
23[14] L. De Floriani and P. Magillo, \Horizon computation on a hierarchical triangulated terrain model", VisualComput., vol. 11, pp. 134{149, 1995.[15] R. Cole and M. Sharir, \Visibility problems for polyhedral terrains", J. Symbolic Comput., vol. 7, pp. 11{30,1989.[16] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman, \Visibility with a moving point of view", Algorithmica,vol. 11, pp. 360{378, 1994.[17] M. H. Overmars and J. van Leeuwen, \Maintenance of con�gurations in the plane", J. Comput. Syst. Sci.,vol. 23, pp. 166{204, 1981.[18] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York,NY, 1985.[19] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge,Mass., 1990.

22\Mars Mosaicked Digital Image Model (MDIM) and Digital Terrain Model (DTM), version2.0," assembled by Eric Eliason, Raymond Batson, and Anthony Manley. This cd{rom isavailable from the National Space Science Data Center, Code 633, Goddard Space FlightCenter, Greenbelt, MD 20771.James Stewart's work is supported by the Information Technology Research Centre ofOntario, the Natural Sciences and Engineering Research Council of Canada, and the Uni-versity of Toronto. References[1] M. Caplinger, \Planetary society marslink project", Tech. Rep., Malin Space Science Systems, available fromhttp://barsoom.msss.com/http/ps/intro.html.[2] N. L. Max, \Shadows for bump-mapped surfaces", in Advanced Computer Graphics (Proceedings of ComputerGraphics Tokyo '86), Tsiyasu L. Kunii, Ed. 1986, pp. 145{156, Springer-Verlag.[3] A. J. Stewart and M. S. Langer, \Towards accurate recovery of shape from shading under di�use lighting",in Proceedings of the 1996 IEEE Conference on Computer Vision and Pattern Recognition, June 1996, pp.411{418.[4] N. L. Max, \Horizon mapping: shadows for bump-mapped surfaces", The Visual Computer, vol. 4, no. 2, pp.109{117, July 1988.[5] B. Cabral, N. L. Max, and R. Springmeyer, \Bidirectional reection functions from surface bump maps", inComputer Graphics (SIGGRAPH '87 Proceedings), July 1987, vol. 21, pp. 273{281.[6] K. Kaneda, F. Kato, E. Nakamae, T. Nishita, H. Tanaka, and T. Noguchi, \Three dimensional terrainmodeling and display for environmental assessment", in Computer Graphics (SIGGRAPH '89 Proceedings),July 1989, vol. 23, pp. 207{214.[7] S. Coquillart and M. Gangnet, \Shaded display of digital maps", IEEE Computer Graphics and Applications,vol. 4, no. 7, pp. 35{42, July 1984.[8] J. T. Kajiya, \The rendering equation", in Computer Graphics (SIGGRAPH '86 Proceedings), August 1986,vol. 20, pp. 143{150.[9] M. J. Atallah, \Dynamic computational geometry", in Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci.,1983, pp. 92{99.[10] J. Hershberger, \Finding the upper envelope of n line segments in O(n log n) time", Inform. Process. Lett.,vol. 33, pp. 169{174, 1989.[11] L. De Floriani and E. Puppo, \Constrained Delaunay triangulation for multiresolution surface description",in Proc. Ninth IEEE International Conference on Pattern Recognition, Los Alamitos, California, 1988, pp.566{569, CS Press.[12] L. Scarlatos and T. Pavlidis, \Hierarchical triangulation using terrain features", in Proceedings of the 1st 1990IEEE Conference on Visualization, Visualization '90, IEEE Service Center, Piscataway, NJ, USA (IEEE catn 90CH2914-0), 1990, pp. 168{175, IEEE.[13] M. de Berg and K. Dobrindt, \On levels of detail in terrains", in Proc. 11th Annu. ACM Sympos. Comput.Geom., 1995, pp. C26{C27.

