕ ′ : (S1 + S2) →֒ injk M0 By elab+Introk

|Γ | ⊢T injk M0 : |S1|+ |S2| By T+Introk

Z |Γ | ⊢T injk M0 : |S1 + S2| By def. of |−|

• Case

Γ ⊢E e0 ϕ0
⇒ (S1 + S2)

Γ, x1 : S1 ⊢E e1 ϕ1
⇐ S

Γ, x2 : S2 ⊢E e2 ϕ2
⇐ S

Γ ⊢E case(e0, x1.e1, x2.e2) ⊤⇐ S
E+Elim

Γ ⊢E e0 ϕ0
⇒ S1 + S2 Subderivation

Γ ⊢ er(e0) ϕ ′

0
: (S1 + S2) →֒ M0 By i.h.

|Γ | ⊢T M0 : |S1 + S2|
′′

|Γ | ⊢T M0 : |S1|+ |S2| By def. of |−|

Γ, x1 : S1 ⊢E e1 ϕ1
⇐ S Subderivation

Γ, x1 : S1 ⊢ er(e1) ϕ ′

1
: S →֒ M1 By i.h.

|Γ, x1 : S1| ⊢T M1 : |S| ′′

|Γ |, x1 : |S1| ⊢T M1 : |S| By def. of |−|

Γ, x2 : S2 ⊢ er(e2) ϕ ′

2
: S →֒ M2 Similar to above

|Γ |, x2 : |S2| ⊢T M2 : |S| ′′

Z Γ ⊢ er(case(e0, x1.e1, x2.e2)) ⊤: S →֒ case(M0, x1.M1, x2.M2) By elab+Elim

Z |Γ | ⊢T case(M0, x1.M1, x2.M2) : |S| By T+Elim

• Case Γ ⊢E e ϕ⇐
[

(µα. S0)
/

α
]

S0

Γ ⊢E e ϕ⇐ µα. S0
EµIntro

25 2020/8/15 (ICFP 2015)

Γ ⊢E e ϕ⇐
[

(µα. S0)/α
]

S0 Subderivation

Γ ⊢ er(e) ϕ ′ :
[

(µα. S0)/α
]

S0 →֒ M0 By i.h.

Z ϕ ′ ⊑ϕ ′′

|Γ | ⊢T M0 : |
[

(µα. S0)/α
]

S0|
′′

Z Γ ⊢ er(e) ϕ ′ : (µα. S0) →֒ (roll M0) By elabµIntro

|
[

(µα. S0)/α
]

S0| =
[

|µα. S0|/α
]

|S0| From def. of |−|

|Γ | ⊢T M0 :
[

|µα. S0|/α
]

|S0| By above equality

|Γ | ⊢T (roll M0) : µα. |S0| By TµIntro

Z |Γ | ⊢T (roll M0) : |µα. S0| By def. of subst.

• Case Γ ⊢E e ϕ⇒ µα. S0

Γ ⊢E e ⊤⇒
[

(µα. S0)
/

α
]

S0
EµElim

Broadly similar to the EµIntro case.

B.6 Consistency

Lemma 11 (Inversion). Given · ⊢ e ϕ: V◮ . . .V◮
︸ ︷︷ ︸

0 or more

S →֒ M:

(0) If M = (λx.M0) and S = (S1 → S2)

then e = (λx. e0) and ·, x : S1 ⊢ e0 ϕ ′ : S2 →֒ M0.

(1) If M = (W1,W2) and S = (Da. S0)

then · ⊢ e ϕ: [V/a]S0 →֒ W1 and · ⊢ e ϕ: [N/a]S0 →֒ W2.

(2) If M = thunkM0 and S = N◮S0 then · ⊢ e ϕ ′ : S0 →֒ M0.

(3) If M = Λ__. M0 and S = (∀α. S0)

then ·, α type ⊢ e val: S0 →֒ M0.

(4) If M = (injk W) and S = (S1 + S2)

then e = (injk e
′) and · ⊢ e ′

ϕ: Sk →֒ W.

