Fundamenta Informaticae 76 (2006) 1-16 1
10S Press

Intercode Regular Languages$

Yo-Sub Hanf*
System Technology Division, Korea Institute of Sciencelaatinology
P.O.BOX 131, Cheongryang, Seoul, Korea, emmous@Kkist.re.k

Kai Salomag

School of Computing, Queen’s University, Kingston, Owt&7L 3N6, Canada
ksalomaa@cs.queensu.ca

Derick Wood¥

Department of Computer Science, The Hong Kong UniversiBci@nce and Technology
Clear Water Bay, Kowloon, Hong Kong SAR, dwood@cs.ust.hk

Abstract. Intercodes are a generalization of comma-free codes. UBangtructural properties of
finite-state automata recognizing an intercode we devepaaomial-time algorithm for determin-
ing whether or not a given regular languafés an intercode. If the answer y&s, our algorithm
yields also the smallest indéxsuch thatL is ak-intercode.

Furthermore, we examine the prime intercode decompositidntercode regular languages and
design an algorithm for the intercode primality test of ateinode recognized by a finite-state au-
tomaton. We also propose an algorithm that computes theepiribercode decomposition of an
intercode regular language in polynomial time. Finally, demonstrate that the prime intercode
decomposition need not be unique.

Keywords: regular languages, finite-state automata, intercodds;géar graphs, prime decompo-
sitions

*Part of this research was carried out while Han and SalomaaiwéiKUST.

fHan was supported by the Research Grants Council of Hong Komgpetitive Earmarked Research Grant HKUST6197/01E
and the KIST Tangible Space Initiative Grant 2E19020.

fAddress for correspondence: System Technology DivisiooreK Institute of Science and Technology, P.O.BOX 131,
Cheongryang, Seoul, Korea

$Salomaa was supported by the Natural Sciences and Engigdeeisearch Council of Canada Grant OGP0147224.

YWood was supported by the Research Grants Council of HonggKBompetitive Earmarked Research Grant
HKUST6197/01E.

2 Y.-S. Han et al./ Intercode Regular Languages

1. Introduction

Finite-state automata (FASs) are the basic model used tesept regular languages in many applications.
FAs are essentially labeled directed graphs and each pathdrstart state to a final state spells out an
accepted string. There are two well-known families of FAtimliterature: the Thompson automata [22]
and the position automata [8, 20]. One advantage of usinig faunilies of FAs is that these automata
preserve the structural properties of corresponding aegetpressions. Caron and Ziadi [3] studied
the structural properties of the position automata and @iamesi et al. [7] examined the structural
properties of the Thompson automata.

On the other hand, if we manipulate FAs, then these FAs elasié/certain structural properties; for
example, if we catenate a position automaton and a Thompgomaton, then the resulting automaton
does not preserve either the position automaton propentitee Thompson automaton properties. Nev-
ertheless, one property remains unchanged in FAs: a pathdrstart state to a final state spells out an
accepted string. The use sifate-pair graphgelies on this fact. Applications of state-pair graphs have
been investigated by the authors [12], or earlier by Begsidl Perrin [1], where this notion is called the
square of an automaton. Each node of a state-pair graph is@f gtates of a given FA and the directed
edges are labeled by alphabet symbols. We recall the forefilition in Section 3.

Codes play a crucial role in many areas such as informatioogssing, data compression, cryptog-
raphy, information transmission and so on [15]. They areg@ized with respect to different conditions
(for example prefix-free, suffix-free, infix-freer outfix-freecodes) according to the applications. The
theory of codes is closely related to formal languages: & t®dlanguage The conditions that classify
code types define proper subfamilies of families of formagjlzages. For regular languages, for example,
prefix-freeness defines the family of prefix-free regulaglaages, which is a proper subfamily of regular
languages. Most of the decision problems related to codaepties are decidable for regular languages
whereas they often become undecidable for context-fregukages [15]. Decidability of general code
properties is also investigated in the literature [6, 17].

While comma-free languages have not been studied to thetesteprefix-free languages in the
literature, the comma-free property was already introdunel958 [9]. Furthermore, Shyr and Yu [21]
introducedintercodes as a generalization of comma-free codes, see also Yu [28hn@a-free codes are
the intercodes of index one. Jurgensen et al. [16] haveestube decidability of the intercode property.
Fernau et al. [6] mentioned in the conclusion of their papat tit would be nice to know more about the
(time or space) complexities of the decidable code praggttiComplexity questions have been raised
also by Berstel and Perrin [2].

Note that if an indext is given, then we can fairly easily check whether or fad an intercode
of index k. However, if no index is given, then the problem is not asightforward. Jurgensen et
al. [16] established that it is decidable whether or not &igivegular language is an intercode (of any
index). There the complexity of the decision algorithm i$ discussed explicitly, but it is easy to verify
that an algorithm derived from the construction of the dakility proof is not a polynomial-time algo-
rithm in the general case where the input language is spa&ifi@ nondeterministic finite-state automa-
ton (NFA).

