
Scheduling Workloads in Cloud Computing

Rizwan Mian
Graduate Student

School of Computing

Queen’s University
mian@cs.queensu.ca

ABSTRACT

Cloud Computing (cloud) is emerging as a promising paradigm

that offers computing as a utility. In this paper, we look at some

scheduling policies for workloads in clouds. Suitability of a cloud

simulation for developing and evaluating policies is discussed.

We simulate a cloud scenario and report results observed from

executing the scenario. Then, we share our experiences with a

cloud simulation toolkit and suggest fundamental building blocks

of a cloud simulation.

Categories and Subject Descriptors

C.4 [Performance of Systems] Modeling techniques; C.2.4

[Distributed Systems]: Network operating systems

General Terms

Measurement, Performance, Design, Experimentation.

Keywords

Cloud Simulation, Workflow Management.

1. INTRODUCTION
Grid Computing (grid) refers to technologies that allow

consumers to obtain computing on demand, analogous in form

and utility to the electrical grid [1]. Grids and related application

technologies are enabling scientists and engineers to build more

and more complex applications for managing and processing large

data sets, and for executing scientific experiments on distributed

heterogeneous resources [2]. Clouds aims for the same dream of

using computing as a utility [3]. The fundamental vision and

concepts are the same. The vision of a global grid has not yet been

realised but it might be fair to say that cloud builds on the lessons

learnt from building a grid.

The key difference between cloud and grid is that cloud resources

are managed and used by different parties. Typically cloud

vendors happen to be large establishments like Amazon and

Google. In contrast, cloud users vary in scale. This allows

separation of concerns. Most existing grid middleware, which

enables access to grid resources, is widely perceived as being too

heavyweight. The heavyweight nature of middleware, especially

on the client-side, has severely restricted the uptake of grids by

users [4]. On the other hand, cloud vendors – perhaps learning

from grid experience – manage complexity on their side and offer

interfaces of varying abstraction to their users. From a hardware

point of view, cloud offers the illusion of infinite computing

resources to users on demand [3].

As a consequence there are many new application opportunities

offered by cloud such as analytics, batch processing [3]. Different

applications may result in different types of workloads.

Workloads can vary from unrelated and independent tasks to

related and structured workflows, which consist of a sequence of

connected computational or data tasks. The workloads need to be

managed on a cloud. The cloud vendor may provide general

workload management policies offering a higher level of

abstraction to users. However, the policy may be oblivious to a

user’s internal workload utility properties such as priority or

ordering. In such a case, the user must manage their workloads

explicitly.

Presently, clouds offer three service abstractions: infrastructure-

as-a-service, platform-as-a-service, and software-as-a-service

abbreviated as IaaS, PaaS and SaaS respectively.

In IaaS, the cloud vendors expose their infrastructure as a service

to the users. For example, Amazon’s EC21 expose its

infrastructure in terms of virtual machines.

In PaaS, software frameworks or platforms are exposed as a

service to the users. The users write their software for a specific

platform that the vendor hosts. After writing software, the users

upload their software to the vendor’s system and runs it on the

vendor’s system whenever needed. Google App Engine2 offers

this level of abstraction.

In SaaS, software is exposed as a service on the web. SaaS is

similar in spirit to web services or web applications. Google’s

online applications – such as Google Calendar – can be thought of

SaaS.

Scheduling policies or policies from grid and general distributed

computing may be evaluated in a cloud for their relevance and

effectiveness for managing workloads in a cloud. The goals of this

study are (a) to develop policies in a cloud, and (b) to develop a

framework to evaluate such policies.