(5) If M = (roll W) and S = (µα. S0)

then · ⊢ e ϕ:
[

(µα. S0)/α
]

S0 →֒ W.

(6) If M = (W1,W2) and S = (S1 ∗ S2)

then · ⊢ e1 ϕ1
: S1 →֒ W1 and · ⊢ e2 ϕ2

: S2 →֒ W2

where e = (e1, e2) and ϕ = ϕ1 ⊔ ϕ2.

Proof. By induction on the given derivation.

For some rules, the proof cases are the same for all parts:

• Cases elab◮Intro (V conclusion), elab◮ElimV:

The result follows by i.h. In the elab◮Intro case, we apply the i.h. with one less V◮; in the elab◮ElimV case, we have one more

V◮.

For part (0):

• Case elab→Intro: The subderivation gives the result.

For part (1):

• Case elabDIntro: The subderivations give the result.

For part (2):

• Case elab◮Intro (N conclusion): The subderivation gives the result.

For part (3):

• Case elab∀Intro: The subderivation gives the result.

For part (4):

• Case elab+Introk: The subderivation gives the result.

26 2020/8/15 (ICFP 2015)

For part (5):

• Case elabµIntro: The subderivation gives the result.

For part (6):

• Case elab∗Intro: The subderivations give the result.

All other cases are impossible: either M has the wrong form, or S has the wrong form.

Lemma 12 (Syntactic values).

If Γ ⊢ e val: S →֒ W and W is N-free then e is a syntactic value.

Proof. By induction on the given derivation.

• Cases elab1Intro, elabvar, elab→Intro: Immediate: the rule requires that e is a syntactic value.

• Cases elab◮ElimN, elabfixvar, elabfix, elab→Elim, elab∗Elimk, elab+Elim:

Impossible: these rules require that val be ⊤.

• Case elab◮Intro (N-conclusion): Impossible: thunkM0 is not N-free.

• Case elabµElim: Impossible: unroll M0 is not a value W.

• Cases elab∀Intro, elab∀Elim, elab◮Intro (V-conclusion), elab◮ElimV:

Apply the i.h. to the subderivation.

• Cases elab∗Intro, elab+Introk, elabµIntro:

Apply the i.h. to the subderivation(s).

• Case elabDIntro: Apply the i.h. to the Γ ⊢ e val: [W/a]S0 →֒ W1 subderivation.

• Case elabDElim: Imposible: W must be a projection, but projections are not values.

Theorem 14 (Consistency).

If · ⊢ e ϕ: S →֒ M and M 7→ M ′ then there exists e ′ such that e ∗ e ′ and · ⊢ e ′
ϕ ′ : S →֒ M ′ and ϕ ′ ⊑ ϕ.

Moreover: (1) If ϕ = val then e ′ = e. (2) If M is N-free then e ∗ e ′ can be derived without using SrcStepCtxN.

Proof. By induction on the derivation of · ⊢ e ϕ: S →֒ M.

• Cases elabvar, elabfixvar: Impossible, because the typing context is empty.

• Case ·, u : S ⊢ e0 ϕ: S →֒ M0

· ⊢ (fix u. e0) ⊤: S →֒ (fix u.M0)
elabfix

·, u : S ⊢ e0 ϕ: S →֒ M0 Subderivation

(fix u.M0) 7→ M ′ Given

M ′ =
[

(fix u.M0)
/

u
]

M0 By inversion on rule fixReduce

Z (fix u. e0)
[

(fix u. e0)
/

u
]

e0 By fixVreduce and SrcStepCtxV

· ⊢ (fix u. e0) ⊤: S →֒ (fix u.M0) Given

·, u : S ⊢ e0 ϕ: S →֒ M0 Subderivation

Z · ⊢
[

(fix u. e0)
/

u
]

e0 ϕ: S →֒
[

(fix u.M0)
/

u
]

M0 By Lemma 8 (2)

(1)Z (holds vacuously) ϕ = ⊤

(2)Z Derivation does not use SrcStepCtxN

• Case

· ⊢ () val: 1 →֒ ()
elab1Intro

Impossible, since M = () but () 7→ M ′ is not derivable.