21used as initial input to a progressive radiosity algorithm. The horizon computation canalso be used to build horizon maps that are used in conjunction with bump maps to renderself{shadowing textures. The algorithm is easy to implement in only 1100 lines of C++code.There are two criteria for evaluating this new algorithm with respect to the existingCMS algorithm: its speed and the quality of images generated from its horizons. The newalgorithm is clearly faster than the CMS algorithm, both in experimental and theoreticalanalysis, once the size of the terrain exceeds about 100; 000 points. Since the execution timeof the new algorithm grows more slowly than that of the CMS algorithm (O(n1:1) versusO(n1:6) in experiments), it becomes even more attractive as the terrain size becomes verylarge.Regarding image quality: The new algorithm avoids absent shadows at the risk of in-troducing spurious shadows. From the images shown, this appears to be a good tradeo�,especially considering that the CMS algorithm will have to take fewer samples in largerterrains to maintain a competitive speed.The best horizon algorithm would probably be a blend of the CMS algorithm and thenew algorithm. In this \best algorithm," the new algorithm presented in this paper wouldquickly build a relatively coarse, but complete, horizon for each sample point of the terrain.The CMS algorithm would then re�ne the horizon in those pairs of adjacent sectors betweenwhich a sharp change in elevation is detected. This approach is analogous to that ofprogressive re�nement.The algorithm is easy to parallelize on the obvious \per sector" basis, since iterations ofthe algorithm are independent. It would be interesting to explore a parallel algorithm thatexploits the parallelism inherent in the tree of convex hulls.AcknowledgementsThe author wishes to thank Mike Caplinger (Malin Space Science Systems) for providingthe Mars dataset, and wishes to thank Bob Kanefsky (NASA Ames Research Center) andDoug Obrien (Canada Centre for Remote Sensing) for providing pointers to other datasets.The Martian terrain data provided by Michael Caplinger of Malin Space Science Systemswas processed from the data on the Planetary Data System cd{rom volume MG 2007,

20

Fig. 10. The area of Fig. 9 shown from above during the course of a day. In the upper{left image, thesun is near the right horizon. In the lower{right image, the sun is near the left horizon. The horizonsonly needed to be computed once for all of the images. The eight{bit resolution of the height dataresults in \contour line" artifacts.

19Note that the CMS algorithm will be slower than the new algorithm for terrains of morethan about 100; 000 points. For such terrains, the CMS algorithm will have to reduceis sampling rate | at a cost to image quality | to remain competitive with the newalgorithm.
Fig. 9. A Martian terrain of 214 � 214 sample points rendered with the sun 30 degrees above the lefthorizon. The eight{bit resolution of the height data results in apparent contour lines. Note the softshadows.Fig. 9 shows a 214 � 214 Martian terrain rendered from 64{sector horizons generatedby the new algorithm. The sky intensity in a particular view direction was modelled asRsun cos20 �, where � is the angle between the sun direction and the view direction. Thismodel approximates (very coarsely) the di�usion that occurs in the Martian atmosphere.Fig. 10 shows an overhead view of the same area over the course of a day. Note thesoft shadows due to di�use, nonuniform illumination. The horizons only needed to becomputed once to render all of the images.VII. SummaryAn e�cient algorithm has been presented that computes the approximate horizon (con-sisting of s sectors) at all n points of a terrain in time O(s n (log2 n + s)). The horizons,which only need to be computed once, are used determine the direct primary illuminationof each sample point under any distribution of sky illumination. The direct primary illu-mination can be used to render the terrain with an approximate radiosity model or can be

18
CMS (64 sectors) New (64 sectors)
CMS (125 sectors) New (125 sectors)
CMS (250 sectors) New (250 sectors)Fig. 8. A at 10; 000{point terrain containing a single spike in the upper{left corner, rendered usinghorizons computed by the CMS and new algorithms, viewed from directly above. At low horizonresolution, the CMS algorithm misses shadows, while the new algorithm generates too dark a shadowfrom a single point. At higher horizon resolutions the algorithms produce identical penumbrae nearthe spike, while the new algorithm produces a smoother and more complete penumbra farther fromthe spike.