The original intent of this project [5] was to study the feasibility

of the stated goals in a cloud simulator called CloudSim (csim)

1 Amazon Elastic Compute Cloud (Amazon EC2), (5.4.10),

http://aws.amazon.com/ec2/

2 Google. (2010) Google App Engine

http://code.google.com/appengine/ (last checked 3.5.10)

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

April, 2010, Kingston, Ontario, Canada.

http://aws.amazon.com/ec2/
http://code.google.com/appengine/

[6]. Further, some vanilla policies were to be evaluated using

csim, similar to evaluation of policies in a grid simulator, GridSim

[7]. While developing the policies and a platform for evaluation,

many shortcomings were noticed in csim. A question arose

whether these are the shortcomings of the tool or lack of maturity

of a cloud model. This even begged the question whether a

simulation is suitable approach to study policies for a cloud.

The remainder of the paper is structured as follows: Section 2

builds a case for a cloud simulation. Section 3 describes the

building blocks of csim. Section 4 describes a simulated cloud

scenario and report experiment results from executing the

scenario. Section 5 shares actual experiences of simulation using

csim. Section 6 lists core features expected from a cloud

simulation. Section 7 discusses some research ideas. Section 8

concludes this paper.

2. CASE FOR CLOUD SIMULATION
A cloud vendor may offer many data centers due to, for example,

different geographical requirements. Cloud vendors expose

resources at a massive scale. Users only pay for the resources that

they need. Existing or new policies need to be evaluated and

developed to use these massive scale resources. These policies

also need to accommodate the fact that user demand vary in

reality and scale according to user demand.

To evaluate policies, a cloud environment with massive resources

needs to be reproduced. We can start by experimenting with

resources at a particular data center (DC). The problem there is

that vendors do not expose internals of their cloud infrastructure –

not to mention the monetary cost it will endure. An alternative

would be to create such a large resources base in an academic

laboratory. There are immediate cost factors involved i.e. hoping

to get resources at such scale in an academic laboratory is

unrealistic. Repurposing existing resources might be an option.

However, setting up environments at this scale is labour intensive

and can be tricky. There are many implementation details. Anyone

who has tried to setup a cloud hopefully appreciates this

phenomenon. The irony is that setting up cloud may, perhaps,

offer research contributions for experience in setting up a cloud,

but does not offer contribution towards policies. Even if a private

cloud is available, it may be required that cloud infrastructure

needs modifications to study particular behaviour or scenarios.

Real world is extremely detailed. It is argued that an effective

simulation models the core concepts of a real system. It does not

need to model irrelevant details.

With all these limitations, a cloud simulation is a reasonable way

forward. Indeed, it is argued that a simulator facilitates researchers

to investigate specific aspects of a system, without getting

involved in low-level details [6]. Simulation has been used for

studying policies. For example, Sakellariou et al. [8] used

simulation to study rescheduling policies of workflows on grids.

3. CLOUDSIM
Csim aims at simulating IaaS. A cloud vendor exposes its

infrastructure in terms of physical resources.

Buyya et al. [6] claims that there are four stakeholders in Csim: a

user, a broker, a DC and a market. However, only the first three

are available in the implementation.

A user has some computational and data requirements, modelled

as a cloudlet. The broker acts behalf of the user. The user requests

the broker to create certain number of virtual machines (VMs). A

VM has certain requirements. For example, x86, 2GHz, 1GB

memory, 512MB image size etc. The VMs can be of

heterogeneous specification. The broker requests a DC to create

these VMs. Assuming, DC can satisfy the requirements of VMs,

the VMs are created in the DC. Then, the user submits cloudlets

to the broker, which in turn submits them to the DC according to a

scheduling policy. The default and only scheduling policy

available is RoundRobin (RR). RR submits the cloudlets

immediately to the VMs present in the DC without queuing or

considering the existing load on these VMs.

The VMs execute these cloudlets and report their completion back

to the broker, which reports them to the user.

The architecture of Csim is depicted in Figure 1. It shows the

layered implementation of the Csim simulation framework and

architectural components.

Figure 1 – Layered CloudSim architecture [6]

Buyya et al. [6] builds CloudSim layer on top of GridSim with the

intention to reuse exiting simulation libraries and frameworks.