• Case ·, x : S1 ⊢ e0 ϕ: S2 →֒ M0

· ⊢ (λx. e0) val: (S1 → S2) →֒ λx.M0

elab→Intro

Impossible, since M = λx.M0 but (λx.M0) 7→ M ′ is not derivable.

27 2020/8/15 (ICFP 2015)

• Case · ⊢ e1 ϕ1
: (S1 → S) →֒ M1

· ⊢ e2 ϕ2
: S1 →֒ M2

· ⊢ (e1 @ e2) ⊤: S →֒ (M1 M2)
elab→Elim

First, note that ϕ = ⊤ so “moreover” part (1) is vacuously satisfied.

We have (M1 M2) 7→ M ′. By inversion on StepContext, M = (M1 M2) = C[M0] and M ′ = C[M ′

0]. From (M1 M2) = C[M0]

and the definition of C, either C = [], or C = (C1 M2), or C = (M1 C2) with M1 a value.

If C = [], then M = M0 and M ′ = M ′

0. By inversion on βReduce with (M1 M2) 7→R M ′, we have M1 = (λx.Mbody)

and M2 = W and M ′ = [W/x]Mbody.

If M1 M2 is not N-free, then:

· ⊢ e1 ϕ1
: (S1 → S) →֒ (λx.Mbody) Subderivation

e1 = (λx. ebody) By Lemma 11 (0)

·, x : S1 ⊢ ebody ϕ ′′ : S →֒ Mbody ′′

· ⊢ e2 ϕ2
: S1 →֒ W Subderivation (M2 = W)

Z · ⊢ [e2/x]ebody ϕ ′ : S →֒ [W/x]Mbody By Lemma 8 (1)

Z ϕ ′ ⊑ϕ ′′

(λx. ebody) @ e2 RN [e2/x]ebody By βNreduce

Z (λx. ebody) @ e2
∗ [e2/x]ebody By SrcStepCtxN

If M1 M2 is N-free, then:

· ⊢ e1 ϕ: (S1 → S) →֒ (λx.Mbody) Subderivation

e1 = (λx. ebody) By Lemma 11 (0)

·, x : S1 ⊢ ebody ϕ ′′ : S →֒ Mbody ′′

· ⊢ e2 ϕ2
: S1 →֒ W Subderivation (M2 = W)

· ⊢ e2 val: S1 →֒ W By Lemma 5

W is N-free M1 W is N-free

· ⊢ v val: S1 →֒ W By Lemma 12

Z · ⊢ [v/x]ebody ϕ ′ : S →֒ [W/x]Mbody By Lemma 8 (1)

Z ϕ ′ ⊑ϕ ′′

(λx. ebody) @ v RN [v/x]ebody By βVreduce

Z (λx. ebody) @ v ∗ [v/x]ebody By SrcStepCtxV

If C = (C1 M2), then:

M1 M2 7→ M ′ Given

C1[MR]
︸ ︷︷ ︸

M1

M2 7→ C1[M
′

R]
︸ ︷︷ ︸

M ′

1

M2 By inversion on rule StepContext

MR 7→R M ′

R By inversion on rule StepContext

C1[MR] 7→ C1[M
′

R] By StepContext

M1 7→ M ′

1 By known equalities

· ⊢ e1 ϕ1
: (S1 → S) →֒ M1 Subderivation

e1
∗ e ′

1 By i.h.

· ⊢ e ′

1 ϕ ′

1
: (S1 → S) →֒ M ′

1
′′

Z e1 @ e2
∗ e ′

1 @ e2 By SrcStepCtxV

Z · ⊢ e ′

1 @ e2 ⊤: S →֒ M ′

1 M2 By elab→Elim

If M is N-free, then M1 is N-free and the i.h. is sufficient for “moreover” part (2).

