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Abstract

Karyotyping, a standard method for presenting pictures of the human chromosomes for diagnostic purposes, is a long standing, yet
common technique in cytogenetics. Automating the chromosome classification process is the first step in designing an automatic
karyotyping system. The main aim in this study was to define a new group of features for better representation and classification of chro-
mosomes. Width, position and the average intensity of the two most eye-catching regions of each chromosome (that we call characteristic
bands) are the new proposed features. The concept of a characteristic band is based on the expert cytogeneticists�method in classification
of the chromosomes. The length, centromeric index (CI) and an index of overall darkness or brightness of the image (NAGD) were also
included in the final nine-dimensional feature vectors describing each chromosome. To automatically find the characteristic bands and
calculate the new features, different windows in chromosome�s density profile were scored based on their intensity and width. As a fea-
sibility study, our work was focused on classification of chromosomes in group E. Three layer artificial neural networks were employed to
classify each chromosome in one of the three possible classes (chromosomes 16, 17 and 18). The best results obtained were accurate clas-
sification of up to 98.6% of chromosomes. Particularly a six-dimensional subset of the features showed reproducibly high performances
in classification experiments. The results of this feasibility study show that new features inspired from human expert�s classification
method are potentially capable of improving the accuracy of the karyotyping systems.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many genetic disorders or possible abnormalities that
may occur in the future generations can be predicted
through analyzing the shape and morphological character-
istics of the chromosomes. In addition to some well-known
genetic abnormalities like aneuploidy (improper number of
chromosomes), translocation, and deletion, some of the
fatal pathological conditions like lukemia are also corre-
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.patrec.2005.06.011

* Corresponding author.
E-mail addresses: moradi@cs.queensu.ca (M. Moradi), ksetareh@ut.

ac.ir (S.K. Setarehdan).
lated with chromosome defects (Hong, 2000). Karyotype,
a standard table presenting pictures of the 46 human chro-
mosomes obtained from a single cell either by drawing or
by photography using a light microscope (Hong, 2000), is
often used to analyze the shape and morphological charac-
teristics of the chromosomes by a specialist for diagnostic
purposes.

To develop a karyotype, a cell is photographed under a
light microscope during the metaphase stage (one of the
four stages of the cell division). Laboratory staining tech-
niques applied to the samples create a unique band pattern
for each chromosome. A band is a region along the chro-
mosome axis with a distinct intensity from its adjacent.

mailto:moradi@cs.queensu.ca
mailto:ksetareh@ut. ac.ir
mailto:ksetareh@ut. ac.ir


20 M. Moradi, S.K. Setarehdan / Pattern Recognition Letters 27 (2006) 19–28
In the next step, each of the chromosomes (22 autosomal
pairs and a pair of sex chromosomes) should be identified.
This process is usually carried out manually by expert cli-
nicians who view the pictures, identify the chromosomes,
and cut and place them in their specified locations in the
karyotype.

Despite the development of the banding techniques
Karyotyping is still a difficult and time consuming task
which must be done by an experienced operator or a cyto-
genetic expert. The tedious nature of manual karyotyping
has encouraged many computer vision and medical image
processing researchers to investigate automatic or semi-
automatic techniques for Karyotyping in the last three dec-
ades (Carothers and Piper, 1994). However, automatic
karyotyping is still considered as a difficult task mainly
due to the shape variability caused by the non-rigid nature
of the chromosomes that gives them unpredictable appear-
ances within the pictures.

Chromosome classification can be viewed as a pattern
recognition problem, where the aim is to assign each chro-
mosome to one of the 24 possible classes. The feature vec-
tor commonly used to describe a chromosome includes the
length, the centromeric index (the ratio of the short arm of
the chromosome to its long arm, which are separated by
the narrowest part of the chromosome known as the cen-
tromere), and a one-dimensional vector obtained by inten-
sity sampling of the chromosome along its longitudinal
axis, which is known as the density profile (Carothers and
Piper, 1994; Lerner et al., 1995; Sweeney and Becker,
1997; Shin and Pu, 1990). In some studies, a reduced ver-
sion of the density profile (Lerner et al., 1995) or features
extracted from its Fourier or wavelet transformation have
been used (Sweeney and Becker, 1997). Using wavelet
packet transformation for extraction of features that repre-
sent the chromosome shape has recently been reported
(Guimaraes et al., 2003). The resulting feature vector is
then used with a classification method like the Bayesian
Fig. 1. G-banded chromosomes as seen under a m
classifier (Carothers and Piper, 1994; Qiang and Castle-
man, 2000), neural network classifier (Cho, 2000; Lerner
et al., 1995; Sweeney and Becker, 1997; Lerner, 1998; Gra-
ham et al., 1992), or fuzzy classifier (Vanderheydt et al.,
1980), nearest neighbor (Groen et al., 1989).