GridSim is a grid simulator built on top to SimJava.

SimJava is a discrete event simulation present at the lowest layer.

It implements the core functionalities required for higher-level

simulation frameworks such as queuing and processing of events,

management of the simulation clock, creation of system

components (VMs, cloudlet, broker, data center etc.), and

communication between components [6].

The layer above SimJava consists of libraries from GridSim

toolkit that support fundamental Grid components such as the

networks, resources, datasets, workload traces, and information

services.

The layer above GridSim is the CloudSim layer. This layer is

implemented by programmatically extending the core

functionalities exposed by the GridSim layer, and manages the

instantiation and execution of core entities (VMs, hosts, DCs,

application) during the simulation period. The matchmaking

between hosts and VMs takes place at this layer. Cloudlet

execution is managed at this layer. This layer would be of

particular interest to a cloud vendor since the “effectiveness” of

different resource management policies can be studied at this

layer.

The top-most layer of the simulation stack is used to define cloud

scenario under study. Definitions and configurations of

stakeholders take place at this layer. A cloud application

consisting of cloudlets and associated VMs is defined at this layer.

Datacenter Broker which plays a key part in submitting cloudlets

to a DC according to a scheduling policy is defined here.

4. SIMULATING MAPREDUCE

SCENARIO ON A CLOUD
It was hoped that using bottom-up approach, existing vanilla

policies – such as RR, deadline, budget – would be used to

construct the framework. To start with, tasks could have had

random duration. To introduce realism, cloud resources would

have been made similar to Amazon EC2 instances. Simulated

workload would have been based on use cases derived from the

Google’s MapReduce (MR) case study [9] or case studies of Web-

Services of Amazon1. Alternately, tasks could have been

generated whose duration distribution is heavy-tailed – as [10]

observes distribution of lifetimes of UNIX processes. Similarly,

the size of simulated cloud could be based on the cluster required

for Google services [9, 11]. Once basic framework is achieved,

then exotic policies (some mentioned in Future Work) could have

been tried. With the limitations and experiences (discussed later),

only MR Sort scenario in [9] has been simulated.

In the next few subsections, the configurations of a user, a broker

and a DC are described. Note, these configurations are driven by

MR sort scenario from [9], and the usage costs for resources and

bandwidth from Amazon Web Services (AWS).

4.1 Datacenter configuration
Resources = 1800 hosts

Resource computation capacity = 2GHz2

Core per resource = 2 (x 2 hyper-threads) = 2 (effective)

cores/host

Memory = 4gb (only 2.5 – 3gb available)

Aggregated bandwidth = 100-200 gbps

Total execution time (tet) 3 = 600s = 10minutes

Bandwidth per core = average aggregated bandwidth / cores =

[(100 + 200)/2] / [1800 x 2] = 42mbps

Cost per unit execution per unit time = 0.006c/core/s

1 Amazon Web Services, (31.1.10),

http://aws.amazon.com/solutions/case-studies/

2 Units have been expanded in Appendix A (Glossary)

3 Actual run-time is 891s. 600s was mistakenly chosen for

analysis.

Cost per unit bandwidth = 1.7x10-6 c/gbps

4.2 User configuration
Data = 1010 number of 100 bytes records ~= 1Tb

It is stated that (initial) data is split into 64mb pieces.

Map tasks (M) = 15,000 tasks

Reduce tasks (R) = 4,000 tasks

Number of tasks (#(tasks))= M+R = 15,000 + 4,000 = 19,000

tasks

computational requirement per task (cr) is unclear in the paper.

Assuming, cr = data / (#(tasks) x tet) = (1010 x 100)/(19,000 x

600) ~= 88,000 cycles

Assuming data processed by each task (dpt) = data / #(tasks) =

(1010 x 100) / 19,000 ~= 53mb/task

4.3 Broker Configuration
Execution time is the actual time for useful processing of a task. It

includes data transfer.

Not all the tasks desired or submitted for execution are successful.