It is already shown that state-pair graphs are useful toesdbcision problems for subfamilies of
regular languages [11, 12, 13]. Based on state-pair grdueine,we design an algorithm that determines
whether or not a given regular languadeis an intercode (of any index). The algorithm works in
polynomial time in the general case whéerés given as an NFA. Besides having better time complexity,

Y.-S. Han et al./ Intercode Regular Languages 3

the algorithm is conceptually easier to understand andampht compared with the algorithm derived
from Jurgensen et al. [16].

In Section 2, we define some basic notions. In Section 3, westigate the decision problem of
intercodes and design a polynomial-time algorithm thagmgian NFAA, determines whether or not the
languageL(A) is an intercode of any index. The algorithm relies on thecstmal properties ofd via
state-pair graphs. In Section 4, we develog¥m%) time algorithm to compute a prime decomposition
of an intercode regular languagewherem is the number of states of the minimal deterministic finite-
state automaton (DFA) fof.. Note that it remains an open question whether prime decsitiquos
of general regular languages can be found efficiently [10, Me also demonstrate that the prime
decomposition of an intercode is not, in general, uniquecamparison, it is known that prefix codes
always have a unique decomposition where the componen(siare prefix codes [5].

2. Preliminaries

Let X denote a finite alphabet arkf* denote the set of all strings ov&. A language ovel is any
subset of2*. The symbol) denotes the empty language and the charactiEmnotes the null string. The
cardinality of a finite sef is denoted byS]|.

An FA Ais specified by atuplé?, ¥, 6, s, F'), whereQ is a finite set of stateg; is an input alphabet,
0 C Q x X x @ is aset of transitionss € () is the start state anH C (@ is a set of final states. When
F has only a single statg, we write this FA ag@, X, d, s, f) instead of(Q, X, 6, s, { f}) for simplicity.
An FA as defined above is, in general, nondeterministic (aA)NEn FA A is deterministic (a DFA) if
forall (¢g,a) € ¥ x Q,|{(q,a,¢') €d| ¢ €Q} < 1.

Then, the sizéA| of A is |Q| + [0]. A transition(p,a,q) in §, wherep,q € Q anda € %, is an
out-transitionof p and anin-transition of ¢. Furthermore, in this case we say thpds asource statef
g andgq is atarget stateof p. A string z over X is accepted bw if there is a labeled path fromto a
state inF' such that the labeled path spells out the stingdhus, the languag&(A) of an FA A is the
set of all strings that are spelled out by paths froto a final state inf". We say thatA is non-returning
if the start state ofA does not have any in-transitions addis non-exitingif the final state ofA does
not have any out-transitions. Note that if all final stategiafo not have out-transitions, without loss of
generality, we can assume théathas only one final state by merging them. In the following, Wweags
assume tha#l has onlyusefulstates; that is, each state 4fappears on some path from the start state to
some final state.

3. State-pair graphs and intercode regular languages

We first recall the definition of state-pair graphs and thenitédn of intercodes. Given a fixed indéx it
is easy to determine whether a given regular languaigean intercode of indek, basically using closure
properties of regular languages. On the other hand, if aexiigl not specified, the decision problem
becomes more involved. In this section we design a polynletinig algorithm for this problem.

Given an FAA = (Q, %, 4, s, F'), we assign a unique number for each statd iinom 1 to m, where
m is the number of states iA.

4 Y.-S. Han et al./ Intercode Regular Languages

Definition 3.1. (Han et al. [12])
Given an FAA = (@, X, 4, s, F), we define the state-pair graphy = (V, E¢), wherel; is a set of
nodes andt; is a set of labeled edges, as follows:

Vo = {(Za]) | 1,] € Q} and
Eq =A{((i,4),a, (x,y)) | (i,a,2),(j,a,y) € é anda € X}.

The crucial property of state-pair graphs is that if thera $ringw spelled out by two distinct paths
in A, for example, one path is fromto = and the other path is froto y, then, there is a path from
(i,7) to (x,y) in G 4 that also spells out the same strilmgNote that state-pair graphs do not require the
given FAs to be deterministic.

Definition 3.2. (Jirgensen et al. [15])
A languageL is an intercode of indek (or ak-intercode) if L1 N £+ LFY+ = (. Generally,L is an
intercode ifL is an intercode of indek, for somek.

First we consider the problem to determine whether or notengiegular languagg is ak-intercode,
for givenk > 1. We assume thalk is bifix-freet. Otherwise, we know immediately thétis not an
intercode. We can check bifix-freeness of regular languefjiesently [12]. Note that an FA4 must be
non-exiting and non-returning fat(A) to be bifix-free and, thus, there is one start state and ordy on
final state. Furthermore\ is notinL(A). If we want to construct an FA? for the languagéd.(A)L(A),
we can merge the final state of the first copy4ofind the start state of the second copylofThe FA A?
has2|Q| — 1 states an@|§| transitions; namely,A2| < 2| A|. We can repeat this procedure to construct
an FA for the catenation of severdb. We useA* to denote the FA for the catenation lotopies ofA
andA; to denote théth componentd in AF for1<i<k.

We now design an algorithm based on state-pair graphs thexingiees whether or not the language
of a given FAA = (Q, X, 4, s, f) is ak-intercode, for a giverk. We, first, catenaté+1 As as shown
in Fig. 1 and, thus, we havie+1 copies of states id. We use(i, j) to denote the statein A;. For
example,(m, 1) in Fig. 1 is the final state afi; in A**!, wherem = |Q]; in fact, (m, 1) and(1,2) are
the same state.