Although the results reported in these studies are
encouraging, the karyotyping process in daily laboratory
routine still needs the human interaction. A human expert
can identify each chromosome in the picture using a hier-
archical chromosome identification and classification
method. He/she uses some geometric and morphologic fea-
tures such as the length of the chromosomes for initially
classifying them into a small number of groups. Then,
applying some simple rules such as the location of the cen-
tromere, the location and width of the characteristic bands
and their position relative to the centromere and/or relative
to each other, the human expert can effectively recognize
and identify each chromosome. The concept of characteris-
tic band is very important in this process. Based on the sur-
vey conducted in this research, the level of importance of a
band is mainly based on the following three factors:

(1) Width of the band.
(2) Intensity of the band.
(3) Relative position of the band.

If a wide and dark band is repeated in the same position
for the same chromosome in different images, it is consid-
ered as a characteristic band. In this study we have defined
a set of features that describe the important characteristic
bands for each chromosome. These features include the
width, position and the average intensity of the most
noticeable characteristic bands of the chromosomes. For
a quick reference these features are named (db1W) and
(db2W) for the Width of the first and the second dark
bands, respectively, (db1P) and (db2P) for the Position of
the first and the second dark bands, and (db1I) and
icroscope (left) and after karyotyping (right).
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(db2I) for the gray level Intensity of the first and the second
dark bands (Fig. 1).

As a feasibility study, our work has been limited to the
chromosomes in group E. Since the chromosomes in this
group have very close lengths, the intensity-based features
are more important in their classification process. The
choice of number of the characteristic bands (two in our
case) was based on the consultation with the experts and
analyzing the ideogram of the chromosomes in group E
(the standard ideogram of chromosome 16 is shown in
Fig. 2). Table 1 summarizes the typical values of the pro-
posed features for chromosomes 16, 17 and 18 calculated
by an expert using the standard ideograms (Fig. 2). The
intensity-based features (db1I, db2I) are not included in
this table, because ideograms do not suggest typical values
for them.

This study is aimed to simulate the human expert�s
knowledge and design a robust chromosome identification
and classification algorithm. We have used a medial axis
transformation (MAT) based technique to extract the den-
sity profile of the chromosomes and used a wavelet based
denoising method for identifying the characteristic bands.
Multi Layer Perceptron networks are used for classifica-
tion. The results confirm the efficiency of the new set of fea-
tures. The rest of the paper is organized as follows. Section
2 describes the dataset used in this study for testing the pro-
posed algorithm. Section 3 illustrates the feature extraction
process including automatic extraction of the density pro-
file of the chromosomes and tuning process used to auto-
Fig. 2. Ideograms of chromosom

Table 1
Typical values of features used in this study, these values are extracted from t

Chr. no. Relative
length (LR)

CI First characteristic
band

db1W

16 0.345 0.75 q21a 0.068
17 0.331 0.5 q22–24 0.26
18 0.322 0.312 q12 0.146

a In practice, the region beginning from q21 and ending in centromere was co
db1P = 0.6).
matically extract the features mimicking human expert
knowledge. Section 4 discusses the classification method
and presents results of the application of the proposed
algorithm to the dataset. Finally Section 5 concludes the
paper.

2. The dataset

The images used in this study were produced in the
Cytogenetic Laboratory of Cancer Institute, Imam Hos-
pital, Tehran, Iran. The images were acquired by a conven-
tional photography system using a light microscope (Leitz,
ortholux) with a magnification factor of 100·. The chro-
mosomes were segmented from the pictures by an expert
in the Cytogenetic Laboratory and then scanned by a scan-
ner (Microtek, ScanPlus 6) with a resolution of 300 dpi.
The gray scale resolution of the resulting digitized pictures
was set to 256 levels. The dataset includes 303 chromo-
somes from 76 patients (three pairs of chromosomes
from 25 patients and three single chromosomes from 51
patients).

