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ABSTRACT 

Cloud Computing (cloud) is emerging as a promising paradigm 

that offers computing as a utility.  In this paper, we look at some 

scheduling policies for workloads in clouds. Suitability of a cloud 

simulation for developing and evaluating policies is discussed. 

We simulate a cloud scenario and report results observed from 

executing the scenario. Then, we share our experiences with a 

cloud simulation toolkit and suggest fundamental building blocks 

of a cloud simulation. 

Categories and Subject Descriptors 

C.4 [Performance of Systems] Modeling techniques; C.2.4 

[Distributed Systems]: Network operating systems 

General Terms 

Measurement, Performance, Design, Experimentation. 

Keywords 

Cloud Simulation, Workflow Management.  

1. INTRODUCTION 
Grid Computing (grid) refers to technologies that allow 

consumers to obtain computing on demand, analogous in form 

and utility to the electrical grid [1]. Grids and related application 

technologies are enabling scientists and engineers to build more 

and more complex applications for managing and processing large 

data sets, and for executing scientific experiments on distributed 

heterogeneous resources [2]. Clouds aims for the same dream of 

using computing as a utility [3]. The fundamental vision and 

concepts are the same. The vision of a global grid has not yet been 

realised but it might be fair to say that cloud builds on the lessons 

learnt from building a grid.  

The key difference between cloud and grid is that cloud resources 

are managed and used by different parties. Typically cloud 

vendors happen to be large establishments like Amazon and 

Google. In contrast, cloud users vary in scale. This allows 

separation of concerns. Most existing grid middleware, which 

enables access to grid resources, is widely perceived as being too 

heavyweight. The heavyweight nature of middleware, especially 

on the client-side, has severely restricted the uptake of grids by 

users [4]. On the other hand, cloud vendors – perhaps learning 

from grid experience – manage complexity on their side and offer 

interfaces of varying abstraction to their users. From a hardware 

point of view, cloud offers the illusion of infinite computing 

resources to users on demand [3].  

As a consequence there are many new application opportunities 

offered by cloud such as analytics, batch processing [3]. Different 

applications may result in different types of workloads. 

Workloads can vary from unrelated and independent tasks to 

related and structured workflows, which consist of a sequence of 

connected computational or data tasks. The workloads need to be 

managed on a cloud. The cloud vendor may provide general 

workload management policies offering a higher level of 

abstraction to users. However, the policy may be oblivious to a 

user’s internal workload utility properties such as priority or 

ordering. In such a case, the user must manage their workloads 

explicitly. 

Presently, clouds offer three service abstractions: infrastructure-

as-a-service, platform-as-a-service, and software-as-a-service 

abbreviated as IaaS, PaaS and SaaS respectively.  

In IaaS, the cloud vendors expose their infrastructure as a service 

to the users. For example, Amazon’s EC21 expose its 

infrastructure in terms of virtual machines.  

In PaaS, software frameworks or platforms are exposed as a 

service to the users. The users write their software for a specific 

platform that the vendor hosts. After writing software, the users 

upload their software to the vendor’s system and runs it on the 

vendor’s system whenever needed. Google App Engine2 offers 

this level of abstraction.  

In SaaS, software is exposed as a service on the web. SaaS is 

similar in spirit to web services or web applications. Google’s 

online applications – such as Google Calendar – can be thought of 

SaaS. 

Scheduling policies or policies from grid and general distributed 

computing may be evaluated in a cloud for their relevance and 

effectiveness for managing workloads in a cloud. The goals of this 

study are (a) to develop policies in a cloud, and (b) to develop a 

framework to evaluate such policies.  

The original intent of this project [5] was to study the feasibility 

of the stated goals in a cloud simulator called CloudSim (csim) 

                                                                 

1 Amazon Elastic Compute Cloud (Amazon EC2), (5.4.10), 
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[6]. Further, some vanilla policies were to be evaluated using 

csim, similar to evaluation of policies in a grid simulator, GridSim 

[7]. While developing the policies and a platform for evaluation, 

many shortcomings were noticed in csim. A question arose 

whether these are the shortcomings of the tool or lack of maturity 

of a cloud model. This even begged the question whether a 

simulation is suitable approach to study policies for a cloud. 