S OO WD P G R
D) (m k) (k1)

Figure 1. An example of an FA for the catenationgeafl As.

Lemma 3.1. Given an FAA = (Q,%,4,s, f), L(A) is ak-intercode if and only if there is no path
from ((¢,1),(1,1)) to ((4,9), (m,k)) such thatl < i < m and(j,g) # (m,k+1) in the state-pair
graphG 4i41 for AFFL,

A language isifix-freeif it is prefix-free and suffix-free.

Y.-S. Han et al./ Intercode Regular Languages 5

Proof:

Given stringsu andv, we say that is astrict infix of v if « is an infix of v but not a prefix or a suffix
of v. By the definition,L(A) is ak-intercode if and only if there is no stringe L(A*) such that is a
strict infix of a stringv € L(A*+1),

— Assume that there is a path fraifi, 1), (1, 1)) to ((4, 9), (m, k)) in G 4x+1 that spells out a string.
Thus, there exist two distinct paths, one of which is frGin) to (4, g) and the other is fronfl, 1) to
(m, k) and both spell outv in A*+1. Note thatw € L(A¥). SinceA**! has only useful states, there
should be a transition sequence frdin1) to (i, 1) that spells out a string that is notA since A is
non-returning, and a transition sequence frgjyy) to (m, k+1) that spells out a string, which is
not A since(j,g) # (m,k+1). This implies that4*+! acceptsrwy, andz andy are notA. Then,
L(AMY) NS+ L(AF)S #) — a contradiction.

«— Assume thatl(A) is not ak-intercode. Then, there are two stringss L(A*) andv € L(A*+1)
such thatu is a strict infix ofv; namelyv = zuy, wherex andy are notA. Note thatu = uqus - - - ug
and eachyy,, for 1 < h < k, is spelled out by4;, in A¥*1 and, thus, there is a path frofh, 1) to (m, k)
that spells out: in A**1. SinceA**! accepts = zuy, we reach some statgafter reading the prefix
of v. Note thaty cannot bg1, 1) sinceA is non-returning.

(1,1) (i,2) (m,k) (m,k+1)

wn Q=01). O D
@% OZL®) WD P D W R

(m,k) (m,k+1)

Figure 2. Ifgis notin Ay, then we can choose anoth€rsuch that’ = z’uy’ hasu as a strict infix. Therefore,
we can always guarantee that there exists a gtateh thay = (i, 1) for 1 < i < m.

It might be possible tha is not in A; but, say, inA; namely,q = (i,h). However, ifg is in
A, # Az, then we can choose anothérthat is spelled out by a path frofi, /) to (¢,) in A such
thatv’ = 2’uy’ as illustrated in Fig. 2.

Now we know thay = (i, 1) and we show that # m. If i = m, then this implies thaL.(A) is not
prefix-free and, therefore, not an intercode since we nesgéat outu from A, and, eventually, there
are two strings accepted by, and one of them is a prefix of the other as illustrated in Fig. 3.

(1,1) (4,1) (m,k) (m,k+1)
w @ O). 0 O

Figure 3. A case wheh= m. Then, later we must reach a state, which is not a final stamwsading each
up, of u from ¢ and it follows thatLL(A) is not prefix-free. This contradicts our assumption thatl) bifix-free.
Therefore; < m.

Sinceu € L(A*) andv € L(A¥!), there should be two distinct sequences of transitions, one
of which is from(1,1) to (m, k) and the other is fronfi, 1) from (j, g), and both spell out the same

6 Y.-S. Han et al./ Intercode Regular Languages

string u. Now we prove that we are not &in, k+1) after readingu from (i,1). Sincey # A and
A*+1 s non-exiting, we must arrive at some statesuch thaty’ # (m, k+1). It follows that there is a
path from((7,1), (1,1)) to ((4,9), (m,k)) in G 4x+1 such thatl < i < mand(j,g) # (m,k+1) —a
contradiction. 0

Based on Lemma 3.1, we design an algorithm for checking:{imercode property as follows:

k-intercode (A4, k)
/* Ais an input FA and is a fixed index. */

Construct4d*+1 by catenating:+1 As
constructG yr41 = (Vg, Eg) from A+
for each nod€(i, 1), (1,1)) in Vi, wherel < i <m
DFS(((Zv 1)7 (17 1))) in C;A]“‘H
if we meet a nodé(j, g), (m, k)) forany(j,g) # (m, k+1)

then output L(A) is not a k-intercode

outputL(A) is a k-intercode

Figure 4. Ak-intercode checking algorithm for a given FA.

A sub-function DFS((7, j), (¢/,7"))) in Fig. 4 is a depth-first search (DFS) that starts at a node
((i,7),(#',7")) in G 4r+1. Although DFS((4,j), (', '))) is executed several times inside tloe loop
in the algorithm, each node 1@ 4+ is visited at most twice and thus, the total time complexitgxo
ploring G 4 is linear in the size of7 4. For details on DFS, we refer the reader to Cormen et al. [4EeS
| AR = (k4+1) - O(|Q| + |6]), the construction of = (Vg, E¢) from A+ takesk? - O(|Q|? + |6]?)
time in the worst-case. Therefore, the total running timthefalgorithm in Fig. 4 i&2 - O(|Q|? + |§|?)
and we obtain the following result.