17into 256 s equal{area regions: Azimuth angle � is divided into s sectors corresponding tothe s sectors of the horizon; each sector of the hemisphere is divided by elevation angle �into 256 equal{area regions. Each region has a constant illumination which is de�ned bythe user.The radisoity L(x) is computed quickly using lookup tables indexed by horizon elevationand sector. The author's rendering program computes L(x) for about 3600 terrain pointsper second.B. Rendered ImagesBoth the new algorithm and the CMS algorithm have problems in terrains with tall,narrow spikes. The CMS algorithm may miss the spikes (generating no shadows at all),while the new algorithm may generate too dark a shadow, since it uses the highest pointin a sector to de�ne the elevation across the whole sector.Fig. 8 shows six renderings of a terrain of 100� 100 sample points, viewed from directlyabove. All points have height zero, except a single point in the upper{left corner which hasheight 50 and represents a tall, narrow spike. The area light source is 30 degrees above thehorizon. The images di�er in the algorithm used to compute the horizons (CMS algorithmor new algorithm) and in the number of sectors making up the horizon (64, 125, or 250).See the Web page http://www.dgp.toronto.edu/people/JamesStewart for the actualimages, which are of higher quality than could be printed in this paper.The top row of Fig. 8 demonstrates the algorithms at low horizon resolution. Thesampling directions are clear. The CMS algorithm misses a large area of the penum-bra due to undersampling, while the new algorithm produces too dark a penumbra due toits assumption that the single spike spans the whole sector.The middle and bottom rows demonstrate higher horizon resolutions. At 125 sectors, thenew algorithm produces a reasonable penumbra, while the CMS algorithm is still misseslarge parts. At 250 sectors, the penumbrae are identical near the spike (since the newalgorithm uses CMS{like sampling in a small, bounded region around each point; recallSection IV-E), but the new algorithm produces a smoother and more complete penumbrafarther from the spike. The Moir�e patterns are due to the CMS{like sampling in discretedirections.

16
10 100 1,000 10,000 100,000 1,000,000

10

100

1,000

10,000

100,000

1,000,000

terrain size (in points)

ru
n

n
in

g
 t

im
e

 (
in

 s
e

co
n

d
s)

new algorithm

O(n) algorithm2

Cabral, Max, Springmeyer (CMS)

Fig. 7. A log= log graph of the running times of the three algorithms. If the line interpolating the resultsfor a particular algorithm has slope k, that algorithm runs in time O(nk) on inputs of size n. Theseexperimental results show that the new algorithms runs in time O(n1:1), the CMS algorithm runsin time O(n1:6), and the straightforward algorithm runs in time O(n2:0). This shows that the newalgorithm easily outpaces the others as the terrain size grows beyond about 100; 000 points. Theseexperimental results correlate very well with the theoretical asymptotic running times, indicating thatasymptotic analysis is useful in comparing algorithms for this problem.visible from x, d
 is an in�nitesimal solid angle, and �(x;u) is the surface point visiblefrom x in direction u (� denotes \projection"). We replace incoming radiance R(�(x;u))from the directionsH(x)nV(x) in which the terrain is visible with the point's own outgoingradiance R(x). An algebraic manipulation yieldsR(x) � � Rsrc 1� RV(x) N(x) � u d
1 � � (1 � 1� RV(x) N(x) � u d
) :Further discussion and experimental justi�cation can be found in the paper by Stewart andLanger [3]. While this local illumination model assumes di�use reection, another modelcould be constructed that includes a specular component. In particular, a bump map couldbe used to de�ne a normal at each sample point.To model nonuniform sky illumination, the hemisphere of sky directions is discretized

15TABLE IRunning Times (in seconds)Terrain New CMS O(n2)Size Algorithm Algorithm Algorithm1,000 5 2 43,136 18 610,000 61 24 33140,000 302 176100,000 911 893 34,100315,844 3,320 5,570915,800 10,600 25,800 2,850,000VI. Experimental Results: Rendering QualityThe horizon allows us to compute the direct primary illumination of each terrain point.For accurate rendering, we should also consider reected illumination that arrives at eachpoint. In this case, the direct primary illuminations computed from the horizons can serveas the initial irradiances for a progressive radiosity algorithm.A. Illumination ModelTo avoid the expensive radiosity computation, we will use a global illumination modeldeveloped by Stewart and Langer [3]. This model, which provides a coarser approximationof the radiosity of a point, only considers direct primary illumination. The model exploitsthe following observation: In a terrain, bright points on peaks tend to see other brightpoints on peaks, while dark points in valleys tend to see other dark points in valleys. Thatis, points tend to see other points of approximately the same radiance. Exploiting thisobservation, we start with the standard radiosity equationR(x) = �� ZV(x)Rsrc N(x) � u d
 + �� ZH(x)nV(x)R(�(x;u)) N(x) � u d
where x is a surface point, N(x) is the surface normal, H(x) = fu : N(x) � u > 0g is thehemisphere of outgoing unit vectors, V(x) is the set of unit directions in which the sky is