The remainder of the paper is structured as follows: Section 2 

builds a case for a cloud simulation. Section 3 describes the 

building blocks of csim. Section 4 describes a simulated cloud 

scenario and report experiment results from executing the 

scenario. Section 5 shares actual experiences of simulation using 

csim. Section 6 lists core features expected from a cloud 

simulation. Section 7 discusses some research ideas. Section 8 

concludes this paper. 

2. CASE FOR CLOUD SIMULATION  
A cloud vendor may offer many data centers due to, for example, 

different geographical requirements. Cloud vendors expose 

resources at a massive scale. Users only pay for the resources that 

they need. Existing or new policies need to be evaluated and 

developed to use these massive scale resources. These policies 

also need to accommodate the fact that user demand vary in 

reality and scale according to user demand. 

To evaluate policies, a cloud environment with massive resources 

needs to be reproduced. We can start by experimenting with 

resources at a particular data center (DC). The problem there is 

that vendors do not expose internals of their cloud infrastructure – 

not to mention the monetary cost it will endure. An alternative 

would be to create such a large resources base in an academic 

laboratory. There are immediate cost factors involved i.e. hoping 

to get resources at such scale in an academic laboratory is 

unrealistic. Repurposing existing resources might be an option. 

However, setting up environments at this scale is labour intensive 

and can be tricky. There are many implementation details. Anyone 

who has tried to setup a cloud hopefully appreciates this 

phenomenon. The irony is that setting up cloud may, perhaps, 

offer research contributions for experience in setting up a cloud, 

but does not offer contribution towards policies. Even if a private 

cloud is available, it may be required that cloud infrastructure 

needs modifications to study particular behaviour or scenarios. 

Real world is extremely detailed. It is argued that an effective 

simulation models the core concepts of a real system. It does not 

need to model irrelevant details.  

With all these limitations, a cloud simulation is a reasonable way 

forward. Indeed, it is argued that a simulator facilitates researchers 

to investigate specific aspects of a system, without getting 

involved in low-level details [6]. Simulation has been used for 

studying policies. For example, Sakellariou et al. [8] used 

simulation to study rescheduling policies of workflows on grids. 

3. CLOUDSIM 
Csim aims at simulating IaaS. A cloud vendor exposes its 

infrastructure in terms of physical resources. 

Buyya et al. [6] claims that there are four stakeholders in Csim: a 

user, a broker, a DC and a market. However, only the first three 

are available in the implementation. 

A user has some computational and data requirements, modelled 

as a cloudlet. The broker acts behalf of the user. The user requests 

the broker to create certain number of virtual machines (VMs). A 

VM has certain requirements. For example, x86, 2GHz, 1GB 

memory, 512MB image size etc. The VMs can be of 

heterogeneous specification. The broker requests a DC to create 

these VMs. Assuming, DC can satisfy the requirements of VMs, 

the VMs are created in the DC. Then, the user submits cloudlets 

to the broker, which in turn submits them to the DC according to a 

scheduling policy. The default and only scheduling policy 

available is RoundRobin (RR). RR submits the cloudlets 

immediately to the VMs present in the DC without queuing or 

considering the existing load on these VMs. 

The VMs execute these cloudlets and report their completion back 

to the broker, which reports them to the user. 

The architecture of Csim is depicted in Figure 1. It shows the 

layered implementation of the Csim simulation framework and 

architectural components. 

 

Figure 1 – Layered CloudSim architecture [6] 

Buyya et al. [6] builds CloudSim layer on top of GridSim with the 

intention to reuse exiting simulation libraries and frameworks. 

GridSim is a grid simulator built on top to SimJava. 

SimJava is a discrete event simulation present at the lowest layer. 