For example, if the deadline is reached or budget exceeded then

DC refuses to service anymore tasks. Number of successful tasks

are captured by #(successful tasks).

Total task execution time is the aggregation of execution times of

all individual tasks and data transfer times for those tasks. It does

not include overhead.

Average execution time per task (avg task time), as the name

implies, is average duration of a task execution and defined as:

Avg task time = Total task execution time / #(tasks)

Total run-time is the duration of the run. It includes both

overhead and execution times.

Cloud management overhead is relevant. It includes any time that

has not been spent executing the tasks, and includes scheduling,

creation of VM, management and other housekeeping.

Overhead is defined as:

Overhead = total run time – success_time

Efficiency (α) is a metric to quantify the relationship of task

execution time and overhead, and defined as:

α = 100 x (success_time) / (success_time + overhead)

Throughput (thruput) is a ratio of successful tasks per unit time

and defined as:

Thruput = #(successful tasks) / total run time

The monetary cost incurred is captured in Cost.

4.3.1 Policies
The following policies were used in evaluation:

1. RoundRobin (RR): tasks are submitted in roundrobin to

VMs in the cluster regardless of existing load in the

cluster.

2. RoundRobin per VM (RR/VM): Each VM exists on a

single core. Every VM is assigned one task in a round

robin fashion. Pending tasks are queued in the broker

till a task completes and the VM become available.

http://aws.amazon.com/solutions/case-studies/

3. Deadline: A RR/VM variation with a (soft) deadline

(e.g. 1 million seconds) is assigned for the tasks to

execute.

4. Budget: A RR/VM variation with a (soft) budget. Tasks

are executed on a cloud against a pre-allocated budget

(e.g. $50).

Only RR is available in Csim. Csim was extended to provide

others policies.

4.4 Experiments
With all the configurations in place, the MR was simulated using

the four policies stated above.

Initial set of experiments include data transfers, tasks execution

time and management overhead. The reported times are simulated

time. Excerpts of the experiments are depicted in Table 1.

First row of Table 1 is the Google MR Sort [9]. The rest of the

rows lists the performance of different scheduling policies some

with constraints.

Note, overhead is in years. In addition, overhead dominates rest of

the metrics. Troubleshooting indicates the problem with

simulation of data transfer. Data transfer is not modelled in Csim.

So, Csim was extended to account data transfer. Troubleshooting

included running Csim with and without data transfer. The results

of executing one task is in Table 2. Note, extremely high overhead

when data transfer is modelled. It is 500 times more compared to

when data transfer is not modelled.

The MR scenario was repeated without data transfer. Results are

presented in Table 3. Overhead is still high but we observe much

more realistic Total run time.

4.5 Discussion
A complete simulation must include data transfer. With current

data transfer extensions, the overhead is unbelievably high.

Without data transfer, the Total run time is more realistic but still

10 times higher than total run time of Google MR Sort Scenario

[9]. This may be an indication of inappropriate parameter values

or even a defect in Csim. Suspicion lies in improper extension of

Csim for data transfer. It could also be due to mismanagement of

simulated clock. Further, troubleshooting has been left for future.

Instead, further efforts were directed towards documenting

experiences with Csim and suggesting some improvements for a

cloud simulation.

5. EXPERIENCES WITH CLOUDSIM
Buyya et al. [6] suggests four stakeholders: user, broker, data

center (DC) and market. However, Csim only models users,

brokers and DC. There is no notion of market in Csim. This has

many consequences. DC do not expose the capabilities of its

resources. The broker is unaware of the computation and data

capabilities of a DC. A broker acts on behalf of a user, requests a

VM with certain characteristics to be created in DC. Therefore,

matchmaking between VM and host happens in the DC. A DC

declines VM creation submission if there are no resources with

user specified resource requirement. Otherwise, a DC accepts all

incoming VM creation requests even if the resources are already

busy.

