
Vicinity Shading for Enhanced Perception of Volumetric Data

A. James Stewart

School of Computing
Queen’s University

Abstract

This paper presents a shading model for volumetric data which en-
hances the perception of surfaces within the volume. The model in-
corporates uniform diffuse illumination, which arrives equally from
all directions at each surface point in the volume. This illumination
is attenuated by occlusions in the local vicinity of the surface point,
resulting in shadows in depressions and crevices. Experiments by
other authors have shown that perception of a surface is superior un-
der uniform diffuse lighting, compared to illumination from point
source lighting.

CR Categories: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques

Keywords: volume rendering, shading model, diffuse illumina-
tion, perceptual cues

1 Introduction

This paper describes a new illumination model for surfaces within
a volumetric data set. The model, which is based upon the idea of
“obscurances” [Zhukov et al. 1998], produces more accurate shad-
ing than the regular “diffuse–plus–specular” Phong model [Phong
1975] which is commonly used with volume rendering. The chief
characteristic of the new model is that depressions, folds, and
crevices are shadowed, which provides an additional perceptual cue
to surface shape.

Volumetric data is typically illuminated by one or more point
light sources, and the shading at each point in the volume is calcu-
lated as a sum of diffuse and specular components involving the di-
rections of the light source,L, the viewer,V, and the surface normal
(or gradient),N. This makes for a very quick shading calculation,
which is simple enough to be implemented in graphics card hard-
ware using the Blinn approximation [Blinn 1977] for the specular
component.

This illumination method provides good perceptual cues to the
orientationof the surface that is embedded in the volume, due to the
diffuseN ·L term: Surfaces are bright if illuminated from directly
above, and dark if illuminated from the side.

But this model gives poor cues to therelative depthof a surface.
It can be difficult to determine whether one part of the surface is
higher or lower than an adjacent part. The ambiguity in relative
depth can be reduced by introducing shadows, which provide per-
ceptual cues to the surface shape.

Which is it? or

Figure 1:Top: Under point–source illumination, a surface provides
no cues to the relative depths of its two halves.Bottom: Under
uniform diffuse illumination, the relative depths are clearer.

The usual way to provide shadows is with ray tracing [Whitted
1980]: From each surface point, rays are shot to each light source
and those that arrive without intersecting an object contribute to the
point’s illumination. But shadows from point sources and opaque
objects are sharp, and introduce confusing illumination discontinu-
ities on the surface: It can be difficult for the viewer to distinguish
between a dark–to–light transition due to shadowing, and one due
to a sudden change in surface orientation.

Better shadowing is provided underuniform diffuse lighting,
which arrives equally from all directions, much like the illumina-
tion on a cloudy day (see Figure 1). With such lighting, the shad-
ing of a surface point is a function of the solid angle subtended
by the visible part of the light source: Points in valleys don’t get
much light, whereas points on peaks get a lot of light. Langer and
Bülkhoff [Langer and B̈ulthoff 1997] have shown that, for a com-
mon class of surfaces, perception of shape is more accurate under
such “cloudy day” lighting than under point lighting.

Distribution ray tracing [Cook et al. 1984] could calculate shad-
ing under uniform diffuse lighting, but at a very high computational
cost: Many rays must be sent outward from each surface point, in-

PRE-PRINT OF PAPER IN IEEE VISUALIZATION, PP 355-362, 2003.



Vicinity values Regular “diffuse–plus–specular” shading

Vicinity shading

Figure 2: A human skull with fractures of the checkbone in three places. Dark areas in the upper–left image correspond to more occluded
vicinities. The vicinity values are combined with regular “diffuse–plus–specular” shading by multiplying the two, resulting in the bottom,
vicinity shaded image.

stead of the single ray used with a point light source.

This paper introduces a model of illumination for volumetric
data, dubbedvicinity shading. In essence, we shade each surface
point according to uniform diffuse lighting that is blocked only in
the vicinity of the surface point. Vicinity shading provides better
perceptual cues than the regular diffuse–plus–specular model. As
shown in Figure 2, vicinity shading provides a good approximation
of the shadowing that occurs in depressions and cavities.