It implements the core functionalities required for higher-level 

simulation frameworks such as queuing and processing of events, 

management of the simulation clock,  creation of system 

components (VMs, cloudlet, broker, data center etc.), and 

communication between components [6]. 

The layer above SimJava consists of libraries from GridSim 

toolkit that support fundamental Grid components such as the 

networks, resources, datasets, workload traces, and information 

services. 



The layer above GridSim is the CloudSim layer. This layer is 

implemented by programmatically extending the core 

functionalities exposed by the GridSim layer, and manages the 

instantiation and execution of core entities (VMs, hosts, DCs, 

application) during the simulation period. The matchmaking 

between hosts and VMs takes place at this layer. Cloudlet 

execution is managed at this layer. This layer would be of 

particular interest to a cloud vendor since the “effectiveness” of 

different resource management policies can be studied at this 

layer.  

The top-most layer of the simulation stack is used to define cloud 

scenario under study. Definitions and configurations of 

stakeholders take place at this layer. A cloud application 

consisting of cloudlets and associated VMs is defined at this layer. 

Datacenter Broker which plays a key part in submitting cloudlets 

to a DC according to a scheduling policy is defined here. 

4. SIMULATING MAPREDUCE 

SCENARIO ON A CLOUD 
It was hoped that using bottom-up approach, existing vanilla 

policies – such as RR, deadline, budget – would be used to 

construct the framework. To start with, tasks could have had 

random duration. To introduce realism, cloud resources would 

have been made similar to Amazon EC2 instances. Simulated 

workload would have been based on use cases derived from the 

Google’s MapReduce (MR) case study [9] or case studies of Web-

Services of Amazon1. Alternately, tasks could have been 

generated whose duration distribution is heavy-tailed – as [10] 

observes distribution of lifetimes of UNIX processes. Similarly, 

the size of simulated cloud could be based on the cluster required 

for Google services [9, 11]. Once basic framework is achieved, 

then exotic policies (some mentioned in Future Work) could have 

been tried. With the limitations and experiences (discussed later), 

only MR Sort scenario in [9] has been simulated. 

In the next few subsections, the configurations of a user, a broker 

and a DC are described. Note, these configurations are driven by 

MR sort scenario from [9], and the usage costs for resources and 

bandwidth from Amazon Web Services (AWS). 

4.1 Datacenter configuration 
Resources = 1800 hosts 

Resource computation capacity = 2GHz2 

Core per resource = 2 (x 2 hyper-threads) = 2 (effective) 

cores/host 

Memory = 4gb (only 2.5 – 3gb available) 

Aggregated bandwidth = 100-200 gbps 

Total execution time (tet) 3 = 600s = 10minutes 

Bandwidth per core = average aggregated bandwidth / cores = 

[(100 + 200)/2] / [ 1800 x 2 ] = 42mbps 

Cost per unit execution per unit time = 0.006c/core/s  

                                                                 

1 Amazon Web Services, (31.1.10), 

http://aws.amazon.com/solutions/case-studies/  

2 Units have been expanded in Appendix A (Glossary) 

3 Actual run-time is 891s. 600s was mistakenly chosen for 

analysis. 

Cost per unit bandwidth = 1.7x10-6 c/gbps 

4.2 User configuration 
Data = 1010 number of 100 bytes records ~= 1Tb 

It is stated that (initial) data is split into 64mb pieces. 

Map tasks (M) = 15,000 tasks 

Reduce tasks (R) = 4,000 tasks 

Number of tasks (#(tasks))= M+R = 15,000 + 4,000 = 19,000 

tasks 

computational requirement per task (cr) is unclear in the paper. 

Assuming, cr = data / (#(tasks) x tet) = (1010 x 100)/(19,000 x 

600) ~= 88,000 cycles 

Assuming data processed by each task (dpt) = data / #(tasks) = 

(1010 x 100) / 19,000 ~= 53mb/task 

4.3 Broker Configuration 
Execution time is the actual time for useful processing of a task. It 

includes data transfer.  