3. Chromosomes in the feature domain

Conventionally, a chromosome is described by its
length, its centromeric index (CI) and its density profile. In
this work, length and CI are used together with the new
features developed based on the human expert classifica-
tion method. The process of feature extraction will be
e 16 in different resolutions.

he ideograms (Fig. 2) by an expert

db1P Second characteristic
band

db2W db2P

0.68 q23 0.82 0.84
0.75 p12 0.08 0.16
0.38 q22 0.137 0.69

nsidered as the first characteristic band of chromosome 16 (db1W = 0.23,
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discussed in this section. Due to the non-homogeneous illu-
minating conditions in the microscopic images, an intensity
normalizing procedure is necessary before the calculation
of any feature depending on the intensity of the images.
For this purpose, the histogram of the image was modified
using histogram stretching technique (Pratt, 1999).

3.1. Medial axis transformation (MAT)

First introduced in 1967 (Blum, 1967), medial axis trans-
formation (MAT) has been frequently used for calculating
geometric features and density profile of the chromosomes
(Piper and Granum, 1989; Lerner et al., 1995). MAT gives
the skeleton of the object which can be used as a one
dimensional presentation of a two dimensional shape in
pattern classification applications. From the geometrical
point of view, the medial axis of a solid object can be for-
mulated as the locus of the center of a maximal disk as it
rolls around the interior of the object. The coordinates of
the center points along with the radii of the circle in each
position give the MAT and locations of the center points
mark the medial axis.

In the current application, the medial axis gives a curve
passing through the middle of the chromosome along its
longitudinal direction (Vernon, 1991) and branches to
two parts at the two ends. To obtain the medial axis, a bin-
ary version of the image is needed in which the object and
the background are separated. The binary version can be
obtained by appropriately thresholding the intensity of
the image.

In this study, the medial axes of the chromosomes were
computed based on the Euclidian distance transform of the
binary image. A primary version of the medial axis was ex-
tracted from the distance transform based on the algorithm
described in (Shin and Pu, 1990) and then a thinning pro-
cess yielded the medial axis. Fig. 3 illustrates these steps.

The length of the chromosome was defined as the length
of the central curve which is coincident to the medial axis in
most parts, except for two ends of the chromosome. At
these ending parts the medial axis is branched into two
Fig. 3. (a) A typical chromosome 17 on which the central curve is identified, (b
the binary image, and (d) the medial axis of the chromosome.
parts and the central curve was approximated by the med-
ian of the triangle formed by these two branches and the
chromosome border. For more details on thresholding pro-
cess, extraction of the central curve from the medial axis
and localizing the centromere see our previous publications
which are devoted to the image processing and computa-
tional geometry algorithms that we used for feature extrac-
tion from the chromosome images (Moradi et al., 2003a,b).

3.2. Density profile (DP)

The density profile (DP) of a chromosome was defined
in Section 1. In this work, each sample of the DP signal
is defined as the average intensity of the pixels lying on a
line perpendicular to the approximation of the central
curve of the chromosome. For this purpose, at each pixel
belonging to the approximation of the central curve, a per-
pendicular line was considered and the intensities of the ob-
ject pixels belonging to this line were averaged to produce
one sample of the DP signal (a number in 0–255 range). As
it is usually desired to attribute the peaks of the DP signal
to darkest regions of the chromosome, each sample of the
DP signal (Pi) was replaced by its mirror (255-Pi). The DP
signals are illustrated in Fig. 4 for a set of chromosomes in
group E.

3.3. Extraction of features describing the characteristic

bands

As discussed in Section 1, a new set of features are de-
fined and used for classification of the chromosomes of
group E in this work. These features are the position, the
width and the intensity of the two most obvious character-
istic regions of the chromosomes. The DP signal is used to
automatically identify these bands. This process will be dis-
cussed in more details in this section.

