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1 Introduction

In an input-driven pushdown automaton (IDPDA), the current input symbol determines whether
the automaton performs a push operation, a pop operation, or does not touch the stack. Input-
driven pushdown automata, also known under alternative names of visibly pushdown automata
and of nested word automata, have been intensively studied because of their desirable features: for
instance, the model allows determinization, and the associated family of languages retains many of
the strong closure and decidability properties of regular languages. This paper reports on various
aspects of the complexity of input-driven pushdown automata, such as their descriptional complex-
ity, the computational complexity of their membership problem and of other decision problems for
input-driven languages.

The research on IDPDAs has been associated to their complexity from the very beginning.
When Mehlhorn [25] originally introduced the model, it was studied as a subclass of deterministic
context-free languages with better space complexity. Further work on the model carried out in the
1980s [6, 12, 36] concentrated on improving the bounds on the complexity of the languages accepted
by such automata, culminating in the proof of their containment in NC1. In 2004, the model was
reintroduced by Alur and Madhusudan [2] under the name of visibly pushdown automata, and
among their most important contributions were the first results on the descriptional complexity of
the model, such as upper and lower bounds on the number of states in automata representing some
operations on languages. Also, Alur and Madhusudan [2] established the computational complexity
of several decision problems for the model.

The paper by Alur and Madhusudan [2] sparked a renewed interest in IDPDAs, and inspired the
research on various aspects of the model [1, 8, 10, 19, 39]. Alur and Madhusudan [3] also introduced
an equivalent outlook on IDPDAs as automata operating on nested words, which provide a natural
model for applications such as XML document processing, where data has a dual linear-hierarchical
structure. Nested word automata have been studied in a number of recent papers [9, 11, 17, 35, 37].
Another equivalent outlook on IDPDAs is represented by pushdown forest automata [14], that are,
roughly speaking, tree walking automata that traverse the tree in depth-first left-to-right order and
are equipped with a synchronized pushdown.
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Although the name “visibly pushdown automaton” has been more common in recent literature,
this paper sticks to the original name of input-driven pushdown automata, which the authors feel to
be more descriptive for this machine model. When referring to the work on nested word automata,
all terminology is translated to IDPDAs without separate mention, that is, we talk about states and
stack symbols of an IDPDA, instead of linear and hierarchical states of a nested word automaton.

This survey begins with the definitions of deterministic and nondeterministic input-driven au-
tomata (DIDPDA, NIDPDA), which are given in Section 2. The complexity tradeoff between
DIDPDAs and NIDPDAs, explained in Section 3, consists of the following two results. First, there
is the fundamental determinization construction due to von Braunmühl and Verbeek [6], which
relies on the fact that all nondeterministic computation paths of an NIDPDA must use exactly the
same sequence of push, pop and neutral operations, and thus allows simulating an n-state NIDPDA
by a deterministic machine with 2n

2
states. Second, there is a matching 2Ω(n2)-state lower bound

on this blow-up given by Alur and Madhusudan [3]. Section 3 also reports on the succinctness of
some intermediate models between DIDPDAs and NIDPDAs, such as the unambiguous IDPDAs.

Descriptional complexity of operations on input-driven automata is presented in the next Sec-
tion 4. Efficient representations of concatenation, Kleene star and reversal of input-driven automata
are all based on a common fundamental construction, which allows a deterministic IDPDA to calcu-
late the behaviour of another deterministic IDPDA on the last well-nested substring, as a function
mapping states to states [27, 32]. Using this construction, Kleene star of an n-state DIDPDA is
recognized by another DIDPDA with nΘ(n) states, etc.; matching lower bounds are also known [35].

Computational complexity of input-driven languages, which, back in 1980s, was the original
motivation for investigating this family, is described in Section 5. Mehlhorn [25] was the first to
show that input-driven languages can be recognized by a polynomial-time algorithm using space

O
( log2 n

log logn

)
, as compared to space O(log2 n) for the whole class of deterministic context-free lan-

guages [5]. This bound was improved to O(log n) space by von Braunmühl and Verbeek [6]. Later,
a simpler algorithm with the same complexity was given by Rytter [36]; that algorithm is presented
in this survey.

Another complexity aspect is the hardness of testing various decision problems for input-driven
automata, which is presented in Section 6. Alur and Madhusudan [3] showed that the inclusion
and equivalence problems for are EXPTIME-complete for nondeterministic IDPDA, while for de-
terministic IDPDA, they are decidable in polynomial time. The emptiness problem is in P for
nondeterministic IDPDA, and Lange [19] showed it to be P-hard already for deterministic IDPDA.

2 Definitions

In the following, Σ denotes a finite alphabet and Σ∗ is the set of strings over Σ, ε is the empty
string and the length of a string w ∈ Σ∗ is |w|. The set of natural numbers is N and for n ∈ N,
[0, n] = {0, 1, . . . , n}. For any sets S and T , the set of partial functions from S to T is denoted by
TS . The cardinality of a finite set S is |S|.

In a transition of an input-driven pushdown automaton, the type of the current input symbol
determines whether the automaton pushes onto the stack, pops from the stack, or does not touch
the stack. The input alphabet of an input-driven pushdown alphabet is split into three parts as
Σ = Σ+1 ∪ Σ−1 ∪ Σ0, where the components Σ+1, Σ−1 and Σ0 are finite disjoint sets. Elements of
Σ+1 Σ−1 and Σ0 are referred to as left brackets, right brackets and neutral symbols, respectively. A
string over Σ is well-matched, if every left bracket has a matching right bracket and vice versa.
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2.1 Deterministic input-driven automata

Definition 1. A deterministic input-driven pushdown automaton (DIDPDA) is a 7-tuple A =
(Σ, Q,Γ, q0,⊥, [δa]a∈Σ, F ), where

• Σ = Σ+1 ∪ Σ−1 ∪ Σ0 is an input alphabet split into three disjoint classes;

• Q is a finite set of (internal) states of the automaton, with an initial state q0 ∈ Q and with
a subset of accepting states F ⊆ Q;

• Γ is a finite pushdown alphabet, and a special symbol ⊥ /∈ Γ denotes an empty stack;

• the transition function by each left bracket symbol < ∈ Σ+1 is a partial function δ< : Q →
Q × Γ, which, for a given current state, provides the next state and the symbol to be pushed
onto the stack;

• for every right bracket symbol > ∈ Σ−1, a partial function δ> : Q × (Γ ∪ {⊥}) → Q specifies
the next state, assuming that the given stack symbol is popped from the stack or the stack is
empty;

• for a neutral symbol c ∈ Σ0, the state change is described by a partial function δc : Q→ Q.

A configuration of A is a triple (q, w, x), where q ∈ Q is the state, w ∈ Σ∗ is the remaining
input and x ∈ Γ∗ is the stack contents. The initial configuration on an input string w0 ∈ Σ∗ is
(q0, w0, ε). For each configuration with at least one remaining input symbol, the next configuration
is uniquely determined by a single step transition function defined as follows:

• for each left bracket < ∈ Σ+1, let (q,<w, x) `A (q′, w, γx), where δ<(q) = (q′, γ);

• for every right bracket > ∈ Σ−1, let (q,>w, γx) `A (δ>(q, γ), w, x), and in case the stack is
empty at this point, let (q,>w, ε) `A (δ>(q,⊥), w, ε);

• for a neutral symbol c ∈ Σ0, define (q, cw, x) `A (δc(q), w, x).