14the individual sample points near the centreline of each sector.The tree of convex hulls can be thought of as a hierarchical data structure, since the leftchild of a node stores the upper convex hull of all the sample points in the right subtree ofthe node. High{level nodes in the tree cover many sample points and this covering is re�nedat lower levels in the tree. The tree of convex hulls can also be thought of, perhaps moreaccurately, as being similar to a structure for storing partial sums. It would be interestingto see whether this similarity of structure could be exploited in a parallel algorithm.V. Experimental Results: Running TimesThe algorithm was implemented in 1100 lines of C++ code. It was tested on terrains ofbetween 1000 points and 915,800 points, the largest available to the author. Running timeson a 166 MHz Pentium PC running Linux with 64 Mb RAM are summarized in Table I.For comparison, the CMS algorithm was implemented and tested on the same scenes. Thestraightforward O(n2) algorithm, described in Section II-A, was also implemented andtested on some of the same scenes (its time for the largest scene is extrapolated from thesmaller scenes). The algorithms computed horizons of 64 sectors.Fig. 7 shows the running times on a log = log graph, in which the line slopes correspondto the exponents of the algorithm's running times. This graph shows that, in practice, thenew algorithm exhibits almost linear growth in execution time, while the CMS algorithmexhibits approximately O(n1:5) growth, as expected. The new algorithm outperforms theCMS algorithm on terrains of more than about 100; 000 points (e.g. a 316 � 316 terrain).Memory requirements are a concern with large terrains. Experiments with the newalgorithm show that the average number of points stored in each upper hull of the binarytree (Section IV-A) was less than two for all terrains tested. Since the average hull size is sosmall in practice, it is neither necessary nor desirable to use a sophisticated data structureto store the hulls. A simple sorted array for the points of each hull uses very little spaceand achieves su�cient speed. (In fact, the times reported in Table I are for an algorithmthat uses a simple sorted array for each hull.) A more sophisticated data structure, likea concatenable queue [18], is unnecessary and uses far more space. Using a concatenablequeue, the algorithm ran out of memory for the largest terrain.

13
p

q

Fig. 6. A set of sample points are shown on top of vertical segments that indicate their heights withrespect to the x{y plane. The shaded area of the x{y plane is a sector of p that has its elevationincorrectly determined by point q, the only point to fall within the sector. The elevation should bedetermined by the high points closer to p.O(log n) upper hulls in the usual way. Suppose that the sample points are regularly spaceda distance d apart. In the worst case, the sector will not intersect a sample point until itbecomes about this wide. Since the sector has width d at about distance d = sin(2�s) fromthe vertex, only 2 = sin(2�s) sample points bordering the sector must be checked. For larges, sin(2�s) � 2�s and the number of bordering points is approximately s� . This solution issimply an application of the CMS algorithm in a small, bounded area around each point.This additional work adds O(ns) time to the running time of each of the s iterations ofthe algorithm. However, the constant in front of ns is relatively small. For example, if 64sectors are used, only 20 additional sample points must be checked. As each point takesabout 9:9 � 10�7 seconds to test (which was experimentally determined), this takes only19 minutes for a 915; 800{point terrain on which the algorithm takes 2:9 hours to run (i.e.11% of the time is spent checking these points).F. Convex Hulls vs. Quad TreesAn alternative to the tree of convex hulls might be a quad tree having cell boundariesaligned with sector boundaries. However, the higher{level nodes in the quad tree wouldusually overlap sector boundaries, making them useless in computing the highest{elevationpoint near the boundaries of a particular sector. Thus, any algorithm using quad treeswould have to inspect the lowest{level quad tree nodes near the sector boundaries. Thework involved in doing this is equivalent to that done by the CMS algorithm, which inspects

12
a

b

−a

+b

p

q

r

Fig. 5. Points q and r fall on the clockwise and counterclockwise boundaries, respectively, of a sector ofp. In order that q is stored in the sector, it must be processed before p and so must precede p in theordering by a?. Although r already precedes p in the a? ordering, it must follow p in the b? orderingif it is to be stored in p's sector.D. Degenerate SituationsCare must be taken with sample points that fall exactly upon the boundary of a sector;this occurs frequently with grid data. We must ensure that such points are included inthe sector; otherwise, we may underestimate the sector elevation. Consider Fig. 5. Whensorting the points by a? to determine their processing order, points that have the sameprojection onto a? must be sorted by their projection onto �a. This ensures that pointslying on the more clockwise boundary of the sector of a point p are processed (and henceadded to the sector) before p is processed. When sorting the points by b?, points that havethe same projection onto b? must be sorted by their projection onto +b. This ensures thatpoints lying on the more counterclockwise boundary of the sector of a point p have a largersecond index than p, and are thus added to the sector of p when they are processed (recallthat a point with second index k is added to the sectors ��;1 to ��;k�1).E. Narrow SectorsCare must be taken when the sector angle 2�s is small. Narrow sectors will often notintersect a sample point until some distance from the sector vertex. If closer sample pointsare higher than the �rst intersected point, the elevation will be underestimated and, hence,the irradiance will be overestimated (see Fig. 6).The solution is to test the elevations of a �xed number of sample points that border thesector close to the sector vertex, in addition to determining the maximum elevation of the