If C = (M1 C2) where M1 is a value, then we have M2 7→ M ′

2.

If M is not N-free, then:

28 2020/8/15 (ICFP 2015)

· ⊢ e2 ϕ2
: S1 →֒ M2 Subderivation

e2
∗ e ′

2 By i.h.

· ⊢ e ′

2 ϕ ′

2
: S1 →֒ M ′

2
′′

Z e1 @ e2
∗ e1 @ e ′

2 By SrcStepCtxN

Z · ⊢ e1 @ e ′

2 ⊤: S →֒ M1 M
′

2 By elab→Elim

If M is N-free, then:

· ⊢ e1 ϕ1
: (S1 → S) →֒ M1 Subderivation

· ⊢ e1 val: (S1 → S) →֒ M1 By Lemma 5

e1 = v1 By Lemma 12

· ⊢ e2 ϕ2
: S1 →֒ M2 Subderivation

e2
∗ e ′

2 By i.h.

· ⊢ e ′

2 ϕ ′

2
: S1 →֒ M ′

2
′′

Z v1 @ e2
∗ v1 @ e ′

2 By SrcStepCtxV

Z · ⊢ v1 @ e ′

2 ⊤: (S1 → S) →֒ M ′

1 M2 By elab→Elim

• Case · ⊢ e val: [V/a]S0 →֒ M1

· ⊢ e val: [N/a]S0 →֒ M2

· ⊢ e val: (Da. S0) →֒ (M1, M2)
elabDIntro

By inversion on (M1, M2) 7→ M ′, either M ′ = (M ′

1, M2) and M1 7→ M ′

1, or M ′ = (M1, M2) and M2 7→ M ′

2.

In the first case:

· ⊢ e val: [V/a]S0 →֒ M1 Subderivation

M1 7→ M ′

1 Above

· ⊢ e val: [V/a]S0 →֒ M ′

1 By i.h. (ϕ = val so e ′ = e)

· ⊢ e val: [N/a]S0 →֒ M2 Subderivation

Z · ⊢ e val: (Da. S0) →֒ (M ′

1, M2) By elabDIntro

Z D :: e ∗ e

(1)Z e ′ = e Above

(2)Z D does not use SrcStepCtxN Zero steps in e ∗ e

The second case is similar.

• Case · ⊢ e ϕ: (Da. S0) →֒ M0

· ⊢ e ϕ: [V/a]S0 →֒ (proj1 M0)

· ⊢ e ϕ: [N/a]S0 →֒ (proj2 M0)

elabDElim

First conclusion:

(proj1 M0) 7→ M ′ Given

Either M ′ = proj1 M
′

0 where M0 7→ M ′

0, or M ′ = W1 and M0 = (W1, W2).

In the first case:

· ⊢ e ϕ: (Da. S0) →֒ M0 Subderivation

M0 7→ M ′

0 Above

· ⊢ e ′
ϕ: (Da. S0) →֒ M ′

0 By i.h.

Z D :: e ∗ e ′ ′′

(1)Z If ϕ = val then e = e ′ ′′

If M0 is N-free then D does not use SrcStepCtxN ′′

(2)Z If (proj1 M0) is N-free then D does not use SrcStepCtxN Definition of N-free

Z · ⊢ e ′
ϕ: [V/a]S0 →֒ M ′

0 By elabDElim

In the second case:

29 2020/8/15 (ICFP 2015)

· ⊢ e ϕ: (Da. S0) →֒ (W1,W2) Subderivation

Z · ⊢ e ϕ: [V/a]S0 →֒ W1 By Lemma 11 (1)

proj1 (W1, W2) 7→ W1 Given

(1)Z Let e ′ = e.

Z D :: e ∗ e ′ e ′ = e

(2)Z D does not use SrcStepCtxN Zero steps in e ∗ e ′

Second conclusion:

Either M ′ = proj2 M
′

0 where M0 7→ M ′

0, or M ′ = W1 and M0 = (W1, W2).