Once the input string is exhausted, the last configuration (q, ε, u) is accepting if q ∈ F , regardless of
the stack contents. The language L(A) recognized by the automaton is the set of all strings w ∈ Σ∗,
on which the computation from (q0, w, ε) is accepting.

A DIDPDA can accept strings with unmatched left brackets, resulting the stack being non-
empty at the end of the computation. Unmatched right brackets are handled by special transitions
with the empty-stack marker ⊥ used as the second argument in place of a stack symbol.

Note that the next computation step depends on the top-of-stack symbol only when the input
symbol is a right bracket and the stack is popped. In other words, when reading a left bracket
or a neutral symbol, the computation step does not depend on the stack contents. Naturally, the
machine could be made to remember the top stack symbol in the state, however, this would change
the descriptional complexity results associated with the model.

If the alphabet contains only neutral symbols, that is, if Σ+1 = Σ−1 = ∅, then a DIDPDA
becomes a deterministic finite automaton (DFA).
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Example 1. Consider the alphabet Σ = Σ+1 ∪ Σ−1 ∪ Σ0, with Σ+1 = {a}, Σ−1 = {b, c} and
Σ0 = ∅. Then the language L = { anbn | n > 2 } ∪ { ancn | n > 2 } is recognized by a DIDPDA
A = (Σ, Q,Γ, q0,⊥, [δs]s∈Σ, F ), with the set of states Q = {q0, q1, qb, qc, qacc} and the pushdown
alphabet Γ = {γ0, γ1}. In the initial state q0, the automaton reads the first a and pushes γ0:
δa(q0) = (q1, γ0). All subsequent symbols a are read in the state q1, where the stack symbol pushed
is γ1: δa(q1) = (q1, γ1). Once the automaton reads the first b or c, it enters a state, in which it will
only read symbols of the same type: δb(q1, γ1) = qb, δc(q1, γ1) = qc. Each remaining symbols b or c
is matched to the corresponding a by popping a stack symbol: δb(qb, γ1) = qb, δc(qc, γ1) = qc. Once
the last matching b or c is read, the automaton knows that by the symbol γ0, and accordingly enters
the unique accepting state: δb(qb, γ0) = δc(qc, γ0) = qacc.

2.2 Nondeterministic input-driven automata

In nondeterministic automata, the transition function is multi-valued, and accordingly, there may
be multiple computations on the same input. A string is considered accepted, if at least one of
these computations is accepting.

Definition 2. A nondeterministic input-driven pushdown automaton (NIDPDA) is defined as a
7-tuple B = (Σ, Q,Γ, Q0,⊥, [δa]a∈Σ, F ), in which the input alphabet Σ = Σ+1 ∪Σ−1 ∪Σ0, the set of
states Q, the pushdown alphabet Γ, the symbol ⊥ /∈ Γ for the empty stack, and the set of accepting
states F ⊆ Q are as in Definition 1, and

• there is a set of initial states Q0 ∈ Q, and a computation may begin from any of them;

• for each left bracket symbol < ∈ Σ+1, the transition function δ< : Q → 2Q×Γ provides, for a
given current state, a set of possible outcomes, which are pairs of the next state and the stack
symbol to be pushed;

• for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q× (Γ∪{⊥})→ 2Q that lists
all possible next states, if the given stack symbol is popped from the stack;

• for a neutral symbol c ∈ Σ0, there is a function δc : Q→ 2Q.

A configuration of B is again a triple (q, w, x), with q ∈ Q, w ∈ Σ∗ and x ∈ Γ∗. On an input
string w0 ∈ Σ∗, all configurations (q0, w0, ε) with q0 ∈ Q0 are initial. The transition relation is
defined as follows:

• for each left bracket < ∈ Σ+1, and for all pairs (q′, γ) in δ<(q), let (q,<w, x) `A (q′, w, γx);

• for every right bracket > ∈ Σ−1, and for all q′ ∈ δ>(q, γ), let (q,>w, γx) `A (q′, w, x), and
for the empty stack, for all q′ ∈ δ>(q,⊥), let (q,>w, ε) `A (q′, w, ε);

• for a neutral symbol c ∈ Σ0, for every q′ ∈ δc(q), let (q, cw, x) `A (q′, w, x).

The last configuration (q, ε, u) is accepting if q ∈ F . The language L(A) recognized by the automaton
is the set of all strings w ∈ Σ∗, on which at least one computation from (q0, w, ε) is accepting.

An NIDPDA B becomes a DIDPDA, if |Q0| = 1 and its transition functions δa, a ∈ Σ, give
at most one possible action for each input symbol, state and top stack symbol. If there are only
neutral symbols in the alphabet (Σ+1 = Σ−1 = ∅), then an NIDPDA is a nondeterministic finite
automaton (NFA).
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2.3 Input-driven grammars

In the literature, input-driven automata originally emerged as a general case for a series of weaker
models defined in terms of formal grammars. These grammars, which are all special cases of
context-free grammars, are defined with a terminal alphabet Σ = Σ+1 ∪ Σ−1 ∪ Σ0, and their rules
observe the well-nestedness of brackets.

The first such model were the parenthesis grammars of McNaughton [23], in which the alphabet
contains one left bracket (Σ+1 = {<}) and one right bracket (Σ−1 = {>}), and each rule must be
either of the form A→ <α>, where α ∈ (Σ0 ∪N)∗, or of the form A→ w, with w ∈ Σ∗0. A similar
model, called bracketed grammars, was defined by Ginsburg and Harrison [15]: in their model, each
bracket in Σ+1 or in Σ−1 is marked with a rule r, and then r must be of the form A → <rα>r.
Later, Berstel and Boasson [4] studied balanced grammars, in which there is a bijection between
Σ+1 and Σ−1, so that a rule A→ <α> must use a pair of corresponding brackets.

All these grammar models generate subclasses of the input-driven languages. Furthermore,
input-driven pushdown automata have have a direct representation by grammars, which are iso-
morphic to NIDPDA up to some insignificant details.

Definition 3 ([2]). An input-driven grammar is a quadruple G = (Σ, N,R, S), where

• Σ = Σ+1 ∪ Σ0 ∪ Σ−1 is the alphabet, split into three disjoint classes;

• N is the set of nonterminal symbols;

• R is the set of rules, each of the form A → <B>C, A → aC or A → ε, with A,B,C ∈ N ,
< ∈ Σ+1, > ∈ Σ−1 and a ∈ Σ;

• S ∈ N is the initial symbol.

Under this definition, input-driven grammars define only well-nested strings. Alur and Mad-
husudan [2] gave a slightly relaxed definition that also applies to ill-nested strings.