3.3.1. Preprocessing of the density profile signal
The DP signal is a one dimensional signal representing

the intensity variations along the main axis of the chromo-
) the binary image of the same chromosome, (c) the distance transform of



Fig. 4. Typical chromosomes of group E and the density profile signals extracted for them.
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some. The characteristic bands are represented by relatively
long standing flat peaks in this signal. To determine the
beginning and ending points of these bands, an algorithm
was developed to score all the peaks with reasonable
lengths in the DP signal. Sharp and transient peaks can
have a misleading effect on the process, therefore, it is nec-
essary to eliminate the unnecessary details of the DP signal.
Two well-studied tools for this purpose are the digital low-
pass filters (Oppenheim and Schafer, 1989) and the wavelet
denoising method (Aldroubi and Unser, 1996), both of
which were applied in this work, but the wavelet denoising
method was found to be more effective.

Wavelet denoising was applied to the DP signal based
on Donoho�s soft thresholding algorithm described in
(Aldroubi and Unser, 1996). First a wavelet transformation
with the Haar wavelet function was applied to the DP
signal and a set of approximation coefficients (ak) and a
set of detail coefficients {dj,k, k = 1, . . . , 2j, j = L, . . . , J}
were generated (L is the number of decomposition levels).
Then a soft thresholding rule was applied to the detail
coefficients:

dij ¼
dij � T dij P T

0 jdijj < T

dij þ T dij < �T

8><
>: ð1Þ

where T is the threshold value. The approximation coeffi-
cients were left unchanged to avoid the loss of the main
structure of the signal. The DP signal was then recon-
structed using this modified set of coefficients producing
the denoised signal. Donoho�s suggested threshold value,
which was also used in this work, is defined as follows:

T ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
ð2Þ

where n is the number of samples in the signal and r is the
standard deviation of the noise. Since r is not known, it is
substituted by its approximation:

r̂ ¼ MAD=0:6745 ð3Þ
where MAD is the absolute median value of the detail
coefficients of the first level of the wavelet decomposition
computed as (Aldroubi and Unser, 1996):

MAD ¼
X2j
i¼1

jd1i �medj
 !,

2L ð4Þ

where med is the median of the detail coefficients of the first
level and 2L is the total number of these coefficients. Fig. 5
shows the results of the application of the wavelet prepro-
cessing method on the DP signal of a typical chromosome
16.

3.3.2. Proposed scoring algorithm for the extraction
of the characteristic regions

As discussed in Section 1, from the human expert point
of view the width and the intensity of a characteristic
region (band) are important parameters for identification
of the chromosomes. Thus these are the parameters that
should be taken into consideration in order to identify
the real characteristic bands among the possible candidate
regions. In our algorithm, a set of windows (with various
reasonable lengths) were slide over the processed
S = w1 · WR + w2 · IR DP signal, and for each one a
composite score was calculated as follows:

S ¼ w1 � W R þ w2 � IR ð5Þ
where WR is the width of the window, IR is the average
intensity of the DP signal within the window and w1 and
w2 are the tuning parameters (w1, w2 < 1, w1 + w2 = 1).
The window with the highest score was considered as the
first characteristic band. A few points need to be clarified
in this process. The sizes of the scored windows, the tuning
process and the method for determination of the second
band will be discussed in the following paragraphs.

3.3.2.1. The window sizes. Considering the standard ideo-
grams of G-banded chromosomes (Fig. 2), one can expect
the lengths of the characteristic bands to be close to a



Fig. 5. (a) DP signal of a chromosome 16 and (b) result of the application of the wavelet denoising method.
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known portion of the whole length of the chromosome.
Therefore, the ratio of the number of the samples in the
window of the DP signal that represents a specific band
to the number of all samples in the signal is also expected
to be in a known range. Based on this fact, the window size
was determined using the typical values of the characteris-
tic regions (Table 1). As the shortest ideal characteristic
dark band in group E covers about 8% of the whole chro-
mosome (db2 of chromosome 17) and the widest one cov-
ers about 26% of the chromosome (db1 of chromosome
17), the widths of the candidate scored windows were lim-
ited between 5% and 35% of the length of the DP signal.
All the definable windows with the number of samples in
the range of 5% to 35% of the whole signal were scored
based on Eq. (5).