In the first case: similar to the first subcase of the [V/a] part above.

In the second case: similar to the second subcase of the [V/a] part above.

• Case ·, α ⊢ e val: S →֒ M

· ⊢ e val: ∀α. S →֒ Λ__. M
elab∀Intro

This case is impossible, because (Λ__. M) 7→ M ′ is not derivable.

• Case
· ⊢ e ϕ: ∀α. S0 →֒ M0 · ⊢ S ′ type

· ⊢ e ϕ: [S
′/α]S0 →֒ M0[__]

elab∀Elim

(M0[__]) 7→ M ′ Given

M0 = (Λ__. M ′) By inversion

· ⊢ e ϕ: ∀α. S0 →֒ M0 Subderivation

· ⊢ e ϕ: ∀α. S0 →֒ (Λ__. M ′) By above equality

·, α type ⊢ e ϕ: S0 →֒ M ′ By Lemma 11 (3)

Z · ⊢ e ϕ: [S
′/α]S0 →֒ M ′ By Lemma 22

Z e ∗ e Zero steps

“Moreover” parts (1) and (2) are immediately satisfied, because e ′ = e.

• Case · ⊢ e ϕ: S0 →֒ M0

· ⊢ e ϕ: V◮S0 →֒ M0

· ⊢ e val: N◮S0 →֒ thunkM0

elab◮Intro

The second conclusion is not possible, because (thunkM0) 7→ M ′ is not derivable.

For the first conclusion: We have M0 = M.

· ⊢ e ϕ: S0 →֒ M Subderivation

Z D :: e ∗ e ′ By i.h.

· ⊢ e ′
ϕ ′ : S0 →֒ M ′ ′′

Z ϕ ′ ⊑ϕ ′′

(1)Z If ϕ = val then e = e ′ ′′

(2)Z If M is N-free then D does not use SrcStepCtxN ′′

Z · ⊢ e ′
ϕ ′ : V◮S0 →֒ M ′ By elab◮Intro

• Case · ⊢ e ϕ: V◮S →֒ M

· ⊢ e ϕ: S →֒ M
elab◮ElimV

By i.h. and elab◮ElimV.

• Case · ⊢ e ϕ0
: N◮S →֒ M0

· ⊢ e ⊤: S →֒ (forceM0)
elab◮ElimN

We have (forceM0) 7→ M ′. If M0 7→ M ′

0, use the i.h. and then apply elab◮ElimN. Otherwise, M0 = thunkM ′.

· ⊢ e ϕ0
: N◮S →֒ thunkM ′ Subderivation

Z · ⊢ e ϕ ′

0
: S →֒ M ′ By Lemma 11 (2)

Z ϕ ′

0 ⊑⊤ By def. of ⊑

Z e ∗ e Zero steps

(1)Z (holds vacuously) ϕ = ⊤

(2)Z Derivation does not use SrcStepCtxN Zero steps

30 2020/8/15 (ICFP 2015)

• Case · ⊢ e1 ϕ: S1 →֒ M1 · ⊢ e2 ϕ: S2 →֒ M2

· ⊢ (e1, e2) ϕ: (S1 ∗ S2) →֒ (M1, M2)
elab∗Intro

Apply the i.h. to the appropriate subderivation, then apply elab∗Intro and SrcStepCtxV.

“Moreover” part (1):

If ϕ = val, the i.h. shows that e ′

1 = e1 (or e ′

2 = e2 if M2 7→ M ′

2); thus, (e ′

1, e2) = (e1, e2) (or (e1, e ′

2) = (e1, e2)).

“Moreover” part (2):

If (M1,M2) is N-free, then M1 and M2 are N-free, and the i.h. shows that D0 :: ek
∗ e ′

k does not use SrcStepCtxN. Therefore

(e1, e2)
∗ . . . does not use SrcStepCtxN.

• Case · ⊢ e0 ϕ0
: (S1 ∗ S2) →֒ M0

· ⊢ (projk e0) ⊤: Sk →֒ (projk M0)
elab∗Elimk

We have (projk M0) 7→ M ′.