Csim does not explicitly model the relationship between

computation, cost and data. Rather, this relationship is split over

multiple places. In addition, it is unclear how they are related

from [6].

Buyya et al. [6] do not explicitly distinguish between system time

and simulated time. They perform three experiments targeted to

evaluate Csim, only reporting simulated time for one experiment.

The user is charged only for memory and storage used on the

creation of VM. There is no monetary charge for execution time

or bandwidth usage. Further, the input and output data for a task

execution has no effect on start or execution time, or the

(monetary) cost. Essentially, data transfer is not being modelled

for calculating execution time or bandwidth usage.

The cost is being accumulated in a DC. The broker cannot state its

budget when submitting tasks to a DC. It is argued that costs be

maintained both in the data center and the broker. This will allow

the DC to halt further execution of a broker if the budget is up as

well as allow broker to manage the tasks amongst multiple DCs.

When a user submits the task to a broker, the broker in turn

submits the task to the DC immediately without queuing

regardless of the fact if enough resources are available in the DC

or not.

The broker performs match-making between requirements of a

task and available resources [12]. To evaluate policies, the broker

would be a key decision maker. However, it does not have enough

information to make effective scheduling decisions. Broker should

be aware of computation and data capabilities of a DC before

requesting a VM creation.

The computation, data and cost variables are interrelated.

However, the units of variables are unclear and confusing. The

consequence for lack of clarity was that absurd numbers were

being reported when experiments were conducted. For example,

the execution time of cloudlets and processing power of resources

was unclear. That is, if the processing power is in MIPS then the

execution time should be in ms given the size of cloudlet. But this

is not so. So, the understanding of the relationship between

variables was reverse engineered by experimentation and

numerical analysis.

There is poor support for monitoring and collecting statistics.

Dynamic behaviour of a real cloud or unpredictability is not

modelled in Csim.

All the parameters of the simulation have to be specified before

the simulation is started. That is, once a simulation starts no

further parameters can be added or removed. This may be required

if we want are unsure of parameters values or parameter values are

dependent on the running simulation.

For example, all the tasks have to be specified before starting a

simulation. It is not possible to add further tasks into the

simulation. There is a partial work around for this problem, which

is to add time delay in the broker but this still requires most

parameters of the simulation to be specified right from the outset.

5.1 Discussion
With such limitations, Csim needs to be extended with some

fundamental features before any interesting studies could be

conducted. Critical they may be, such extensions may not

themselves contribute to research. Instead, they would become the

base for studies. Inspired by the work of Kotsovinos [13] on a

practical model of global public computing and by learning from

the experiences of Csim, the core features of a cloud are

suggested.

6. CORE FEATURES OF A CLOUD

SIMULATION

6.1 Fundamental Concepts
Many systems have been developed that address pure computation

demands of the applications. Examples include Load Sharing

Facility (LSF) [14], (Classic) Condor [15] and Portable Batch

System (PBS) [16]. Similarly, many systems address pure data

demands of the applications. Examples include Google File

System [17], Data Management System in EGEE Datagrid [12]

and Gemfire [18, 19]. As a consequence, applications that are

both compute and data intensive cannot fully exploit the

aggregated power of underlying resources on a grid [20]. Often,

ad hoc methods are used to compensate the shortcomings of a

middleware. Recent research aims to provide an integrated

middleware to offer both computation and data capabilities [21,

22].

These middlewares are deployed on an existing DC, so upfront

capital expenditure is not an explicit part of cost equation.

Maintenance cost, though important, is often treated as a

supplementary issue.

It is argued that workloads fundamentally need computation and

data capabilities for some time to perform useful processing. For

example, Google MR Sort [9] dealt with computation power of

1,800 hosts and computation requirement of 19,000 tasks, and

data requirements of 1TB; and delivered result in 891s. So,

workload management policies balance computation, data and

time to satisfy application objectives.