3 Succinctness tradeoffs between models

3.1 Fundamental construction I: determinization

One of the most important facts about input-driven automata is that their nondeterministic variant
can be determinized. This possibility relies on the property that all nondeterministic computations
on the same input string must use exactly the same sequence of push and pop operations. A
simulating deterministic IDPDA follows the same sequence of stack operations, and can trace
all possible computations of the nondeterministic IDPDA. Differing from the well-known subset
construction for finite automata, this simulation keeps track of a set of pairs of states of the
nondeterministic machine (rather than just a subset of the set of states), where a pair (p, q) refers
to a computation on a substring that begins in state p and ends in state q.

Theorem 1 (von Braunmühl and Verbeek [6]). An NIDPDA over an alphabet Σ = Σ+1∪Σ−1∪Σ0

with n states and with any number of stack symbols can be simulated by a DIDPDA with 2n
2

states
and |Σ+1| · 2n

2
stack symbols.

Notably, the number of stack symbols in the original NIDPDA does not affect the size of the
simulating DIDPDA, because the latter never stores those stack symbols.
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Proof. Let A = (Σ, Q,Γ, Q0,⊥, [δa]a∈Σ, F ) be an NIDPDA. Construct a DIDPDA B =
(Σ, QB,ΓB, q

0
B,⊥, [τa]a∈Σ, FB), with the set of states QB = 2Q×Q, and with the stack alphabet

ΓB = Σ+1 × 2Q×Q, as follows. Every state P ⊆ Q × Q of B contains pairs of states of A, each
corresponding to the following situation: whenever (p, q) ∈ P , both p and q are states in one of the
computations of A, where p was reached just after reading the most recent left bracket, whereas q
is the current state of that computation.

The initial state of B, defined as q0
B = {(q, q) | q ∈ Q0}, represents the behaviour of A on the

empty string, which begins its computation in an initial state, and remains in the same state. The
set of accepting states reflects all computations of A ending in an accepting state:

FB = {P ⊆ Q×Q | there is a pair (p, q) ∈ P with q ∈ F}.

The transition functions τa, with a ∈ Σ, are defined as follows.

• On a left bracket < ∈ Σ+1, the transition in a state P ∈ QB is τ<(P ) = (P ′, (<,P )), where

P ′ = {(q′, q′) | (∃(p, q) ∈ P )(∃γ ∈ Γ) : (q′, γ) ∈ δ<(q)}.

Thus, B pushes the current context of the simulation onto the stack, along with the current
left bracket, and starts the simulation afresh at the next level of brackets, where it will trace
the computations from all states q′ reachable by A at this point.

• For a neutral symbol c ∈ Σ0 and a state P ∈ QB, the transition τc(P ) = {(p, q′) | ∃(p, q) ∈
P : q′ ∈ δc(q)} directly simulates one step of A in all currently traced computations.

• For a right bracket > ∈ Σ−1 and a state P ′ ⊆ QB, the automaton pops a stack symbol
(<,P ) ∈ ΓB containing a matching left bracket and the context of the previous simulation.
Then, each computation in P is continued by simulating the transition by the left bracket,
the behaviour inside the brackets stored in P ′, and the transition by the right bracket.

τ>(P ′, (<,P )) = {(p, q′′) | (∃(p, q) ∈ P )(∃(p′, q′) ∈ P ′)(∃γ ∈ Γ) : (p′, γ) ∈ δ<(q), q′′ ∈ δ>(q′, γ)}.

• For an unmatched right bracket > ∈ Σ−1, the transition in a state P ∈ QB advances all
currently simulated computations of A in the same way as for a neutral symbol: τ>(P,⊥) =
{(p, q′) | ∃(p, q) ∈ P : q′ ∈ δ>(q′,⊥)}.

The correctness of the construction can be proved by induction on the bracket structure of an input
string.

3.2 Lower bound on determinization

The following lower bound on the size blow-up of determinization is precise up to a multiplicative
constant in the exponent (as compared to the upper bound in Theorem 1).

Theorem 2 (Alur and Madhusudan [3]). Let Σ be an alphabet, with Σ+1 = {<}, Σ−1 = {>} and
Σ0 = {a,#, $}. Then, for each n > 1, there exists a language Ln over Σ, which is recognized by an
NIDPDA with 8n + 1 states and n stack symbols, while every DIDPDA for Ln needs at least 2n

2

states.
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Figure 1: Recognizing the language Ln by an NIDPDA with O(n) states.

Proof. For each n > 1, define the language Ln as

Ln =
{
<u1#v1#u2#v2# . . .#u`#v`$v>u

∣∣ ` > 1, ui, vi ∈ a∗ for all i ∈ {1, . . . , `},
u, v ∈ a∗, 0 6 |u|, |v| 6 n− 1, and there exists t ∈ {1, . . . , `} with u = ut, v = vt

}
.

An NIDPDA A with O(n) states and n stack symbols recognizes the language Ln as follows. At the
first step of the computation, upon reading the left bracket <, the automaton guesses the length of
the unary string u and pushes its length |u| onto the stack as a single symbol, as well as stores it
in its internal state. Then the automaton nondeterministically decides to skip any even number of
blocks, verifies that the next unary string is u, and then stores the following unary string v (after
the #-marker) in its internal state. After skipping until the dollar sign, the automaton verifies
that the last string inside the brackets is exactly v. Finally, upon reading the right bracket >,
the automaton pops |u| from the stack and compares the string a|u| to the remaining substring, to
verify that they are the same. The data flow in such a computation is illustrated in Figure 1.

At each moment, the automaton needs to remember one number from 1 to n and the current
stage of processing. As seen from Figure 1, there are six stages in total: holding u, comparing u to
the current block, reading v, holding v, comparing v to the last block inside brackets, and checking
u in the end. Two of them (holding u and holding v) also require counting the parity of the number
of blocks. Hence, the construction uses 8n+ 1 states.

It remains to establish the lower bound on the number of states in any DIDPDA for Ln. For
any relation R ⊆ [0, n− 1]× [0, n− 1], denote

wR = u1#v1#u2#v2# · · ·u|R|#v|R|, ui, vi ∈ a∗, 1 6 i 6 |R|,

where the pairs (|ui|, |vi|), with i = 1, . . . , |R|, list the elements of R in an arbitrary order.
Let B be any DIDPDA recognizing Ln, and let γ be the symbol pushed by B upon reading

the left bracket < in the initial state. For any relation R ⊆ [0, n − 1] × [0, n − 1], consider the
computation of B on the input <wR. As <wR is a prefix of some strings accepted by B, the
computation successfully reaches some state qR, with γ in the stack.

It is claimed that all states qR, with R ⊆ [0, n−1]× [0, n−1], are pairwise distinct. For the sake
of contradiction, assume that qR1 = qR2 for two different relations R1, R2 ⊆ [0, n − 1] × [0, n − 1].
Let (r, s) be a pair belonging to one of these relations and not to the other. As the configurations
of B after reading <wR1 and <wR2 are identical, B accepts <wR1$as>ar if and only if it accepts
<wR2$as>ar. However, one of these strings is in Ln, and the other is not in Ln. The contradiction
establishes that B must have at least 2n

2
states.