11root{to{Ck path. Each insertion can be done in time O(log n) [18] for a totaltime of O(log2 n).B. Correctness and AnalysisRecall the Observation. Step 2 adds pj;k to the covering sets of all sectors �s;t for whicht < k. Those sectors �s;t for which s > j remain to be treated, since sectors are treatedin increasing order of �rst index. Thus, when ps;t is processed later in the course of thealgorithm, all points pj;k for which s > j and t < k will have been added to the coveringset of �s;t. Thus, Step 1 will compute the correct elevation ei when ps;t is processed.The key idea of the algorithm is that a point can be added to the covering sets of sectors��;1;��;2; : : : ;��;k�1 by inserting it into only O(log n) upper hulls. Since each sample pointis added to only O(log n) upper hulls, the storage bound is clearly O(n log n).The time bound for the steps above is clearly O(n log2 n) for each of the s iterations.A modi�cation described in Section IV-E will increase the running time by O(ns) periteration. Thus, the total running time of the algorithm is O(s n (log2n+ s)).C. Space ReductionTo reduce space requirements and increase speed, a leaf node Ck of the tree is markedas inactive once the corresponding point p�;k has been processed. The hull associatedwith the inactive node is discarded, since it is not required after the elevation of p�;k iscomputed. An internal node is marked as inactive (and its hull discarded) when its twochildren become inactive. In Step 2 above, pj;k is not inserted into inactive hulls.To reduce space further, note that points are only inserted into hulls of tree nodes thatare left children. All right children (and the root) have empty hulls. Thus, only the leftchildren need to be stored, which can be done in a heap{ordered array [19]. This requiresa bit of care with array indices when traversing the root{to{Ck path, but reduces the sizeof the tree by half. For example, in the author's implementation this would save abouteight megabytes in a terrain of a million points.

10
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C13 C14Fig. 4. A complete binary tree of upper hulls in which leaf Ck corresponds to sector ��;k. The covering setof sector ��;k consists of those upper hulls on the root{to{Ck path. For example, the black nodes containthe covering set of sector ��;12. To add point p�;12 to the covering sets of sectors ��;1;��;2; : : : ;��;11,it is su�cient to add it to the upper hulls (shown in gray) to the immediate left of the root{to{C12path.A. Algorithm DescriptionThe algorithm maintains a complete, static, binary tree3 in which each node stores anupper hull that lies in the plane �i (see Fig. 4). The leaf nodes are labelled C1; : : : ; Cn fromleft to right. The covering set of sector ��;k consists of the upper hulls stored in the nodeson the root{to{Ck path, which is of length O(log n).Recall that the algorithm iterates over the s sectors, computing in the ith iteration themaximum elevation ei in sector �i of each of the n sample points. The ith iteration isperformed as follows:Initially, sample points are sorted to determine the indices j and k. They are thenprocessed in order of increasing �rst index, j. Point pj;k is processed as follows:1. The tangents from dpj;ki (the projection of pj;k onto �i) to each of the upperhulls on the root{to{Ck path are computed. The elevation of the highest tangentis recorded as the elevation ei of the horizon in sector �j;k. Each tangent takesO(log n) time to compute [17] for a total time of O(log2 n).2. Point dpj;ki is added to the covering sets of sectors ��;1;��;2; : : : ;��;k�1. Thisis accomplished by inserting dpj;ki into the upper hull of every left child on the3In a complete binary tree, all levels are full except the bottommost, which is �lled from left to right. Since thetree is static (it doesn't change shape), it can be stored in an array A[1 : : :N] such that the two children of nodeA[i] are A[2i] and A[2i+ 1].