This paper also describes a novel algorithm to compute vicinity
shading forall isosurfacesin a volumetric data set. Thus, different
isosurfaces can be rendered without requiring recomputation of the
vicinity shading. Volumetric data poses some interesting problems
and opportunities that are not present with other data representa-

tions, such as polygon meshes. These problems and opportunities
are addressed by the algorithm.

2 Related Work

The original illumination model for volumetric data was described
by Levoy [Levoy 1988], and includes components for scattering and
absorption: Light from a point source is reflected off of each voxel,
and is attenuated due to absorption along the path from the voxel to
the viewer. No absorption occurs before the ray arrives at the voxel,
so no shadows are present with this model. Levoy rendered the vol-
ume by tracing rays from the eye through the volume, accumulating
light from sample points along each ray. Cabral [Cabral et al. 1994]



introduced the use of graphics texture mapping hardware to accel-
erate the process.

Shadows in volumetric data have been produced by “two–pass”
methods [Behrens and Ratering 1998; Kajiya and Herzen 1984;
Meinzer et al. 1991]. The first pass propagates point–source light
through the volume, taking into account absorption, and stores in
each voxel of a separate “light volume” the intensity of the ar-
riving light. A second pass propagates light from the light vol-
ume toward the viewer, in the manner of Levoy or Cabral. Splat-
ting has also been used to compute the light volume [Nulkar and
Mueller 2001] with this two–pass approach. Other methods com-
bine the two passes using volume slices that are aligned with nei-
ther the viewer nor the light source [Kniss et al. 2002a; Zhang and
Crawfis 2002; Zhang and Crawfis 2003]. Another interesting ap-
proach [Kniss et al. 2002b; Kniss et al. 2003] adds a scattering com-
ponent to the lighting model. A good survey of other illumination
models for volume rendering was written by Max [Max 1995].

These methods for producing shadows in volumetric data all pro-
duce shadows from point light sources, and can’t achieve the effect
of uniform diffuse lighting that we’re looking for. However, these
methods are fast, typically requiring only one rendering of the data
to produce the light volume, which can then be used without recom-
putation until the position of the light source changes. The vicinity
shading described in this paper takes substantially longer (in the or-
der of tens of minutes) to compute its own light volume but, once
computed, the shadow information from that volume can be used
without ever requiring recomputation.

Vicinity shading is the volumetric version of “obscurances,”
[Zhukov et al. 1998; Iones et al. 2003] which were used to achieve
the same “cloudy day” illumination in polygonal scenes. The
obscuranceof a surface point is a measure of the empty space
above the surface point, taking into account only the geometry (typ-
ically 10 to 100 polygons) within a certain distance of the surface
point. More detail is provided in Section 3.

Vicinity shading applies the idea of obscurances to volumet-
ric data, which poses challenges: For example, what characterizes
those voxels that block light from arriving at a particular isosurface,
and how is vicinity shading computed efficiently for all possible
isosurfaces in the volume? But volumetric data also provides op-
portunities, such as the potential to exploit the regular and space–
coherent structure of the data. These points will be discussed in
Section 3.3.

Vicinity shading and obscurances are closely related to acces-
sibility shading. The “tangent accessibility” of a surface point is
equal to the radius of the largest sphere that can touch that point
without intersecting any other part of the surface. This notion of
accessibility was originally introduced [Lee and Richards 1971] in
molecular modelling to determine what parts of one molecule are
accessible to (the spherical atoms of) another molecule, in order to
gain insight into chemical reactions between the molecules.

The accessibility measure (i.e. the sphere radius) can be used to
modulate the intensity of a surface point, producing very appeal-
ing images of polished surfaces in which dark polish has accumu-
lated in small, inaccessible cracks and pits [Miller 1994]. Efficient
algorithms to compute accessibility have exploited graphics hard-
ware [Spitz and Requicha 2000] and geometric techniques.