If M0 7→ M ′

0 then use the i.h. and apply elab∗Elimk.

Otherwise, M0 = (W1, W2) and M ′ = Wk.

If M is not N-free, we can use projNreduce:

Z · ⊢ ek ϕk
: Sk →֒ Wk By Lemma 11 (6)

e0 = (e1, e2)
′′

Z projk (e1, e2) ek By projNreduce

“Moreover” part (2): M is not N-free.

If M is N-free, we have the obligation not to use projNreduce.

· ⊢ e0 ϕ0
: (S1 ∗ S2) →֒ (W1, W2) Subderivation

· ⊢ e0 val: (S1 ∗ S2) →֒ (W1, W2) By Lemma 5

· ⊢ v val: (S1 ∗ S2) →֒ (W1, W2) By Lemma 12

· ⊢ (v1, v2) val: (S1 ∗ S2) →֒ (W1, W2) By Lemma 11 (6)

Z · ⊢ vk val: Sk →֒ Wk
′′

Z projk (v1, v2)
∗ vk By projVreduce and SrcStepCtxV

“Moreover” part (2): we did not use SrcStepCtxN.

“Moreover” part (1): ϕ = ⊤.

• Case · ⊢ e0 ϕ: Sk →֒ M0

· ⊢ (injk e0) ϕ: (S1 + S2) →֒ (injk M0)
elab+Introk

(injk M0) 7→ M ′ Given

M ′ = (injk M
′

0) and M0 7→ M ′

0 By inversion

· ⊢ e0 ϕ: Sk →֒ M0 Subderivation

· ⊢ e ′

0 ϕ ′ : Sk →֒ M ′

0 By i.h.

Z ϕ ′ ⊑ϕ ′′

e0
∗ e ′

0
′′

Z (injk e0)
∗ (injk e

′

0)

Z · ⊢ (injk e
′

0) ϕ ′ : (S1 + S2) →֒ (injk M
′

0) By elab+Introk

“Moreover” part (1) follows from the i.h.

“Moreover” part (2) follows from the i.h.: If injk M0 is N-free, then M0 is N-free; if e0
∗ e ′

0 does not use SrcStepCtxN, we

can derive (injk e0)
∗ (injk e

′

0) without SrcStepCtxN.

• Case

· ⊢ e0 ϕ0
: (S1 + S2) →֒ M0

·, x1 : S1 ⊢ e1 ϕ1
: S →֒ M1

·, x2 : S2 ⊢ e2 ϕ2
: S →֒ M2

· ⊢ case(e0, x1.e1, x2.e2) ⊤: S →֒ case(M0, x1.M1, x2.M2)
elab+Elim

First note that “Moreover” part (1) is vacuously satisfied, since ϕ = ⊤.

We have case(M0, x1.M1, x2.M2) 7→ M ′. Either (1) M0 7→ M ′

0 and M ′ = case(M ′

0, x1.M1, x2.M2) or (2) M0 =

(injk W) and M ′ = [W/xk]Mk.

For (1), apply the i.h. to · ⊢ e0 ϕ: (S1 + S2) →֒ M0 and apply elab+Elim. “Moreover” part (2) follows from the i.h.

For (2) if M is not N-free, we can use SrcStepCtxN:

31 2020/8/15 (ICFP 2015)

· ⊢ e0 ϕ0
: (S1 + S2) →֒ (injk W) Subderivation

e0 = injk e
′

0 By Lemma 11 (4)

· ⊢ e ′

0 ϕ ′

0
: Sk →֒ W ′′

·, xk : Sk ⊢ ek ϕk
: S →֒ Mk Subderivation

Z · ⊢ [e ′

0/xk]ek ϕ ′

k
: S →֒ [W/xk]Mk By Lemma 8 (1)

e0 = injk e
′

0 Above

case(injk e
′

0, x1.e1, x2.e2) RN [e ′

0/xk]ek By caseNreduce

Z case(e0, x1.e1, x2.e2)
∗ [e ′

0/xk]ek By SrcStepCtxN

For (2) if M is N-free, we can show · ⊢ [e ′

0/xk]ek ϕ ′

k
: S →֒ [W/xk]Mk as in the case when M is not N-free, but we have an

obligation (“Moreover” part (2)) not to use caseNreduce.