The upper bound in Theorem 1 and the lower bound in Theorem 2 are tight up to a multi-
plicative constant in the exponent. The lower bound constant (roughly, 1

64) can be improved by
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increasing the size of the alphabet, but it remains open whether the precise bound 2n
2

can be
reached by languages defined over a fixed alphabet.

The languages Ln in Theorem 2 are defined in a way that prevents a DIDPDA from making
any meaningful use of the stack: that is, Ln can, in fact, be recognized by a DFA with 2n

2
states.

Okhotin et al. [30] presented more a refined argument on the size blow-up of determinization, that
includes lower bounds on both the number of states and the number of stack symbols.

3.3 IDPDA with restricted nondeterminism

A nondeterministic input-driven pushdown automaton A is unambiguous (UIDPDA) if it has ex-
actly one accepting computation on each string w it accepts, that is, a unique sequence of configu-
rations C1, C2, . . . , Cm where C1 is the initial configuration of A on w, Ci `A Ci+1 for 1 6 i 6 m−1,
and Cm is of the form (q, ε, u) where q ∈ F , u ∈ Γ∗.

The same 2Ω(n2) lower bound as for determinization holds also for converting an NIDPDA to a
UIDPDA and for converting a UIDPDA to a deterministic machine [31]. The situation is analogous
with the known descriptional complexity results for finite automata: simulating a general n-state
NFA with an unambiguous finite automaton (UFA) requires, in the worst case, 2n − 1 states, and
the UFA to DFA trade-off is 2n [20].

Theorem 3 (Okhotin and Salomaa [31]). (a) For every n > 1, there exists a language Kn over a
fixed alphabet Σ, recognized by a UIDPDA with O(n) states and n stack symbols, such that
every DIDPDA for Kn needs at least 2n

2 − 1 states.

(b) For every n > 1, there exists a language K ′n over a fixed alphabet Σ recognized by an NIDPDA
with 5n+ 1 states and n stack symbols, such that if A is an arbitrary UIDPDA for K ′n, then

the product of the number of states and the number of stack symbols of A is at least 2b
n2

2
c.

A different restriction on NIDPDAs considered in the literature limits the total number of
nondeterministic paths in any computation. An analogous notion of limited nondeterminism was
considered for NFAs under the name of ”leaf size” [18] or ”tree width” [34].

Let A be an NIDPDA. The computation tree of A on an input w, TA,w, has its root labeled
with the initial configuration of A on w, and a node labeled with a configuration C has finitely
many children labeled with all configurations C ′, such that C `A C ′. Then A is said to be a k-path
NIDPDA, where k ∈ N, if for every string w the computation tree TA,w has at most k leaves.

A k-path NIDPDA can be converted to a DIDPDA with only a polynomial size blow-up; how-
ever, converting an NIDPDA to a k-path NIDPDA entails the same worst-case size blow-up as
determinization.

Theorem 4 (Okhotin and Salomaa [33]). A k-path NIDPDA with n states and m stack symbols
can be simulated by a DIDPDA with

∑k
i=1(n+ 1)i · ii states and

∑k
i=1m

i stack symbols.
For every n ∈ N there exists a language Ln recognized by an NIDPDA with O(n) states and n

stack symbols, such that any k-entry NIDPDA for Ln needs at least 2n
2 − 1 states.

The construction needed for the first part of Theorem 4 is considerably more involved than in
the case of finite automata [34]. When a DIDPDA B currently simulating k1 < k computations of
a k-path NIDPDA A encounters a left bracket, it pushes k1 stack symbols of A. Inside the brackets,
the simulated computations of A may involve further nondeterministic choices, and then some k2

states arriving at the matching right bracket have to be paired up with the k1 symbols popped from
the stack. The extra data needed for pairing accounts for the ii factor in the number of states.
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4 Descriptional complexity of operations

Descriptional complexity of language operations deals with questions of the type: “Given DIDPDAs
A and B, what is the worst-case size of a DIDPDA for the concatenation of L(A) and L(B)?” Such
questions are addressed by presenting constructions applicable to all automata (which imply upper
bounds on the worst-case size), and by finding such argument automata that every automaton for
the result of the operation requires a certain number of states. This section presents the known
bounds for several operations. For a few important operations (namely, for concatenation, Kleene
star and reversal), the upper bounds are based on a single construction presented below.

4.1 Fundamental construction II: calculating the behaviour

The determinization construction in Theorem 1 works by tracing all possible computations of an
NIDPDA on each level of brackets. On an input string u<v, where v is well-nested, the deter-
minization requires remembering the set of such pairs (p, q), that the original NIDPDA can begin
reading v in the state p and end in the state q. This is possible, because an input-driven automaton
finishes reading a well-nested substring with the same stack contents as in the beginning, without
ever consulting the original stack contents.

Consider calculating the same kind of data for a given deterministic IDPDA (rather than
NIDPDA). Then, for a string u<v, where v is well-nested, and for each state p, the automaton has
a single computation on v beginning with p, and hence, instead of remembering a relation on the
set of states, it is sufficient to remember a (partial) function fv : Q → Q, which maps the original
state of the automaton to its state after processing the string v. The following lemma shows how
to transform any given n-state DIDPDA A into another DIDPDA C with nn states and nn · |Σ+1|
stack symbols, which calculates the behaviour function of A on each level of brackets.

Denote the set of all partial functions from Q to Q by QQ.

Lemma 1 (Okhotin and Salomaa [32]). For every DIDPDA A with the set of states Q and the stack
alphabet Γ, there exists a DIDPDA C with the set of states QQ and the stack alphabet QQ × Σ+1,
that on an input w reaches a state f ∈ QQ that is the behaviour of A on the longest well-nested
suffix of w.

Proof. Let A = (Σ, Q,Γ, q0,⊥, [δa]a∈Σ, F ) be the given DIDPDA. The initial state of C is q′0 = id,
the identity function on Q. This is the behaviour on ε.

The transition function of C on input a ∈ Σ is denoted as δ′a. On a neutral symbol c ∈ Σ0, the
transition function calculates the composition of the behaviour on the previously read string with
the behaviour on the current symbol: δ′c(f) = δc ◦ f .

Consider how C calculates the behaviour of A on a substring enclosed in brackets. Let u be a
well-nested substring, followed by another well-nested substring <v>, as shown in Figure 2. Let
f : Q→ Q be the behaviour of A on u, let g : Q→ Q be the behaviour of A on v, and finally denote
by h : Q→ Q the behaviour of A on <v>. In Figure 2(left), f(q1) = q, g(q2) = q3 and h(q) = q′.

By the time C reaches the left bracket <, it should compute the behaviour on u and store it in
its internal state. Upon reading the left bracket <, the automaton C stores the current context of
the simulation in the stack and turns to calculating the behaviour on the inner level of brackets,
beginning with the identity function on Q. To this end, the transition in the state f : Q → Q by
the left bracket < ∈ Σ+1, is defined as δ′<(f) = (id, (f,<)).
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Figure 2: How the behaviour of an IDPDA A (left) on a well-nested string u<v> is calculated by
an IDPDA C (right).