Lemma 3.2. Given an FAA = (Q, %, 4, s, f) and an indexX, we can determine whether or nbtA) is
ak-intercode ink? - O(|Q|? + |6]?) worst-case time.

If a regular language is given by a regular expresdihrihen we can use the Thompson construc-
tion [22] that gives &?2 - O(| E|?) runtime algorithm since the number of states and the nunftieargsi-
tions of the Thompson automata are of the o@éE|). Note that if a given languagg is context-free,
then it is undecidable whether or nbtis an intercode [16].

Next we continue with the question of deciding whether a mjikegular language is an intercode
when the index is not specified.

Y.-S. Han et al./ Intercode Regular Languages 7

Lemma 3.3. Given an FAA = (Q,%,0,s, f), L(A) is not an intercode for any index if there is a
stringw that is spelled out by a path frofa, 1) to (i, p) in A*+1 and a path fron{1,1) to (m, k) in A*
for somek, wherei # 1,1 mandl <p <k + 1.

Proof:

If a languagel is an intercode of indek, thenL is an intercode of index+1 [21]. Because ofu,
L(A) is not ak-intercode and, thud,(A) is not an intercode for any index less thlanWe now show
that L(A) is not a2k-intercode.

Sincew is spelled out by a path froifi, 1) to (i, p) in A*+1, there is a path fronfi, 1) to (4, 2p—1)
for ww in A?**1, Sinceww is also accepted byl?*, it follows that L(A) is not a2k-intercode. Using
this argument inductively, it follows thdt(A) is not an intercode of any, arbitrarily large, index. O

Lemma 3.3 suggests that if we can find a strin@s in the lemma, then we can show tigtd) is
not an intercode.

Lemma 3.4. Given an FAA = (Q, %, 9, s,), L(A) is not an intercode for any indexif L(A) is not a
(|Q|+1)-intercode.

Proof:
First, we show that if.(A) is not an intercode of inde)Q|+1, then there ig > 0 such thatZ(A) is not
an intercode of inde}Q|+1+-c.

Lett = |Q|+1. SinceL(A) is not at-intercode, there are two stringsc L(A?) andv € L(A!1)
such that is a strict infix ofv; namely,v = zuy, andx andy are not\.

p
A Es) o) LX)

Al GSSGO ----- ..
Ut—1

U = ux

Figure 5. Anillustration of two strings andv, whereu is a strict infix ofv.

Once we read: in A*t!, we reach a statg, which is not the start state sinegis non-returning. We
now start reading frompin A,., » > 1, of A" as shown in Fig. 5. Note that= w;uous - - - us, where
u; is spelled out by4; in A? for 1 <4 < t. Further, note that; # \, 1 <1 < t, sinceL(A) is bifix-free.
When we have completed reading eaghl < i < t, we keep a record of the states 4f+! that we
reach at that point. Since we hawe- |Q|+1 such states, two of them must be the same gtafed as
shown in Fig. 6. Let: be the “distance” between the tws in A*T! in terms of the different components
A, that is, if the first occurrence gfis a state of4,., the second is a state df., ,. Letb be the number
of infixes u; that the path between this spells out, fol < i < ¢t. Note thate > 0 andb > 0. We use
u” = w;u;yq - - - ;1 to denote the string spelled out by the path between thej$wo

8 Y.-S. Han et al./ Intercode Regular Languages

iuiui+1ui+2uz’+3

| | | | |
U; Ui4+1 Ui+2 Ui+3

Figure 6. An example of a case when stappears twice while readingin A**! from z shown in Fig. 5. In
this caseq = 6 andb = 4.

Since the statg appears twice, we can define new strings= uqus - - - u”v” - - -y andv’ = zu'y,
whereu’ € L(A?) andv’ € L(A*1+2). Note thatu’ is a strict infix ofv’. This implies that

L(At+1+a) N EJrL(Ater)EJr £ 0. (1)

Based on (1), we show théf A) is not an intercode of indetc, for somec > 0.

1. a=0:If a =0, thenu” is spelled out by revisiting the same statie A;. From (1), we have

L(At—f—l) N E+L(At+b)2+ + 0
= LA A STLAT)ST £ 0, (b > 0).

Therefore,L(A) is not an intercode of indek+b and recall thab > 0. Thus, L(A) is not an
intercode of index+c when we choose = b.

2. a,b > 0: There are two cases to consider separately.