Accessibility gives a coarse approximation of the intensity of
light arriving at a surface point, but fails in some cases. For ex-
ample, the interior of a long tube will have uniform accessibility
along its entire length, whereas the shading of the tube’s interior
should be darkest in the middle of the tube (see Figure 3). As an-
other example, a surface point with a tiny occlusion directly above
it will have low accessibility (and hence, dark shading), whereas
the tiny occlusion should have almost no effect on the shading of
the surface point.

Vicinity shading overcomes these problems by sampling in di-

Figure 3: Accessibility shading provides incorrect depth cues.Top:
A tube has uniform accessibility on its interior, as shown by the
equally sized tangent spheres. However, we would expect darker
shading toward the middle. Bottom: A surface with a tiny square
occluder above it has dramatically reduced accessibility right below
the occluder. However, we would expect only a very slight reduc-
tion in surface illumination under the occluder.

rections outward from the surface point to estimate the amount of
unoccluded light arriving at the surface. However, since vicinity
shading only estimates direct “primary” illumination, it will likely
produce overly dark images for surfaces with high reflectivity, on
which light can reflect multiple times to arrive inside folds and de-
pressions. For such surfaces, a more accurate (and more compu-
tationally expensive) model would be used to account for multiple
scattering [Rushmeier and Torrance 1987].

3 Vicinity Shading

We’ll consider the vicinity shading at one surface point,p, leaving
the question of what constitutes a surface to Section 3.3. As with
the volume shading method of Levoy, we assume that light arrives
at each point without attenuation due to the medium except (in our
case) in the vicinity of the surface point. After being reflected from
the surface, the light is attenuated in the standard way as it travels
toward the viewer.

The goal is to compute forp a single coefficient between zero
and one that represents the reduction of light atp due to occlusions
in the vicinity. The light volume consisting of all of these coeffi-
cients will later be used while rendering, in the same manner as the
two–pass shadow algorithms described above.

Let N be the surface normal atp, equal to the normalized gradi-
ent of the data field atp. A variant of the rendering equation [Kajiya
1986] gives the irradiance,E, arriving atp:

E(p) =
∫

Ω
N ·L(ω) dω

whereL(ω) is the radiance arriving from directionω (written as a
vector with magnitude equal to the radiance), andΩ is the set of
directions above the surface – those for whichN ·ω > 0.

This equation is evaluated by discretizing the domainΩ into k
sectorsof equal solid angle,∆ω, and samplingL(ω) within each
sector:

E(p)≈
k

∑
i=1

N ·L(ωi) ∆ω



Since our goal is to produce a coefficient in the range zero to one
that represents the fraction of total possible irradiance arriving atp,
we normalize to get̃E(p):

Ẽ(p) =
∑N ·L(ωi) ∆ω

∑N ·Lmax(ωi) ∆ω

=
∑Li cosθi

∑Lmax
i cosθi

(1)

where cosθi = N ·ωi , Li is the computed scalar value ofL(ωi), and
Lmax

i is the maximum possible value ofL(ωi) (more on this last
item below).

3.1 Discretizing the Domain Ω

The set of all directions aroundp can be represented by points on a
Gaussian sphere centered atp. We can produce a fairly evenly dis-
tributed set of sample directions on the sphere with a commonly–
used technique: Start with an icosahedron whose vertices lie on
the unit sphere and subdivide each triangular face into four smaller
triangles, whose new vertices are projected outward onto the unit
sphere. Two or three iterations of this procedure produce a set of
sample directions corresponding to vertices of the resulting polyhe-
dron.

Each sample direction,ωi , corresponds to one sector,∆ωi of the
discretized domain. At a particular point,p, on the object surface,
we only consider the sectors,i, that are outward facing:N ·ωi > 0.

3.2 Definitions of Li and Lmax
i

For each sector,i, we must determine the radiance,Li . Since the
light source is uniform and diffuse, the radiance arriving directly at
p — if unobstructed and unreflected — is equal from all directions,
making the computation ofLi purely geometric.