Clouds add a fourth dimension i.e. (monetary) cost. Therefore in a

cloud simulation, the most interesting aspect to study is the

relationship between computation, data, time and cost. It is argued

that this relationship underlies clouds and must be made explicit

in any cloud simulation.

Stake holders of a cloud deal with this tuple. For example, a user

seeks to find a DC that satisfy its computation and data

requirements with some time expectations aiming for minimum

cost. Similarly, a DC may wish to offer a (computation, data,

time) combination while minimizing its capital and maintenance

cost, and maximizing its profits (charging cost to its users) in

competition with other cloud vendors.

Other factors can really be translated into these dimensions. For

example, Quality of Service (QoS) means some kind of guarantees

on computation, data and time with increased costs both to a user

and a DC.

Higher computation and data capabilities (reducing time) require

more servers with more memory (transient and permanent) with

costs naturally increasing.

Transferring data over a network translates into data transfer

capacity per unit time, which is a measure of data and time. It also

requires some computation. So, data transfer has also some costs.

6.2 System vs. Simulated
In a real cloud, all the entities measured are real. There is nothing

imaginary. Take the example of time. All reported times are

factual. A task, say, took 40s to execute. There is no notion of

simulation. In simulation, however, we need to manage simulated

time and system time separately. In this case, the system time

refers the time taken by the underlying system to execute the

simulation. A part from being reasonable, simulation time is

uninteresting and irrelevant.

We extend this concept of system and simulated to all the entities

or concepts. That is, for computation, data, time and cost.

System and Simulated concepts must be explicitly distinguished.

6.3 Building Blocks of a Cloud Simulation
At present, the user and broker are not separate. Also, there is no

concrete notion of a market. If many cloud vendors appear in

future, then separate brokers and markets may become relevant.

In this case, there will be four stake holders in a cloud: User,

Broker, Datacenter, and a Market. All need to be simulated for a

complete cloud simulation.

User: A user has some computation and data requirements.

Broker: A broker acts on behalf of a user and attempts to find the

(near) optimal DC that satisfies user’s requirements. Initially, a

broker is unaware of any DC and it seeks relevant DC in a market.

Datacenter (DC): A DC advertises its computation and data

capabilities in a market:

 Computation: In a real cloud, there are many multi-core

interconnected hosts. A VM is typically hosted on these

cores. User tasks execute on these VM. For a simulation, all

these entities are relevant.

 Data: In a real cloud, some memory and storage is required

to process transient data and to store persistent data,

respectively.

Market: A market is a central place where DCs advertises their

capabilities and where broker searches for a DC with required

capabilities. Brokers and cloud vendors may enter into

negotiation.

A user may bypass broker if it knows an appropriate DC.

Similarly, a broker may bypass the market if it knows an

appropriate DC.

6.4 Units
The units of data, computation and cost need to be modelled

explicitly. Similarly, all the units should be relative to each other.

For example, storage space available on a typical cloud resource

could be 2GB. Then, the bandwidth per core available to each

core should be in megabytes. If task size is in hundreds of MB

then processing power of resources should be in GHz. It does not

make sense to have task size in mb and processing processing

power in kHz.

6.5 Realism
Dynamic: A real cloud is dynamic. Examples include: users and

brokers coming and leaving; number of resources changing in a

DC; broker becoming too busy and refusing to service anymore

users etc.

Unpredictability: A real cloud is unpredictable. Unknown delays

and failures may occur. Resources in DC performing house

keeping tasks. They may become unavailable. New resources may

be added. Network congestion may occur. Packets may be lost.

7. RESEARCH IDEAS
Since cloud emerged in last few years, it is hoped that there are

many low hanging fruits. Once evaluated in simulation, the

promising policies can be further evaluated on a real cloud.

The platform once developed can be a fundamental base for other

interesting studies. The core models for decision making in the

policies can either be hard (e.g. analytic, algorithmic etc.) like

[23] or soft (e.g. fuzzy controlled, neural networked etc.) like

[24]. A comparison of these models can be made for their

suitability on the cloud.