Not all the tasks desired or submitted for execution are successful. 

For example, if the deadline is reached or budget exceeded then 

DC refuses to service anymore tasks. Number of successful tasks 

are captured by #(successful tasks). 

Total task execution time is the aggregation of execution times of 

all individual tasks and data transfer times for those tasks. It does 

not include overhead. 

Average execution time per task (avg task time), as the name 

implies, is average duration of a task execution and defined as: 

Avg task time = Total task execution time / #(tasks) 

Total run-time is the duration of the run. It includes both 

overhead and execution times. 

Cloud management overhead is relevant. It includes any time that 

has not been spent executing the tasks, and includes scheduling, 

creation of VM, management and other housekeeping.  

Overhead is defined as: 

Overhead = total run time – success_time 

Efficiency (α) is a metric to quantify the relationship of task 

execution time and overhead, and defined as: 

α = 100 x (success_time) / (success_time + overhead)  

Throughput (thruput) is a ratio of successful tasks per unit time 

and defined as: 

Thruput  = #(successful tasks) / total run time 

The monetary cost incurred is captured in Cost. 

4.3.1 Policies 
The following policies were used in evaluation:  

1. RoundRobin (RR): tasks are submitted in roundrobin to 

VMs in the cluster regardless of existing load in the 

cluster. 

2. RoundRobin per VM (RR/VM): Each VM exists on a 

single core. Every VM is assigned one task in a round 

robin fashion. Pending tasks are queued in the broker 

till a task completes and the VM become available. 

http://aws.amazon.com/solutions/case-studies/


3. Deadline: A RR/VM variation with a (soft) deadline 

(e.g. 1 million seconds) is assigned for the tasks to 

execute.  

4. Budget: A RR/VM variation with a (soft) budget. Tasks 

are executed on a cloud against a pre-allocated budget 

(e.g. $50). 

Only RR is available in Csim. Csim was extended to provide 

others policies. 

4.4 Experiments 
With all the configurations in place, the MR was simulated using 

the four policies stated above. 

Initial set of experiments include data transfers, tasks execution 

time and management overhead. The reported times are simulated 

time. Excerpts of the experiments are depicted in Table 1. 

First row of Table 1 is the Google MR Sort [9]. The rest of the 

rows lists the performance of different scheduling policies some 

with constraints. 

Note, overhead is in years. In addition, overhead dominates rest of 

the metrics. Troubleshooting indicates the problem with 

simulation of data transfer. Data transfer is not modelled in Csim. 

So, Csim was extended to account data transfer. Troubleshooting 

included running Csim with and without data transfer. The results 

of executing one task is in Table 2. Note, extremely high overhead 

when data transfer is modelled. It is 500 times more compared to 

when data transfer is not modelled.  

The MR scenario was repeated without data transfer. Results are 

presented in Table 3. Overhead is still high but we observe much 

more realistic Total run time. 

4.5 Discussion 
A complete simulation must include data transfer. With current 

data transfer extensions, the overhead is unbelievably high. 

Without data transfer, the Total run time is more realistic but still 

10 times higher than total run time of Google MR Sort Scenario 

[9]. This may be an indication of inappropriate parameter values 

or even a defect in Csim. Suspicion lies in improper extension of 

Csim for data transfer. It could also be due to mismanagement of 

simulated clock. Further, troubleshooting has been left for future. 

Instead, further efforts were directed towards documenting 

experiences with Csim and suggesting some improvements for a 

cloud simulation.  

5. EXPERIENCES WITH CLOUDSIM  
Buyya et al. [6] suggests four stakeholders: user, broker, data 

center (DC) and market. However, Csim only models users, 

brokers and DC. There is no notion of market in Csim. This has 

many consequences. DC do not expose the capabilities of its 

resources. The broker is unaware of the computation and data 

capabilities of a DC. A broker acts on behalf of a user, requests a 

VM with certain characteristics to be created in DC. Therefore, 

matchmaking between VM and host happens in the DC. A DC 

declines VM creation submission if there are no resources with 

user specified resource requirement. Otherwise, a DC accepts all 

incoming VM creation requests even if the resources are already 

busy. 