(@ a <b:If LA NSHL(ATY)ST £ (), then, L(AHHY) NS+ L(AY?) S+ must be not
empty since: < b. We can chooseto beb, and nowL(A) is not an intercode of indextc.
(b) a > b: Because of (1), we have two stringsandv’ as shown in Fig. 7.
Now we removev] andv; ,, fromv’ = vjvy--- vy, ,, wherev] is an infix of v’ that is
spelled out byA; of AT+ for1 <i < t+ 1+ a. Letv” be the resulting string. Then!
becomes a strict infix of’ as illustrated in Fig. 8.
We now have
L(Ater) N E+L(At+a71)2+ 7& (Z)
= L(At+1+(b71)) N0 E‘FL(A?H’(CL*I))E‘F 7& (Z)

Sincea—1 > b—1, this case is analogous to the previous case wherb. Therefore,L(A)
is not an intercode of indext-(a—1). Note that(a—1) > 1 and, thus, we can take—1) as
the valuec. Then,L(A) is not an intercode of indext-c.

To summarize, we have shown thatlifA) is not an intercode of inde ¢t > |Q| + 1, thenL(A) is
not an intercode of index+c, for somec > 0. Consequently, i.(A) is not an intercode of inde))|+1,
thenZ(A) is not an intercode of any index. 0

Y.-S. Han et al./ Intercode Regular Languages 9

Z—'_ | u/ | E—i_ b
— ! ! ! ! = At

| |
[I I I I I I I | | At+1+a

Figure 7. An example for the proof: Two stringsandv’ suchu’ € L(A!*?),v' € L(A*1*+4) andv’ is a strict
infix of v/, anda > b. A gray part is spelled out by ™.

| | | | | | AT

| | [[[[[| At—{—CL—l
>+ v >+

Figure 8. An example for the proof: After we removgandv; , , , from«’, v becomes a strict infix of’.

Based on Lemmas 3.2 and 3.4, we obtain the following result.

Theorem 3.1. Given an FAA = (Q, %, 9, s, f), we can determine whether or nbtA) is an intercode
of indexk, for somek, in O(|Q|* + |Q|?|§|?) worst-case time.

Proof:

Using the algorithm in Fig. 4, we can check whether orh@tl) is a(|Q|+1)-intercode. The runtime is
O(|Q|* + 1Q]?|6]?) from Lemma 3.2. IfL(A) is not a(|Q|+1)-intercode, therd.(A) is not an intercode
at all by Lemma 3.4. O

Note that Theorem 3.1 gives a polynomial-time algorithm eégide the general intercode property,
and the input automataa can be nondeterministic. The previously known decidabititsult [16] does
not yield a polynomial-time algorithm when the input autéomais nondeterministic. Moreover, as
an extension of Theorem 3.1, we can compute the smallesk ihdeich thatL(A) is a k-intercode.
Assume thatL(A) is a (|Q|+1)-intercode for an FAA = (Q,X%,d,s, f) from Theorem 3.1. Since
intercodes form a proper hierarchy with respect to theiex{d 5], we can repeat the checking procedure
for indices|Q|, |Q|—1, ..., until we find the smallest index. However, instead of goiogd linearly, we
can search the smallest index using a binary technique las/flWe jump to the indelQ|/2. If L(A)
is a(|@|/2)-intercode, then we jump to indeg)|/4. Otherwise, we jump back to inde&XQ|/4. Based
on this technique, we establish the following result.

Theorem 3.2. Given an FAA = (Q,%, 4, s, f), in O(log|Q| - (|Q]* + |Q[?|5|?)) worst-case time, we
can determine whether or né{ A) is an intercode for some indéx> 0, and if the answer is positive
we can find the smallest indéxsuch thatZ.(A) is ani-intercode but not afi —1)-intercode.

10 Y.-S. Han et al./ Intercode Regular Languages

4. Prime intercode regular languages and decomposition

Decomposition can be viewed as the reverse operation fenation. Letl, I; and L; be languages.
If L has a decompositioh = L, - Ly, we call L, and L, factorsof L. Note that every languagk has
trivial decompositions. = {A\} - L = L - {\}. We call{\} atrivial language. We define a language
to beprimeif L # Lq - Lo, for any non-trivial languages, and Ls. A prime decompositioof L is a
decomposition, = Ly Ls - - - Ly, whereLq, Lo, - - - , L;, are prime languages ahd> 1.

Mateescu et al. [18, 19] showed that the primality of regldaguages is decidable and the prime
decomposition of a regular language is not unique even fite fimnguages. Czyzowicz et al. [5] consid-
ered prefix-free regular languages and showed that the gmiefix-free decomposition for a prefix-free
regular languagé is always unique and the unique prime decompositiorLfoan be computed i@ (m)
worst-case time, whene is the size of the minimal DFA fof.. Recently, Han et al. [12] investigated the
prime infix-free decomposition of infix-free regular langea and demonstrated that the prime infix-free
decomposition is not unique. On the other hand, it turnstwattthe prime outfix-free decomposition of
outfix-free regular languages is unique [14].

4.1. Prime intercode regular languages

In this section we examine prime intercode regular langsiage decompositions of intercode regular
languages.

Definition 4.1. We define a regular languadeto be aprime intercoddanguage ifL # L, - Lo, for any
non-trivial intercode regular languagés and L.

We define structural properties of DFAs that are useful infigghrime decompositions of intercodes.
Recall that since an intercode is necessarily bifix-freecare without loss of generality, assume that a
DFA accepting an intercode is non-exiting and has only orad §itate.