Next, as illustrated in Figure 2, the automaton C reads the well-nested substring v and calculates
A’s behaviour on this substring, that is, the function g. When C reaches the right bracket >, it
has g in the current state and it pops the behaviour on u from the stack. Then C can calculate
the behaviour on the longer well-nested substring <v> as a function h : Q→ Q, defined as follows:
for each state q ∈ Q, let δ<(q) = (q′, γ) and set h(q) = δ>

(
g(q′), γ)

)
. Then the desired behaviour

of A on u<v> is obtained by composing the behaviour on u with the behaviour on <v>, which is
implemented by the transition δ′>(g, (f,<)) = h ◦ f .

When the automaton C reads an unmatched right bracket >, it reaches a new lowest level of
brackets, and knows this fact, because it sees a bottom marker ⊥ instead of a stack symbol. Then
it begins calculating a new behaviour from the identity function: δ′>(g,⊥) = id.

The above construction did not specify the accepting states of C. If a state f ∈ QQ is set
to be accepting when f(q0) ∈ F , then C recognizes L(A). Thus, a deterministic automaton is
transformed to another deterministic automaton, which, however, collects more data about possible
computations beginning at different positions. These data shall be used in the constructions below.

4.2 Concatenation, Kleene star and reversal

The straightforward constructions establishing closure under concatenation, star and reversal pro-
ceed by creating an NIDPDA for the resulting language and then determinizing it. For the con-
catenation of DIDPDAs with m and n states, this yields a DIDPDA with 2(m+n)2 states. However,
this construction is non-optimal, and there is a more efficient construction based on calculating the
behaviour of the DIDPDA, as in Lemma 1.

This construction is given here for the case when both automata are assumed to accept only
well-nested strings.

Lemma 2 (Okhotin and Salomaa [32]). Let A and B be DIDPDAs over an alphabet Σ that accept
only well-nested strings, let P and Q be their respective sets of states, let Γ and Ω be their stack
alphabets. Then there exists a DIDPDA C with the set of states P × (2Q ∪ QQ) and the stack
alphabet Γ× (2Q ∪QQ)× Σ+1 that recognizes the language L(A) · L(B).

Sketch of a proof. Each state of an IDPDA C recognizing the concatenation is comprised of two
components. The first component is a state of the automaton A, which C continuously simulates,
so that, after reading any prefix w, the first component of C’s state is exactly the state A reaches
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after reading w. Whenever A pushes or pops a stack symbol γ ∈ Γ, the new automaton C pushes
or pops a triple with γ in the first component. Thus, C knows all that A knows.

Since A and B accept only well nested strings, for every concatenation uv, with u ∈ L(A) and
v ∈ L(B), the splitting point between u and v is at the outer level of brackets; accordingly, C keeps
track of whether the current level of brackets is the outer level. On the outer level of brackets—
that is, after reading a well-nested prefix of the input—C uses states from P × 2Q, and inside any
brackets—or, in other words, after reading an ill-nested prefix—its states are from P ×QQ.

Whenever C is inside any brackets, it calculates the behaviour of B on the current level, exactly
as described in Lemma 1. At the same time, C maintains the ongoing simulation of A. This is done
in states of the form (p, f), where p ∈ P is the current state of A, and f : Q→ Q is the behaviour
of B on the longest well-nested string on the current level of brackets. There is no interaction
between simulating A and tracing the behaviour of B.

On the outer level of brackets, C implements the subset construction, as in the NFA to DFA
transformation. First of all, C monitors whether A accepts the prefix read so far. If A would accept
it, then, at this point, C starts the simulation of a new instance of B. This is implemented in states
of the form (p, S), where p ∈ P is the current state of A, while the set S ⊆ Q contains the states
of all currently running instances of B. When C reads a neutral symbol c ∈ Σ0, it applies B’s
transition function by c to every element of S. When C encounters a bracketed structure, it stores
the current value of S in the stack and turns to calculating the behaviour of B on the inner level
of brackets. Once the bracketed structure is read and the desired behaviour function is calculated,
C restores S from the stack and applies that behaviour function to every element of S. Once the
entire input string is read, the string belongs to the concatenation L(A) ·L(B) if and only if one of
the running instances of B accepts at this point. This is set as the acceptance condition of C.

If A and B are allowed to accept also ill-nested strings, the construction incurs the following
complications. Consider a concatenation of two ill-nested strings, u ∈ L(A) and v ∈ L(B). The
first string u may contain unmatched left brackets, and if so, then the middle point between u and
v in the concatenation uv occurs inside some brackets (in contrast to the well-nested case, where
the middle point is always at the outer level of brackets). Furthermore, the second string v may
contain unmatched right brackets, which will then match the unmatched left brackets in u.

In order to handle these possibilities, a DIDPDA recognizing the concatenation of L(A) and
L(B) should expect the middle point to occur at every position in the input. Every time it
considers a middle point inside matching brackets, these brackets are unmatched in the strings
being concatenated. Thus, the simulating automaton should track the behaviour of A and B on
unmatched brackets, while reading matching brackets. To this end, the simulating automaton uses
a different set of states than in the proof of Lemma 2, but its size is not much larger.

Together with a matching lower bound result [32, 35], this implies that, roughly speaking, the
descriptional complexity of the concatenation of two DIDPDAs of size m and n, is m · 2Θ(n·logn).
The more precise statement is given in the theorem below.

Theorem 5 (Okhotin and Salomaa [32]). Let A be a DIDPDA with m states and k stack symbols,
and let B be a DIDPDA with n states and any number of stack symbols, both defined over the same
alphabet Σ. Then the concatenation L(A) · L(B) is recognized by a DIDPDA with m4n(n + 1)n

states and |Σ+1| · k4n(n+ 1)n stack symbols.
Conversely, for all m,n > 1, there exists a pair of languages Km and Ln over a fixed alphabet Σ,

where Km is recognized by a DIDPDA with O(m) states and m stack symbols, and Ln is recognized
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by a DIDPDA with O(n) states and n stack symbols, while every DIDPDA for their concatenation
KmLn requires at least m · nn states.

The tight upper bound constructions for Kleene star and reversal are also based on Lemma 1.
For simplicity, the result is stated below just in terms of the size of an IDPDA, defined as the sum
of the number of states and of the number of stack symbols.

Theorem 6 (Okhotin and Salomaa [32], lower bounds from Piao and Salomaa [35]). If A is a
DIDPDA of size n, the Kleene star and the reversal of L(A) can be recognized by a DIDPDA of
size 2Θ(n·logn). Furthermore, for each operation, size 2Θ(n·logn) is necessary in the worst case, and
the lower bound examples can be constructed over a fixed alphabet.

4.3 Boolean operations

The input-driven languages are closed under all Boolean operations, and the constructions imple-
menting these operations are similar to those used for finite automata.