9
a

a

b

b

1
2

3
45

67
8

1
2
3

4

5
6

7

8

p
5,7

p
8,6

p
6,1

first index

second index

Fig. 3. A top view of the sample points is shown. The sector �j;k of a sample point pj;k is the regionabove and to the right of the point, delimited by the lines passing through the point. According to theObservation, point p5;7 lies in exactly the sectors �6;1 and �8;6.Order the sample points in the direction a? and let j denote the position of point p inthe ordering. Similarly, order the points in the direction b? and let k denote p's positionin the ordering. In both orderings, the �rst point has position 1. For convenience in whatfollows, we will attach these subscripts to p, as in pj;k. Note that one subscript is su�cientto distinguish a point and the notation pj;� or p�;k may be used without ambiguity.For notational convenience, let �j;k denote sector �i of point pj;k. This notation refers toa speci�c sector whose apex embeds a speci�c point. The index i of the sector is implicitin the notation �j;k and will be clear from the context.The following observation is exploited to e�ciently generate the covering sets. See Fig. 3for an example.Observation Point pj;k lies in exactly those sectors �s;t for which s > j and t < k.

8
p̂

i

ri

ei

riFig. 2. Plane �i is shown with projection p̂ of the point p and projections bqji (unlabelled in the �gure)of the points qj that fall within sector �i of p. Three upper hulls form a covering set whose unioncontains all the bqji. The elevation ei of the horizon of p is the elevation of the highest of the threetangents from p̂ to the upper hulls.O(log n) upper convex hulls2 is built whose union contains all of the points bqj i (see Fig. 2).The tangent between p̂ and each of the upper hulls is computed in O(log n) time pertangent [17]. The elevation of the highest tangent is recorded in ei. Given the covering setof upper hulls, this procedure takes O(log2 n) time per sample point per sector. It remainsto e�ciently construct the covering sets.Refer to Fig. 3 for the following de�nitions. We will transform the sample points from anx{y{z coordinate system to an a?{b?{z coordinate system in which the sector boundariesare perpendicular to the a? and b? axes. Let a be a horizontal vector in the direction2�s i and let b be a horizontal vector in the direction 2�s (i + 1). These vectors de�ne theextreme directions of the sector �i. Let a? be a horizontal vector �2 radians clockwise ofa. Similarly, let b? be a horizontal vector �2 radians clockwise of b.2An upper convex hull, or simply upper hull, is the upper chain of a convex hull with two extreme edgesextending vertically downward to �1. While the hull may contain many points on its interior, we only store thepoints that de�ne the hull's boundary.

7same sign as the z component of cpqi. This de�nition is slightly di�erent from the usualone and is necessary in the algorithm that follows. Finally, the approximate horizonof a point p is a sequence e0; : : : ; es�1 of s elevation angles, where ei is the maximum ofthe elevations of the points that fall within sector �i of p. In this model, the horizon is apiecewise{constant function of azimuth angle.
x

y

z

ri

ri

p

i

q

ri

p̂

q̂
i

Fig. 1. Shown is a point p of the terrain and the sector �i of p; point q falls within the sector. Thehorizontal vector ri bisects the sector and is parallel to the vertical plane �i, which passes through theorigin. The projections of p and q onto �i are denoted p̂ and q̂, respectively. The elevation angle of qin sector �i of p is denoted �. IV. The AlgorithmThe algorithm iterates over the s sectors. Each sector is treated independently (in e�ect,the algorithm starts anew for each sector). In the ith iteration, the maximum elevation eiin sector �i is calculated for each of the n sample points.For a particular point p, this is accomplished as follows. All sample points qj that fallwithin sector �i of p are projected onto points bqj i in the plane �i. A covering set of

6O(n log n). The algorithm can be restricted to �nding the horizon in a single sector for alln points in time O(n (log2 n + s)). This is useful if, for example, the sun sets in a �xedsector and we want to know at what elevation the sun disappears from the view of eachsample point.The algorithm is not di�cult to implement: It took the author less than a week. The mostcomplicated operations required are to insert a point into a convex hull and to compute atangent from a point to a convex hull. Experimental results in Section V show that, as thenumber of points increases, the new algorithm's execution time grows much more slowlythan that of the CMS algorithm. Thus, the new algorithm is better suited for very largeterrains.The next two sections describe the horizon computation algorithm. Following that, im-plementation results and rendered images are presented.III. PreliminariesThe input consists of a set of n sample points p1; : : : ; pn, where pi has coordinates(xi; yi; zi); coordinate zi is the height of the point. No two points project to the samelocation in the x{y plane. It is not necessary that the points lie on a regular (xi; yi) grid.Refer to Fig. 1 for the following de�nitions. Throughout this discussion, a verticaldirection is parallel to the z axis and a horizontal direction is parallel to the x{y plane.The positive z direction is \up."The azimuth angle of a vector v in <3 is the angle of the projection of v onto the x{yplane, measured counterclockwise from the positive x axis when viewed from above. Thespace around a point p is divided into s regions based on azimuth angle: The sector �i ofa point p is the region of <3 reachable from p by (non{vertical) vectors having azimuthangle in the closed range [2�s i; 2�s (i + 1)]. Note that adjacent sectors intersect on theircommon boundary.Let ri be a horizontal vector pointing in the direction 2�s (i+12). Let �i be the vertical planethat passes through the origin and embeds ri. Let the notation v̂i denote the projection ofa vector v onto �i. See Fig. 1.The elevation angle of a point q that falls within sector �i of a point p is the anglebetween ri and the projection cpqi of the vector pq (angle � in Fig. 1). The angle has the