Csim does not explicitly model the relationship between 

computation, cost and data. Rather, this relationship is split over 

multiple places. In addition, it is unclear how they are related 

from [6]. 

Buyya et al. [6] do not explicitly distinguish between system time 

and simulated time. They perform three experiments targeted to 

evaluate Csim, only reporting simulated time for one experiment. 

The user is charged only for memory and storage used on the 

creation of VM. There is no monetary charge for execution time 

or bandwidth usage. Further, the input and output data for a task 

execution has no effect on start or execution time, or the 

(monetary) cost. Essentially, data transfer is not being modelled 

for calculating execution time or bandwidth usage. 

The cost is being accumulated in a DC. The broker cannot state its 

budget when submitting tasks to a DC. It is argued that costs be 

maintained both in the data center and the broker. This will allow 

the DC to halt further execution of a broker if the budget is up as 

well as allow broker to manage the tasks amongst multiple DCs.  

When a user submits the task to a broker, the broker in turn 

submits the task to the DC immediately without queuing 

regardless of the fact if enough resources are available in the DC 

or not.  

The broker performs match-making between requirements of a 

task and available resources [12]. To evaluate policies, the broker 

would be a key decision maker. However, it does not have enough 

information to make effective scheduling decisions. Broker should 

be aware of computation and data capabilities of a DC before 

requesting a VM creation. 

The computation, data and cost variables are interrelated. 

However, the units of variables are unclear and confusing. The 

consequence for lack of clarity was that absurd numbers were 

being reported when experiments were conducted. For example, 

the execution time of cloudlets and processing power of resources 

was unclear. That is, if the processing power is in MIPS then the 

execution time should be in ms given the size of cloudlet. But this 

is not so. So, the understanding of the relationship between 

variables was reverse engineered by experimentation and 

numerical analysis. 

There is poor support for monitoring and collecting statistics. 

Dynamic behaviour of a real cloud or unpredictability is not 

modelled in Csim.  

All the parameters of the simulation have to be specified before 

the simulation is started. That is, once a simulation starts no 

further parameters can be added or removed. This may be required 

if we want are unsure of parameters values or parameter values are 

dependent on the running simulation. 

For example, all the tasks have to be specified before starting a 

simulation. It is not possible to add further tasks into the 

simulation. There is a partial work around for this problem, which 

is to add time delay in the broker but this still requires most 

parameters of the simulation to be specified right from the outset. 

5.1 Discussion 
With such limitations, Csim needs to be extended with some 

fundamental features before any interesting studies could be 

conducted. Critical they may be, such extensions may not 

themselves contribute to research. Instead, they would become the 

base for studies. Inspired by the work of Kotsovinos  [13] on a 

practical model of global public computing and by learning from 



the experiences of Csim, the core features of a cloud are 

suggested.  

6. CORE FEATURES OF A CLOUD 

SIMULATION 

6.1 Fundamental Concepts 
Many systems have been developed that address pure computation 

demands of the applications. Examples include Load Sharing 

Facility (LSF) [14], (Classic) Condor [15] and Portable Batch 

System (PBS) [16]. Similarly, many systems address pure data 

demands of the applications. Examples include Google File 

System [17], Data Management System in EGEE Datagrid [12] 

and Gemfire [18, 19]. As a consequence, applications that are 

both compute and data intensive cannot fully exploit the 

aggregated power of underlying resources on a grid [20]. Often, 

ad hoc methods are used to compensate the shortcomings of a 

middleware. Recent research aims to provide an integrated 

middleware to offer both computation and data capabilities [21, 

22]. 

These middlewares are deployed on an existing DC, so upfront 

capital expenditure is not an explicit part of cost equation. 

Maintenance cost, though important, is often treated as a 

supplementary issue. 