3.3.2.2. Determination of the tuning parameters w1, w2. The
tuning parameters were selected in an iterative process
based on closeness of the mean of the band feature values
extracted using a specific set of {w1, w2} to the values of ref-
erence features presented in Table 1. The weigh parameters
where changed with the steps of length 0.1. The scoring
algorithm was repeated for sets of {w1, w2} and the results
were sorted based on the mean square error of the average
of computed feature values over the dataset (the error was
defined as the difference of the computed values and the
reference values in Table 1). Because there is no reference
value available for intensity related feature of the charac-
teristic bands—dbI—it was not considered in the process.
The set of weighs {w1 = 0.3, w2 = 0.7} resulted in feature
values with closest average value over the dataset to the ref-
erence values. The process of tuning the parameters was
performed using only the features describing the first char-
acteristic band.

3.3.2.3. Determination of the window in the DP signal

representing the second characteristic band. As explained,
the scoring was first applied to the whole signal and the
first region was selected as the region with the highest
score. As the first and the second regions have to be non-
overlapping, the second region was found by applying
the algorithm separately on the two remaining parts of
the signal at the left and the right side of the previously
defined first band. The second characteristic band was
determined as one of the two resulting windows with higher
score. The same process for determining the tuning para-
meters was followed only this time using the features
describing the second characteristic band.

In summary, in order to determine the beginning and
ending points of the windows in the DP signal that repre-
sent the characteristic bands of the chromosomes, a set of
windows with reasonable number of samples were scored
based on their average intensity and number of samples.
The windows having high scores correspond to flat peaks
in the signal that most likely represent the characteristic
bands of the chromosome. Fig. 6 shows the windows cor-
responding to the first and the second characteristic bands
on DP signals of a set of group E chromosomes.

3.3.3. Computing the new features
After extracting the positions of the characteristic

bands, enough data for computation of the band describing
features is available. Assume that a characteristic dark
band is extended from the ith to the jth sample of the DP
signal. The relative position of this region is given by

dbP ¼ ðiþ jÞ=2
NP

ð6Þ

where NP is the total number of the samples in the DP sig-
nal. According to this equation, regions closer to the end
(bottom) of the chromosome will have a greater dbP. The
relative width of the characteristic dark region is given by

dbW ¼ ðj� iÞ
NP

ð7Þ

Finally, the intensity of the characteristic region is
defined as the mean magnitude of the samples of the DP
signal in that region:

dbI ¼
Pj

n¼iP n

j� i
ð8Þ

where Pn is the nth sample of the DP signal.



Fig. 6. Characteristic regions in the DP signal determined by grading algorithm for a set of group E chromosomes.
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3.4. Normalized average gray density (NAGD)

The last feature in our nine-dimensional feature vector
was the relative NAGD which is computed as follows:

NAGD ¼
Xnj
i¼1

I i=nj ð9Þ

NAGDRj ¼ NAGDj

Xi¼18

i¼16

NAGDi

,
ð10Þ

where nj is the number of the image pixels belonging to the
chromosome object and Ii is the intensity level of ith pixel
of the image. The relative NAGD (Eq. (10)) is an index of
overall darkness of the chromosome. Among chromosomes
in group E, chromosome 18 is usually darker than the
other two.

4. Classification method and results

Utilization of artificial neural networks (ANN�s) for
classification of chromosomes has been intensively studied
in the past. Lerner (1998) has suggested that ANN�s are the
best chromosome classifiers, especially when the number of
classes is small. When the number of classes increases, the
efficiency of Bayes piecewise linear classifier approaches to
the ANN based classifier. In the present study, the number
of classes was limited to three. Therefore, ANN was em-
ployed for classification. Three layer feed-forward percep-
tron neural networks with different number of neurons in
the hidden layer were trained by the backpropagation
learning rule and used for the classification of the
chromosomes.

One problem that can occur during neural network
training is over-fitting which reduces the generalization
capability of the network. We used an early stopping strat-
egy to validate the learning process. In this technique, the
available data is divided into three subsets: training, valida-
tion and testing sets. The training subset is used for updat-
ing the ANN parameters; the testing subset is used for final
assessment, and the classification error on the validation
set is monitored during the training process to avoid
over-fitting. The validation error will normally decrease
during the initial phase of training similar to the training
set error. However, when the ANN begins to over-fit the
training data, the error on the validation set typically be-
gins to rise. When the validation error increases for a spec-
ified number of iterations, the training is stopped, and the
weights that produced the minimum error on the validation
set are retrieved. The results of our classification experi-
ments are presented in this section.