Definition 4.2. Let A be a DFA such that.(A) is an intercode. We define a statef A to be abridge
stateif the following conditions hold:

1. The staté is neither a start nor the final state.

N

For any stringv € L(A), its path inA must pass throughat least once.

w

The staté does not belong to any cycle df.

If we construct DFAsA; and A, as described in Definition 4.3, the languadgsl;) and L(A,)
are intercodes.

»

We say that a statieof a DFA A is acandidate bridge stat it satisfies conditions 1., 2. and 3. of
Definition 4.2.

Definition 4.3. Given an intercode DFA = (Q, X, 0, s, f) with a candidate bridge stabes @, we can
partition A into two subautomatal; and A,, that share only the stateas follows:

L4 Al = (Q17E751737b)1

Q1 is the set of states that appear on some path fréorb in A including boths andb.

Y.-S. Han et al./ Intercode Regular Languages 11

41 is the set of transitions that appear on some path freab in A.

o Ay =(Q2,%,09,b, f),
Q)7 is the set of states that appear on some path trtan/ in A including bothb and f.
&9 is the set of transitions that appear on some path froof in A.

Note that if A does not satisfy the third condition in Definition 4.2, thenfl; and A, as constructed
in Definition 4.3,L(A;) andL(A3) may not be intercodes since FAs for intercode regular lagegianust
be non-returning and non-exiting. Thus, condition 3. of BiEbn 4.2 follows from condition 4. We
include condition 3. in the definition for clarity.

The following result is crucial for finding efficiently primgeecompositions of intercode regular lan-
guages.

Theorem 4.1. An intercode regular language is prime if and only if the minimal DFAA for L does
not have any bridge states.

Proof:

Let s denote the start state arfddenote the final state id. Note that since an intercode is always
bifix-free, the minimal DFA forL has only one final state.

= Assume thatd has a bridge statg¢ Then, we can construct frosh two automatad; and As as in
Definition 4.3 such that is the start state anglis the final state ofi; andgq is the start state anflis the
final state ofA,. Then,L = L(A;) - L(A2), whereL(A;) andL(As) are intercodes — a contradiction.
<— Assume that_ is not prime. Then[can be represented &s - Ly, whereL, and L, are intercodes;
namely,L. = L, - L. Czyzowicz et al. [5] showed that given prefix-free langusadeB andC' such that
A= B-C, Aisregular if and only ifB andC are regular. Thus, iL. is regular, therl.; and L, must be
regular since all intercodes are prefix-free. Ugtand A, be minimal DFAs forl; and Lo, respectively.
Since A; and A, are non-returning and non-exiting, there is only one statesand one final state for
Aj and A;. We catenated; and A; by merging the final state of; and the start state of, as a single
stateg. Then, itis easy to verify that the catenated automatoreistimimal DFA forL(A;)-L(As) = L
and it has a bridge state— a contradiction. O

4.2. Prime decomposition of intercode regular languages

Here we develop an algorithm to find the prime decompositibanointercode regular language. The
prime decomposition of an intercode regular languagepresentd. as a catenation of prime intercode
regular languages, and the rough idea is as follows.i$f prime, thenL itself is a prime decomposition.
Thus, givenL, we first check whether or ndt is prime and decomposk if it is not prime. If L is not
prime, by Theorem 4.1, we can decompdsiato L(A;) andL(A5) at some bridge state. If both(A;)
andL(A,) are prime, a prime decomposition bfis L(A;) - L(As). Otherwise, we repeat the preceding
procedure for a non-prime language.

Let B denote the set of bridge states for a given minimal DEAThe number of states iR is at
mostm, wherem is the number of states iA. Note that once we partitiod atb € B into A; and
A, then only states iB \ {b} can be bridge states of; and A,. Therefore, we can determine the
primality of L(A) by checking whethed has bridge states and can compute a prime decomposition of

12 Y.-S. Han et al./ Intercode Regular Languages

L(A) using these bridge states. Since there are at madstidge states in an intercode FA we can
compute a prime decomposition bf A) after a finite number of decompositions at bridge states.

Recall that if a statg in A satisfies the first three conditions of Definition 4.2, we gadl candi-
date bridge state. We can compute the set of candidate bstdggs from a given minimal DFA =
(Q,%,0,s, f) for an intercode regular languadg A) in linear time using the DFS [12].

Once we compute a sétof candidate bridge states fromy we check for each state € C whether
or not two subautomatd, and A, that are partitioned &t are intercodes using the algorithm in Fig. 4. If
both A; and A, are intercodes, thehis not prime and we decompogento L(A;)- L(A2) and continue
to check and decompose each of the “subautomaiadnd A,, respectively, using the remaining states

The correctness of the recursive procedure relies on thantf only if” condition given by Theo-
rem 4.1 that in turn relies on the minimality of the DFA's inegtion. Hence we still need to verify the
following technical property.

Lemma4.l. Let A = (Q, %, 4, s, f) be a DFA with a candidate bridge stdtec). Let A; and A be
the subautomata of that share the stateand are constructed as in Definition 4.3 Alfs minimal, then
both A; and A5 are minimal DFAs.

Proof:

Assume thatd is minimal. We use ford; and A5 the notations as in Definition 4.3. Since all states
of A; are clearly reachable from the start state, it is sufficierghtow that no two states iA; can be
equivalent, fori = 1, 2.