It is argued that workloads fundamentally need computation and 

data capabilities for some time to perform useful processing. For 

example, Google MR Sort [9] dealt with computation power of 

1,800 hosts and computation requirement of 19,000 tasks, and 

data requirements of 1TB; and delivered result in 891s. So, 

workload management policies balance computation, data and 

time to satisfy application objectives.  

Clouds add a fourth dimension i.e. (monetary) cost. Therefore in a 

cloud simulation, the most interesting aspect to study is the 

relationship between computation, data, time and cost. It is argued 

that this relationship underlies clouds and must be made explicit 

in any cloud simulation. 

Stake holders of a cloud deal with this tuple. For example, a user 

seeks to find a DC that satisfy its computation and data 

requirements with some time expectations aiming for minimum 

cost. Similarly, a DC may wish to offer a (computation, data, 

time) combination while minimizing its capital and maintenance 

cost, and maximizing its profits (charging cost to its users) in 

competition with other cloud vendors. 

Other factors can really be translated into these dimensions. For 

example, Quality of Service (QoS) means some kind of guarantees 

on computation, data and time with increased costs both to a user 

and a DC. 

Higher computation and data capabilities (reducing time) require 

more servers with more memory (transient and permanent) with 

costs naturally increasing. 

Transferring data over a network translates into data transfer 

capacity per unit time, which is a measure of data and time. It also 

requires some computation. So, data transfer has also some costs. 

6.2 System vs. Simulated 
In a real cloud, all the entities measured are real. There is nothing 

imaginary. Take the example of time. All reported times are 

factual. A task, say, took 40s to execute. There is no notion of 

simulation. In simulation, however, we need to manage simulated 

time and system time separately. In this case, the system time 

refers the time taken by the underlying system to execute the 

simulation. A part from being reasonable, simulation time is 

uninteresting and irrelevant. 

We extend this concept of system and simulated to all the entities 

or concepts. That is, for computation, data, time and cost. 

System and Simulated concepts must be explicitly distinguished. 

6.3 Building Blocks of a Cloud Simulation 
At present, the user and broker are not separate. Also, there is no 

concrete notion of a market. If many cloud vendors appear in 

future, then separate brokers and markets may become relevant.  

In this case, there will be four stake holders in a cloud: User, 

Broker, Datacenter, and a Market. All need to be simulated for a 

complete cloud simulation. 

User: A user has some computation and data requirements. 

Broker: A broker acts on behalf of a user and attempts to find the 

(near) optimal DC that satisfies user’s requirements. Initially, a 

broker is unaware of any DC and it seeks relevant DC in a market. 

Datacenter (DC): A DC advertises its computation and data 

capabilities in a market: 

 Computation: In a real cloud, there are many multi-core 

interconnected hosts. A VM is typically hosted on these 

cores. User tasks execute on these VM. For a simulation, all 

these entities are relevant. 

 Data: In a real cloud, some memory and storage is required 

to process transient data and to store persistent data, 

respectively.  

Market: A market is a central place where DCs advertises their 

capabilities and where broker searches for a DC with required 

capabilities. Brokers and cloud vendors may enter into 

negotiation. 

A user may bypass broker if it knows an appropriate DC. 

Similarly, a broker may bypass the market if it knows an 

appropriate DC. 

6.4 Units 
The units of data, computation and cost need to be modelled 

explicitly. Similarly, all the units should be relative to each other. 

For example, storage space available on a typical cloud resource 

could be 2GB. Then, the bandwidth per core available to each 

core should be in megabytes. If task size is in hundreds of MB 

then processing power of resources should be in GHz. It does not 

make sense to have task size in mb and processing processing 

power in kHz. 

6.5 Realism 
Dynamic: A real cloud is dynamic. Examples include: users and 

brokers coming and leaving; number of resources changing in a 

DC; broker becoming too busy and refusing to service anymore 

users etc. 

Unpredictability: A real cloud is unpredictable. Unknown delays 

and failures may occur. Resources in DC performing house 

keeping tasks. They may become unavailable. New resources may 

be added. Network congestion may occur. Packets may be lost. 