Union and intersection of input-driven automata are implemented using the direct product con-
struction. Consider the deterministic case (the same idea applies to NIDPDAs).

Lemma 3 (Alur and Madhusudan [2]). Let A and B be DIDPDAs over a common alphabet, let P
and Q be their sets of states, and let Γ and Ω be their stack alphabets. Then there exist DIDPDA
C and C ′, each defined with the set of states (P ∪ {−}) × (Q ∪ {−}) and with the stack alphabet
Γ× Ω, that recognize the languages L(A) ∪ L(B) and L(A) ∩ L(B), respectively.

Sketch of a proof. The initial states and transition functions are the same in C and in C ′. These
automata carry out two independent simulations of A and B on the given input string. Whenever
the simulated A and B encounter a left bracket and have to push a symbol each, C pushes a pair,
and then pops it at the matching right bracket. Once the string is consumed, C accepts if A or B
is in an accepting configuration, and C ′ accepts if both A and B accept.

An almost matching lower bound is known in the case of intersection.

Lemma 4 (Piao and Salomaa [35]). Let n1, n2, k1, k2 > 2 be any integers, where each ki divides
ni. Then there exists a pair of DIDPDAs A1, A2, where each Ai has ni states and ki stack symbols,
such that every DIDPDA recognizing the intersection L(A1)∩L(A2) must have at least n1n2 states
and at least k1k2 stack symbols.

Piao and Salomaa [35] also gave a lower bound on the size of a DIDPDA recognizing the union
of two languages, but it is not equally precise as the lower bound for intersection.

Turning to the complementation operation, here the situation with deterministic and nondeter-
ministic automata is different. For a DIDPDA, just like for a DFA, it is sufficient to exchange its
accepting and rejecting states to obtain an automaton recognizing the complement of the original
language. However, this does not work for an NIDPDA (just like it does not work for an NFA), and
complementing an NIDPDA involves, roughly speaking, the same size blow-up as determinization.

Theorem 7. For every language recognized by an n-state NIDPDA its complement is recognized
by an NIDPDA with 2n

2
states and O(2n

2
) stack symbols. At the same time, for every n > 1,

there exists a language recognized by an NIDPDA with O(n) states, such that for every NIDPDA
recognizing its complement, the sum of the number of states and the number of stack symbols of

this NIDPDA is at least 2
n2

2
+1.
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DFA UFA NFA DIDPDA NIDPDA

∪ mn ? m+ n+ 1 Θ(mn) [35] m+ n+O(1) [2]

∩ mn mn [28] mn Θ(mn) [35] Θ(mn) [17]

∼ n n2−o(1) 6 · 6 2n [28] 2n n 2Θ(n2) [31]

· m · 2n − 2n−1 ? m+ n m2Θ(n logn) [32] m+ n+O(1) [2]
2 n · 2n − 2n−1 ? 2n 2Θ(n logn) [32] n+O(1) [2]
∗ 3

42n (n− 1)2 6 · 6 3
42n [28] n+ 1 2Θ(n logn) [32] n+O(1) [2]

R 2n n n+ 1 2Θ(n logn) [32] n+O(1) [2]

Table 1: State complexity of union (∪), intersection (∩), complementation (∼), concatenation (·),
squaring (2), Kleene star (∗) and reversal (R) for finite automata (DFA, UFA, NFA) and for input-
driven automata (DIDPDA, NIDPDA). For finite automata and for DIDPDA, the table gives the
worst-case number of states, if m and n are the number of states in the argument automata. The
column for NIDPDA is given with respect to the complexity measure |Q|+ |Γ|. References for the
results for DFA and NFA can be found in the survey article [13].

4.4 Summary of descriptional complexity of operations

The state complexity of all basic operations on both deterministic and nondeterministic IDPDA is
now known. Table 1 summarizes the results and compares them with results for finite automata.

Investigating the complexity of operations on the family of unambiguous IDPDAs [31] is sug-
gested for future work. Since descriptional complexity questions are already difficult for unambigu-
ous finite automata (UFA), this task might be nontrivial as well.

5 Computational complexity of input-driven languages

It is well-known that every context-free language lies in the complexity class NC2, that is, can
be recognized by a uniform family of Boolean circuits of depth O(log2 n) and with poly(n) gates.
The main subclasses of the context-free languages, such as the linear languages, the deterministic
languages, etc., are important, in particular, for their lower computational complexity; these results
are summarized in a recent survey paper [29, Sect. 8.1].

The notion of an input-driven automaton emerged in the study of computationally easy context-
free languages, and was predated by efficient algorithms for more restricted language families. A
logarithmic-space algorithm for recognizing Dyck languages, due to Hotz and Messerschmidt, is
reported by Mehlhorn [24]. A stronger result that the language generated by every parenthesis
grammar can be recognized in logarithmic space was independently discovered by Lynch [22] and
by Mehlhorn [24]. Input-driven languages then emerged in a subsequent paper by Mehlhorn [25],
who defined the notion of a DIDPDA and presented an algorithm for simulating it using space

O
( (logn)2

log logn

)
. An improved algorithm using space O(log n) was presented by von Braunmühl and

Verbeek [6]. Later, Rytter [36] developed a simpler alternative algorithm for simulating input-driven
automata using space O(log n), which was based upon Mehlhorn’s [24] method for parenthesis
grammars.

Theorem 8 (von Braunmühl and Verbeek [6]). Every input-driven language is recognized by a
logarithmic-space deterministic Turing machine.
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Figure 3: How the Mehlhorn–Rytter algorithm handles a concatenation u1 . . . uk, where k > 2 and
m is the least number with |um| > |ui| for all i.

The proof given here follows Rytter [36] and presents the Mehlhorn–Rytter algorithm.

Proof. Let A = (Σ, Q,Γ, q0,⊥, [δa]a∈Σ, F ) be a deterministic input-driven automaton. For every
well-nested string, consider the behaviour of A, which is a function f : Q → Q mapping states to
states, defined in Section 4.1. Given an input string w, the algorithm calculates the behaviour of A
on selected well-nested substrings of w, beginning with its shorter substrings and ending with the
whole string. Once the behaviour f on the whole string is computed, the algorithm accepts if and
only if f(q0) ∈ F .

Consider the input string as a formula over the operations of concatenation and enclosure in
brackets. In other words, w is represented as a tree, where every node corresponds to a well-nested
substring of w as follows. The root is w. Every internal node labeled with a substring <u>, where
u is well-nested, has one son, u. If a node is labeled with a concatenation u1 . . . uk, where k > 2
and each substring ui is well-nested, then this node has k sons labeled with u1, . . . , uk. Nodes
labeled with a neutral symbol c ∈ Σ0 or with the empty string are leaves of the tree.

The Mehlhorn–Rytter algorithm makes a single traversal of the tree, keeping the following data
in its memory: the current node u (remembered as two pointers to the input string), the direction of
motion (up or down), the behaviour of the automaton on u (when going up), and a stack containing
the behaviour of A on at most log2 n previously traversed subtrees. The computation begins at the
root, in the direction down, and ends when the root is visited again, in the direction up.