Another interesting study is the recently suggested framework of

autonomic workload execution [25]. Pairs of (cost models and

optimization algorithms) can be empirically evaluated for their

effectiveness – effectiveness being minimal execution cost and

time in this case.

8. CONCLUSIONS
In this paper, we argue that cloud simulation is a suitable platform

to develop and evaluate scheduling policies for workloads in

clouds.

We shared our experiences of modelling a cloud scenario with

some scheduling policies. We also reflected on developing

policies in an existing cloud simulation (csim), followed by

observing shortcomings in evaluating those policies.

We then presented core features that should be modelled by a

cloud simulation for interesting studies including policies.

9. ACKNOWLEDGMENTS
Prof. Patrick Martin, Andrew Brown, Queen’s University.

10. REFERENCES
[1] Foster, I., et al. Cloud Computing and Grid Computing

360-Degree Compared. in Grid Computing Environments

Workshop, 2008. GCE '08. 2008.

[2] Yu, J. and R. Buyya, A Taxonomy of Workflow

Management Systems for Grid Computing. eprint

arXiv:cs/0503025, 2005.

[3] Armbrust, M., et al., Above the Clouds: A Berkeley

View of Cloud Computing, in Technical Report No. UCB/EECS-

2009-28. 2009, University of California at Berkeley.

[4] Coveney, P.V., et al., The application hosting

environment: Lightweight middleware for grid-based

computational science. Computer Physics Communications, 2007.

176(6): p. 406.

[5] Mian, R., Evaluating Workload Management

Techniques for Cloud Computing -- a proposal, in Data

Management in Cloud Computing. 2010, Queen's University:

Kingston.

[6] Buyya, R., R. Ranjan, and R.N. Calheiros. Modeling

and simulation of scalable cloud computing environments and the

cloudsim toolkit: Challenges and opportunities. 2009. Leipzig,

Germany: IEEE Computer Society.

[7] Buyya, R. and M. Murshed, GridSim: a toolkit for the

modeling and simulation of distributed resource management and

scheduling for Grid computing. Concurrency and Computation:

Practice and Experience, 2002. 14(13-15): p. 1175-1220.

[8] Sakellariou, R. and H. Zhao, A low-cost rescheduling

policy for efficient mapping of workflows on grid systems.

Scientific Programming AxGrids 2004, 2004. 12(4): p. 253-262.

[9] Dean, J. and S. Ghemawat, MapReduce: simplified data

processing on large clusters. Communications of the ACM, 2008.

51(1): p. 107.

[10] Harchol-Balter, M. and A.B. Downey, Exploiting

process lifetime distributions for dynamic load balancing. ACM

Transactions on Computer Systems, 1997. 15(3): p. 253.

[11] Barroso, L.A., J. Dean, and U. Holzle, Web search for a

planet: The Google cluster architecture. IEEE Micro, 2003.

23(2): p. 22-8.

[12] Gagliardi, F., et al., European DataGrid project:

Experiences of deploying a large scale testbed for E-science

applications, in Performance Evaluation Of Complex Systems:

Techniques And Tools - Performance 2002 Tutorial Lectures.

2002. p. 480-499.

[13] Kotsovinos, E., Global public computing, in Technical

Report. 2005, Computer Laboratory, University of Cambridge:

Cambridge.

[14] Zhou, S.N., et al., Utopia - A Load Sharing Facility For

Large, Heterogeneous Distributed Computer-Systems. Software-

Practice & Experience, 1993. 23(12): p. 1305-1336.

[15] Litzkow, M.J., M. Livny, and M.W. Mutka. Condor-a

hunter of idle workstations. in 8th International Conference on

Distributed Computing Systems. 1988.

[16] Henderson, R.L. Job scheduling under the Portable

Batch System. 1995. Berlin, Germany: Springer-Verlag.