7. RESEARCH IDEAS 
Since cloud emerged in last few years, it is hoped that there are 

many low hanging fruits. Once evaluated in simulation, the 

promising policies can be further evaluated on a real cloud. 

The platform once developed can be a fundamental base for other 

interesting studies. The core models for  decision making in the 

policies can either be hard (e.g. analytic, algorithmic etc.) like 

[23] or soft (e.g. fuzzy controlled, neural networked etc.) like 

[24]. A comparison of these models can be made for their 

suitability on the cloud. 

Another interesting study is the recently suggested framework of 

autonomic workload execution [25]. Pairs of (cost models and 

optimization algorithms) can be empirically evaluated for their 

effectiveness – effectiveness being minimal execution cost and 

time in this case. 

8. CONCLUSIONS 
In this paper, we argue that cloud simulation is a suitable platform 

to develop and evaluate scheduling policies for workloads in 

clouds.  

We shared our experiences of modelling a cloud scenario with 

some scheduling policies. We also reflected on developing 

policies in an existing cloud simulation (csim), followed by 

observing shortcomings in evaluating those policies.  

We then presented core features that should be modelled by a 

cloud simulation for interesting studies including policies. 
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11. Appendix A – Glossary 
Symbol Definition 

Hz Hertz 

G,g Giga 

B,b Byte 

gbps gb per second 

m mega 

Tb Tera byte 

wk week 

hr hour 

s second 

yr year 

c  Cent 

M Million 



Policy 

 

#(successful 

tasks)  

Total task 

execution 

time 

Success-

time (s) 

Avg task 

time (s) Total run 

time   overhead(yr)  α (%) 

Thruput 

(tasks/s)  cost($) 

Google 

MR Sort 

[9] 19,000 Unknown Unknown Unknown 600s Unknown Unknown 21 n/a 

RR 19,000 8.1 wks 1,353.40 256.43 2.56 yrs 2.41  6.05 2.36E-04 326.57 

RR/VM 19,000 1.5 wks 1,527.60 48.24 2.56 yrs 2.53  1.14 2.36E-04 89.23 

Deadline 

(1 Ms) 235 3.1 hrs 3.15 48.24 27 wks 0.52  0.07 1.44E-05 18.01 

Budget 10,647 5.9 days 428.01 48.24 1.44 yrs 1.42  1.14 2.36E-04 50.00 

Table 1 – Studying Google MR Sort [9] on a (simulated) cloud with different policies with data transfer. 

 

Data transfer 

Policy 

 

#(success-

ful tasks)  

Total task 

execution 

time (s) 

Total 

run 

time (s) 

Over-

head (s)  α (%)  cost(c) 

modelled RR 1 48.24 4297.4 4249.16 1.12 0.47 

Not modelled RR 1 44 53.24 9.24 82.64 0.26 

Table 2 – Troubleshooting extremely high overhead. 

 

Policy 

 #(successful 

tasks)  

Total task 

execution 

time 

Success-

time(s) 

Avg task 

time (s) Total run 

time (s)  Overhead (s)  α (%) 

Thruput 

(tasks/s)  cost($) 

Google 

MR Sort 

[9] 19,000 Unknown 

Unknow

n 

Unknow

n 600 Unknown Unknown 21 n/a 

RR 19000 7.34 wks 1,234.45 233.90 6,932 5,697 17.81 2.74 266.64 

RR/VM 19000 1.4 wks 1,393.32 44.00 6,756 6,523 3.44 2.81 50.16 

Deadline 

(5300s) 806 9.85 hrs 9.85 44.00 5,544 5,534 0.18 0.15 10.18 

Budget 

($10)  4338 53 hrs 106.04 44.00 7,534 7,481 0.70 0.58 11.45 

Table 3 – Studying Google MR Sort [9] on a (simulated) cloud with different policies without data transfer. 

 

 

 

 

 