Every time the algorithm reaches a node u = <v> in the direction down, it directly proceeds
further down to the node v. Eventually, once the subtree for v is traversed, the algorithm returns
up to the node v. At this time, the algorithm knows the behaviour g on v. Then it calculates the
behaviour f on <v> by the formula

h(q) = δ>
(
g(q′), γ)

)
, where (q′, γ) = δ<(q),

and goes up to the node <v>. The stack is not used at this node.
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The key idea of the algorithm is in how it handles a concatenation node u = u1 . . . uk, which is
illustrated in Figure 3. When this node is first visited on the way down, the algorithm determines
the longest substring um, with m ∈ {1, . . . , k}, and continues down to um without pushing anything
to the stack. If there are multiple longest substrings of the same length, then the first of them is
considered the longest.

When the algorithm eventually returns from the subtree of um, it will have the corresponding
behaviour function fm calculated. By examining u and um, it determines that it has just returned
from the longest substring of u, and hence has not yet visited any other substrings. Then it pushes
the behaviour function fm onto the stack and continues down to the neighbouring substring um−1.

Once the algorithm returns from um−1, having calculated the behaviour fm−1 on um−1, it again
determines that um is the longest substring, while it has just returned from the directly preceding
substring um−1. Therefore, it can pop the behaviour fm from the stack and compose it with the
behaviour fm−1. Then the algorithm pushes the resulting behaviour fm ◦ fm−1 on um−1um to the
stack and proceeds down to the next substring um−2.

The traversal of the subtrees is carried out in the following order: um, um−1, um−2, . . . , u2, u1,
and then um+1, um+2, . . . , uk−1, uk. Thus, after processing every next substring, the algorithm can
compose the behaviour on the concatenation of all previously processed substrings (popped from
the stack) with the behaviour on the last substring (just computed). After the last son is traversed
(this will be uk, unless m = k, in which case the last son is u1), the algorithm determines the
behaviour fk ◦ . . . ◦ f1 on the whole substring u1 . . . uk, and travels from this node up to its father.

On every leaf, the algorithm uses the known behaviour of A on that leaf. For a neutral symbol
c ∈ Σ0, the behaviour function is f = δc, and for the empty string, it is the identity function on Q.

The correctness of the algorithm is evident from the above explanations. To see that it uses
logarithmic space, consider that the depth of the stack on an input of length n is bounded by
log2 n, because the algorithm pushes a function to the stack only when visiting a second largest
son or a son smaller than that, and hence, whenever the stack depth is increased by 1, the size
of the subtree is at least halved. Every behaviour function requires constant space, and hence the
stack uses O(log n) bits of memory. Besides the stack, the algorithm remembers a fixed number
of pointers to the input (a few of them are needed to implement tree-walking primitives), which
together use space O(log n).

Though the Mehlhorn–Rytter algorithm settles the space complexity of input-driven languages,
there are stronger complexity upper bounds in terms of shallow circuits. This line of research has
a history of its own. Since every input-driven language is context-free, it is recognized by uniform
circuits of depth O(log2 n). For parenthesis languages, Gupta [16] improved the depth of circuits
to O(log n log log n), and then Buss [7] further improved it to O(log n), thus establishing that every
parenthesis language is in NC1. Finally, Dymond [12] applied the method of Buss [7] to implement
the Mehlhorn–Rytter algorithm [36] in NC1.

6 Complexity of decision problems

This section reports on the computational complexity of testing various properties of input-driven
automata. The simplest problem is whether a given IDPDA A accepts a given string w: the
(uniform) membership problem. The complexity of this problem depends both on the size of A and
the length of w, measured in bits.
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One way of solving the membership problem is by using the Mehlhorn–Rytter algorithm, ex-
plained in Theorem 8. However, the Mehlhorn–Rytter algorithm is efficient only with respect to
the length of the string. The dependence of both its time and its space complexity on the size of the
automaton is at least linear, because already a single behaviour function of A requires |A| log |A|
bits to store. Much lower complexity is achieved by another algorithm, which applies to a large
class of deterministic pushdown automata (DPDA), including all DIDPDAs.

Theorem 9 (von Braunmühl, Cook, Mehlhorn, Verbeek [5]). Consider DPDAs, which make at
most n push operations on an input of length n. Then the uniform membership problem for such
DPDAs is decidable in time polynomial in |A| and |w|, using space O

(
(log |w|)((log |w|+ log |A|)

)
.

At any point, the von Braunmühl–Cook–Mehlhorn–Verbeek algorithm remembers a number of
computation snapshots taken at several points of the DPDA’s computation. Each snapshot repre-
sents partial information on the configuration of the DPDA at a certain time in its computation:
that it was in a certain state observing a certain position in the input, and its stack had a certain
top symbol and a certain height. At any time, the algorithm remembers O(log n) snapshots, while
each snapshot requires O

(
log |w|+log |A|

)
bits of memory, which gives the space complexity. With

so few snapshots remembered at once, the algorithm has to recompute some of them again and
again, but nevertheless stays within polynomial time.

In order to apply Theorem 9 to a given DPDA, one has to transform it to ensure that there
are at most n push operations. However, for DIDPDAs, this condition holds by definition, which
implies the following complexity upper bound.

Corollary 1. The membership problem for DIDPDA is in SC2 = DTIMESPACE(nO(1), log2 n).

The next decision problem is the emptiness problem, that is, whether a given input-driven
automaton recognizes the empty language. For context-free grammars, this problem is P-complete.
As shown in the next theorem, it is actually P-complete already for DIDPDAs.

Theorem 10 (Lange [19]). The emptiness problem for both deterministic and nondeterministic
input-driven automata is P-complete.

Proof. It is well known that emptiness of general nondeterministic pushdown automata can be
decided in polynomial time.

The P-hardness of the emptiness problem for DIDPDAs is proved by reduction from the Mono-
tone Circuit Value Problem (MCVP). Assume Boolean circuits consisting of the gates C1, . . . , Cn,
where each gate Ci is of one of the following forms: a conjunction gate Ci = Cj ∧Ck, with j, k < i,
a disjunction gate Ci = Cj ∨ Ck, where j, k < i, or a constant gate Ci = 0 or Ci = 1. The gate
Cn is the output gate. Then MCVP is stated as “Given a Boolean circuit, determine whether the
value computed at the output gate is 1”.

The reduction function transforms a given circuit of this form to a DIDPDA over a fixed alphabet
Σ+1 = {<}, Σ−1 = {>}, Σ0 = {c}. If the circuit evaluates to 1, then the constructed DIDPDA
accepts a unique string, and if the circuit evaluates to 0, then the DIDPDA rejects all inputs.

The set of states of the DIDPDA is Q = {q1, . . . , qn, r0, r1} and its stack alphabet is Γ =
{ γi,op | i ∈ {1, . . . , n}, op ∈ {∧,∨} }. The transitions are constructed, so that, from each state
qi, the automaton may read a unique non-empty well-nested string wi. The bracket structure of
this string corresponds to the Boolean formula expressing the value of the gate Ci, though the
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string contains no values of any gates. After reading wi, the automaton enters the state r0 or r1,
depending on whether Ci evaluates to 0 or to 1.