· ⊢ e0 ϕ0
: (S1 + S2) →֒ injk W Subderivation

· ⊢ e0 val: (S1 + S2) →֒ injk W By Lemma 5

e0 = v By Lemma 12

· ⊢ v val: (S1 + S2) →֒ injk W By above equality

v0 = injk v
′

0 By Lemma 11 (4)

Z e [v ′

0/x]ek By caseVreduce and SrcStepCtxV

• Case · ⊢ e ϕ:
[

(µα. S0)/α
]

S0 →֒ M0

· ⊢ e ϕ: µα. S0 →֒ (roll M0)
elabµIntro

By inversion, M0 7→ M ′

0 and M ′ = (roll M ′

0).

· ⊢ e ϕ:
[

(µα. S0)/α
]

S0 →֒ M0 Subderivation

· ⊢ e ′
ϕ:

[

(µα. S0)/α
]

S0 →֒ M ′

0 By i.h.

Z e ∗ e ′ ′′

Z · ⊢ e ′
ϕ: µα. S0 →֒ (roll M ′

0) By elabµIntro

“Moreover” parts (1) and (2) follow from the i.h.

• Case · ⊢ e ϕ0
: µα. S0 →֒ M0

· ⊢ e ⊤:
[

(µα. S0)/α
]

S0 →֒ (unroll M0)
elabµElim

We have (unroll M0) 7→ M ′. Either (1) M ′ = (unroll M ′

0) and M0 7→ M ′

0 or (2) M0 = (roll W) and M ′ = W.

If (1), similar to the elabµIntro case.

If (2):

· ⊢ e ϕ0
: µα. S0 →֒ (roll W) Subderivation

Z · ⊢ e ′
ϕ ′ :

[

(µα. S0)/α
]

S0 →֒ W By Lemma 11 (5)

Z e ∗ e ′ ′′

“Moreover” part (1) is vacuously satisfied; part (2) follows from the i.h.

Theorem 15 (Multi-step consistency).

If · ⊢ e ϕ: S →֒ M and M 7→∗ W then there exists e ′ such that e ∗ e ′ and · ⊢ e ′
val: S →֒ W. Moreover, if M is N-free then we

can derive e ∗ e ′ without using SrcStepCtxN.

Proof. By induction on the derivation of M 7→∗ W.

If M = W then let e ′ be e. By Lemma 5, · ⊢ e ′
val: S →֒ W. The source expression e steps to itself in zero steps, so e ∗ e, i.e.

e ∗ e ′. We did not use SrcStepCtxN.

Otherwise, we have M 7→ M ′ and M ′ 7→∗ W for some M ′. By Theorem 14, · ⊢ e1 ϕ: S →֒ M ′, where e ∗ e1; also, if M

is N-free, then Theorem 14 showed that we did not use SrcStepCtxN. If M is N-free, then by Lemma 13, M ′ is N-free. By i.h., there

exists e ′ such that e1
∗ e ′ and · ⊢ e ′

val: S →֒ W. It follows that e ∗ e ′.

If a source type, economical typing judgment, or target term is not N-free, we say it is N-tainted.

Lemma 16. If Γ ⊢E e ϕ⇒ S and S is not N-free then it is not the case that both Γ and e are N-free.

Proof. By induction on the given derivation.

• Case E∀Elim: If S ′ is not N-free, then e = e0[S
′] is not N-free. Otherwise, we have that S = [S ′/α]S0 is not N-free; since S ′

is N-free, S0 must not be N-free, which lets us apply the i.h., giving the resut.

32 2020/8/15 (ICFP 2015)

• Cases EDElim, E◮ElimV, E◮Elimǫ: The i.h. gives the result.