With vicinity shading, occlusions are detected only within the
vicinity of p, where thevicinity is an outward facing hemisphere
of radiusr centered atp. In the volumetric data set, the vicinity
contains a number of voxels, each of which has been classified as
interior or exterior to the surface to whichp belongs (more on this
below). Any interior voxel will occlude the light arriving atp.

To determine how much light arrives atp from directionωi , we
simply sample the voxels lying in that direction, up to a distancer
from p. There are (at least) two ways to estimateLi :

If none of the voxels sampled in directionωi is interior,
Li = 1. Otherwise,Li = 0. Thisall–or–nothing method
only collects light that is unoccluded as it travels from
the boundary of the vicinity top. In this case,Lmax

i = 1.

In some situations, such as inside of a long tube, the all–or–
nothing method will result in too little illumination for reasonable
perception of the surface. For such cases, it’s useful to estimateLi
according to theunobstructed distance from p in directionωi . This
partial occlusion methodprovides (reduced) illumination even in
tight spaces, which the “all or nothing” method does not.

With the partial occlusion method,Li is set equal to the
distance fromp to the nearest interior voxel in direction
ωi . Lmax

i is the distance to the farthest voxel in the vicin-
ity in directionωi . Note thatLmax

i ≤ r, but is usually not
equal tor.

x

y

wi

Figure 5: A 2D discrete line (shown as solid black pixels) in di-
rection ωi with dominant directionx. Integer translations of the
discrete line (shown as shades of gray) in the non–dominanty direc-
tion are sufficient to completely cover the area such that each pixel
lies on exactly one of the translated discrete lines. Each X marks
the start of a line enumerated by the algorithm of Section 3.3.1.

3.3 Computation of Li and Lmax
i

With vicinity shading, there’s no notion of transparency: light that
is directed toward a voxel,v, is either blocked, or is not. Ifv lies on
a “surface” in the volume and has densityρ(v), it is reasonable to
assume that the rest of the same surface has density greater than or
equal toρ(v). Thus, we will assume the following:

A voxel v of densityρ(v) has its incoming light blocked
by any other voxel of density greater than or equal to
ρ(v).

To computev’s vicinity shading,Ẽ(v), we evaluate Equation 1
by sampling in directionsωi abovev’s surface. A sample in di-
rectionωi is blocked when it arrives at a voxel of density greater
than or equal toρ(v), andLi andLmax

i are determined by the partial
occlusion method.

One approach to computing̃E for all voxels would be to iter-
ate over all voxels and, for each voxel, to iterate over all sample
directions. This would be prohibitively expensive: Forn voxels,s
sample directions, and a vicinity radius ofr, the running time would
be inO(n s r).

Instead, this section will describe an algorithm to computeẼ
for all voxels in timeO(n s), which removes any dependence on
the vicinity radius,r. In fact, the vicinity can be arbitrarily large
without affecting the running time.

The new algorithm exploits the following observation:For a
fixed line through the volume in directionωi , a voxel on that line
can be blocked in directionωi only by another voxel on that line.

Suppose that we can cover the volume with a set of parallel lines
in directionωi , such that each voxel appears on exactly one line.
Then each such line can be treated independently to computeLi
for all voxels on that line. This process can be repeated for each
direction,ωi , and the results accumulated according to Equation 1.

3.3.1 Covering the Volume with Disjoint Discrete Lines

Thedominant direction of a line is the axis (x, y, or z) to which it
is most parallel. In the context of a particular volume of voxels, the
discrete line in directionωi is the (finite) set of voxels enumerated
by a 3D Bresenham algorithm that starts from one corner of the
volume and moves in directionωi until it exits the volume. The
corner is chosen to maximize the number of enumerated voxels.