5To achieve subquadratic running time, we approximate the horizon of each sample point:The horizon is divided into s sectors, each spanning 2�s radians. In each sector, thehorizon is assumed to have constant elevation, which is the maximum of the elevations ofall sample points that appear in the sector. The user can choose s to control the accuracyof the approximation.The methods of Max [4] and of Cabral, Max, and Springmeyer [5] can also be thought ofas constructing the approximate horizon: Each method divides the horizon into a numberof sectors and, in each sector, determines the elevation of the horizon by sampling onlythose terrain points or terrain edges that fall on the centreline of the sector.Consider a terrain consisting of a single, tall, narrow spike. It is clear that these twomethods will miss the spike if it does not fall exactly on the centreline of a sector, whichwill result in a missing shadow. However, the approach taken by this paper will use thenarrow spike to de�ne the horizon of the entire sector, which may be much wider than thespike. This might cause shadows to appear where they should not. In Section VI we willdemonstrate that the undersampling artifacts of the �rst two methods are more severe thanthe artifacts produced by the new method.The approximate horizons at each of n sample points can be computed in a straight-forward manner in O(n2) time, as follows: For each point p, consider each other point q.Determine which sector of p contains q and store in that sector the elevation of q if it isgreater than the maximum elevation stored so far. Such an algorithm is exorbitantly ex-pensive for even moderately sized terrains: The author's implementation took 9:5 hours ona 100; 000{point terrain and would have taken 792 hours (i.e. 33 days) on a 915; 800{pointterrain if run to completion.Note that other, more complicated, algorithms that treat each point individually willbe even slower (for example, [10] and [14] would run in O(n2 log n) time). However, thesampling methods of Max [4] and Cabral, Max, and Springmeyer [5] only take timeO(sn1:5),since each of the n points must consider O(pn) other points in each of s directions aroundit.This paper presents a much faster algorithm to compute the approximate horizon con-sisting of s sectors at each of n sample points in total time O(s n (log2 n + s)) and space

4to do this quickly when the number of points is very large.Horizon maps like those of Max are used by Cabral, Max, and Springmeyer [5] to com-pute bidirectional reection functions for bump maps. They use 24 directions around eachpoint and sample a triangulated terrain instead of discrete points. This is a more accurateand slightly more expensive procedure which reduces | but does not eliminate | under-sampling artifacts. This will be called the CMS approach. In Section V the performanceof CMS is compared to the approach presented in this paper.Shaded terrains have also been generated using shadow volumes (for example, Kanedaet al [6]) and ray tracing (for example, Coquillart and Gangnet [7]). Shadow volumesonly apply to point light sources, and ray tracing can be expensive if sampling is used toincorporate di�use illumination [8].Related work on terrains appears in the computational geometry literature. If the terrainis modelled as a polygonal mesh on n points, computing the horizon for a single point isequivalent to computing the upper envelope of a set of O(n) segments [9]. The horizon hascomplexityO(n �(n)) 1 and can be computed in optimal timeO(n log n) [10]. Alternatively,a hierarchical model can be used to represent the surface at various resolutions [11], [12],[13]. In this model, the horizon can be computed for a single point at di�erent resolutionsin time O(n log n) [14].Cole and Sharir [15] describe how to preprocess a terrain in order to answer e�cientlyray shooting queries from a �xed point and from a �xed vertical line. Bern, Dobkin,Eppstein, and Grossman [16] also discuss ray shooting queries from vertical lines in terrains.However, none of these works in computational geometry considers computing the horizonsat all sample points of a terrain.A. Approximate HorizonsFor accurate rendering, the horizon must be determined at each of the n sample points.It is not clear how any of the results described above can be extended to compute thehorizon at each of n points in subquadratic total time, or whether this is even possiblewhen each horizon is represented as a polygonal chain of size O(n �(n)).1�(n) is the extremely slowly growing inverse of Ackermann's function and can be considered constant for anypractical n.