First consider distinct stateg and g, of As. Since A is minimal there existav € ¥* that dis-
tinguishes between the staigsandg.. Without loss of generality, we assume thé;,w) = f and
5(q2,w) # f since the other possibility is symmetric. Above it is pobsithatd(ge, w) is undefined.
Sinceb is a candidate bridge state df A; cannot have any out-transitions framThis means that the
computations along starting fromg; andg, respectively, are the same.y asinA. Henceg; andg,
are not equivalent ims.

Second consider distinct statesandp, of A;. Again, sinceA is minimal there exista € ¥* such
that

d(p1,u) = fandd(pz,u) # f 2)

(or vice versa). By condition 2. of Definition 4.2, some prefixof u takesp; to the staté. Now (2)
implies thatd(pa, u1) # b. We note thav, (p1,u1) = d(p1,u1) = b. If the computation ofd starting
from p, on inputu; does not pass through the stateve haved; (p2, u1) = d(p2,u1), and otherwise
91(p2,u1) is undefined. In both cases andp, are inequivalent im; . O

Theorem 4.2. Given a minimal DFAA = (Q, X%, 4, s, f) for an intercode regular languadg A), we
can determine primality of (A4) in O(m?) worst-case time and compute a prime decompositiaby(&)
in O(m") worst-case time, where is the number of states iA.

Proof:

First, we compute the sétof candidate bridge states in linear time in the sizeddfL2]. Note that the
number of states iff is at mostmn by definition, wheren = |Q|. For each state i@, we check whether
or not L(A;) and L(A,) are intercodes i) (m?) time. Note that a state of A;, 1 < i < 2, can be

Y.-S. Han et al./ Intercode Regular Languages 13

a candidate bridge state onlydfwas a candidate bridge state of the original DBA Thus, the total
running time for determining primality o (A) is O(m) x O(m*) = O(m?®) in the worst-case.

Once we find a bridge statg, we partition A into A; and A, at b; and repeat the procedure for
L(A;) andL(As), respectively, using the remaining candidate states\i{b;}. By Lemma 4.1A, is
a minimal DFA andL(A,) is an intercode sinck; was a bridge state, = 1, 2. Thus, by Theorem 4.1,
L(A,) is prime if and only ifA4,. does not have any bridge statess 1, 2.

We continue this partitioning until the component langsages prime intercodes. Therefore, the
total time complexity for computing a prime decompositidngA) is O(m®) in the worst-case. O

The algorithm for computing a prime decomposition fgrA) in Theorem 4.2 looks similar to the
algorithm [12] for the infix-free regular language case. ldger, there is one crucial difference between
these two algorithms because of the different closure ptiggeof the two families. Many classes of
codes are closed under catenation; examples include tfie-fre®e, bifix-free, infix-free and outfix-free
codes. Based on this observation, Han et al. [12] speededeuglgorithm for the infix-free case by a
linear factor. In contrast, intercodes are not closed und&mation.

Theorem 4.3. The family of intercodes is closed under intersection butalosed under catenation,
union, complement or star.

Proof:
We consider here only the case of catenation. The other casdse proved straightforwardly.

Assume thatL is an intercode and lety be the the square df; namely, Ly = LL. If Ly is an
intercode, theri;’gle N S+ LEYT must be) for some integek > 1. However, we observe that for any
k>1,

LENSTLEST = LI LN ST L8t £ 0.

Therefore,L is not an intercode (of any index) and the class of interciglast closed under catenation.
O

In the proof of Theorem 4.2 we observed that all bridge statése component automatd;, 1 <
1 < 2, must be bridge states also in the original DBRA However, the implication does not hold in the
converse direction and sometimes a bridge state C of a minimal DFA A is no longer a bridge state
after a decomposition at some other bridge siatef A. Fig. 9 illustrates this situation.

The example of Fig. 9 hints at the possibility that the primielicode decomposition might not be
unique. Czyzowicz et al. [5] demonstrated that the primdiypfeee decomposition for a prefix-free
regular language is unique; this can be extended for thexdude and bifix-free cases. Since intercodes
are a subfamily of bifix-free languages, it is natural to stigate the uniqueness of prime intercode
decompositions.

Example 4.1. The following example shows that the prime intercode deamsitipn need not be unique.

Ll(a(bcb + C)) . Lg(a).

L(a(beh + c)a) = { Lo(a) - Ls((beb + c)a).

The languagd. is an intercode but not prime and it has two different primeotiepositions, where
Ly, Ly and L3 are prime intercodes.

14 Y.-S. Han et al./ Intercode Regular Languages

Figure 9. States; andb, are bridge states fof. However, once we decompodeat b,, thenb; is no longer a
bridge state iMd; sinceb; now violates the fourth condition in Definition 4.2. Similgrif we decomposel atb,,
thenbs is not a bridge state.

In Example 4.1, L1, L, and L3 are all 1-intercodes. Howevelt] = (beb + ¢) is not an intercode
for any index by Lemma 3.3 sineécb € L(A?) is spelled out by a path froif2, 1) to (2, 3) in A3; see
Fig. 10 for an example. Therefore, the prime intercode deamition is not unique.