For a particular direction,ωi , assume without loss of generality
thatx is the dominant direction. Consider a translation of the dis-
crete line an integer number of voxels in the non–dominanty direc-
tion, followed by an integer number of voxels in the non–dominant
z direction. (See Figure 5, in which a 2D example is given: The



distance

vk

vj

vk

vj

wi

de
ns

it
y

Figure 4: A discrete line and the corresponding plot of density versus distance. The discrete line has been rotated so that the plot point
corresponding to a voxel appears directly below the voxel. The voxelv j is blocked in theωi direction by voxelvk since (in the plot)vk is the
closest point to the right ofv j that is abovev j .

dominant direction isx, and the discrete line is translated integer
amounts in the non–dominanty direction.) Two observations can
be made:

1. Each voxel lies on exactly one translated discrete line.

2. No two translated discrete lines intersect (unless the transla-
tions are identical).

This means that we can “cover” the volume with a set of trans-
lated discrete lines in directionωi , such that each voxel appears on
exactly onetranslated discrete line, as was required in the previous
section.

The following algorithm enumerates the translated discrete
lines.1 For simplicity, we’ve assumed that the dominant direction
is x and that the discrete line starts at the(0,0,0) voxel.

1. Each voxel(0,y,z) on thex = 0 face of the volume is the
beginning of a translated discrete line.

2. Use the 3D Bresenham algorithm to enumerate voxels on the
discrete line that starts at(0,0,0). Let (x j ,y j ,zj ) be the jth

voxel on the discrete line. Note thatx j = x j−1 + 1 sincex is
the dominant direction.

(a) If y j 6= y j−1, then each voxel(x j ,0,z) on they = 0 face
of the volume is the beginning of a translated discrete
line.

(b) If zj 6= zj−1, then each voxel(x j ,y,0) on thez= 0 face
of the volume is the beginning of a translated discrete
line.

For new lines that are enumerated in Steps 2a and 2b above, the
state of the 3D Bresenham algorithm at the first voxel of the new
line must be identical to the state of the 3D Bresenham algorithm

1This program code (and the other code of the algorithm) is available by
email request to the author.

of Step 2 at the time that the new line is enumerated. This ensures
that the new line is not translated in the dominantx direction. (If
it were translated in that direction, it would intersect with another
line, violating our requirement that each voxel lie on exactly one
line.)

3.3.2 Computing Li for All Voxels on One Discrete Line

The preceding section described how to allocate voxels to discrete
lines such that any voxel on a line can be blocked in directionωi
only by another voxel on that line. This section will describe how
to determine the blocking voxels and, hence, how to computeLi for
each voxel on a line.

Let the voxels on a line bev1,v2,v3, . . . with the index increas-
ing in theωi direction. Voxelv j has densityρ(v j ) and Euclidean
distanced(v j ) from the first voxel on the line. Figure 4 shows an
example of a line and the corresponding plot of density versus dis-
tance.

A voxel v j is blocked by a voxelvk in directionωi if j < k and
ρ(v j ) ≤ ρ(vk). In the plot of Figure 4, the blockingvk is found
by drawing a horizontal line rightward from(d(v j ),ρ(v j )) until it
arrives at a higher (i.e. denser) point.

For each voxel on the line, our algorithm must compute its cor-
responding blocking voxel. The algorithm maintains a stack of as–
yet “unresolved” voxels, for which no blocking voxel has yet been
found. The top of the stack stores the unresolved voxel of minimum
density, and density increases down the stack. Initially the stack is
empty.

The algorithm processes the voxels by order of increasing dis-
tance,d. Upon processing the next voxel,v, two steps are taken:

1. If the voxel,u, at the top of the stack hasρ(u)≤ ρ(v), thenv is
the closest blocker tou. In this case, popu from the stack and
(only if N(u) ·ωi > 0) computeLi(u) based upon the distance
d(v)−d(u) betweenu andv. Repeat Step 1 until the stack is
empty or the topmost voxel has a greater density than that of
v.



v

u

N(v)

 tangent plane at v

Figure 6: A gently sloping surface with a step will result in overly
dark vicinity shading of the voxel,v, on the lower side of the step
due to occlusion by the voxel,u, on the higher side of the step. The
solution is prevent blocking by any voxel that is (a) close tov and
(b) close to the tangent plane ofv. The white voxels meet these
criteria.