3ity computation is desired, the horizon method provides the important initial irradiance ofeach point, which will speed up the radiosity computation considerably.This paper describes how to compute e�ciently the horizon at every sample point of aterrain. The method has been implemented and tested on terrains of up to 915; 800 points,the largest available to the author. On the largest terrain, the method took 2:9 hours ona 166 MHz Pentium PC, which compares quite favorably to two other methods (describedin the next section) which took 7:2 hours and 33 days, respectively.Images have been generated using an approximate illumination model [3] that requiresonly the direct primary illumination. From the horizon information, the radiosity of thesample points can be computed using this model at a rate of 3600 points per second for adiscretized distribution of sky illumination.II. BackgroundClosely related work has been done by Max [2], [4], who computes horizons for displacement{mapped surfaces. He considers eight directions around each sample point and determinesthe horizon elevation in each direction. Points that do not fall directly in the eight direc-tions are not considered in determining the horizon. When rendering, a sample point isconsidered to be illuminated if the sun is visible from the point, which is determined bycomparing the sun's elevation with the closest known horizon elevation. Intensity withinpenumbral shadows is determined according to the fraction of the sun's disc that lies abovethe horizon. Supersampling on pixels is performed to diminish aliasing artifacts. Max alsodescribes transformations from at to curved surface patches.The method presented in this paper di�ers signi�cantly from that of Max. In buildingeach horizon, we consider all sample points of the terrain, rather than only those that liein particular directions. This results in more accurate horizons and, hence, more accuraterendering. It also enables us to produce soft shadows under nonuniform di�use illumination.As Max states, his approach is not well suited to casting shadows from bumpy pro�les, sincethis requires a much denser sampling of horizon elevations. In addition, terrains with sharpspikes will result in undersampling artifacts (like absent shadows) with his method. Byconsidering all points of the terrain when building each horizon, we avoid these problems.However, considering all points for each horizon can be extremely expensive. Our goal is

2AbstractTo render a terrain or a self{shadowing texture map whose topography is represented bymany sample points, we must determine what part of the sky is visible from each sample point.The direct primary illumination of each point can then be computed for any distribution of skyillumination. This paper presents an e�cient and practical method to compute the horizon, orskyline, at all sample points of a terrain.From the horizons, the radiosity of each point can be determined in two ways: either quickly,using an approximate lighting model that relies upon only the direct primary illuminations, ormore accurately, with a progressive radiosity algorithm that uses the direct primary illuminationsas the initial point irradiances, for a considerable savings in time.The new horizon computationmethod is compared with other methods by Max and by Cabral,Max, and Springmeyer. Experimental results are reported which show that the new method yieldsmore accurate rendered images and takes much less time to process large terrains.Additional images and animations for this paper are available athttp://www.dgp.toronto.edu/people/JamesStewartKeywordsterrain, self shadowing texture map, shadows, displacement map, rendering, horizon, skylineI. IntroductionTerrain rendering is used in texture mapping, ight simulation, scienti�c visualization,and cartographic applications. For example, otherwise unobtainable views from the surfaceof Mars have been generated from terrain data [1]. Also, self{shadowing textures have beengenerated with a combination of bump maps and horizon maps [2].To render a terrain or texture map for which the topography is represented by manysample points of various heights, we must compute the total light received by each samplepoint (its irradiance) in order to determine how much is emitted (its radiosity). The largestcontribution to the irradiance of a sample point usually comes from the sky, althoughsmaller contributions come from other surfaces of the terrain.To determine the direct primary illumination from the sky, it is necessary to determinethe horizon, or boundary, of the visible sky. However, each sample point usually sees adi�erent horizon.Once the horizon is computed for each sample point, we can quickly compute the directprimary illumination of each point for any distribution of sky light. As shown in Sec-tion VI, the direct primary illumination is su�cient to render realistic and informativeimages without resorting to an expensive radiosity step. However, if a progressive radios-

1
Fast Horizon Computation forAccurate Terrain Rendering

A. James Stewart
Dynamic Graphics Project, Department of Computer Science, University of Toronto, 10 Kings College Road,Toronto, Ontario, Canada, M5S 1A4. phone: (416) 978{5359. fax: (416) 978{5184. email: jstewart@cs.toronto.edu