4.1. Classification using the nine-dimensional
feature vectors

In the first round of the experiments, the nine-dimen-
sional feature vector (Length, CI, NAGD, db1P, db1W,
db1I, db2P, db2W, db2I) was used. Three layer percep-
trons with 1, 2, 3, 5, 7, 10 and 13 neurons in the hidden
layer were used as classifiers. It was found that the net-
works with 13 and 10 neurons in the hidden layer had no
clear advantage over the networks with five and seven neu-
rons. Therefore, architectures with more than 13 neurons
in the hidden layer were not tested. On the other hand, it
was noticed that the network with one neuron in the hid-
den layer did not have the capability of proper classifica-
tion of the patterns.

The process of training and testing with early stopping
strategy (with maximum possible epochs of 150) was con-
ducted 20 times for each network. For each round of exper-
iments, 102 chromosomes were randomly selected to be
included in the training set and the remaining 201 chromo-
somes constituted the training set. To avoid over-fitting, a
subset of the test set, including 30 feature vectors was used
as the validation set. The results are presented in Table 2,
including the average success of the network on the train-
ing and test sets. The standard deviation, the best and
the worst performance of the architectures are also re-
ported in the table. It can be inferred that the results are
acceptable in terms of average and best performance. How-
ever, all architectures have shown some poor performances
as well. These results show that the best networks acquired
can obviously classify the test dataset with high accuracy.
However, they might not perform well enough as a general
classifier. Feature selection might improve the results; this
theory was tested and confirmed in the second round of
experiments that will be described later in this section.

Fig. 7 demonstrates the progress diagram of the net-
works with five and seven neurons in the hidden layer.



Table 2
The results of classification of chromosomes with nine-dimensional feature vectors

Number of
neurons
in the hidden
layer

The average
of correct
classification
results on training
set (%)

The average
of correct
classification
results on test
set (%)

The standard
deviation of
the classification
results over
20 experiments (%)

Worst classification
result on test
set (%)

The best
classification
results on
test set (%)

3 97.6 90.4 2.6 80.1 97.1

5 99.3 88.3 3.19 75.1 92.9
7 98 88 3.05 80.1 94.2
10 99 90.4 3.29 77.4 95.6

Each network was trained and tested 20 times; the average, the best, the worst and the standard deviation of the results are presented.

Fig. 7. Progress diagram of the training and validation process of the neural networks with five and seven hidden layer neurons in the first round of the
experiments: the dashed diagram represents the error on the validation data and the continuous line represents the error on the training set. The validation
criterion has caused early stopping of the training process because the error on the validation set has become constant.
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The dashed line represents the error on the validation set
while the continuous line shows the error on the training
set. In both cases, the early stopping criterion has been sat-
isfied before the maximum number of the epochs (150) is
reached.

4.2. Exclusion of NAGD, db1I and db2I

from the feature vectors

It is always desirable to use smaller feature vectors in or-
der to decrease the complexity of the classifiers. Different
feature selection procedures have been applied to the tradi-
tional chromosome feature vectors in the past (Cho, 2000;
Lerner et al., 1995). In this study, we followed a knowledge
based approach: intensity-based features (i.e., NAGD,
db1I and db2I), are subject to the imaging and illumination
conditions and also the standard ideograms do not suggest
typical values for them. Therefore, given our feature
extraction procedure, these features are prone to the max-
imum error. The effect of exclusion of these features on the
accuracy of the classifications was examined in the second
round of experiments.

The same settings in terms of random splitting of the
dataset before experiments, and maximum possible number
of epochs (150) were used. The reported results are ac-
quired using 20 rounds of training–testing experiments on
each one of the architectures. The results indicate that
the reduced feature vector leads to a more robust classifica-
tion performance (Table 3). Although the maximum per-
formances are in the same range (98.6 compared to 97.1
in the first round), the standard deviations have decreased
and the difference between the best and the worst perfor-
mances of the networks are meaningfully less than the first
round. A combination of network structure and feature
vector that has constantly shown high performances in 20
rounds of experiments (with different combinations of the
vectors in training–testing subsets) can be confidently
considered as an efficient classifier method. As the table
indicates, architectures with five and seven neurons in the
hidden layer have shown the highest average and highest
best performances, respectively.