2. Pushv onto the top of the stack, sincev is now the minimum–
density unresolved voxel.

After all voxels on the line have been processed, any unresolved
voxels remaining on the stack are unoccluded in directionωi . For
each unoccluded voxel, setLi = Lmax

i .
For a better intuition, refer to Figure 4: Suppose we are just

about to processvk, and the stack contains the voxels shown as
solid circles to the left ofvk. Whenvk is processed, the first two
such voxels are removed from the stack, sincevk blocks them (as
shown by the dashed horizontal lines). Thenvk is added to the
stack.

The algorithm can be modified to compute blocking pixels in
bothdirections (ωi and−ωi) in the same pass along the line. Note
that v’s closest occluder in the−ωi direction is the topmost voxel
on the stack after Step 1 is completed. A Step 1.5 could be added
to take advantage of this.

A problem arises due to the voxelization of volumetric data. As
shown in the 2D example of Figure 6, a flat surface that is oriented
close to one of the volume axes will have a number of steps. The
voxel on the lower side of a step will be very much occluded by the
voxel on the upper side of the step, resulting in overly dark vicinity
shading of the lower voxel (which will result in dark bands in the
rendered volume). To avoid this, we apply a heuristic: A voxelu
doesnot block a voxelv if (a) u is within three voxel widths ofv
and (b)u is within 1.5 voxel widths of the tangent plane atv.

To implement the heuristic, Step 1 of the algorithm must be mod-
ified: If the voxel removed from the stack in Step 1 satisfies condi-
tions (a) and (b) above, that voxel is instead put onto a separate list
of “postponed” voxels. A Step 0 is added in which the new voxelv
is checked against every postponed voxel, to see whether it blocks
a postponed voxel. If it does, the postponed voxel is removed from
the list and itsLi is calculated withv as the blocker.

The first enhancement (that of processing the direction−ωi) and
the second (that of postponing some voxels) are incompatible; only
one can be implemented in the algorithm. Furthermore, if we post-
pone some voxels, the running time ofO(n s) is no longer valid,
since we might, in theory, inspect a large number of postponed vox-
els with each new voxel on the line. In practice, however, postpon-
ing voxels was found to have very little effect on the running time.

3.4 Using Ẽ(p) in Texture–Based Volume Render-
ing

The previous sections described how to computeLi for each voxel,
given a particular directionωi . We apply that procedure to all direc-
tions and compute the vicinity shading,Ẽ, of each voxel according
to Equation 1.

The result of computing̃E is a “light volume” in which each
voxel stores a value between zero and one, which is an estimate of
the fraction of total possible illumination arriving at the voxel.

In texture–based volume rendering, each voxel in a 3D texture
volume stores anRGBA4–tuple, where theRGBare the three com-
ponents of the normalized voxel gradient, andA is the voxel den-
sity. The value forA is used to index into a transfer function, which
provides a colour and opacity for the voxel.

The simplest way to incorporate the light volume in the illumi-
nation calculation is to use it to modulate theRGBgradient lengths:
Each normalized gradientN(p) is replaced bỹE(p)×N(p). The
intensity of light leavingp is then computed as

I = kd (ẼN) ·L+ks ((ẼN) ·H)n

= Ẽ kd N ·L+ Ẽn ks (N ·H)n

with L the direction to the point light source,H the half–angle vec-
tor betweenL and the direction to the viewer, andkd and ks the
diffuse and specular lighting coefficients.

This is not a physically correct model, because the uniform dif-
fuse lighting should be independent of the point source lighting.
This approach also tends to remove specular highlights, due to the
specular exponent oñE. But it is simple and does produce better
perceptual cues than without vicinity shading. Its principal advan-
tage is that it is embarrassingly easy to implement. The images in
this paper were rendered with this method.

It would be better to separate the contribution of the uniform
diffuse lighting from that of the point source lighting. To do so,
we can encode the normalized voxel gradient intwo components,
RG, and encode the light volume in the third component,B. The
graphics hardware can then useRG as indices into a 2D texture
containing 3D gradients, and can includeẼ (from B) as a separate
term in the calculation:

I = ke Ẽ +kd N ·L+ks (N ·H)n

4 Experimental Results

Vicinity shading was applied to a number of volumetric data sets
generated from CT scans, and to one data set generated by voxeliz-
ing a polygonized model. Two of these sets are shown in this pa-
per. With each set, the vicinity radius was set to 100 voxel widths,
but could have been set to any value without affecting the execu-
tion times. The images of this paper used vicinity shading that was
computed from 1272 sample directions.