Figure 10. Given a minimal DFAL for L’ = (bcb + ¢), we constructd® as a catenation of thre¢s. The dotted
line represents a path frof@, 1) to (2, 3) that spells outbcb € L(A?).

5. Conclusion

There has been much research on formal languages aspecidesf. cWith this viewpoint, we have
investigated regular intercodes, their decision propgrind prime decompositions.

Given a regular languagé and a fixed index, it is not difficult to determine whether or ndt
is an intercode of indeXx. On the other hand, if no index is given, then the decisiorblgra is not
as straightforward. We have given an algorithm that deteesin polynomial time whether or not the
languageL(A) of a given NFAA is an intercode (of any index). The algorithm relies, viges{aair
graphs, on the structural properties of a given NFA. Furtioge, we have shown that in the positive
case we can compute, in polynomial time as well, the smaheésix for whichL is an intercode. If is
defined by a regular expressi@n then we can use the Thompson construction [22] that guzearihat
the size of the corresponding automaton is linear in thecfize.

We have provided an algorithm for determining the primadifyan intercode regular language and
also provided an efficient algorithm for computing a primeinode decomposition. Finally, we have
presented an example that shows the non-uniqueness of iptieneode decompositions.

Y.-S. Han et al./ Intercode Regular Languages 15

Acknowledgements

We thank the anonymous referees for useful suggestions.

References

[1] Berstel, J., Perrin, D.Theory of CodesAcademic Press, Inc., 1985.
[2] Berstel, J., Perrin, D.: Trends in the theory of codeATCSBulletin, 29, 1986, 84-95.

[3] Caron, P., Ziadi, D.: Characterization of Glushkov an&ta, Theoretical Computer Scien@331-2), 2000,
75-90.

[4] Cormen, T.H., Leiserson, C.E., Rivest, R.L.,Stein, Qmrtroduction to Algorithms, McGraw-Hill Higher
Education, 2001.

[5] Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Lingmne prime decomposition of regular prefix codes,
International Journal of Foundations of Computer Scierieg 2003, 1019-1032.

[6] Fernau, H., Reinhardt, K., Staiger, L.: Decidabilityafde propertiesProc. 4th International Conference
Developments in Language Theo(. Rozenberg, W. Thomas, Eds.) World Scientific, Singap2€0,
153-160.

[7] Giammarresi, D., Ponty, J.-L., Wood, D., Ziadi, D.: A chaterization of Thompson digraph®fiscrete
Applied Mathematigsl 34, 2004, 317-337.

[8] Glushkov, V.: The abstract theory of automaRyssian Mathematical Surveys, 1961, 1-53.

[9] Golomb, S., Gordon, B.,Welch, L.: Comma-free codése Canadian Journal of MathematicH), 1958,
202-209.

[10] Han, Y.-S., Salomaa, K., Wood, D.: Prime decomposgiofregular languagefXroceedings of DLT'06,
LNCS 4036, Springer-Verlag, 2006, 145-155.

[11] Han, Y.-S., Wang, Y., Wood, D.: Prefix-free regular-eagsion matchingProceedings of CPM'05LNCS
3537, Springer-Verlag, 2005, 298-309.

[12] Han, Y.-S., Wang, Y., Wood, D.: Infix-free regular exps®ons and languagednternational Journal of
Foundations of Computer Sciendg(2), 2006, 379-393.

[13] Han, Y.-S., Wood, D.: Overlap-free regular languag&ieceedings of COCOON'0&NCS 4112, Springer-
Verlag, 2006, 469-478.

[14] Han, Y.-S., Wood, D.: Outfix-free regular languages arithe outfix-free decompositiorRroceedings of
ICTAC'05, LNCS 3722, Springer-Verlag, 2005, 96—-109.

[15] Jurgensen, H., Konstantinidis, S.: Codes,Wrd, Language, Grammavolume 1 ofHandbook of Formal
Languageg4G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, 19975-607.

[16] Jurgensen, H., Salomaa, K., Yu, S.: Decidability @& thtercode propertyglektronische Informationsverar-
beitung und Kybernetik9(6), 1993, 375-380.

[17] Jurgensen, H., Salomaa, K., Yu, S.: Transducers aadétidability of independence in free monoids,
Theoretical Computer Scienck34, 1994, 107-117.

[18] Mateescu, A., Salomaa, A., Yu, S.: On the decomposiifdinite languages, Technical Report 222, TUCS,
1998.

16 Y.-S. Han et al./ Intercode Regular Languages

[19] Mateescu, A., Salomaa, A., Yu, S.: Factorizations ofjlaages and commutativity conditioncta Cyber-
netica,15(3), 2002, 339-351.

[20] McNaughton, R., Yamada, H.: Regular expressions aaie sfraphs for automatdEEE Transactions on
Electronic Computers, 1960, 39-47.

[21] Shyr,H., Yu, S.S.: Intercodes and some related pr@s$oochow J. Math16(1), 1990, 95-107.
[22] Thompson, K.: Regular expression search algorit@omnmunications of the ACM/], 1968, 419-422.
[23] Yu, S.S.: A characterization of intercodésternational Journal of Computer Mathemati&8, 1990, 39-45.