• Cases Evar, Efixvar: The type S appears in Γ , so Γ is N-tainted.

• Case Eanno: The type S appears in e = (e0:S), so e is N-tainted.

• Case E→Elim: If S is N-tainted then S1 → S is N-tainted, and the result follows by i.h.

• Cases E∗Elim, EµElim: Similar to the E→Elim case.

Theorem 17 (Economizing preserves N-freeness).

If γ ⊢I e ϕ⇐ τ (resp. ⇒) where the judgment is N-free (Definition 1 (2)) then ⌊γ⌋ ⊢E ⌊e⌋ ϕ⇐ ⌊τ⌋ (resp. ⇒) where this judgment

is N-free (Definition 2 (2)).

Proof. By induction on the given derivation. We can simply follow the proof of Theorem 1, observing that if the given impartial

judgment is N-free, the resulting economical judgment is N-free. For example, in the I→Intro case, we have τ = (τ1
ǫ
→ τ2). Since

we know that τ is N-free, ǫ = V, so the translation of τ is
(

V◮⌊τ1⌋
)

→ ⌊τ2⌋, which is N-free. Note that Definition 1 (2)(b) bars

x ⊤⇒ τ declarations—which would result in x : N◮ · · ·—from γ.

Theorem 18 (Elaboration preserves N-freeness).

If Γ ⊢E e ϕ⇐ S (or ⇒) where the judgment is N-free (Definition 2 (2)) then Γ ⊢ er(e) ϕ: S →֒ M such that M is N-free.

Proof. By induction on the given derivation.

• Case E1Intro: Apply elab1Intro.

• Case EDIntro: Impossible: S = Da. S0, which is not N-free (Definition 2 (1)(ii)).

• Case EDElim:

We have Γ ⊢E e ϕ⇒ Da. S0, where S = [S ′/a]S0.

By Definition 2 (1)(ii), the type Da. S0 is N-tainted. So, by Lemma 16, at least one of Γ and e is N-tainted. But it was given that

the judgment Γ ⊢E e ϕ⇒ S is N-free, which means that Γ and e are N-free. We have a contradiction: this case is impossible.

• Case E◮Intro (first conclusion): Use the i.h. and apply rule elab◮Intro (first conclusion).

• Case E◮Intro (second conclusion): Impossible: S = N◮S0, which is not N-free.

• Case E◮ElimV: Use the i.h. and apply rule elab◮ElimV.

• Case E◮Elimǫ:

We have Γ ⊢E e ϕ⇒ ǫ◮S.

If ǫ = V then use the i.h., apply rule elab◮ElimV.

Otherwise, ǫ◮S is not N-free. As in the EDElim case, we can use Lemma 16 to reach a contradiction.

• Cases Evar, Efixvar, Efix, E∀Intro, E∀Elim, E→Intro, E→Elim, E∗Elim, E+Introk, E+Elim, EµIntro, EµElim:

Use the i.h. on all subderivations (if any) and apply the corresponding elaboration rule, e.g. in the Efix case, apply elabfix.

• Cases Esub, Eanno: Use the i.h.

• Case E∗Intro: Use the i.h. on each subderivation, and apply elab∗Intro.

33 2020/8/15 (ICFP 2015)

	Introduction
	Source Language and Impartial Type System
	Values
	An Impartial Type System
	Programming with Polymorphic Evaluation Order
	Operational Semantics for the Source Language
	Value Restriction
	Subtyping and -Expansion

	Economical Type System
	Translating to Economical Types
	Programming with Economical Types
	Economizing

	Target Language
	Typing Rules
	Operational Semantics
	Type Safety

	Elaboration
	Elaboration Type Soundness

	Consistency
	Source-Side Consistency?
	Defining N-Freeness
	Lemmas for Consistency
	Consistency Results
	Preservation of N-Freeness

	Related Work
	Future Work
	Type Well-formedness
	Proofs
	Economical Type System
	Elaboration
	Consistency