Figure 2 shows a skull with a fractured cheekbone. Vicinity
shading provides good cues to the positions of the three fractures,
and helps to distinguish the interior of the skull as seen through the
eye orbit. It also brings out several small features which are not
obvious with the regular shading method.

Figure 7 shows a cerebral cortex, which was converted to voxel
data from a polygonized model. The regular diffuse–plus–specular
shading produces an artificially bright image, in which deep folds
are as brightly illuminated as the outer surface (except where the
light direction is almost tangent to the surface of the fold). This
is corrected with vicinity shading, yielding a more realistic image
with better depth cues.

Table 1 summarizes the results on a 1.8 GHz Pentium PC with
1.0 GB of memory. The running time of the vicinity computation
is approximately proportional to the total number of voxels and to
the number of sample directions. The running time is completely
independent of the vicinity radius,r.



Table 1: Data Sets and Execution Times

Data Dimensions Number of Execution Time
Directions (minutes)

Skull 256×256×203 312 14.3
Skull 256×256×203 1272 59.0
Cortex 128×512×256 1272 57.5

In a 256×256×256 volume, each sampling direction requires
about 2.7 seconds of computation. Despite the “efficient” algo-
rithm, this is still a huge amount of time, and is an obvious area
for future work. (Of course, we can always trade off time for accu-
racy by reducing the number of sampling directions.)

5 Discussion

Vicinity shading provides perceptual cues to relative surface depth.
It does so by estimating the illumination that the surface would
receive under uniform diffuse lighting. Experiments by other au-
thors [Langer and B̈ulthoff 1997] have shown that — for at least
some surfaces — perception of shape is more accurate under such
uniform, diffuse lighting than it is under point lighting.

Vicinity shading samples for occluders in a vicinity around each
surface point. An algorithm was described which efficiently deter-
mines the vicinity shading ofall voxels by exploiting the coherence
of voxels along a number of discretely sampled directions through
the volume.

An important feature of the algorithm is that it computes vicinity
shading forall possible isosurfacessimultaneously, and not just for
the one surface shown in the images of this paper. Thus, the trans-
fer function can (to some degree) be manipulated without requiring
recomputation of the vicinity shading.

At least two avenues of future work appear interesting. Firstly,
it should be possible to accelerate the algorithm by using the func-
tionality of graphics hardware. One potential problem, however, is
that the current algorithm uses a variable–size stack, which does not
have an obvious graphics card hardware implementation.

Secondly, a user study should be performed to verify that per-
ception of shape is, indeed, superior with vicinity shading. The
results of Langer and B̈ulkhoff only suggestthat this is the case for
vicinity shading, since vicinity shading only provides an estimate
of the overall illumination, and is applied to a different type of sur-
face than in the Langer and Bülkhoff study. Such an experiment
might, for example, test users on their ability to distinguish peaks
and valleys in images with and without vicinity shading.

6 Acknowledgements

The author wishes to thank Paul Bourke [Bourke 1997] for the cere-
bral cortex data, and to thank the Department of Radiology at the
University of Iowa for their publically available data sets of the foot
and skull. The thoughtful comments of the anonymous reviewers
were also appreciated. This work is supported in part by a grant
from Communications and Information Technology Ontario.

References
BEHRENS, U., AND RATERING, R. 1998. Adding shadows to a texture-

based volume renderer. InIEEE Symposium on Volume Visualization,
39–46.

BLINN , J. F. 1977. Models of light reflection for computer synthesized
pictures.Computer Graphics (SIGGRAPH) 11, 2, 192–198.

BOURKE, P. 1997. Modelling the surface of the human cortex. Inonline
notes, http://astronomy.swin.edu.au/ pbourke/modelling/cortex.