If Ci is a constant (Ci = 0 or Ci = 1), then the corresponding string wi = c contains no brackets.
The transition function by c is defined to move from qi to r0 (if Ci = 0) or to r1 (if Ci = 1). No
other transitions are allowed in qi.

Let Ci = Cj ∧ Ck. Then the transition from qi by a left bracket < is defined to enter the state
qj and push the symbol γk,∧ onto the stack. Inside the brackets, the automaton may read only the
string wj corresponding to Cj , and finishes reading it in a state r0 or r1, depending on the value
in Cj . Next, the automaton expects a right bracket >. If the value of Cj is 0, then the value of Ci
is also 0, and there are no more computations to be done; thus, the transition by the right bracket
> from r0 by the stack symbol γk,∧ leads to the state r0, and wi = <wj>. On the other hand, if
the value computed in Cj is 1, then the value of Ci depends on the value of Ck; accordingly, the
transition in the state r1 by the right bracket > and by the stack symbol γk,∧ leads to the state qk.
In this case, the string corresponding to Ci is wi = <wj>wk.

A disjunction gate Ci = Cj ∨ Ck is handled similarly, using a stack symbol γk,∨.
Finally, let qn be the initial state of the automaton, and let r1 be its only accepting state. Then

the automaton recognizes the singleton language {wn} if the circuit evaluates to 1, and accepts no
strings otherwise, which proves the correctness of the reduction.

Consider the more general equivalence problem (whether two given automata recognize the same
language) and inclusion problem (whether the language recognized by one given automaton is a
subset of the language recognized by the other). For context-free grammars, both problems are
undecidable, whereas for DPDAs, equivalence is decidable and inclusion is not. For deterministic
IDPDAs, both problems have polynomial-time algorithms.

Theorem 11. Both the equivalence and the inclusion problems for DIDPDA are P-complete.

Proof. It is sufficient to present an algorithm for the inclusion problem. Given two DIDPDAs A
and B over a common alphabet, construct a DIDPDA C that recognizes the language L(A)\L(B).
This can be done in polynomial time using the direct product construction, as in Lemma 3. Since
L(A) ⊆ L(B) if and only if L(C) = ∅, it is left to test C for emptiness.

The P-hardness follows from Theorem 10, by fixing the second automaton to recognize the
empty language.

For nondeterministic automata, these problems become harder. Already the problem of testing
whether a given NIDPDA accepts all strings (the universality problem) is complete for exponential
time.

Theorem 12 (Alur and Madhusudan [2]). The universality, equivalence and inclusion problems
for NIDPDA are EXPTIME-complete.

Sketch of a proof. Exponential-time algorithms deciding these properties proceed by determinizing
a given NIDPDA and then applying the algorithms from Theorem 11.

The EXPTIME-hardness of the universality problem is proved by directly simulating a
polynomial-space alternating Turing machine. For every such machine M and for every input
string u, the goal is to construct an NIDPDA that accepts all its inputs if and only if u /∈ L(M).
First, define an alphabet Σ = Σ+1 ∪ Σ−1 ∪ Σ0, where Σ+1 contains sufficiently many brackets to
represent every configuration of M as a string (that is, there are different left brackets representing
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Membership Properties of a language
fixed uniform emptiness equality inclusion

DFA regular L NL NL NL
NFA regular NL NL PSPACE PSPACE
DIDPDA in NC1 [12] in SC2 P [19] P P
NIDPDA in NC1 [12] in P P [19] EXPTIME [2] EXPTIME [2]

DPDA in NC2 ∩ SC2 [5] P P decidable co-r.e.
CF in NC2 P P co-r.e. co-r.e.

Table 2: Complexity of languages and decision problems for finite automata (DFA, NFA), input-
driven automata (DIDPDA, NIDPDA), deterministic pushdown automata (DPDA) and context-
free grammars (CF). For each class with complete problems (L, NL, P, PSPACE, EXPTIME), the
given problem is complete for that class.

tape symbols and states of M , etc.), and Σ−1 consists of equally many corresponding right brackets.
Neutral symbols are not needed, that is, Σ0 = ∅.

Assume that M allows at most binary universal branching. Then, each computation of M on u
is a finite binary tree, and every node in this tree is identified by a binary string x ∈ {0, 1}∗, with
x = ε identifying the root. Every such tree shall be represented as a string over Σ as follows. Let
αx ∈ Σ∗+1 denote the tape contents of M at the node identified by x. Denote the reversal of αx,
in which left brackets are renamed to right brackets, by αRx ∈ Σ∗−1. For an accepting configuration
αx, the corresponding string is wx = αxα

R
x . If αx is a universal configuration, then it has two

sons, αx0 and αx1. Let wx0 and wx1 be the string representations of the subtrees corresponding to
these configurations. Then the subtree of αx is defined as wx = αxwx0α

R
xwx1. The string wε ∈ Σ∗

represents this entire computation tree.
The desired NIDPDA A is defined to accept all strings over Σ except valid string representations

of accepting computation trees of M on u. This is done by scanning the input string for any
deviations from the above definition. The possible deviations are as follows: (i) a configuration
αx does not match the next configuration wx0; (ii) a configuration αx does not match its reversal
αRx ; (iii) a configuration αRx (written in reverse) does not match the next configuration wx1. The
NIDPDA uses nondeterminism to guess the position of the error, and then verifies that the error
indeed occurs. In the cases (i),(iii), it is sufficient to remember the position of the error on the
tape, and then use polynomially many states to check it. In the case (ii), the automaton pushes
each symbol of αx onto the stack and then pops them when reading the matching symbols in αRx ;
any mismatches are then detected directly.

Now, if u /∈ L(M), then there are no accepting computation trees and no valid string represen-
tations thereof, and therefore L(A) = Σ∗. If u ∈ L(M), then at least one accepting tree exists, and
its string representation is rejected by A.

The complexity of basic decision problems for IDPDAs is compared to the similar results for
related models in Table 2. See a recent survey on formal grammars [29] for missing references
and further results. The complexity of some properties of IDPDAs related to bisimulation was
determined by Srba [39].
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7 Extended models and further work

All basic questions on descriptional and computational complexity of input-driven pushdown au-
tomata have been answered in the literature. However, the ongoing study of input-driven automata
has identified a number of interesting related models, which have unresolved complexity questions.
For instance, one can study the complexity of the height-deterministic pushdown automata [21, 26],
that is, NPDAs, where the stack height after processing an input string w is the same in all com-
putations on w. One can consider descriptional complexity of input-driven automata operating on
infinite strings, as defined by Alur and Madhusudan [2, 3]. Other possible extensions of the model
include two-way IDPDA and alternating IDPDA. For input-driven grammars, one can consider
their variants augmented with Boolean operations, following the study of conjunctive and Boolean
grammars [29]; input-driven Boolean grammars should generate the same family of languages as
ordinary input-driven grammars, but their complexity is most likely different.
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