[17] Sanjay, G., G. Howard, and L. Shun-Tak, The Google

file system. SIGOPS Oper. Syst. Rev., 2003. 37(5): p. 29-43.

[18] Yuhanna, N. and M. Gilpin, Information Fabric:

Enterprise Data Virtualization, in Technical White Paper. 2006,

Forrester Research: Cambridge.

[19] Yuhanna, N. and M. Gilpin, Gemfire: The Enterprise

Data Fabric, in Technical White Paper. 2006, Gemstone:

Beaverton.

[20] Mian, R., Statement of Intent (Short), in Application for

Universities. 2008: Toronto.

[21] David, J.D., et al., Clustera: an integrated computation

and data management system. Proc. VLDB Endow., 2008. 1(1):

p. 28-41.

[22] Michael, I., et al., Dryad: distributed data-parallel

programs from sequential building blocks, in Proceedings of the

2nd ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007. 2007, ACM: Lisbon, Portugal.

[23] Wolski, R., Dynamically forecasting network

performance using the Network Weather Service. Cluster

Computing, 1998. 1(1): p. 119-32.

[24] Yu, K.M., et al., A fuzzy neural network based

scheduling algorithm for job assignment on computational grids,

in Network-Based Information Systems, Proceedings. 2007,

Springer-Verlag Berlin: Berlin. p. 533-542.

[25] Paton, N.W., et al., Optimizing Utility in Cloud

Computing through Autonomic Workload Execution. IEEE Data

Engineering Bulletin, 2009. 32(1): p. 51-58.

11. Appendix A – Glossary
Symbol Definition

Hz Hertz

G,g Giga

B,b Byte

gbps gb per second

m mega

Tb Tera byte

wk week

hr hour

s second

yr year

c Cent

M Million

Policy

#(successful

tasks)

Total task

execution

time

Success-

time (s)

Avg task

time (s) Total run

time overhead(yr) α (%)

Thruput

(tasks/s) cost($)

Google

MR Sort

[9] 19,000 Unknown Unknown Unknown 600s Unknown Unknown 21 n/a

RR 19,000 8.1 wks 1,353.40 256.43 2.56 yrs 2.41 6.05 2.36E-04 326.57

RR/VM 19,000 1.5 wks 1,527.60 48.24 2.56 yrs 2.53 1.14 2.36E-04 89.23

Deadline

(1 Ms) 235 3.1 hrs 3.15 48.24 27 wks 0.52 0.07 1.44E-05 18.01

Budget 10,647 5.9 days 428.01 48.24 1.44 yrs 1.42 1.14 2.36E-04 50.00

Table 1 – Studying Google MR Sort [9] on a (simulated) cloud with different policies with data transfer.

Data transfer

Policy

#(success-

ful tasks)

Total task

execution

time (s)

Total

run

time (s)

Over-

head (s) α (%) cost(c)

modelled RR 1 48.24 4297.4 4249.16 1.12 0.47

Not modelled RR 1 44 53.24 9.24 82.64 0.26

Table 2 – Troubleshooting extremely high overhead.

Policy

 #(successful

tasks)

Total task

execution

time

Success-

time(s)

Avg task

time (s) Total run

time (s) Overhead (s) α (%)

Thruput

(tasks/s) cost($)

Google

MR Sort

[9] 19,000 Unknown

Unknow

n

Unknow

n 600 Unknown Unknown 21 n/a

RR 19000 7.34 wks 1,234.45 233.90 6,932 5,697 17.81 2.74 266.64

RR/VM 19000 1.4 wks 1,393.32 44.00 6,756 6,523 3.44 2.81 50.16

Deadline

(5300s) 806 9.85 hrs 9.85 44.00 5,544 5,534 0.18 0.15 10.18

Budget

($10) 4338 53 hrs 106.04 44.00 7,534 7,481 0.70 0.58 11.45

Table 3 – Studying Google MR Sort [9] on a (simulated) cloud with different policies without data transfer.