CABRAL , B., CAM , N., AND FORAN, J. 1994. Accelerated volume ren-
dering and tomographic reconstruction using texture mapping hardware.
In IEEE Symposium on Volume Visualization, 91–98.

COOK, R., PORTER, T., AND CARPENTER, L. 1984. Distributed ray
tracing.Computer Graphics (SIGGRAPH) 18, 3, 137–145.

IONES, A., KRUPKIN, A., SBERT, M., AND ZHUKOV, S. 2003. Fast,
realistic lighting for video games.IEEE Computer Graphics and Appli-
cations 23, 3, 54–64.

KAJIYA , J., AND HERZEN, B. V. 1984. Ray tracing volume densities.
Computer Graphics (SIGGRAPH) 18, 3, 165–174.

KAJIYA , J. 1986. The rendering equation.Computer Graphics (SIG-
GRAPH) 20, 4, 143–150.

KNISS, J., KINDLMANN , G., AND HANSEN, C. D. 2002. Multi-
dimensional transfer functions for interactive volume rendering.IEEE
Transactions on Visualization and Computer Graphics 8, 4, 270–285.

KNISS, J., PREMOZE, S., HANSEN, C. D., AND EBERT, D. S. 2002.
Interactive translucent volume rendering and procedural modeling. In
IEEE Visualization Conference, 255–262.

KNISS, J., PREMOZE, S., HANSEN, C. D., SHIRLEY, P., AND MCPHER-
SON, A. 2003. A model for volume lighting and modeling.IEEE Trans-
actions on Visualization and Computer Graphics 9, 2, 150–162.

LANGER, M. S.,AND BÜLTHOFF, H. H. 1997. Do humans perceive shape
from shading better on sunny days or on cloudy days? Tech. Rep. 97–
130, NEC Research Institute.

LEE, B. K., AND RICHARDS, F. M. 1971. The interpretation of protein
structures: Estimation of static accessibility.Journal of Molecular Biol-
ogy 55, 379–400.

LEVOY, M. 1988. Display of surfaces from volume data.IEEE Computer
Graphics and Applications 8, 3, 29–37.

MAX , N. 1995. Optical models for direct volume rendering.IEEE Trans-
actions on Visualization and Computer Graphics 1, 2.

MEINZER, H.-P., MEETZ, K., SCHEPPELMANN, D., ENGELMANN , U.,
AND BAUR, H. J. 1991. The heidelberg ray tracing model.IEEE Com-
puter Graphics and Applications 11, 6, 34–43.

M ILLER , G. 1994. Efficient algorithms for local and global accessibility.
Computer Graphics (SIGGRAPH), 319–326.

NULKAR , M., AND MUELLER, K. 2001. Splatting with shadows,. In
International Workshop on Volume Graphics 2001, 35–50.

PHONG, B.-T. 1975. Illumination for computer generated images.Com-
munications of the ACM 18, 6, 311–317.

RUSHMEIER, H., AND TORRANCE, K. 1987. The zonal method for calcu-
lating light intensities in the presence of a participating medium.Com-
puter Graphics (SIGGRAPH) 21, 293–302.

SPITZ, S. N., AND REQUICHA, A. A. G. 2000. Accessibility analysis
using computer graphics hardware.IEEE Transactions on Visualization
and Computer Graphics 6, 3, 208–219.

WHITTED, T. 1980. An improved illumination model for shaded display.
Communications of the ACM 23, 6, 343–349.

ZHANG, C., AND CRAWFIS, R. 2002. Volumetric shadows using splatting.
In IEEE Visualization Conference, 85–92.

ZHANG, C., AND CRAWFIS, R. 2003. Shadows and soft shadows with
participating media using splatting.IEEE Transactions on Visualization
and Computer Graphics 9, 2, 139–149.

ZHUKOV, S., IONES, A., AND KRONIN, G. 1998. An ambient light illu-
mination model. InEurographics Workshop on Rendering, 45–56.



Vicinity values Regular “diffuse–plus–specular” shading

Vicinity shading

Figure 7: Vicinity shading of a cerebral cortex using 1272 sample directions.