The analysis of the misclassified cases (confusion matrix
analysis) showed some interesting results. In the network
architecture with five neurons in the hidden layer (which
showed the highest average performance), the average inac-
curacy is about 5%. From this amount, about 1.35% was
caused by misclassification of chromosome 16 as 18. The
rest of meaningful misclassifications were rare and consti-
tute less than 1% of the average error. Most of the error
cases were caused by the undefined outputs (many of these



Table 3
The results of classification of chromosomes with six-dimensional feature vectors (db1W, db2W, db1P, db2P, CI, L)

Number of
neurons
in the hidden
layer

The average
of correct
classification
results on
training set (%)

The average
of correct
classification
results on
test set (%)

The standard
deviation of
the classification
results over 20
experiments (%)

Worst classification
result on test
set (%)

The best
classification
results on
test set (%)

3 100 94.1 1.41 91.3 97.1
5 100 94.9 1.28 91.3 97.1
7 100 94.1 1.73 88 98.55

10 100 94.88 1.23 91.3 97.1

Each network was trained and tested 20 times; the average, the best, the worst and the standard deviation of the results are presented.
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cases can be avoided: if two or three neurons in the output
layer are activated instead of one, the winner is the neuron
with the highest output value). A similar pattern of confu-
sion matrix elements was also observed in the other exam-
ined network structures with a meaningfully higher value
of error caused by mistaking chromosome 16 as 18. The
similarity of the positions of the characteristic bands of
chromosomes 16 and 18 might partly justify this above
average error rate.

5. Discussions and conclusions

Automatic human chromosome classification is one of
the most widely investigated stages of the karyotyping pro-
cess (Lerner, 1998). Over the past few years, several classifi-
cation methods have been developed and tested for this
purpose. Most of these classifiers have two main flaws
(Groen et al., 1989; Piper and Granum, 1989): poor perfor-
mance compared to the human expert (70–80% compared
to 99.7%) and the requirement for an operator interaction
to correct the misclassifications. The main source of these
shortcomings might lie in using low level or inappropriate
features compared to the powerful feature synthesis mecha-
nism of the human expert�s brain (Lerner, 1998). The goal
of this study was to emulate this process. A new representa-
tion of human expert�s knowledge about the appearance of
the chromosomes in class E was developed for this purpose.
This representation is in form of a new set of features that
include position, width and intensity of the twomost impor-
tant characteristic regions (bands) in the chromosomes.

The results obtained show that the new set of features
used with an MLP including only 3–10 neurons in the hid-
den layer leads to a success rate of about 97.1%. A simple
feature selection process increased the maximum classifica-
tion rate to 98.6 and resulted in much more reproducible
results. The neural networks trained with our six-dimen-
sional feature vectors constantly resulted in very high clas-
sification rates (each ANN structure was trained and tested
20 times each time with a different combination of the
training and testing data). Compared to Lerner et al.
(1995), who have applied the same classification approach
as in the present study to solve a five class chromosome
classification problem, our results are slightly more accu-
rate and reproducible (Lerner et al. have used a feature vec-
tor consisting of CI, length and samples of the density
profile signal and achieved the maximum classification rate
of 98% on an MLP). These results show the potential capa-
bility of the new features for classification of different chro-
mosomes. More attention should be paid to the feature
extraction process to ensure that the maximum separability
of the classes by the new set of features is obtained. Partic-
ularly, we found out that the accuracy of the values ex-
tracted for intensity related features is limited both by the
illumination conditions and our feature extraction process.
This is probably the reason for the increase in the accuracy
of the classifications after exclusion of these features.

Similar to many other investigators, we have considered
a problem with three classes for the feasibility study phase.
A prerequisite for the generalization of this method to the
24-class problem is defining characteristic regions for the
other groups of chromosomes. Number of these regions
may not necessarily be ‘‘two’’ in all cases. Also, for a
24-class problem, feature vectors of higher dimensions
might be needed. In that situation, the intensity-based fea-
tures would have an important role and the feature extrac-
tion process should be modified to ensure the validity of
their values. We suggest a hierarchal classification process
for the 24-class problem: in the first step chromosomes
can be divided into some major subsets. Geometric and
morphologic features can be used for this step. Then a dif-
ferent set of characteristic regions can be defined for chro-
mosomes in each subset and the features describing these
regions along with length and CI can be used for final clas-
sification of the chromosomes.
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